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University of California, Los Angeles

Los Angeles, CA. 90095
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Abstract

This paper is concerned with estimating the effects
of actions from causal assumptions, represented con-
cisely as a directed graph, and statistical knowledge,
given as a probability distribution. We provide a nec-
essary and sufficient graphical condition for the cases
when the causal effect of an arbitrary set of variables
on another arbitrary set can be determined uniquely
from the available information, as well as an algo-
rithm which computes the effect whenever this con-
dition holds. Furthermore, we use our results to prove
completeness of do-calculus [Pearl, 1995], and a ver-
sion of an identification algorithm in [Tian, 2002] for
the same identification problem.

Introduction
This paper deals with computing effects of actions in domains
specified as causal diagrams, or graphs with directed and bidi-
rected edges. Vertices in such graphs correspond to variables of
interest, directed edges correspond to potential direct causal re-
lationships between variables, and bidirected edges correspond
to ’hidden common causes,’ or spurious dependencies between
variables [Pearl, 1995], [Pearl, 2000]. Aside from causal knowl-
edge encoded by these graphs, we also have statistical knowl-
edge in the form of a joint probability distribution over observ-
able variables, which we will denote by P .

An action on a variable set X in a causal domain consists
of forcing X to particular values x, without regard for the nor-
mal causal relationships that determine the values of X. This
action, denoted do(x) in [Pearl, 2000], changes the original
joint distribution P over observables into a new interventional
distribution denoted Px. The marginal distribution Px(Y) of a
variable set Y obtained from Px will be our notion of effect of
action do(x) on Y.

Our task is to characterize cases when Px(Y) can be deter-
mined uniquely from P , or identified in a given graph G. It
is well known that in Markovian models, those causal domains
whose graphs do not contain bidirected edges, all effects are
identifiable [Pearl, 2000]. If our model contains ’hidden com-
mon causes,’ that is if the model is semi-Markovian, the situa-
tion is less clear.

Multiple sufficient conditions for identifiability in the semi-
Markovian case are known [Spirtes, Glymour, & Scheines,
1993], [Pearl & Robins, 1995], [Pearl, 1995], [Kuroki &

Miyakawa, 1999]. [Pearl, 2000] contains an excellent summary
of these results. These results generally take advantage of the
fact that certain properties of the causal diagram reflect prop-
erties of P . These results are thus phrased in the language
of graph theory. For example, the back-door criterion [Pearl,
2000], states that if there exists a set Z of non-descendants of
X that ’block’ certain paths in the graph from X to Y, then
Px(Y) =

∑
z P (Y|z, x)P (z).

Results in [Pearl, 1995], [Halpern, 2000] take a different ap-
proach, and provide sound rules which are used to manipulate
the expression corresponding to the effect algebraically. These
rules are then applied until the resulting expression can be com-
puted from P .

Though the axioms in [Halpern, 2000] were shown to be
complete, the practical applicability of the result is limited,
since it does not provide a closed form criterion for the cases
when effects are not identifiable, nor a closed form algorithm
for expressing effects in terms of P when they are identifiable.
Instead, one must rely on finding a good proof strategy and hope
the effect expression is reduced to something derivable from P .

Recently, a number of necessity results for identifiability have
been proven. One such result [Tian & Pearl, 2002] states that Px

is identifiable if and only if there is no path consisting entirely
of bidirected arcs from X to a child of X .

The authors have also been made aware of a paper currently
in review [Huang & Valtorta, 2006] which shows a modified
version of an algorithm found in [Tian, 2002] is complete for
identifying Px(y), where X, Y are sets. The result in this paper
uses non-positive distributions, but has a simpler proof, and was
derived independently.

In this paper we close the problem of identification of causal
effects of the form Px(y) in semi-Markovian causal models.
In particular, we show that anytime such an effect is non-
identifiable there exists a corresponding graphical structure
which we call a hedge. We use this graphical criterion to con-
struct a sound and complete algorithm for identification of
Px(y) from P . The algorithm returns either an expression deriv-
able from P or a hedge which witnesses the non-identifiability
of the effect. We also show that steps of our algorithm cor-
respond to sequences of applications of rules of do-calculus
[Pearl, 1995], thus proving the completeness of do-calculus for
the same identification problem. Furthermore, we show a ver-
sion of a known identification algorithm [Tian, 2002] is also
complete and thus equivalent to our algorithm.
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Figure 1: (a) Graph G. (b) Graph G ′.
W1 - dating habits, X - use of contraception, Y1 - incidence of
STDs, W2 - alcohol use, and Y2 - traffic fatalities.

An Example of Causal Modeling

In this section, we illustrate the identifiability problem with an
example. Assume we are studying lifestyle-related causes of
early death in young adults. For our example, we restrict our
attention to deaths in traffic accidents, as well as deadly sexu-
ally transmitted diseases like hepatitis B, and AIDS. A simple
causal model listing some causes of such deaths is shown in
Fig. 1 (a). In this model, a person’s dating habits influence their
likelihood of using contraception, which in turn influences the
likelihood of contracting a deadly STD. There is also a con-
founding variable between STDs and dating habits, perhaps re-
lated to the kind of social circle a given person is in. Similarly,
alcohol use influences the likelihood of dying in a car accident.
At the same time, alcohol consumption might be related to the
use of contraceptives via a confounder representing moral or re-
ligious convictions. Alcohol and dating habits might be linked
by personality, and dating habits and traffic fatalities might be
linked by the person’s financial situation (a person might not be
able to afford a car).

We also consider a related situation shown in Fig. 1 (b),
where dating habits have a direct influence on alcohol use –
it could be argued that ’bar flies’ are more likely to consume
alcohol regardless of their personality.

Assuming this model is an accurate representation of the sit-
uation we wish to study, we might be interested in what effect a
lifestyle change, say a consistent use of contraceptives, has on
causes of death under consideration. We represent said lifestyle
change as an action on the variable X , which disregards the nor-
mal functional relationships imposed by the model, thus sever-
ing X from the influence of its parents and fixing its value. We
are now interested in the distribution this action induces on the
variables Y1, and Y2, representing the causes of death. Since it is
not possible to impose such changes on people in an experimen-
tal setting, we wish to identify the interventional distribution
Px(Y1, Y2) from the distribution we can obtain without forcing
anyone, namely P (X, W1, W2, Y1, Y2). Characterizing the sit-
uations where latter, observational distributions can be used to
infer the former is the causal effect identification problem.

The subtlety of this problem can be illustrated by noting that
in the graph in Fig. 1 (a) the effect in question is identifiable
from P (V), whereas in the graph in Fig. 1 (b) it is not. The
subsequent sections will shed some light on why this is so.

Notation and Definitions
In this section we reproduce the technical definitions needed
for the rest of the paper, and introduce common non-identifying
graph structures. We will denote variables by capital letters,
and their values by small letters. Similarly, sets of variables
will be denoted by bold capital letters, sets of values by bold
small letters. We will also use some graph-theoretic abbrevia-
tions: Pa(Y)G, An(Y)G, and De(Y)G will denote the set of
(observable) parents, ancestors, and descendants of the node set
Y in G, respectively. We will omit the graph subscript if the
graph in question is assumed or obvious. We will denote the set
{X ∈ G|De(X)G = ∅} as the root set of G. A graph GY will
denote a subgraph of G containing nodes in Y and all arrows be-
tween such nodes. Finally, following [Pearl, 2000], Gxy stands
for the edge subgraph of G where all in coming arrows into X
and all outgoing arrows from Y are deleted.

Having fixed our notation, we can proceed to formalize the
notions discussed in the previous section.

Definition 1 A probabilistic causal model (PCM) is a tuple
M = 〈U, V, F, P (U)〉, where

(i) U is a set of background or exogenous variables, which
cannot be observed or experimented on, but which can in-
fluence the rest of the model.

(ii) V is a set {V1, ..., Vn} of observable or endogenous vari-
ables. These variables are considered to be functionally
dependent on some subset of U ∪ V.

(iii) F is a set of functions {f1, ..., fn} such that each fi is a
mapping from a subset of U∪V \ {Vi} to Vi, and such that⋃

F is a function from U to V.

(iv) P (U) is a joint probability distribution over the variables
in U.

For a variable V , its corresponding function is denoted as fV .
For the purposes of this paper, we assume all variable domains
are finite. The distribution on V induced by P (U) and F will be
denoted P (V).

Sometimes it is assumed P (V) is a positive distribution. In
this paper we do not make this assumption. Thus, we must
make sure that for every distribution P (W|Z) that we consider,
P (Z) must be positive. This can be achieved by making sure
to sum over events with positive probability only. Furthermore,
for any action do(x) that we consider, it must be the case that
P (x|Pa(X)G \ X) > 0 otherwise the distribution Px(V) is not
well defined [Pearl, 2000].

The induced graph G of a causal model M contains a node
for every element in V, a directed edge between nodes X and
Y if fY possibly uses the values of X directly to determine the
value of Y , and a bidirected edge between nodes X and Y if
fX and fY both possibly use the value of some variable in U
to determine their respective values. In this paper we consider
recursive causal models, those models which induce acyclic
graphs.

In the framework of causal models, actions are modifications
of functional relationships. Each action do(x) on a causal model



M produces a new model, with a new probability distribution.
Formally, this is defined as follows.

Definition 2 (submodel) For a causal model M =
〈U, V, F, P (U)〉, an intervention do(x) produces a new
causal model Mx = 〈U, Vx, Fx, P (U)〉, where Vx is a set of
distinct copies of variables in V, and Fx is obtained by taking
distinct copies of functions in F, but replacing all copies of
functions which determine the variables in X by constant
functions setting the variables to values x. The model Mx is
called the submodel of M , and the distribution over Vx is
denoted Px(V).

Since subscripts are used to denote submodels, we will use
numeric superscripts to enumerate models (e.g. M 1). For a
model M i, we will often denote it’s associated probability dis-
tributions as P i rather than P .

We can now define formally the notion of identifiability of
interventions from observational distributions.

Definition 3 (Causal Effect Identifiability) The causal effect
of an action do(x) on a set of variables Y such that Y∩X = ∅ is
said to be identifiable from P in G if Px(Y) is (uniquely) com-
putable from P (V) in any causal model which induces G.

The following lemma establishes the conventional technique
used to prove non-identifiability in a given G.

Lemma 1 Let X, Y be two sets of variables. Assume there exist
two causal models M 1 and M 2 with the same induced graph
G such that P 1(V) = P 2(V), P 1(x|Pa(X)G \ X) > 0, and
P 1

x (Y) �= P 2
x (Y). Then Px(y) is not identifiable in G.

Proof: No function from P to Px(y) can exist by assumption,
let alone a computable function. �

The simplest example of a non-identifiable graph structure is
the so called ’bow arc’ graph. See Fig. 2 (a). The bow arc graph
has two endogeous nodes: X , and its child Y . Furthermore, X
and Y have a hidden exogenous parent U . Although it is well
known that Px(Y ) is not identifiable in this graph, we give a
simple proof here which will serve as a seed of a similar proof
for more general graph structures.

Theorem 1 Px(Y ) is not identifiable in the bow arc graph.

Proof: We construct two causal models M 1 and M 2 such that
P 1(X, Y ) = P 2(X, Y ), and P 1

x (Y ) �= P 2
x (Y ). The two mod-

els agree on the following: all 3 variables are boolean, U is a
fair coin, and fX(u) = u. Let ⊕ denote the exclusive or (XOR)
function. Then Y is equal to u ⊕ x in M 1 and Y is equal to
0 in M2. It’s not difficult to see that P 1(X, Y ) = P 2(X, Y ),
while P 2

x (Y ) �= P 1
x (Y ). Note that while P is non-positive, it

is straightforward to modify the proof for the positive case by
letting fY functions in both models return 1 half the time, and
the values outlined above half the time. �

A number of other specific graphs have been shown to con-
tain unidentifiable effects. For instance, in all graphs in Fig. 2,
taken from [Pearl, 2000], Px(Y ) is not identifiable.

C-Trees and Direct Effects
A number of example graphs from Fig. 2 have the following two
properties. Firstly, Y is the bottom-most node of the graph. Sec-

ondly, all the nodes in the graph are pairwise connected by bidi-
rected paths. Sets of nodes interconnected by bidirected paths
turned out to be an important notion for identifiability and have
been studied at length in [Tian, 2002] under the name of C-
components.

Definition 4 (C-component) Let G be a semi-Markovian
graph such that a subset of its bidirected arcs forms a span-
ning tree over all vertices in G. Then G is a C-component (con-
founded component).

If G is not a C-component, it can be uniquely partitioned into
a set C(G) of subgraphs, each a maximal C-component.

An important result states that for any set C which is a C-
component, in a causal model M with graph G, PV\C(C) is
identifiable [Tian, 2002]. The quantity PV\C(C) will also be de-
noted as Q[C]. For the purposes of this paper, C-components
are important because a distribution P in a semi-Markovian
graph G factorizes such that each product term Q[C] corre-
sponds to a C-component. For instance, the graphs shown in
Fig. 2 (b) and (c), both have 2 C-components: {X, Z} and {Y }.
Thus, the corresponding distribution factorizes as P (x, z, y) =
Py(x, z)Px,z(y). It is this factorization which will ultimately
allow us to decompose the identification problem into smaller
subproblems, and thus construct an identification algorithm.

Noting that many graphs from the previous section with non-
identifiable effects Px(Y ) were both C-components and ances-
tral sets of Y , we consider the following structure.

Definition 5 (C-tree) Let G be a semi-Markovian graph such
that C(G) = {G}, all observable nodes have at most one child,
and there is a node Y , which is a descendant of all nodes. Then
G is a Y -rooted C-tree (confounded tree).

The graphs in Fig. 2 (a) (d) (e) (f) and (h), including the bow-
arc graph, are Y -rooted C-trees.

There is a relationship between C-trees and interventional
distributions of the form Ppa(Y )(Y ). Such distributions are
known as direct effects, and correspond to the influence of
a variable X on its child Y along some edge, where the vari-
ables Pa(Y ) \ {X} are fixed to some reference values.

Direct effects are of great importance in the legal domain,
where one is often concerned with whether a given party was
directly responsible for damages, as well as medicine, where
elucidating the direct effect of medication, or disease on the hu-
man body in a given context is crucial. See [Pearl, 2000],[Pearl,
2001] for a more complete discussion of direct effects.

We now show that the absence of Y -rooted C-trees in G
means the direct effect on Y is identifiable.

Theorem 2 Let M be a causal model with graph G. Then for
any node Y , the direct effect Ppa(Y )(Y ) is identifiable if there
is no subgraph of G which forms a Y -rooted C-tree.

Proof: From [Tian, 2002], we know that whenever there is no
subgraph G′ of G, such that all nodes in G′ are ancestors of Y ,
and G′ is a C-component, Ppa(Y )(Y ) is identifiable. Clearly, if
no such G′ exists, then no Y -rooted C-tree exists. On the other
hand, if G′ does exist, then it is possible to remove a set of edges
from G′ to obtain a Y -rooted C-tree. �
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Figure 2: Unidentifying graphs.

Theorem 2 suggests that C-trees are troublesome structures
for the purposes of identification of direct effects. In fact, our
investigation revealed that Y -rooted C-trees are troublesome for
any effect on Y , as the following theorem shows.

Theorem 3 Let G be a Y -rooted C-tree. Then the effects of any
set of nodes in G on Y are not identifiable.

Proof: See Appendix. �

While this theorem closes the identification problem for di-
rect effects, the problem of identifying general effects on a sin-
gle variable Y is more subtle, as the following corollary shows.

Corollary 1 Let G be a semi-Markovian graph, let X and Y be
sets of variables. If there exists a node W which is an ancestor
of some node Y ∈ Y and such that there exists a W -rooted C-
tree which contains any variables in X, then Px(Y) is not iden-
tifiable.

Proof: Fix a W -rooted C-tree T , and a path p from W to Y .
Consider the graph p ∪ T . Note that in this graph Px(Y ) =∑

w Px(w)P (Y |w). It is now easy to construct P (Y |W ) in
such a way that the mapping from Px(W ) to Px(Y ) is one to
one, while making sure P is positive. �

This corollary implies that the effect of do(x) on a given sin-
gleton Y can be non-identifiable even if Y is nowhere near a C-
tree, as long as the effect of do(x) on a set of ancestors of Y is
non-identifiable. Therefore identifying effects on a single vari-
able is not really any easier than the general problem of iden-
tifying effects on multiple variables. We consider this general
problem in the next section.

Finally, we note that the last two results relied on existence
of a C-tree without giving an explicit algorithm for constructing
one. In the remainder of the paper we will give an algorithm
which, among other things, will construct the necessary C-tree,
if it exists.

C-Forests, Hedges, and Non-Identifiable
Effects

The previous section establishes a powerful necessary condition
for the identification of effects on a single variable. It is the
natural next step to ask whether a similar condition exists for
effects on multiple variables. We start by considering a multi-
vertex generalization of a C-tree.

Definition 6 (C-forest) Let G be a semi-Markovian graph,
where Y is the maximal root set. Then G is a Y-rooted C-forest
if G is a C-component, and all observable nodes have at most
one child.

We will show that just as there is a close relationship between
C-trees and direct effects, there is a close relationship between
C-forests and general effects of the form Px(Y), where X and Y
are sets of variables.

Definition 7 (hedge) Let X, Y be sets of variables in G. Let
F, F ′ be R-rooted C-forests such that F ∩ X �= ∅, F ′ ∩ X = ∅,
F ′ ⊆ F , and R ⊂ An(Y)Gx . Then F and F ′ form a hedge for
Px(y) in G.

The mental picture for a hedge is as follows. We start with a
C-forest F ′. Then, F ′ ’grows’ new branches, while retaining the
same root set, and becomes F . Finally, we ’trim the hedge,’ by
performing the action do(x) which has the effect of removing
some incoming arrows in F \ F ′. It’s easy to check that every
graph in Fig. 2 contains a pair of C-forests that form a hedge
for Px(Y ). Similarly, the graph in Fig. 1 (a) does not contain C-
forests forming a hedge for Px(Y1, Y2), while the graph in Fig. 1
(b) does: if e is the edge between W1 and X , then F = G\{e},
and F ′ = F \ {X}. Note that for the special case of C-trees, F
is the C-tree itself, and F ′ is the singleton root Y .

Theorem 4 (hedge criterion) Assume there exist C-forests
F, F ′ that form a hedge for Px(y) in G. Then Px(y) is not iden-
tifiable in G.



function ID(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution,
G a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1 if x = ∅ return
∑

v\y P (v).

2 if V \ An(Y)G �= ∅
return ID(y, x ∩ An(Y)G,

∑
v\An(Y)G

P, An(Y)G).

3 let W = (V \ X) \ An(Y)Gx .
if W �= ∅, return ID(y, x ∪ w, P, G).

4 if C(G \ X) = {S1, ..., Sk}
return

∑
v\(y∪x)

∏
i ID(si, v \ si, P, G).

if C(G \ X) = {S}
5 if C(G) = {G}, throw FAIL(G, S).

6 if S ∈ C(G) return
∑

s\y

∏
{i|Vi∈S} P (vi|v(i−1)

G ).

7 if (∃S ′)S ⊂ S′ ∈ C(G) return ID(y, x ∩ S ′,∏
{i|Vi∈S′} P (Vi|V (i−1)

G ∩ S′, v(i−1)
G \ S′), S′).

Figure 3: An improved identification algorithm. FAIL propa-
gates through recursive calls like an exception, and returns F, F ′

which form the hedge which witnesses non-identifiability.

Proof: See Appendix. �

Hedges generalize the complete condition for identification
of Px from P in [Tian & Pearl, 2002] which states that if Y is a
child of X and there exists a set of bidirected arcs connecting X
to Y then (and only then) Px is not identifiable. Let G consist
of X , Y and the nodes W1, ..., Wk on the bidirected path from
X to Y . It is not difficult to check that G forms a hedge for
Px(Y, W1, ..., Wk). Since hedges characterize a wide variety of
non-identifiable graphs, and generalize a known complete con-
dition for a special case of the identification problem, it might
be reasonable to suppose that the hedge criterion is a complete
characterization of non-identifiability in graphical causal mod-
els. To prove this supposition, we would need to construct an
algorithm which identifies any effect lacking a hedge. This al-
gorithm is the subject of the next section.

A Complete Identification Algorithm

Given the characterization of unidentifiable effects in the pre-
vious section, we can attempt to solve the identification prob-
lem in all other cases, and hope for completeness. To do this
we construct an algorithm that systematically takes advantage
of the properties of C-components to decompose the identifi-
cation problem into smaller subproblems until either the entire
expression is identified, or we run into the problematic hedge
structure. This algorithm, called ID, is shown in Fig. 3.

Before showing the soundness and completeness properties
of ID, we give the following example of the operation of the
algorithm. Consider the graph G in Fig. 1 (a), where we want to
identify Px(y1, y2) from P (V).

W1
X

Y1

(a) (b)

W2 Y2

(d)

W1 Y1

(c)

Y1

Figure 4: Subgraphs of G used for identifying Px(y1, y2).

Since G = An({Y1, Y2})G, C(G \ {X}) = {G}, and W =
{W1}, we invoke line 3 and attempt to identify Px,w(y1, y2).
Now C(G \ {X, W}) = {Y1, W2 → Y2}, so we in-
voke line 4. Thus the original problem reduces to identifying∑

w2
Px,w1,w2,y2(y1)Pw,x,y1(w2, y2).

Solving for the second expression, we trigger line 2, noting
that we can ignore nodes which are not ancestors of W2 and Y2,
which means Pw,x,y1(w2, y2) = P (w2, y2). The corresponding
G is shown in Fig. 4 (d).

Solving for the first expression, we first trigger line 2 also,
obtaining Px,w1,w2,y2(y1) = Px,w(y1). The corresponding G is
shown in Fig. 4 (a). Next, we trigger line 7, reducing the prob-
lem to computing Pw(y1) from P (Y1|X, W1)P (W1). The cor-
responding G is shown in Fig. 4 (b). Finally, we trigger line 2,
obtaining Pw(y1) =

∑
w1

P (y1|x, w1)P (w1). The correspond-
ing G is shown in Fig. 4 (c). Putting everything together, we
obtain: Px(y1, y2) =

∑
w2

P (y1, w2)
∑

w1
P (y1|x, w1)P (w1).

As we showed before, the very same effect Px(y1, y2) in a
very similar graph G′ shown in Fig. 1 (b) is not identifiable due
to the presence of C-forests forming a hedge.

We now prove that ID terminates and is sound.

Lemma 2 ID exhausts all valid input, and always terminates.

Proof: First we show that ID is exhaustive for any valid input.
All recursive calls to ID pass a non-empty graph as arguments,
so third and fourth lines are exhaustive. Given this, we must
show that any input reaching the last two lines will satisfy one
of the two corresponding conditions. Assume C(G\X) = {S}.
Then if there are no bidirected arcs in G from S to X, the penul-
timate condition holds. Otherwise, the ultimate condition holds.

Now the result follows if any recursive call of ID reduces
either the size of the set X or the size of the set V \ X. This is
only non-obvious for the last recursive call. However, if the last
recursive call is made, then (∃X ∈ X)X �∈ S ′, or the failure
condition would have been triggered. �

To show soundness, we need a number of utility lemmas jus-
tifying various lines of the algorithm. In the proofs, we will uti-
lize the 3 rules of do-calculus. These rules allow insertion and
deletion of interventions and observational evidence into and
from distributions, using probabilistic independencies implied
by the causal graph. Do-calculus is discussed in [Pearl, 2000].
The 3 rules themselves are reproduced in the last section of the
paper.



First, we must show that an effect of the form Px(y) decom-
poses according to the set of C-components of the graph G \X.

Lemma 3 Let M be a causal model with graph G. Let y, x be
value assignments. Let C(G\X) = {S1, ..., Sk}. Then Px(y) =∑

v\(y∪x)

∏
i Pv\si

(si).

Proof: There is a simple proof for this based on C-component
factorizations of P . Fix a model M with graph G and assume
C(G) = {S′

1, ..., S
′
k}. Then P (v) =

∏
i Pv\s′

i
(s′i). The same

factorization applies to the submodel Mx which induces the
graph G \ X, which implies the result. However, for the pur-
poses of the next section, we also provide a longer proof using
do-calculus, which can be found in the Appendix. �

Next we show that to identify the effect on Y, it is sufficient
to restrict our attention to the ancestor set of Y.

Lemma 4 Let Y, X be sets of variables. Let M be a causal
model with graph G. Then Px(Y) is identifiable in G from P if
and only if Px(Y) is identifiable in GAn(Y) from

∑
v\An(Y)G

P .

Proof: This follows from factorization properties of P (V). See
[Tian, 2002]. �

Next we prove soundness for line 3.

Lemma 5 Let W = (V \X) \An(Y)Gx . Then Px(y) = Px,w(y),
where w are arbitrary values of W.

Proof: Note that by assumption, Y ⊥⊥ W|X in Gx,w. The con-
clusion follows by rule 3 of do-calculus (see next section). �

Finally, we show the soundness of the last recursive call.

Lemma 6 Let Y, X be sets of variables. Let M be a causal
model with graph G. Whenever the conditions of the last
recursive call are satisfied, Px is computable in G from
P , if and only if Px∩S′ is computable in S ′ from P ′ =∏

{i|Vi∈S′} P (Vi|V (i−1)
G ∩ S′, v(i−1)

G \ S′).

Proof:
Note that when the last recursive call executes, X and S

partition G. We must show that Px(y) is identifiable from
P (V) in G if and only if Px∩S′(y) is identifiable from Px(S′)
in S′. Then it is not difficult to show Px(S′) = Q[S′] =∏

{i|Vi∈S′} P (Vi|V (i−1)
G ∩ S′, v(i−1)

G \ S′).
Note that for any causal model M with graph G, whenever X

and S partition G, the submodel Mx\S′(S′) induces precisely
the graph S ′. If Px(y) is identifiable from Px∩S′(y), then it
is certainly identifiable from P (V), since as we saw from the
previous Lemma, Px∩S′(y) can be expressed in terms of from
P (V). If Px(y) is not identifiable from Px∩S′(y) in S ′, then cer-
tainly it is not identifiable in G from P (V), because adding to
the graph cannot help identifiability. Finally, because M x\S′(S′)
already fixes x \ S ′, Px(y) in M is equal to Px∩S′(y) in Mx\S′ .
�

We can now show the soundness of ID.

Theorem 5 (soundness) Whenever ID returns an expression
for Px(y), it is correct.

Proof: The soundness of all recursive calls has already been
shown. What remains is to show the soundness of all positive
base cases. If x = ∅, the desired effect can be obtained from
P by marginalization, thus this base case is clearly correct. If

C(G \ X) = {S} and S ∈ C(G), correctness follows from the
properties of C-components, see [Tian, 2002]. �

We can now characterize the relationship between C-forests,
the set Y and the failure of ID to return an expression.

Theorem 6 Assume ID fails to identify Px(y) (executes line 5).
Then there exist X′ ⊆ X, Y′ ⊆ Y such that the graph pair G, S
returned by the fail condition of ID contain as edge subgraphs
C-forests F, F ′ that form a hedge for Px′(y′).

Proof: Consider line 5, and G and y local to that recursive call.
Let R be the root set of G. Since G is a single C-component,
it is possible to remove a set of directed arrows from G while
preserving the root set R such that the resulting graph F is an
R-rooted C-forest.

Moreover, since F ′ = F ∩ S is closed under descendants,
and since only single directed arrows were removed from S to
obtain F ′, F ′ is also a C-forest. F ′ ∩ X = ∅, and F ∩ X �= ∅ by
construction. R ⊆ An(Y)Gx by lines 2 and 3 of the algorithm.
It’s also clear that y, x local to the recursive call in question are
subsets of the original input. �

Corollary 2 (completeness) ID is complete.

Proof: By the previous Theorem, if ID fails, then Px′(y′) is not
identifiable in a subgraph H of G. Moreover, X ∩ H = X ′, by
construction of H . As such, it is easy to extend the counterex-
amples in the previous Theorem with variables independent of
H , with the resulting models inducing G, and witnessing the
non-identifiability of Px(y). �

The following is now immediate.

Corollary 3 Px(y) is identifiable from P in G if and only if
there does not exist a hedge for Px′(y′) in G, for any X′ ⊆ X
and Y′ ⊆ Y.

So far we have not only establishes completeness, but also
fully characterized graphically all situations where joint inter-
ventional distributions are identifiable. We can use these results
to derive a characterization of identifiable models, that is, causal
models where all interventional distributions are identifiable.

Corollary 4 (model identification) Let G be a semi-
Markovian causal diagram. Then all interventional distri-
butions are identifiable in G if and only if G does not contain
an R-rooted C-forest F such that F \ R �= ∅.

Proof: Note that if F, F ′ are C-forests which form a hedge for
some effect, there must be a variable X ∈ F , which is an ances-
tor of another variable Y ∈ F . Therefore if G does not contain
any R-rooted C-forests F such that F \ R �= ∅, then ID never
reaches the fail condition. Thus all effects are identifiable.

Otherwise, let F be such a forest. Fix X, Y ∈ F such that
X ∈ Pa(Y )F . Note that X and Y are connected by a path
consisting entirely of bidirected arcs, by definition of C-forests.
Let W1, ..., Wk ∈ F be the set of nodes on this path. It is not
hard to see that Px(Y, W1, ..., Wk) is not identifiable in G. �

Connections to Existing Identification
Algorithms

In the previous section we established that ID is a sound and
complete algorithm for all unconditional effects of the form



Px(y). It is natural to ask whether this result can be used to show
completeness of earlier algorithms conjectured to be complete.

First, we consider a declarative algorithm known as do-
calculus [Pearl, 2000], which has been a popular technique for
proving identifiability, with its completeness remaining an open
question. Do-calculus allows one to manipulate expressions cor-
responding to effects using the following three identities:

• Rule 1: Px(y|z, w) = Px(y|w) if (Y ⊥⊥ Z|X, W)GX

• Rule 2: Px,z(y|w) = Px(y|z, w) if (Y ⊥⊥ Z|X, W)GX,Z

• Rule 3: Px,z(y|w) = Px(y|w) if (Y ⊥⊥ Z|X, W)G
X,Z(W)

where Z(W) = Z \ An(W)GX
.

We show that the steps of the algorithm ID correspond to
sequences of standard probabilistic manipulations, and appli-
cations of rules of do-calculus, which entails completeness of
do-calculus for identifying unconditional effects.

Theorem 7 The rules of do-calculus, together with standard
probability manipulations are complete for determining iden-
tifiability of all effects of the form Px(y).

Proof outline: We must show that all operations correspondings
to lines of ID correspond to sequences of standard probabil-
ity manipulations and applications of the rules of do-calculus.
These manipulations are done either on the effect expression
Px(y), or the observational distribution P , until the algorithm
either fails, or the two expressions ’meet’ by producing a single
chain of manipulations.

Line 1 is just standard probability operations.
Line 2 follows by rule 1 of do-calculus, coupled with the

semi-Markovian property.
Line 3 corresponds to an application of rule 3 of do-calculus

by Lemma 5.
Line 4 corresponds to a sequence of do-calculus rule applica-

tions and probability manipulations by Lemma 3.
Line 5 is a fail condition.
Line 6 implies that G is partitioned into sets S and X, and

there no bidirected arcs from X to S. This implies that
S ⊥⊥ X|X in GX. The operation of line 6 then corresponds to an
application of Rule 2 of do-calculus.

To prove line 7, we note that since all nodes not in S ′ are
in X at the time of the last recursive call, and since X \ S ′

does not contain any bidirected arcs to S ′, we can conclude that∏
{i|Vi∈S′} P (Vi|V (i−1)

G ∩S′, v(i−1)
G \S′) = Px\S′(S′) by Rule

2, by the same reasoning used to prove the result for line 6. �

Next, we consider a version of an identification algorithm due
to Tian, shown in Fig. 5. The soundness of this algorithm has
already been addressed elsewhere, so we turn to the matter of
completeness.

Theorem 8 Assume jointident fails to identify Px(y). Then
there exist C-forests F, F ′ forming a hedge for Px′(y′), where
X′ ⊆ X, Y′ ⊆ Y.

Proof: Assume identify fails. Consider C-components C, T lo-
cal to the failed recursive call. Let R be the root set of C. Be-
cause T = An(C)GT , R is also a root set of T . As in the proof

function identify(C, T, Q[T])
INPUT: C ⊆ T , both are C-components, Q[T ] a probability
distribution
OUTPUT: Expression for Q[C] in terms of Q[T ] or FAIL

Let A = An(C)GT .

1 If A = C, return
∑

T\C P

2 If A = T , return FAIL

3 If C ⊂ A ⊂ T , there exists a C-component T ′ such that
C ⊂ T ′ ⊂ A.
return identify(C, T ′, Q[T ′])
(Q[T ′] is known to be computable from

∑
T\A Q[T ])

function jointident(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution,
G a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL.

1 Let D = An(Y)GX
.

2 Assume C(D) = {D1, ..., Dk}, C(G) = {C1, ..., Cm}.

3 return
∑

D\S

∏
i identify(Di, CDi , Q[CDi ]),

where (∀i)Di ⊆ CDi

Figure 5: An identification algorithm modified from [Tian,
2002]

of Theorem 6, we can remove a set of directed arrows from
C and T while preserving R as the root set such that the re-
sulting edge subgraphs are C-forests. By line 1 of jointident,
C, T ⊆ An(Y)Gx .

Finally, because identify will always succeed if Di = CDi ,
it must be the case that Di ⊂ CDi . But this implies X ∩C = ∅,
X∩T �= ∅. Thus, edge subsets of C, and T satisfy the properties
of a hedge for Px′(y′), where X′ ⊆ X, Y′ ⊆ Y. �

Corollary 5 jointident is complete.

Proof: This is implied by the previous Theorem, and Corollary
3. �

Appendix
In this appendix we present the full proofs of Theorems 3 and
4, and Lemma 3

Theorem 3 Let G be a Y -rooted C-tree. Then the effects
of any set of nodes in G on Y are not identifiable.

The proof will proceed by constructing a family of coun-
terexamples. For any such G and any set of nodes X, we will
construct two causal models M 1 and M 2 that will agree on the
joint distribution over endogenous variables, but disagree on
the interventional distribution Px(Y ). The argument will be a
strict generalization of the proof of Theorem 1.



The two models in question agree on the following features.
All variables in U ∪ V are binary. All exogenous variables are
distributed uniformly. All endogeous variables except Y are set
to the bit parity of the values of their parents.

The only difference between the models is how the function
for Y is defined. Let bp(.) denote the bit parity (sum mod 2)
function. Let the function fY : U, Pa(Y ) → Y be defined as
follows.

M1: fY (u, pa(Y )) = bp(u, pa(Y )).

M2: fY (u, pa(Y )) = 0.

We will prove the necessary claims about M 1 and M 2 in the
following lemmas.

Lemma 7 The observational distributions in the two models
are the same. In other words P 1(V) = P 2(V).

Proof: Since the two models agree on P (U) and all func-
tions except fY , it suffices to show fY maintains the same in-
put/output behavior in both models. Clearly, Y always outputs
0 in M 2.

Consider the behavior of fY in M1. We must show that the
bit parity of the parents of Y is always 0. Since the endogenous
nodes and directed edges form a tree with Y at the root, and
since the functions for all nodes compute the bit parity, or sum
(mod 2), of their parents we can view Y as computing the sum
(mod 2) of all values of nodes in U. Moreover, since each vari-
able in U has exactly two endogenous children, the bit value of
any node in U is counted twice. Thus, regardless of the value
assignment of all nodes U, the sum (mod 2) computed at Y
will be 0. �

Lemma 8 For any set of variables X (excluding Y ), there exists
a value assignment x such that P 1

x (Y ) �= P 2
x (Y ).

Proof: Consider any such set X. Let A = An(X), B = G \ A.
Note that X ⊆ A, Y ∈ B, so both sets are non-empty. By defi-
nition of C-trees, there exists a bidirected arc between a node in
A and a node in B. Because the corresponding variable U will
only have its value counted once for the purposes of bit parity,
P 1

x (Y = 1) > 0. By construction, P 2
x (Y = 1) = 0. �

Lemmas 7 and 8 together with the fact that in our counterex-
amples any two disjoint subsets of U are independent, prove
Theorem 3. It is straightforward to generalize this proof for the
positive P (V) in the same way as Theorem 1.

Theorem 4 Assume F, F ′ form a hedge for Px(y). Then
Px(y) is not identifiable.

We will consider counterexamples with the induced graph
H = De(F )G ∩ An(Y)Gx . Without loss of generality, assume
H is a forest. Once again, we generalize the proof for the
bow-arc graphs and C-trees. As before, we have two models
with binary nodes. In the first model, the values of all observ-
able nodes are equal to the bit parity of the parent values. In
the second model, the same is true, except any node in F ′

disregards the parent values if the parent is in F .

Lemma 9 Given the models defined above, P 1(V) = P 2(V).

Proof: Let F be an R-rooted C-forest, let V ′ be the set of ob-
servable variables and U′ be the set of unobservable variables
in F . Assume the functions of V′ and distributions of U′ are de-
fined as above. As a subclaim, we want to show that any node
assignment where the bit parity of R is odd has probability 0,
and all other assignments are equally likely.

As in the proof of Lemma 7, we can view R as computing
the bit parity of variables U′. Moreover, because variable in U ′

has exactly two endogenous children in F , each such variable
is counted twice. Thus, the bit parity of R is always even.

Next, we want to prove that the function from U ′ to V′ is 1-
1. Assume this is not so, and fix two instantiations of U ′ that
map to the same values in V′, and that differ by the settings
of the set U∗ = {U1, ..., Uk}. Since bidirected edges form a
spanning tree there exist some nodes in V∗ with an odd number
of parents in U∗. Order all such nodes topologically in G, and
consider the topmost node, call it X . Clearly, if we flip all values
in U∗, and no other values in U′, the value of X will also flip.
Contradiction.

Since all U′ are uniformly distributed, and |U ′| + 1 = |V′|,
our subclaim follows.

Let D = F \ F ′. All we have left to show is
that in M 2 all value assignments over D are equally
likely. Consider the distribution P 1(D). Because P 1 decom-
poses as:

∏
V ∈G P (V |Pa(V )), where Pa(V ) includes vari-

ables in U′, it’s easy to see that P 1(D) decomposes as∏
V ∈GD

P (V |Pa(V )). But this implies P 1(D) = P 2(D).
Since we already know P 1(F ′) = P 2(F ′), and because the

two models agree on all functions in H\F , we obtain our result.
�

Lemma 10 For any x, P (x|Pa(X)G \ X) > 0.

Proof: In the last lemma we established that all value assign-
ments where the bit parity of y is even are equally likely, and
all value assignments where the bit parity of y is odd are impos-
sible. This implies that

∑
y P (V) is a positive distribution. Our

result follows. �

Lemma 11 There exists a value assignment x to variables X
such that P 1

x (R) �= P 2
x (R).

Proof: This is an easy generalization of Lemma 8. As before, we
can find a variable U with a value counted once for the purposes
of bit parity in M 1

x . This implies that P 1
x (

∑
y (mod 2) = 1) >

0, while P 2
x (

∑
y (mod 2) = 1) = 0 by construction. �

Lemma 12 If Px(R) is not identifiable, then neither is Px(Y).

Proof: We observe that the root set in H is a subset of Y, call
it Y′. Since P 1(V′) = P 2(V′), and both models agree on the
functions in H \F , we obtain that P 1(V) = P 2(V) in H . Since
H is a forest, it is not difficult to show that the bit parity of R is
equal to the bit parity of Y′ in both submodels M 1

x , M2
x for any

x. This completes the proof. �

The previous lemmas together prove Theorem 4. We now
provide a proof of Lemma 3 using the rules of do-calculus.

Lemma 3 Let M be a causal model with graph G. Let
y, x be value assignments. Let C(G \ X) = {S1, ..., Sk}. Then
Px(y) =

∑
v\(y∪x)

∏
i Pv\si

(si).



Proof: The identities

Px(y) =
∑

v\(x∪y)

Px(v) =
∑

v\(x∪y)

∏

i

Px(vi|v(i−1)
G ) =

∑

v\(x∪y)

∏

{j|Sj∈C(G)}

∏

{i|Vi∈Sj}
Px(vi|v(i−1)

G ) =

are standard probability manipulations licensed by the struc-
ture of the graph.

∑

v\(x∪y)

∏

{j|Sj∈C(G)}

∏

{i|Vi∈Sj}
Px,v

(i−1)
G \Sj

(vi|v(i−1)
G ∩ Sj) =

For this identity, fix Vi, and consider a vertex A ∈ V
(i−1)
G \Sj ,

where Vi ∈ Sj . A backdoor path from A to Vi must involve only
ancestors of Vi since only such nodes are observed in our ex-
pression, and since our graph is acyclic. A backdoor path also
cannot involve singly directed edges, since all ancestors of V i

are observed, blocking all such paths. A backdoor path also can-
not involve only bidirected arcs, since A �∈ Sj . Thus, no such
path exists, and the identity follows from Rule 2 of do-calculus.
Note that any ancestor of Sj not itself in Sj is now fixed by
intervention.

∑

v\(x∪y)

∏

{j|Sj∈C(G)}
Px,v\sj

(sj) =
∑

v\(x∪y)

∏

{j|Sj∈C(G\X)}
Pv\sj

(sj)

.
The last two identities add interventions for non-ancestors of

Sj (using Rule 3 of do-calculus), and group terms using rules
of probability. �

Conclusions
We have presented a graphical structure called a hedge which
we used to completely characterize situations when joint in-
terventional distributions are identifiable in semi-Markovian
causal models. We were then able to use this characterization
to construct a sound and complete identification algorithm, and
prove completeness of two existing algorithms for the same
identification problem.

The natural open question stemming from this work is
whether the improved algorithm presented can lead to the iden-
tification of conditional interventional distributions of the
form Px(y|z). In addition, complete conditions for identification
of experiments may open the door to the identification of more
complex counterfactual quantities in semi-Markovian models,
like path-specific effects [Avin, Shpitser, & Pearl, 2005], or even
first-order counterfactual statements.
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