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Oscillatory neurocomputing with ring
attractors: a network architecture for
mapping locations in space onto patterns
of neural synchrony

Hugh T. Blair1, Allan Wu2 and Jason Cong2

1Psychology Department, UCLA, and 2Computer Science Department, UCLA, Los Angeles, CA 90095, USA

Theories of neural coding seek to explain how states of the world are

mapped onto states of the brain. Here, we compare how an animal’s location

in space can be encoded by two different kinds of brain states: population
vectors stored by patterns of neural firing rates, versus synchronization vectors
stored by patterns of synchrony among neural oscillators. It has previously

been shown that a population code stored by spatially tuned ‘grid cells’ can

exhibit desirable properties such as high storage capacity and strong fault

tolerance; here it is shown that similar properties are attainable with a

synchronization code stored by rhythmically bursting ‘theta cells’ that lack

spatial tuning. Simulations of a ring attractor network composed from

theta cells suggest how a synchronization code might be implemented

using fewer neurons and synapses than a population code with similar stor-

age capacity. It is conjectured that reciprocal connections between grid and

theta cells might control phase noise to correct two kinds of errors that can

arise in the code: path integration and teleportation errors. Based upon these

analyses, it is proposed that a primary function of spatially tuned neurons

might be to couple the phases of neural oscillators in a manner that

allows them to encode spatial locations as patterns of neural synchrony.
1. Introduction
A fundamental aim of computational neuroscience research is to explain how

patterns of brain activity store and process information about the world.

Here, we consider how the brain encodes information about an animal’s

location in its environment, by comparing how locations in space can be rep-

resented by two kinds of neural activity patterns: population vectors, which are

patterns of neural firing rates [1–6], versus synchronization vectors, which are

patterns of phase alignment (or synchrony) among neural oscillators [7–20].

The rodent brain contains several populations of spatially tuned neurons that

fire selectively when the animal visits preferred locations in its environment: place
cells fire at one or a few preferred locations [21], grid cells fire at multiple locations

forming a hexagonal lattice [22] and border cells fire in fixed relationships with

environmental boundaries [23–25]. Spatially tuned neurons have been proposed

to store population vectors that encode locations in the animal’s environment as

firing rate patterns [2–6]. However, in rodents, many spatially tuned neurons

exhibit rhythmic modulation of their spike trains by 4–12 Hz theta oscillations,

which can shift phase against locally recorded electroencephalography rhythms

as an animal travels through a cell’s firing field [9,26–29]. Such observations

have fuelled speculation that theta oscillations might support a temporal code

for space [29–34], perhaps by storing synchronization vectors that encode

locations in the environment as patterns of neural synchrony [10–20].

Population vector codes for space have been investigated by a class of

theoretical models known as ‘continuous attractor networks’ [35–44], in which
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spatially tuned neurons (such as place or grid cells) are intercon-

nected with one other, so that a stable ‘activity bump’ forms in

the network. The activity bump shifts through the network as

the animal moves through space, so that the position of the

bump in the network reflects the position of the animal in its

environment [4,35–44]. Synchronization vector codes have

been investigated by a class of theoretical models known as

‘oscillatory interference networks’ [10–20], in which spatially

tuned neurons detect position-dependent synchrony among

neural oscillators that systematically shift phase against

one another as an animal moves through its environment

[10–20]. Continuous attractor and oscillatory interference

networks are not mutually exclusive categories, because it is

possible to implement an oscillatory interference model as a

continuous attractor network [17,19,44].

Here, it is shown how a continuous attractor network—

namely bank of ring attractors that stores circulating activity

bumps—can be alternatively configured to implement either

a population vector code stored by spatially tuned grid cells,

or a synchronization vector code stored by rhythmically

bursting theta cells (which lack spatial tuning). The network

exhibits high coding capacity [5,6] and strong fault tolerance

[45] under both configurations, but there are a number of fun-

damental differences between the two coding schemes: the

spatial tuning properties and temporal dynamics of neurons

in the ring attractors, the reference frame in which activity

bumps are measured, and the topology of the mapping from

spatial locations onto firing rate space. It is conjectured here

that because of these differences, a spatial code might be stored

more efficiently by synchronization than population vectors.
2. Population versus synchronization coding
A neural code can be specified by a mathematical function,

f : D! R, that maps a domain of world states, D, onto a

range of brain states, R. Here, we consider coding functions

that can represent an animal’s location in space, so D will

be some finite set of locations in the world that the animal

can occupy, and R will be some set of brain states that can

represent locations in D. The mapping from world states

onto brain states may be thus written in the form

rðxÞ : D , RP ! R , RM; ð2:1Þ

where x ¼ [x1, x2, . . ., xP] is a point in a Euclidian space of P
dimensions (representing a position in the animal’s environ-

ment), and r ¼ [r1, r2, . . ., rM] is a firing rate vector stored by

a population of M neurons. We shall treat neural populations

that are organized to form a network consisting of N circular

layers, or rings, each containing M/N neurons. Every ring

stores an activity bump that rigidly maintains its shape as

it shifts around to occupy different angular positions, or

phases, within the ring. States of the network are thus con-

fined to lie upon a manifold that forms an N-torus in firing

rate space, R ≃ SN , RM. Equation (2.1) may therefore be

rewritten as

fðxÞ : D , RP ! SN ; ð2:2Þ

where f ¼ [f1, f2, . . ., fN] is a phase vector that lists angular

positions for activity bumps in each of the rings. A coding

function that implements a mapping of the form in equation

(2.2) may be called a phase code, because it maps spatial

locations x [ RP onto phase vectors f [ S
N .
(a) Classical population code
Sreenivasan & Fiete [45] have introduced the acronym CPC

(classical population code) to label a class of coding functions

that map each dimension of a spatial environment onto a

single bump phase, so that N ¼ P in equation (2.2). In the

simplest case, we may set N ¼ P ¼ 1, so equation (2.2) becomes

fðxÞ : ½0;lÞ ! S
1 , RM: ð2:3Þ

This is a mapping from positions in an interval of length l

on a linear track onto a phase angle stored by the angular

position of an activity bump in a single ring attractor com-

posed from M neurons (figure 1a). As the animal moves

across the track, the activity bump circulates around the

ring at a rate proportional to movement speed. The rate of

bump circulation at time t is given by

vðtÞ ¼ vðtÞ
l
; ð2:4Þ

where v is the angular frequency of bump circulation in

radians s21, and v is the animal’s movement speed. Integrat-

ing equation (2.4) with respect to time yields an expression

for the angular position (or phase) of the activity bump as

a function of the animal’s position on the track,

fðtÞ ¼ 2pdxðtÞ þ w; ð2:5Þ

where d ¼ 1/l is the spatial frequency, and w is a spatial refer-
ence phase that denotes the bump’s position in the ring when

the animal is at position x ¼ 0. The animal’s position on the

track can be decoded from the bump phase by solving for x,

xðtÞ ¼ fðtÞ � w

2pd
: ð2:6Þ

Equation (2.6) measures the position of the activity bump by

comparing it against w, a static reference point within the ring

attractor. Note that any phase noise in f(t) would lead to

inaccuracies in the decoded position signal, commonly

referred to as path integration errors.

The activity bump shifts one full cycle (2p radians) against

w each time the animal traverses a distance l along the track.

Hence, neurons in the ring can behave like grid cells, firing

periodically at regular intervals along the track (figure 1a).

However, the CPC network suffers from limitations on storage

capacity, because positions on the track are only represented by

firing rate vectors that lie upon a circular manifold in firing rate

space (figure 1a). Because the vast majority of firing rate vectors

do not lie upon this circle (and thus do not encode any position

on the track), most of the CPC network’s potential storage

capacity is unused. This is analogous to having a digital com-

puter with many gigabytes of memory capacity, but only

being permitted to use a few bytes for data storage. One strat-

egy for expanding the coding capacity is to implement more

complex patterns of connectivity among neurons in the ring,

thereby allowing more of the representation space to be used

[46–48]. An alternative strategy is to divide up the CPC ring

to implement a different type of population code.
(b) Grid population code
Sreenivasan & Fiete [45] have introduced the acronym GPC

(grid population code) to label a class of phase codes that

possess more degrees of freedom than the spatial environ-

ment they represent, so that N . P in equation (2.2). A GPC

network for encoding positions on a linear track may be
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Figure 1. Population versus synchronization coding of positions on a linear
track. (a) CPC ring containing M grid cells (left) with different spatial phases
stores an activity bump that maps each position x on a linear track to a point
f lying on a circular manifold in firing rate space. (b) GPC network composed
from N grid cell rings (left) maps each x to a point f lying on a toroidal
manifold in firing rate space. (c) OSC network composed from N theta cell
rings (left) maps each x to a circular manifold S in firing rate space.
(Online version in colour.)
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created by splitting up the single ring in the CPC network

described above, dividing its M neurons to form a bank of

N rings, each containing M/N neurons (figure 1b).

In the rodent brain, grid cells are topographically organized

into distinct anatomical modules, so that cells residing in the
same module have firing fields with the same vertex spacing

and orientation (but different translational phases), whereas

cells residing in different modules exhibit different spacings

and orientations [22,49,50]. If each ring in the GPC network

is assigned its own length constant, ln, then different rings

can encode positions on the track at different spatial resolutions

(figure 1b), and thereby simulate distinct modules composed

from grid cells with different vertex spacings. Each ring

implements a mapping from track positions to bump positions

(equation (2.3)). All rings together implement a mapping of

the form

fðxÞ : ½0;DÞ ! S
N , RM; ð2:7Þ

which sends positions on an interval of the track, x[[0, D), onto

a vector of bump phases, f ¼ ½f1;f2; . . . ;fN �, that lie upon an

N-torus in firing rate space,f [ SN , RM (figure 1b). The track

segment’s length, D, depends upon how length constants,

l ¼ [l1, l2, . . ., lN], are assigned for each ring. Prior work has

shown that l can be chosen so that D� ln for all n; that is,

the track interval encoded by the entire GPC network can be

far larger than the track interval encoded by any individual

ring [5,6].

The multi-ring GPC network maps the animal’s position

into the same firing rate space as the single-ring CPC network

(because the number of neurons has not changed), but now,

more of the available coding capacity can be used, because

S
N fills up more of the firing rate space than S

1. However,

this expanded coding capacity comes at a cost, because

phase noise can cause more severe consequences under

GPC than CPC. Under CPC, phase noise gives rise to path

integration errors, which may be defined as inaccuracies in

the estimate of an animal’s position within its environment.

Under GPC, phase noise can give rise to teleportation errors,

which may be defined as inaccuracies in the estimate

of which environment the animal is in.

To see how teleportation errors arise, it may be observed

that equation (2.7) maps a low dimensional space of world

states (positions on the one-dimensional track) into a high

dimensional space of brain states (phase vectors on the

N-torus). Because dimensionality increases under this trans-

formation, every continuous trajectory on the line, X,[0, D)

is guaranteed to map onto a continuous trajectory in phase

space, fðXÞ, SN . But to decode the rat’s position, the map-

ping of equation (2.7) must be inverted to obtain a mapping

from a high to a low dimensional space:

xðfÞ : S
N ! ½0;DÞ: ð2:8Þ

Because dimensionality decreases under this transform-

ation, only a small subset of continuous trajectories in phase

space, T , SN , can map back to continuous trajectories on the

track, x(T ),[0, D). In general, whenever N . P in equation

(2.2), most trajectories in phase space are ‘non-invertible’ in

that they map back to non-continuous trajectories through the

environment. Consequently, if noise perturbs the GPC net-

work’s activity bumps by a small amount that shifts f along

a non-invertible trajectory, then this small error in the phase

code can generate huge discontinuous ‘jumps’ in the decoded

position signal (such as travelling from New York to Paris in

a single instant). This is a teleportation error.

Sreenivasan & Fiete [45] have suggested how such errors

might be beneficial rather than detrimental. Teleportation mag-

nifies small phase errors in a way that makes them easy to detect,

and thus also possibly easier to correct. According to this logic,
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GPC networks might be highly tolerant to phase noise if they

can exploit error correction mechanismsthat detect large discon-

tinuities in x to correct small errors inf. However, an important

constraint upon this strategy is that the cost of the error correc-

tion mechanism should not exceed the benefits that it yields in

the form of fault tolerance [45]. Hence, error correction networks

should be implementable at a low enough cost to justify their

yield in performance gains. It is proposed below that one

approach to minimizing the cost of error correction might be

to use a synchronization code rather than a population code to

store phase vectors.
Phil.Trans.R.Soc.B
369:20120526
(c) Oscillatory synchronization code
We shall use the acronym OSC (oscillatory synchronization

code) to label a class of phase codes that share many key fea-

tures of GPC, but store information as synchronization rather

than as population vectors. Under the population codes

described above (CPC and GPC), the animal’s position is

decoded by measuring each bump’s phase with respect to a

fixed reference point, w, as stated by equation (2.6). Each ring

performs path integration by shifting its bump against w at an

angular frequency that depends linearly upon the animal’s run-

ning speed, as in equation (2.4). In a GPC network consisting of

multiple rings, the slope of this linear relationship can differ

among rings (by assigning each ring its own length constant,

ln), but the y-intercept must be zero in all rings to maintain a

fixed relationship between track positions and bump phases.

That is, each bump must stop moving through its ring (v ¼ 0)

whenever the animal stops moving across the track (v ¼ 0).

To convert the ring attractor network from GPC to OSC,

we relax the requirement that all y-intercepts must equal

zero, but retain the requirement that they must be equal to

one another. This change is implemented by assigning the

angular frequencies of activity bumps to vary with move-

ment velocity in the manner prescribed by oscillatory

interference models [10,11]:

vnðtÞ ¼ VðtÞ þ dnvðtÞ; ð2:9Þ

where V is referred to as the base frequency because it denotes

the bump’s angular frequency when the animal’s movement

velocity is zero. Equation (2.9) may integrated in time to

obtain an expression for the phase of the activity bump in

ring n as a function of both x and t:

fnðx; tÞ ¼ 2pdnxðtÞ þ wn þFðtÞ; ð2:10Þ

where F(t) is the time integral of the base frequency,

FðtÞ ¼
ðt

0

VðtÞdt: ð2:11Þ

This value shall be referred to as the temporal reference
phase, because it is the sole component of fn that varies

with t independently from x. Equations (2.10) and (2.11)

assume (without loss of generality) that F and x are both

initially zero: F(0) ¼ x(0) ¼ 0.

The presence of F(t) on the right-hand side of equation

(2.10) implies that fn continues to change even when x is

held fixed; that is, activity bumps continue moving through

their rings even when the animal is sitting still. Consequently,

neurons in the rings no longer exhibit spatial tuning functions

resembling grid cells. Instead, the neurons burst rhythmically

as activity bumps circulate around the rings. If V is assigned

a value that lies within the theta frequency band of 4–12 Hz,
as in prior oscillatory interference models [10–20], then neur-

ons in the rings burst at a frequency in the theta range. The

burst frequency shifts linearly with v, at a slope determined

by dn. If dn differs among rings, then neurons within the

same ring always burst at the same frequency, whereas neur-

ons in different rings burst at different frequencies for v = 0

and at the same frequency for v ¼ 0 (because F(t) is equal

across all rings). The rodent brain contains ‘theta cells’

that burst rhythmically at velocity-dependent frequencies

between 4 and 12 Hz, but lack strong spatial tuning of their

firing rates [17,51,52]. In the OSC network, neurons in the

ring attractors behave similarly to such theta cells [12,17,19].

If rings are composed from theta cells that do not exhibit

spatial tuning, then the animal’s position on the track cannot

be decoded by measuring bump positions with respect to w,

as in equation (2.6). However, track positions can be decoded

if the bump positions are measured in a new reference frame.

Position may be decoded from phase by solving equation

(2.10) for x to obtain

xðfn; tÞ ¼
fnðxÞ � wn �FðtÞ

2pdn
: ð2:12Þ

Equation (2.12) measures the position of the activity bump

by comparing it not only against wn (a static reference in ring n),

but also against F(t) (a non-stationary reference shared by

all rings). It is this non-stationary reference frame for measur-

ing the bump position that distinguishes a synchronization

code (such as OSC) from a population code (such as CPC

or GPC).

(d) Decoding position from synchrony
Equation (2.12) implies that to decode positions from phase, fn

must be compared against F(t). To facilitate this, some interfer-

ence models incorporate a ‘reference oscillator’ assigned a zero

length constant (l0 ¼ 0), so that its phase is identical to the tem-

poral reference, f0 ¼ F [11–16]. Implementing a reference

oscillator allows F to be explicitly observed and measured,

but also consumes resources (for example, an additional ring

attractor to serve as the reference). An alternative approach is

to treat F as a ‘hidden state’ of the network, which cannot expli-

citly be measured and thus remains unknown to any external

observer or decoder. As long as it is known that rings obey

equation (2.9), then the actual value of F can remain unknown,

because position can be decoded by comparing the phase of one

bump against another, rather than against F (strategies for

enforcing obedience to equation (2.9) without a reference oscil-

lator will be discussed below). The bump positions in two rings,

i and j, may be compared by subtracting their phases,

~fijðxÞ ¼ fiðxÞ � fjðxÞ ¼ 2px~dij þ ~wij; ð2:13Þ

where ~dij ¼ ðdi � djÞ and ~wij ¼ ðwi � wjÞ. Solving for x gives

xð ~fijÞ ¼
~fij � ~wij

2p~dij
: ð2:14Þ

This expression has the same form as equation (2.6), except that

instead of comparing the position of a single bump against its

reference phase, equation (2.14) decodes the animal’s position

on the track by comparing the phase alignment between two

bumps, ~fij, against a reference alignment, ~wij (the alignment

between bumps i and j at x ¼ 0). The phase alignment between

i and j shifts one full cycle (2p radians) each time the animal

traverses a distance ~lij ¼ 1/~dij along the track (figure 1c).
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In an OSC network consisting of N ring attractors, there

are N21 unique pairs of rings that can be compared with

one another; the total number of pairs is (N22N)/2, but

only N21 pairs are non-redundant. Hence, the network rep-

resents the animals position as a vector of differences between

bump phases, f̃ ¼ ½~f1; ~f2; . . . ; ~fN�1�. Such a vector of bump

phase differences shall henceforth be referred to as a synchron-
ization vector, denoted by placing a tilde over the vector of raw

bump phases from which it is computed. There are many

different ways to define f̃, depending upon how bump

phases are paired up with one another for comparison. For

example, one might arbitrarily assign some specific bump

phase, fi, to be a ‘pseudo-reference’ so that f̃ can then be

defined as the vector of all phase differences fi2 fj for

which i = j. An alternative approach, which shall be adopted

in the analyses below, is to define the synchronization vector

as a first-order difference vector of bump phases,

f̃ ¼ ½f2 � f1;f3 � f2; . . . ;fN � fN�1�: ð2:15Þ

Any f̃ that contains a complete set of non-redundant

phase pairings defines a one-to-one mapping from locations

in the environment onto the surface of a torus with N 2 1

dimensions,

f̃ðxÞ : ½0; ~DÞ ! S
N�1: ð2:16Þ

The length, ~D, of the track interval encoded by the OSC

network depends upon what vector of spatial frequency

differences, d̃ ¼ 1/l̃, is chosen for the ring attractors, in

exactly the same way that value of D for the GPC network

depends upon what vector of spatial frequencies, d ¼ 1/l,

is chosen for the ring attractors (see equation (2.7)). So, in

principle, any GPC network’s spatial frequency vector,

dGPC, could be matched exactly by a corresponding OSC net-

work that contains one additional ring, with spatial

frequencies chosen so that d̃ ¼ dGPC. It follows from this

that desirable properties of GPC codes, such as their potential

for high coding capacity [5,6] and strong fault tolerance [45],

can be shared also by OSC codes. However, OSC has one less

degree of freedom than GPC (compare equations (2.7) versus

(2.16)), and therefore, an OSC network requires one more ring

to achieve the same storage capacity as a comparable GPC

network. But importantly, ring attractors obey different

dynamics in OSC and GPC networks. Simulations presented

below indicate that the cost of implementing each ring may

be lower for OSC, raising the possibility that OSC may be

more efficient than GPC, despite requiring an additional ring.

Unlike population codes, synchronization codes do not

implement a one-to-one mapping of spatial locations onto

firing rate vectors (equations (2.1) and (2.3)). Instead, the

mapping onto firing rate vectors is one-to-many, because

the animal’s position is represented by the positions of

activity bumps with respect to one another (equation

(2.14)), rather than with respect to static reference points in

their own rings (equation (2.6)). Consequently, the OSC net-

work maps each location in the environment onto a circular

manifold S in firing rate space (figure 1c), containing the

set of all rate vectors for which activity bumps are in

the same alignment relative to one another, but at different

absolute positions in their respective rings. OSC thus pos-

sesses a property that GPC lacks: flexibility to represent

each location in space by more than one firing rate vector.

It shall be conjectured below that this property might make
it possible for teleportation errors to be detected and

corrected more efficiently under OSC than GPC.
3. A ring attractor network for synchronization
coding

In this section, we present simulations to show how OSC can

be implemented by a network of ring attractors composed

from spiking neurons. The ring attractor model described

here is adapted from Song & Wang’s [53] model of angular

path integration by head-direction cells. They described a

ring attractor composed from three circular layers—one excita-

tory and two inhibitory—of integrate-and-fire neurons, with

movement of the activity bump controlled by the balance

of external driving inputs onto the inhibitory layers [38];

equal drive to both inhibitory layers held the bump still,

whereas unequal drive pushed the bump clockwise or

anticlockwise (depending upon which layer received the stron-

ger driving input). Here, we modify the original circuit, so that

the activity bump circulates in only one direction. The model

was implemented using an engine for simulating integrate-

and-fire networks in real time on field-programmable gate

array (FPGA) microchips [54] (see electronic supplementary

material, Methods).
(a) Ring oscillator circuit
Unidirectional bump circulation requires only one inhibitory

layer (rather than two), so in the current model, each ring

contains two layers of neurons: one excitatory and the other

inhibitory (figure 2a). There were 108 integrate-and-fire neur-

ons in each layer, and thus 216 neurons in each ring. Ring

layers were interconnected by Gaussian weight vectors

(see electronic supplementary material, equation S1). Rates

of bump circulation were regulated by a velocity signal rep-

resented in the mean firing rates of AMPAergic Poisson

spike train inputs onto the excitatory layers of the rings.

The nth ring’s mean Poisson input rate, TnðtÞ, was linearly

modulated around a fixed baseline rate, b, in proportion

to the animal’s movement velocity along a preferred vec-

tor assigned to that ring. Hence, the nth activity bump’s

circulation frequency is

vnðtÞ � an½TnðtÞ � b� þ �vb þ 1nðtÞ; ð3:1Þ

where �vb is the mean frequency for T(t) ¼ b (which is identi-

cal across rings), 1n(t) is an error term added to account for

frequency noise arising from the Poisson spike inputs, and

an is the slope of the linear relationship between v(t)

and T(t) 2 b. The values of an and �vb were empirically deter-

mined, so that the oscillation frequency varied within the

theta band of 6–9 Hz for values of T ranging between 1

and 3 kHz (figure 2b). The high mean firing rates of the

Poisson inputs were intended to represent the summed influ-

ence of noisy synaptic inputs from a large number of neurons

with velocity-dependent firing rates, as in [53].
(b) Synchronization coding in two dimensions
If we wish to represent an animal’s position in a two-dimen-

sional (open field) environment, then equation (2.16) becomes

f̃ðxÞ : ~D [ R2 ! SN�1, where x ¼ (x, y) is the animal’s pos-

ition within a bounded domain, ~D, of the environment
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[11–17]. The scalar spatial frequency, dn (equations (2.9) and

(2.10)), must now be replaced by a Cartesian vector,

dn ¼ l�1
n

cos un
sin un

� �
; ð3:2Þ

which defines a ‘preferred’ direction, un, along which displa-

cement of the animal’s position causes the nth ring’s phase,

fn(t), to shift against the global reference phase, F(t), with

a slope determined by ln. Equation (2.13) thus becomes

~fijðxÞ ¼ fiðxÞ � fjðxÞ ¼ 2pd̃ij � xþ ~wij; ð3:3Þ

which states that the phase alignment (or synchronization)

between two ring oscillators, i and j, encodes the animal’s

position along a two-dimensional vector, d̃ij ¼ ðdi � djÞ.
Simulated ring oscillators were induced to behave this way

by assigning the Poisson rate of driving inputs to each ring

as Tn(t) � b þ dn . v(t) (equation (3.1)), where v(t) is the

animal’s movement velocity at time t.
Here, we implement a minimal oscillatory interference

model for grid cells in an open field, consisting of three oscil-

lators [14,15]. Three ring oscillators integrate the animal’s

movement velocity along different vectors of identical

length, jd1j ¼ jd2j ¼ jd3j ¼ 1/l, but oriented 1208 apart,

u1 þ 1208 ¼ u2 ¼ u321208 (figure 3). Substituting these values
into equation (3.3) yields a coding function, f̃ðxÞ, that can be

inverted to decode position from synchrony as follows:

xðf̃Þ ¼ p
ð ~f1 � ~f2Þ

�
ffiffiffi
3
p
ð ~f1 þ ~f2Þ

� �
: ð3:4Þ

This function decodes a two-dimensional synchroni-

zation vector to specify the animal’s position within a

rhombus-shaped region of the environment, ~D, with sides

of length L ¼ 4p/
p

3jd̃ij| (figure 3c).

Poisson velocity inputs give rise to independent frequency

noise in each ring, denoted by 1n in equation (3.1). This frequency

noise is directly analogous with noisy drifting of the activity

bumps in continuous attractor models. Integration of this fre-

quency noise produces path integration errors, so that the

decoded position signal derived by equation (3.4) deviates

from the animal’s true position. Because f̃ has the same

number of dimensions as the environment (two), teleportation

errors cannot occur in this minimal grid cell model (strategies

for correcting teleportation errors in larger networks are

discussed in §3e). Figure 3e shows how path integration error

accumulates in a simulation of three uncoupled ring oscilla-

tors. All ring phases were initialized to identical values,

f1(0)¼ f2(0)¼ f3(0), so the starting position of the simulated

animal was at the origin. Identical Poisson inputs ranging from

T¼ 1.5 to 2.5 kHz were then delivered constantly to all three

rings, encoding a movement velocityof zero, so the ‘true’ position

remained fixed at the origin throughout the simulation. Under

these conditions, xðf̃Þ was observed to drift along a Brownian

trajectory as error accumulated with time (figure 3e, left).
(c) Phase resetting by grid cells
Because the position estimate is decoded from the synchron-

ization vector, f̃, and not from the raw oscillator phases, f,

reducing path integration error does not mandate reduction

of frequency noise in the rings, but instead merely requires

that any frequency noise that is present must be shared
among the rings, by becoming absorbed into the temporal

reference phase, F [14,55]. This requires some mechanism

for coupling the ring oscillators together in a way that

allows them to share noise. Here, we propose how grid

cells might provide such a mechanism.

Grid cells were simulated by single-compartment neurons

that detected synchrony among inputs from all three ring oscil-

lators. Each grid cell received input from the inhibitory layer of

one ring, and from and the excitatory layers of the other two

rings (figure 3c). Input from ring n was weighted by a Gaussian

vector with a centre phase, mn, that corresponded to the spatial

reference phase, wn, in equation (2.12) (for explanation, see the

electronic supplementary material, equation (S3)). Therefore,

assigning the centre phases of the input weights determined

which particular alignment of the three activity bumps

would produce synchronized input to the grid cell. Specifi-

cally, a grid cell’s oscillatory inputs from rings n ¼ 1, 2, 3

were synchronized when

f̃ ¼ w̃ ¼ w2 � w1

w3 � w2

� �
; ð3:5Þ

which shall be referred to as the grid cell’s target synchronization
vector. When f̃ ¼ w̃, the grid cell was maximally excited to

burst along with its synchronized inputs from the three rings.

Disregarding path integration error, f̃ ¼ w̃ is satisfied at a set

of locations which form a hexagonal lattice, and these are the
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vertices of the grid cell’s firing field. The grid cell has a vertex at

the origin of the plane if w̃ ¼ ð0; 0Þ, which occurs when

w1 ¼ w2 ¼ w3. If the spatial reference phase of ring n is shifted

by an arbitrary offset, wn þ Dwn, then the grid field translates in

the direction of ring n’s frequency vector, un, by a distance

Dwn � L=2p.

Grid cells not only received input from the rings, but

also sent feedback projections to the rings, which targeted

only the excitatory but not the inhibitory layer. Like feed-

forward projections, feedback projections were also weighted

by Gaussian vectors, with centre phases tuned so that when

a grid cell fired, the system was nudged towards a basin

of attraction at the point where f̃ ¼ w̃ (see electronic supple-

mentary material, figure S1). This recurrent loop between

ring oscillators and the grid cell formed a kind of ‘oscillatory

attractor’ network, where the grid cell greedily tried to keep

itself active by forcing the ring oscillators into the specific

alignment that caused it to fire.
To simulate the oscillatory attractor with a single grid cell,

the three ring oscillators were initialized with identical bump

phases, so that the simulated animal’s starting position was

initialized at the origin. Centre phases for inputs to the grid

cell were assigned so the starting position was also the attract-

or state, f̃ð0Þ ¼ w̃ ¼ ð0; 0Þ. Identical driving inputs of 2 kHz

were delivered throughout the simulation to encode a move-

ment velocity of zero (that is, a stationary animal).

Simulation showed that the decoded position signal remained

well confined to a small neighbourhood surrounding the

origin where f̃ ¼ w̃ (figure 3e, middle), in contrast to the

Brownian drift that was observed without coupling. There

was still some residual path integration error in the decoded

position signal, causing it to fluctuate within a small neigh-

bourhood of the origin. This residual error occurred because

resetting of the ring phases by feedback from the grid cell is

noisy (it does not reliably reset the phase difference vector to

exactly f̃ ¼ w̃ on every cycle), and because phase resetting
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occurs only once per theta cycle. To reduce within-cycle error

accumulation, two additional grid cells were added to the cir-

cuit, yielding a total of three grid cells. For the sake of

symmetry, each of the three grid cells received its inhibitory

input from a different ring oscillator, and received excita-

tory input from the remaining two rings (see electronic

supplementary material, equation (S4)). All three grid cells

were assigned to have overlapping grid fields by setting

their target synchronization vectors equal to one another,

w̃1¼ w̃2¼ w̃3; where subscripts index the three grid cells. This

caused the three grid cells to fire at identical locations, but

they did not fire at identical times; they were assigned to fire

on staggered phases of the theta cycle by setting their centre

phases so that their spatial reference phase vectors differed

by constant offsets: w12 2p3 ¼ w2 ¼ w3 þ 2p3. Consequently,

the three grid cells cooperatively delivered feedback pulses to

the ring oscillators on three distinct phases of the theta cycle,

an arrangement referred to as triphasic entrainment. Under tri-

phasic entrainment, the decoded position signal remained

tightly confined near xðf̃Þ ¼ ð0; 0Þ throughout a 5 s simulation

(figure 3e, right).
time (s)
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Figure 4. Microcircuit architecture for a grid module. (a) Three ring oscillators
receive their own independent velocity inputs (vel); the two layers (exc and
inh) in each ring are reciprocally interconnected with three 6 � 6 sheets of
grid cells. (b) Position trajectory decoded from the ring phases during a 3 s
simulation in which velocity inputs were assigned to fixed values representing
movement along a straight horizontal path. (c) Spike rasters for all cells
during the simulation shown in (b). (d ) Membrane voltage plotted for a
grid cell that fires at vertices shown by the rate map in (b). (Online version
in colour.)
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(d) Microcircuit architecture for a grid module
Figure 3e shows how grid cells can hold f̃ at a fixed attractor

point when the animal is stationary. But in a moving animal,

f̃ cannot rest at a fixed attractor point because it must follow

a trajectory through synchronization space that accurately

encodes the animal’s navigational trajectory through the

environment. This can be achieved by a microcircuit model

of a ‘grid module’ consisting of multiple grids cells with differ-

ent target synchronization vectors (figure 4a), so that different

grid cells compete with one another to hold the ring oscillators

in their own preferred phase alignments. All grid cells in the

module have identical vertex spacings and orientations,

because they are reciprocally connected to the same triad of

ring oscillators. Each module contains three rhomboidal

sheets of grid cells. Spatial phases of grid cells within each

sheet are evenly distributed over the rhomboidal domain, ~D
(figure 3b). Grid cells at the same row and column position in

different sheets have the same spatial phase, but fire on stag-

gered temporal phases of the theta cycle (consistent with

recent data [56] showing that simultaneously recorded pairs

of entorhinal neurons tend to fire at characteristic phase offsets

from one another). Feed-forward weight vectors obeyed the

convention that each grid cell received inhibitory input from

one ring, and excitatory input from the other two rings. A for-

mula for assigning centre phases that meet these constraints is

given by the electronic supplementary material, equation (S6).

Each grid cell sends feedback to all three rings, to reset

their phases in such a way that when any given grid cell

fires, the synchronization state is pushed towards its own

target synchronization vector, f̃! w̃
p;q
k (where k indexes the

sheet, and p, q indexes the row and column position of a grid

cell within its sheet). This places grid cells at different positions

within the same sheet in competition with one another, and at

the same position in different sheets in cooperation with one

another, to lock the ring phases into their own preferred

phase alignments, w̃
p;q
1 ¼ w̃

p;q
2 ¼ w̃

p;q
3 . Such competition

endows the grid module circuit with heteroclinic stability in

synchronization space, so that the system rests ‘uneasily’ in a

discrete set of semi-stable synchronization states, each

preferred by a different grid cell.
To demonstrate the activity of a single grid module, a 3 s

simulation was run in which the Poisson velocity input to the

rings was assigned to encode movement in the rightward direc-

tion along the horizontal at a constant velocity (figure 4b).

Neural activity propagated through the rings and the grid

sheets as the simulated animal moved along a straight path
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(figure 4c). As in prior oscillatory interference models [10–20],

simulated grid cells exhibit hexagonal firing fields, as well as

temporal modulation of their spike trains by theta oscillations.

Membrane voltages of individual grid cells were qualitatively

similar to intracellular recordings of grid cells from behaving

rodents [57–59], in that they were modulated by subthreshold

theta oscillations when the animal was outside the grid field,

and then spikes were generated during passage through grid

fields (figure 4d). Voltage traces in figure 4d do not exhibit the

membrane voltage ‘ramps’ that precede spiking in rodent grid

cells, but such ramping has been shown to emerge when lateral

inhibition is present among grid cells [58], which were not

included in the implementation simulated here.
 rans.R.Soc.B
369:20120526
(e) Correcting teleportation errors among multiple
grid modules

If the network contains more than three rings, then neurons can

synthesize spatial tuning functions more complex than hexagon-

al grids via oscillatory interference. For the general case of

a post-synaptic cell that fires when its inputs from N ring

oscillators are synchronized, the firing rate map may be approxi-

mated as a two-dimensional spatial envelope function [17,18]:

EðxÞ ¼
XN

n¼1

wn exp½ifnðxÞ�
�����

�����; ð3:6Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and wn is the synaptic weight on the input from

ring n. Equation (3.6) implies that if the weighting coefficients

w ¼ [w1, w2, . . ., wN], spatial frequencies D ¼ [d1, d2, . . ., dN]

and local reference phases are properly chosen, then a neuron

that detects synchrony among N rings can act as a Fourier

synthesizer to generate almost any spatial tuning function,

including functions that resemble the firing rate maps of grid,

place or border cells [17,18].

If the network is expanded to more than three rings, then f̃

acquires more dimensions than the two-dimensional spatial

environment, and teleportation errors can occur. An error cor-

rection mechanism must therefore be implemented to prevent

teleportation, by constraining the system to follow only invert-

ible phase trajectories. This is tantamount to coupling the rings

together so that they share a common temporal reference

phase, because invertible trajectories are precisely those for

which there exists a function, F(t), that can substituted into

equation (2.12) to assure that all ring phases,fn, yield mutually

compatible (non-contradictory) descriptions of the decoded

movement trajectory along their individual path integration

vectors, dn. If a solution for F(t) exists given some trajectory

T, then that trajectory must invertible. Conversely, if T is invert-

ible, then a solution for F(t) must exist, but position can be

decoded from the bump phases even if the value of F(t)
remains hidden from the decoder (equation (3.3)).

These considerations suggest two possible error correc-

tion strategies for synchronization coding networks. One

approach would be to explicitly represent F(t) by assigning

a reference oscillator to encode its value [11–16]; it might

then be possible to implement some mechanism that forces

a bank of N oscillators to follow only trajectories for which

F(t) yields a solution to equation (2.12) that gives mutually

compatible position estimates across all oscillators. However,

we do not know of proven solutions to this reference oscil-

lator coupling problem for arbitrarily large N. Another

approach would be to ignore the temporal phase, F(t), and
focus instead upon the spatial phases of grid cells. If each

grid module contains three ring oscillators (as in figure 4a),

then a network composed from Z grid modules (presumably

with different orientations and spacings) would contain N ¼ 3Z
ring oscillators. Preventing oscillators from following non-

invertible phase trajectories becomes identical to the problem

of prohibiting grid cells across modules from encoding trajec-

tories that deviate from one another. A solution to this

problem has previously been proposed by Sreenivasan & Fiete

[45], who suggested how an error correction network composed

from place cells could enforce fault tolerance upon a popula-

tion vector code stored by grid cells. Their solution involved

no reference oscillator, because it was proposed for a population

coding network in which F(t) does not exist at all. We see no

reason why a similar error correction mechanism could not be

implemented in a synchronization coding network, because

even though the value of F(t) would not be explicitly rep-

resented by such a solution, its existence would be implicitly

guaranteed by rigid coupling among grid modules. An interest-

ing question for future study is whether an error correction

mechanism similar to that proposed by Sreenivasan & Fiete

[45] might be improved upon—that is, made less costly and

more efficient—by implementing it under a synchronization

code rather than a population code (see §4).
4. Discussion
Here, we have shown how a bank of ring attractors can be con-

figured to implement either a population vector code, stored by

spatially tuned grid cells, or a synchronization vector code,

stored by rhythmically bursting theta cells (which lack spatial

tuning). The network exhibits high coding capacity [5,6] and

strong fault tolerance [45] under both configurations, but we

conjecture that a spatial code might be stored more efficiently

by synchronization than population vectors, based on several

differences between the two coding schemes: the temporal

dynamics of network activity, the reference frame in which

activity bumps are measured, and how spatial locations are

mapped into firing rate space.

(a) Potential benefits of synchronization coding
Simulations presented above suggest that because of differing

temporal dynamics, a synchronization code (OSC) might be

implemented using fewer neurons and synapses than a popu-

lation code (GPC) with similar storage capacity. This may seem

counterintuitive, since OSC requires one more ring than GPC

(compare equations (2.7) versus (2.16)). However, under

GPC, activity bumps must be able to shift through their rings

in either direction (and remain stationary when the animal

stops moving), and a standard solution for implementing

this functionality in a ring attractor circuit requires three

layers of neurons [38,53]. By contrast, under OSC, the bumps

only need to shift in one direction, and need never remain

stationary. We have shown that this functionality can be

implemented by a reduced attractor model with only two

layers. Further study is needed to verify whether coding

capacity is fully preserved under this modification under com-

parable noise conditions, but if each ring in the network can be

built with fewer neurons and synapses, then it is possible that

an OSC network might be implemented at a lower cost of

resources than a comparable GPC network, with the cost

savings proportional to the number of rings.
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As the number of rings in the network increases, so too does

the need for an efficient mechanism to prevent teleportation

errors by controlling phase noise. Oscillatory interference

models have sometimes been criticized as implausible on the

grounds of their vulnerability to phase noise, but such criticisms

are misplaced, because any high dimensional phase code exhi-

bits ‘pathological sensitivity to noise’ [45], regardless of

whether it is stored by population vectors (as in GPC) or syn-

chronization vectors (as in OSC). Prior studies have proposed

plausible mechanisms for noise reduction in oscillatory interfer-

ence models [16,55] as well as continuous attractor models [45].

Here, we proposed how phase errors in ring oscillators might be

corrected through entrainment of theta cells by grid cells (figure

3c), and how reciprocal connections between grid and theta cells

could implement an ‘oscillatory attractor network’ that exhibits

heteroclinic stability in phase space (figure 4a). Under such an

arrangement, teleportation errors might be corrected by rigidly

coupling multiple grid modules together, possibly by adapting

a prior solution in which place cells enforce fault tolerance upon

a population code stored by grid cells [45]. It remains an open

question whether alternative error correction schemes might

be possible in synchronization coding networks, and what effi-

ciency gains might be realized by such alternatives. Perhaps by

exploiting reference oscillators, or by capitalizing upon the abil-

ity to represent a single location by multiple firing rate vectors,

synchronization coding might offer possibilities for highly effi-

cient error correction. Further research is needed to compare

how the performance of different error correction mechanisms

scale with their cost.

Population vectors are decoded by measuring the position

of each activity bump within the ring that stores it, whereas syn-

chronization vectors are decoded by measuring the position of

an activity bump in one ring with respect to the bump in

another (which is tantamount to detecting synchrony among

the oscillations generated by different rings). When bump circu-

lation is modulated around a well-defined base frequency (such

as theta), the code is endowed with a temporal structure that

may be beneficial in a number ways; for example, the carrier fre-

quency defines a specific observational time frame for decoders

to interpret the position signal (the length of a single theta

cycle), and spike trains acquire a temporal structure that may

be beneficial for driving spike-timing-dependent neural plas-

ticity processes that are thought to support learning and

memory functions in biological networks [30,32,33,59].

(b) Empirical evidence for synchronization coding
Synchronization coding offers parsimonious explanations for

certain temporal properties of spatially tuned neurons in

rodents, such as theta rhythmicity and phase precession of

spike trains against the local field potential [9–20,26–32,60].

In rats, pharmacological blockade of theta rhythm disrupts

the spatial tuning of grid cells [61,62], as would be expected

if grid cells derive their spatial tuning from synchronization
of theta oscillations. However, place cells continue to exhibit

spatial firing after similar disruptions of theta [62,63], raising

questions about whether theta is essential for all spatial

coding. In mammals other than rodents, such as bats [64],

place and grid cells appear not to be strongly modulated

by theta oscillations (but see [65]). Such findings raise further

questions about whether theta oscillations play an essential

role in spatial coding. However, from the standpoint of syn-

chronization coding, there is nothing special about the theta

frequency. The base frequency for the synchronization code

(V(t) in equation (2.9)) need not lie in the theta band; it

could be shifted to a higher or lower frequency without alter-

ing the essential properties of the code. In vitro studies of bat

neurons suggest that these neurons may oscillate at a fre-

quency lower than theta, so it is possible that they might

implement a synchronization code in a different frequency

band [66].

All synchronization coding models make one essential

prediction: the brain should contain oscillators that shift phase

against one another as a function of an animal’s position in

its environment. This prediction is well supported by data

from rodents running on linear tracks, where field potential

theta oscillations shift phase against the spikes of place cells

[9,26,28,29], grid cells [27,67] and interneurons [29,68] as a func-

tion of the animal’s position on the track. In two-dimensional

open field environments, theta cell burst frequencies have

been reported to vary with a rat’s movement direction in a

manner consistent with synchronization coding [17]. But

phase precession of place cell spikes against the field potential

in open fields seems to depend upon the distance the animal

has travelled through a place cell’s firing field, regardless of

movement direction [26–28]. This is problematic, because if

the animal’s allocentric position in two-dimensional space is

encoded by synchrony among theta oscillators, then phase pre-

cession should be sensitive to movement direction. Burgess [14]

has proposed a possible explanation for this discrepancy, show-

ing that phase precession would not depend upon direction if

place and grid cells detected synchrony among theta oscillators

with correlated amplitude and frequency. But if theta oscil-

lations that provide input to these cells were recorded at their

source of origin (rather than in a post-synaptic place or grid

cell), they would still be predicted to shift phase against one

another in a manner that depends upon movement direction,

and this has not yet been observed. Further experiments are

thus warranted to investigate whether any theta-modulated

regions in the rodent brain produce oscillations that shift

phase against one another in the manner that could support a

synchronization code for space.
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