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ABSTRACT 

We develop a state-space Bayesian framework to combine time-lapse geophysical 

data with other types of information for quantitative estimation of biogeochemical 

parameters during bioremediation. We consider characteristics of end-products of 

biogeochemical transformations as state vectors, which evolve under constraints of local 

environments through evolution equations, and consider time-lapse geophysical data as 

available observations, which could be linked to the state vectors through petrophysical 

models. We estimate the state vectors and their associated unknown parameters over time 

using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-

space approach, we apply it to complex resistivity data collected during laboratory 

column biostimulation experiments that were poised to precipitate iron and zinc sulfides 

during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells 

to link the sulfide precipitate properties to the time-lapse geophysical attributes and 

estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-

encrusted cells, mean radius of the aggregated clusters, and permeability over the course 

of the experiments. Results of the case study suggest that the developed state-space 

approach permits the use of geophysical datasets for providing quantitative estimates of 

end-product characteristics and hydrological feedbacks associated with biogeochemical 

transformations. Although tested here on laboratory column experiment datasets, the 

developed framework provides the foundation needed for quantitative field-scale 

estimation of biogeochemical parameters over space and time using direct, but often 

sparse wellbore data with indirect, but more spatially extensive geophysical datasets.  
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1. Introduction 

In situ contaminant remediation treatments are being used to facilitate reactions that 

degrade or immobilize contaminants in the subsurface, rendering them less hazardous to 

human and ecological health [e.g., Hazen and Tabak, 2005]. These remediation 

treatments induce various biogeochemical reactions, such as the dissolution and 

precipitation of minerals, gas evolution, changes in total dissolved solids, and biofilm 

generation. Direct aqueous geochemical measurements obtained using wellbore 

groundwater samples are typically used to assess the efficacy of the remedial treatments 

[e.g., Lovley et al., 1994; Chapelle, 2001]. However, given the spatially variable 

distribution of remediation treatments introduced into the subsurface and the complexity 

of the subsequent biogeochemical reactions [Scheibe et al., 2006], it is often difficult to 

assess the efficacy of remediation treatments over time and space with reasonable 

confidence using wellbore measurements alone [Hubbard et al., 2008]. In addition, it is 

challenging to directly measure the evolution of solid phase transformations (such as the 

generation of precipitates) using conventional wellbore-based sampling approaches. 

Time-lapse geophysical methods hold potential for providing information about 

remediation-induced biogeochemical changes in a cost-effective and minimally invasive 

manner because they are often sensitive to changes in pore fluid and matrix properties 

associated with the induced biogeochemical transformations. Several biogeophysical 

studies have been performed in recent years to test this hypothesis [Atekwana et al., 

2006]. For example, Williams et al. [2005] performed a laboratory-scale biostimulation 

experiment where time-lapse complex resistivity, seismic, and various geochemical 

measurements were measured over the length of the experimental columns during the 
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experiments. They showed that changes in complex resistivity and seismic amplitude 

measurements corresponded to the onset and spatial distribution of microbial-mediated 

iron and zinc sulfide precipitation. High-frequency seismic wave amplitudes were 

reduced by nearly 84%; within the context of a double porosity model [Pride et al., 

2004], the attenuation was interpreted to be due to the wave-induced flow resulting from 

the heterogeneous formation of high bulk modulus sulfide precipitates within formerly 

fluid-filled pore spaces. The phase response of the complex resistivity data also tracked 

the spatio-temporal development of the precipitates. In the frequency range used to 

collect the complex resistivity measurements (0.1-1000 Hz), the energy storage reflected 

by the phase response results primarily from the polarization of the ions in the electrical 

double layer at the mineral-fluid interface and from the formation of electrically 

conductive pathways accompanying the precipitation of (semi) conductive minerals. As 

such, changes in the complex resistivity response were attributed to alterations in 

subsurface mineralogy arising from stimulated microbial activity within the pore space, 

including precipitation reactions, aggregation dynamics, and solid-state mineral 

transformations. 

More recent studies have shown that time-lapse geophysical methods can be useful 

for tracking remediation processes at the field-scale. Lane et al. [2006] used time-lapse, 

crosshole, zero-offset radar data and electrical logs to indicate subsurface regions 

impacted by injection of emulsified vegetable oil during a biostimulation experiment. 

Hubbard et al. [2008] explored the use of geophysical datasets for monitoring the 

distribution of electron donor and subsequent transformations associated with a Cr(VI) 

bioremediation treatment. Using the constraints provided by laboratory biogeochemical 
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experiments and field geochemical datasets, Hubbard et al. [2008] interpreted field-scale, 

time-lapse seismic and radar tomographic datasets in terms of hydrological and 

biogeochemical transformations associated with the remedial treatment over 

approximately three-year monitoring period, including the spatial distribution of injected 

electron donor, gas bubble formation, variations in total dissolved solids, and the 

formation of precipitates. The integrated interpretation revealed how geophysical 

techniques can provide information about coupled hydro-biogeochemical responses to 

remedial treatments. 

Although both laboratory and field scale studies have illustrated the potential of 

geophysical methods for providing information about biogeochemical end-products, the 

use of geophysical data for this objective has to date been primarily qualitative in nature. 

In this study, we develop a state-space Bayesian estimation framework that permits 

rigorous integration of multiple types of time-lapse datasets (e.g., geophysical and 

geochemical) for quantitative estimation of biogeochemical end-products. The developed 

method is subsequently applied to the laboratory biostimulation datasets of Williams et 

al. [2005] to demonstrate the utility of time-lapse complex resistivity data for remotely 

estimating the evolution of volume fraction of metal sulfides and their associated 

parameters. Although we test the developed estimation framework by applying it to 

measurements collected over time at a single location within an experimental column, the 

methodology can be extended to larger, multi-dimensional datasets and regions. 

The remainder of this paper is organized as follows. Section 2 describes the state-

space Bayesian framework for estimation of biogeochemical transformations and 

methods for obtaining solutions from the Bayesian model. In section 3, we apply the 
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developed method to laboratory column experiments. The estimation results are given in 

section 4 and discussion and conclusions are provided in section 5. 

2. State-space Bayesian Framework 

In this section, we describe a general state-space approach for estimation of end-

products associated with biogeochemical transformations using time-lapse geophysical 

data and other types of information, such as direct and indirect measurements of 

geochemical or biogeochemical parameters. 

2.1 Dynamic System 

We consider a typical bioremediation system as a dynamic system in which 

numerous geochemical reactions and biogeochemical processes may take place that are 

controlled or affected by the local environment. As shown in Figure 1, the dynamic 

system is described by a state vector , which consists of some characteristics of 

biogeochemical transformations at time . This state vector can include properties that 

are helpful for ascertaining the system response to the remedial treatments, such as 

concentrations of electron donors or acceptors, or solid phase transformations such as the 

volume fraction of precipitates resulting from microbial activity. The biogeochemical 

state vector changes over time as the system evolves in response to the remediation; the 

change can be described by the following evolution equation: 

ix

it

1 1( , )i iF −=x x θ w i+  ,                                                            (1) 

where  represents a biogeochemical process forward model as a function of previous 

states, available geochemical measurements at time , and an unknown time-invariant 

F

it
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parameter vector . Vector  represents random errors associated with the forward 

modeling.  

1θ iw

We can numerically obtain a series of state vectors , , , , by using 

equation 1 and starting from an initial state of the system , such as the initial 

biogeochemical conditions prior to bioremediation. Those state vectors form a Markov 

chain because the state vector  is conditionally independent of the state vector 

1x 2x L nx

0x

ix 2i−x , 

given the state vector . Let 1i−x 0f  and wf  be the probability distribution functions of the 

initial state  and the error vector , respectively. We can obtain the joint distribution 

of the Markov chain as follows [Shumway and Stoffer, 2000]: 

0x iw

0, 1 2, 1 0 0 1 1
1

( , , | ) ( ) ( ( , )
n

n w i
i

f f f −
=

= −∏x x x x θ x x x θL )iF .                                  (2) 

2.2 Time-lapse Geophysical Data and Petrophysical Models 

Perhaps one of the most powerful aspects of environmental geophysics is the use of 

geophysical data for monitoring dynamic processes. Observing the data in a time-lapse 

mode (i.e., measurements collected at an earlier time subtracted from those collected at a 

later time) enhances the imaging of subtle changes in geophysical attributes caused by 

system perturbations and reduces the correlated errors and the dependence of geophysical 

measurements on the static geological heterogeneities [Day-Lewis et al., 2002; Vasco et 

al., 2004]. 

Here, rather than differentiating the time-lapse datasets, we incorporate the 

geophysical data iy  (such as complex resistivity and seismic measurements) collected at 
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each time  within the estimation framework (Figure 1). If we let:  be the 

petrophysical model that relates geophysical data observed at time  to the 

biogeochemical state vector at the same time;  be the unknown time-invariant 

parameter vector associated with the petrophysical model;  be the random error vector 

in the petrophysical model, we can obtain  

it G

it

2θ

iv

2( , )i iG i= +y x θ v  .                                                   (3) 

Let vf  be a probability distribution function of the error vector . It is common to 

assume that errors in geophysical data collected at different times are independent of each 

other. We thus obtain the following likelihood function that relates the geophysical 

measurements to the biogeochemical parameters that we desire to estimate: 

iv

1 2 0 1 2 1 2 2
1

( , , , | , , , , , , ) ( ( , ))
n

n n v i
i

f f
=

= −∏y y y x x x x θ θ y x θL L iG .                  (4) 

2.3 Bayesian Estimation Framework 

Our goal is to quantitatively estimate the end-product evolution associated with 

remediation-induced biogeochemical transformations using direct borehole geochemical 

and indirect geophysical datasets. As shown in Figure 1, we specifically strive to estimate 

state vectors , , , , , and time-invariant parameters  and , given 

geophysical data , , L , 

0x 1x 2x L nx 1θ 2θ

1y 2y ny . We formulate the above problem within the Bayesian 

framework. Using the Bayes’ theorem and equations 2 and 4, we obtain the following 

joint posterior distribution function: 
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0 1 2 1 2 1 2

0 0 1 1 2 2 1 1 2
1

( , , , , , , | , , , )

       ( ) ( ) ( ) ( ( , )) ( ( , )),

n n

n

w i i v i i
i

f

f f f f F f G−
=

∝ −∏

x x x x θ θ y y y

x θ θ x x θ y x θ

L L

−
            (5) 

where symbol “ ” represents “is proportional to”, which negates the use of a 

normalizing constant that does not affect the solution to equation 5, and 

∝

1f  and 2f  

represent probability distributions of parameters  and , respectively. As will be 

discussed in section 3.4, we can parameterize the general Bayesian formulation given in 

equation 5 for a specific biogeophysical estimation problem through specifying: the prior 

probability distributions (

1θ 2θ

0f , 1f , and 2f ) of the initial state vector , the time-invariant 

parameters  and , the error probability distributions (

0x

1θ 2θ wf  and vf ), and the forward 

biogeochemical and petrophysical models (  and ). F G

2.4 Markov Chain Monte Carlo Sampling Methods  

The key to estimating the evolution of biogeochemical parameters using 

geophysical datasets and the Bayesian model defined in equation 5 is to obtain state 

vectors and unknown time-invariant parameters. Since the forward and petrophysical 

models  and  are often nonlinear, it is very challenging to analytically solve the 

inverse problem. Instead, we use Markov chain Monte Carlo (MCMC) sampling methods 

to draw many samples from the posterior joint probability distribution function following 

the procedure outlined by Chen et al. [2006]. With this approach, we obtain many 

samples of the biogeochemical parameters of interest, from which we can calculate 

statistics such as the medians, mean values, and variances of those parameters. 

F G

3. Application to Laboratory Column Experiments 
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In this section, we formulate the developed state-space estimation framework 

(equation 5) to specifically estimate parameters in connection with FeS and ZnS 

precipitates formed as a result of stimulated microbial activity using time-lapse complex 

resistivity measurements. Although our goal in this section is to demonstrate the use of 

the framework for solving a specific biogeochemical transformation estimation problem 

and to provide some insights into the utility of time-lapse complex resistivity data in the 

estimation of precipitation processes, we emphasize that the framework developed here is 

general in nature and could be applied to a variety of estimation problems. 

To test this framework, we use the datasets collected during the biostimulation 

column experiments described by Williams et al. [2005] and Ntarlagiannis et al. [2005]. 

We first introduce the column experiment setup and the collected time-lapse geochemical 

and geophysical data. We then develop a petrophysical model to link the geochemical 

and geophysical datasets. We finally use this information to parameterize the general 

Bayesian framework (equation 5) for this specific estimation problem.  

3.1 Laboratory Column Experiments 

The column experiments of Williams et al. [2005] were designed to examine the 

geophysical response to microbe-induced ZnS and FeS precipitation during a 

biostimulation experiment performed using sulfate-reducing bacteria. The experimental 

columns were instrumented along their length with geophysical sensors, as well as with 

biogeochemical fluid sampling ports. The experiments were conducted under 

temperature-controlled conditions over a period of 78 days using five polycarbonate 

columns having inner diameters of 5.08 cm and lengths of 30.5 cm. Although different 

columns were used to collect seismic, complex resistivity and biogeochemical datasets 
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and to serve as abiotic control columns, care was taken to ensure that the column 

packing, flow rates, and other experimental parameters were similar across the columns.  

Several pore volumes of lactate were flushed through the water-saturated, sand 

packed system before the experiment started, at which time the sulfate-reducing bacteria 

Desulfovibrio vulgaris were introduced into the middle and the nutrients were introduced 

into the bottom of the upward-flowing column. From the multi-level sampling ports, 

spaced 3.8 cm along column length, sulfate reduction was monitored over seven weeks, 

as indicated by decreasing substrate and metals concentrations, increasing biomass, and 

visually discernable regions of metal sulfide accumulation. The region of sulfide mineral 

precipitation showed a shift toward the influent (bottom) portion of the column over time 

as a result of microbial chemotaxis towards elevated substrate concentrations at the base 

of the column [Williams et al., 2005]. Upon termination, the fluid sampling and 

geophysical measurement columns were destructively evaluated; the sediment samples 

were collected to determine grain-affixed biomass, extractable metals, and to provide 

materials for electron microscopy.  

Williams et al. [2005] showed that changes in seismic and complex resistivity 

measurements tracked the onset, spatial distribution, and aging of FeS and ZnS 

accumulation. In addition, the scanning electron microscope (SEM) images indicated that 

the biostimulation led to the aggregation of sulfide-encrusted bacterial cells. In this study, 

we extend this effort from a qualitative tracking of the system response using geophysical 

measurements to a quantitative estimation of the bio-aggregated precipitate 

characteristics over time. 
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3.2 Geochemical Data and Evolution Model 

Several types of aqueous geochemical measurements were collected over time 

during the course of the experiments. The principal reaction taking place in the column 

involves the microbially-mediated oxidation of lactate to acetate while reducing sulfate 

according to - 2- - - -
3 4 3

1 1CH CH(OH)COO + SO CH COO + HS + HCO + H2 2→ +
3

1
2 . Since 

the lactate and sulfate concentrations are strongly correlated to the acetate concentrations 

through the reaction stoichiometry, we only show in Figure 2 the acetate concentrations 

(a byproduct of lactate oxidation) measured at the sampling port located 3.8 cm from the 

column base in the experiments as a function of time. The production rate of acetate 

according to the stoichiometry shown above is in the proportion of 2:1 to the sulfide 

generated, the dissolved species that drives the precipitation of both FeS and ZnS. In 

theory and ideally, we could simulate FeS and ZnS precipitates rigorously through 

numerical reactive transport modeling of bioremediation processes based on those 

measured aqueous geochemical data, but the chemotaxis of the bacteria was a process 

that was beyond the capabilities of the software at the time.   

For the column experiments of Williams et al. [2005], we can estimate the volume 

fraction of FeS and ZnS precipitates from the profiles of the measured total dissolved 

Fe2+ and Zn2+ concentrations using a mass balance method. For every mole of acetate 

produced, one half mole of sulfide is generated, which then results in the precipitation of 

sulfides according to the reactions 2 2
sFe S FeS+ −+ → , and . For a 

column having a steady flow, the mass change of an aqueous species (after ignoring 

dispersion process) can be described by 

2+ 2-
sZn +S ZnS→

( CR v )xφ ∂= − ∂  at steady state ( 0C
t

∂ =∂ ), 
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where φ  is porosity, v is flow velocity, R  is the precipitation rate of the sulfide mineral 

phase, C is the concentration of Fe or Zn in solution, and x is the distance along the 

column from the base. According to this equation, the loss rates of Fe(II) and Zn in the 

aqueous phase were computed by dividing their corresponding concentration differences 

by the distance between two consecutive sampling ports: 

1
1

2 1

j j
j

j j

C C
R v

x x
φ −

−
−

⎡ ⎤−
= − ⎢ ⎥−⎢ ⎥⎣ ⎦

.                                                       (6) 

Here R j-1/2 is the reaction rate defined in the interval between two discrete data points in 

space jx  and 1jx − , where the aqueous concentrations  and jC 1jC −  are measured [Steefel 

and Maher, 2009]. The FeS and ZnS accumulated during given time intervals were 

calculated by multiplying equation 6 by the time interval during the sampling process. 

The accumulated FeS and ZnS calculated using equation 6 matches well the amount of 

extractable FeS and ZnS measured at the end of the experiment (see Figure 3). The 

overall reaction stoichiometry outlined above is also supported by the measurements of 

other redox-active species (lactate, acetate, and sulfate) in the column, which are in the 

proper proportions for the electron balance. This further supports the validity of the use 

of the aqueous concentrations to calculate mineral precipitation rates. 

The mass-balance based estimation, however, is practically impossible under field 

conditions because many more processes are involved in the mass balance of Fe(II) and 

Zn, and it is typically challenging to decouple these different processes. For example, in 

addition to the process of FeS precipitation, minerals such as iron oxide can absorb Fe(II) 

on their surfaces. Since our ultimate goal of developing the estimation framework is to 

apply it to field datasets, we assume that the direct estimates of FeS and ZnS will not be 
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available through this simple procedure, but that we may be able to approximate the 

expected amount and distribution of these mineral phases using more sophisticated 

geochemical models, normally multi-component reactive transport models [Steefel and 

Maher, 2009]. The accuracy of the approximation might range from simple qualitative 

relationships to more sophisticated numerical reactive transport modeling platforms, such 

as CrunchFlow [Steefel, 2008] and TOUGH-React [Xu et al., 2003], depending on 

available information. As a result, for the purposes of this study, we use the results 

obtained from the above mass balance method as the ground-truth for evaluating the 

applicability and effectiveness of our state-space estimation framework. 

For our application example, we use a simple qualitative relationship with a 

statistical model for describing possible uncertainty to represent the geochemical 

evolution. On the basis of the observation from the column experiments, we assume that 

the increment in volume fraction of metal precipitates is nonlinearly proportional to the 

concentrations of acetate. This assumption is not important and the relationship can be 

replaced with a more sophisticated numerical model as it becomes available. For now, 

this approach is sufficient for testing the developed framework. Let  represent the 

increment of total acetate concentrations from time 

tz

1t −  to time t  and let tp  and 1tp −  

represent volume fraction of metal precipitates at time t  and 1t − , respectively. The 

increment of volume fraction thus can be modeled using function 

(( ))1 2 1 2( , , ) 1 expt tB z zθ θ θ θ= − − 1, where θ  and 2θ  are parameters associated with the 

model. This empirical model is intuitively plausible because it is consistent with the fact 

that the increment of volume fraction increases with increasing of acetate concentrations 

and the rate of increase in volume fraction decreases. Parameter 1θ  is the limit of the 
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increment of volume fraction, whereas parameter 2θ  depends on the unit of acetate 

concentrations and the increasing speed of volume fraction. To account for uncertainty in 

the model, we assume that the two parameters are known within some ranges and the 

output of the model is subject to Gaussian relative random noise with standard deviation 

of 1β . Consequently, we obtain the following statistical model that we use for this 

example to describe the evolution of the precipitate volume fraction from time 1t −  to 

time t : 

1 1 2
1 1

1 2

( ) ( , , ) (0, ).
( , , )

t t t

t

p p B z N
B z

θ θε β
θ θ

−− −
= �                                          (7) 

3.3 Complex Resistivity Data and Petrophysical Model 

The complex resistivity data were collected from several locations along the length 

of the column and over time by using frequencies from 0.01 Hz to 1000 Hz. In this 

example, we focus only on the complex resistivity data collected between ports 1 and 2, 

which correspond to the length interval between 3.5 cm and 7.0 cm away from the 

column base. Theoretically based models for predicting spectral induced polarization 

(SIP) signatures in metal containing soils are lacking, despite recent advances in semi-

theoretical modeling of SIP signatures in non-metallic soils [Leroy et al., 2008]. The one 

exception is the classic electrochemical model of Wong [1979]. He attributed the 

polarization in metallic soils when the metal is less than 10% of the soil volume to 

diffusion of redox active and inactive ions that are predominantly perpendicular to the 

metal surface under an applied electric field and to an electrochemical mechanism 

associated with the redox active ions that facilitate transport of charge between ionic and 

electronic conduction. In the model, he also assumed no interaction between the electric 
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fields of the individual polarizable particles (i.e., the metallic minerals), a condition that 

Wong [1979] stated was reasonable for metal concentrations up to 16%. However, since 

the theoretical model requires the definition of several (more than eight) electrochemical 

parameters that are typically poorly determined, no practical applications have been 

presented in the peer-reviewed literature. 

Given the lack of easily applied theoretical models to adequately describe the SIP 

response of soils containing metallic minerals, phenomenological formulations, such as 

the Cole-Cole relaxation model [Cole and Cole, 1941], are often invoked [Pelton et al., 

1978; Pelton et al. 1983; Binley et al., 2005; Slater et al., 2006]. Similar to those studies, 

the complex resistivity data are first inverted for Cole-Cole model parameters (e.g., 

chargeability and time constant) using the stochastic inversion method developed by 

Chen et al. [2008]. Figure 4 shows the real and imaginary components of the measured 

complex resistivity data after inoculation as well as their corresponding fits to Cole-Cole 

models. Figures 5 and 6 give the medians and 95% predictive intervals of the inverted 

chargeability normalized by zero-frequency resistivity (referred to as normalized 

chargeability) and time constant parameters from Day 13 to Day 48. We did not get 

reliable estimates of Cole-Cole parameters from the complex resistivity data collected on 

the date earlier than Day 13. We speculate that under the conditions where geochemical (i.e. 

aqueous chemistry) conditions are changing rapidly, Cole-Cole parameters may not adequately 

capture changes in the complete spectral response. 

We develop a petrophysical model to link the inverted Cole-Cole parameters to the 

properties of metal precipitates based on the observations of the column experiments on 

the date after Day 13. From Figures 5 and 6, we can see that the normalized 
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chargeability, a nearly linear function of the surface area of sulfide minerals in contact 

with water [Slater et al., 2005], is decreasing through time while volume fraction of the 

precipitates suggested by the geochemical data (Figure 2) is increasing through time. 

These observations perhaps are different from the response of complex resistivity 

obtained at early time because at early time, a single cell has an increasing layer of 

sulfide on it and both surface area and volume fraction increase over time. To explain the 

observations at the later time, we develop a rock-physics model of cells aggregating into 

clusters, which provides the key geometric parameters involved in modeling both 

permeability and induced polarization (IP) responses of the sand column. In the 

following, we conceptually describe the petrophysical model and present the results that 

are directly related to the inverted Cole-Cole parameters (i.e., normalized chargeability 

and time constant). The detailed derivations are given in appendix A. The developed 

model involves many parameters, some of which can be approximately determined from 

SEM images and some need to be estimated during the inversion, which are also 

explicitly given in the following description. 

We assume that the formation of metal precipitates includes two main phases based 

on our observations from the column experiments. Similar processes were also observed 

by Moreau et al. [2004] under the natural conditions where the concentration of aqueous 

metals (e.g., zinc) was much lower. The early phase involves the coating of an individual 

cell, that is, the bacterial cells in the system produce sulfide mineral to the point that they 

become entirely covered in a sulfide layer and ultimately die [Williams et al., 2007]. The 

subsequent second phase involves the aggregation of individual coated biominerals, in 

which the dispersed individual coated cells form clusters. Since we only have data after 
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13 days of bioremediation, we assume the dominant process involved in this example is 

the cell aggregation. For ease of description, we assume that both cells and metal sulfides 

are spherical, and the effects of deviations between the actual shape and that of a sphere 

will be addressed by some coefficients. As shown in Figure 7, all cells with a sulfide 

coating are assumed to be initially dispersed (i.e., widely separated from one another). 

Over time, the dispersed cells gradually aggregate into clusters, in the present simple 

model, taking the form of spheres. We employ a face-centered sphere packing approach 

to represent the aggregation, as is described in appendix A. These spherical clusters grow 

through the attachment of additional dispersed cells. Since an isolated coated cell has a 

larger mineral-fluid surface area than a cell attached to a cluster, the surface area of 

sulfide will decline as long as the rate of cells attaching to clusters is greater than the rate 

at which new dispersed cells are being formed. This is the case in the column 

experiments as shown by Williams et al. [2005]. Given the near complete consumption of 

lactate within the first 1.9 cm of the column by Day 12, this loss of the primary electron 

donor (lactate) severely limits subsequent microbial growth and cell division, thereby 

minimizing the rate at which new dispersed cells are formed. To account for the 

observation that total sulfide volume in the pores increases over time, we also assume 

that the cells in a cluster have a thicker layer of sulfide on them than do the dispersed 

cells (i.e.,  in Figure 7). To describe the process, we define two key parameters: 

One is the volume fraction of metal precipitates (

ch h� d

tp ) and the other is the fraction of 

dispersed coated biominerals ( ). Both are functions of time and will be estimated in the 

inversion. 

tw
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We can obtain an analytical relationship between normalized chargeability ( ) 

and parameters 

tm

tp , , and tw 3θ , the latter of which is a coefficient that accounts for 

incomplete knowledge about the thickness of encrusted cells. Within the model and under 

certain assumptions, we can obtain the specific area 0 ( , , )t t tS G p w 3θ=  (see equation A4). 

Additionally, normalized chargeability (i.e., polarization magnitude) has been repeatedly 

shown to scale with  in laboratory studies conducted on both metallic soils [e.g., Slater 

et al., 2005; Slater et al., 2006] and non-metallic soils [Slater et al., 2006; Scott and 

Barker, 2005]. Therefore, we can assume that normalized chargeability is proportional to 

specific surface area, i.e., 

tS

4 1 3( , , , )t t t tm S G p w 4θ θ θ= = , where 4θ  is a parameter that may 

partially account for disparity in the shapes between spheres and actual ones and partially 

explain the ratios between the specific area and chargeability. This is an empirical based 

model, which is critical for the success of our estimation because it links the IP responses 

to the physical properties of geochemical precipitation. To consider uncertainty in the 

model, we also assume the empirical relationship is subject to relative Gaussian random 

errors with the standard deviation of 2β . This is a common assumption for likelihood 

functions because the Gaussian distribution is the most robust probability distribution for 

characterizing errors, even the errors are non-Gaussian [Stone, 1996]. Thus, we obtain the 

following model, 

1 3 4
2 2

( , , , ) (0, ).
obs
t t t

obs
t

m G p w N
m

θ θε β−
= �                                          (8) 

We can also obtain an analytical formula to link time constant ( tτ ) to the fraction 

of dispersed biominerals ( ). Time constant, describing the length-scale of the tw
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relaxation in IP responses, has been widely recognized as a function of the pore or grain 

size characteristics of soils [e.g., Olhoeft, 1985; Chelidze and Gueguen, 1999] and 

therefore can be linked to the mean radius of clusters formed from metal precipitates. 

Schwartz [1962] has shown that the function is consistent with electrochemical theory for 

colloidal suspensions, whereby we can tie time constant tτ  at time  to the mean radius 

of aggregated clusters ( ) using the following formula: , where  is 

referred to as the surface ionic diffusion parameter and its value is given by  

as used by Tarasov and Titov [2007] and Slater et al. [2007]. In addition, we can derive 

the mean radius as 

t

tr
2 /(2 )t tr Dτ = D

9 23 10  m /s−×

5 0 1tr l wθ= − t  (see equation A8), where  is the characteristic pore-

throat radius of the system and has a value of 

0l

41.3 10−×  m as determined from Thompson 

et al. [1987] permeability model prior to precipitation, and 5θ  is a parameter that explains 

the effects of differences between the actual shape and the used sphere and the effects of 

uncertainty in the values of the surface ionic parameter and the characteristic pore-throat 

radius. This parameter will be determined in the inversion with a value between 0.2 and 

0.9. By combining the above two relationships, we obtain 

2 2
5 0 2 5(1 ) /(2 ) ( , )t tl w D G wtτ θ= − = θ . This is an important relation for the estimation 

because it provides a linkage between time constant and the fraction of dispersed cells. 

Again, to account for uncertainty in the model, we assume the empirical relationship is 

subject to relative Gaussian random errors with the standard deviation of 3β . Thus, we 

obtain the following model: 

2 5
3

( , ) (0, ).
obs
t t

obs
t

G w Nτ θ
3ε β

τ
−

= �                                          (9) 
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3.4 Bayesian Model 

We apply the estimation framework given in section 2 to the column experimental 

data described by Williams et al. [2005]. We consider volume fraction ( 1 2,  ,  ,  np p pL ) 

as state variables and time-lapse normalized chargeability ( ) and time 

constant (

1 2,  ,  ,  obs obs obs
nm m mL

1
obsτ , 2

obsτ , L , obs
nτ ) as measurements with Gaussian relative random errors. We 

also consider the fraction of dispersed biominerals ( ) and five time-

independent parameters (

1 2,  ,  ,  nw w wL

1 2,  ,  ,  5θ θ L θ ) as unknowns. We jointly estimate those state 

variables and time- dependent and independent parameters by conditioning on the 

inverted Cole-Cole parameters. 

We can specify the general Bayesian framework given in equation 5 with the 

geochemical evolution model described in section 3.2, and the complex resistivity rock-

physics model conceptually summarized in section 3.3 (and described in detail in 

appendix A) to obtain the following specific Bayesian model for estimation of precipitate 

related parameters (see appendix B): 

1 2 1 2 1 2 5 1 2 1 2

1 2 5 1 2
1 1 2

2

1 1 2
2

11 1 2

( , , , , , , , , , , , | , , , , , , , )

1       ( , , , ) ( , , , )
( , , )

( ) ( , , )1            exp
2 ( , , )

obs obs obs obs obs obs
n n n

n

n
t t

n
t t t

t t

f p p p w w w m m m

f f w w w
B z

p p B z
B z

θ θ θ τ τ τ

θ θ θ
θ θ

θ θ
β θ θ

=

−

=

⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠
⎧ ⎛ ⎞− −⎪−⎨ ⎜ ⎟

⎝ ⎠

∏

∑

L L L L L

L L

n

2

1 3 4
2

12

2

2 5
2

13

( , , , )1            exp
2

( , )1            exp .
2

obsn
t t t

obs
t t

obsn
t t

obs
t t

m G p w
m

G w

θ θ
β

τ θ
β τ

=

=

⎫⎪
⎬

⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞−⎪ ⎪−⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞−⎪ ⎪−⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

∑

∑

 (10) 
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In equation 10, we assume 0 0p =  (i.e., no precipitates at time t0), 1 5%β = , 

2 1%β = , and 3 10%β = . In this model, we only take account for random measurement 

errors, and systematic errors in data, model assumptions, and parameterization can not be 

resolved. However, given the flexibility of our estimation framework,, we can certainly 

combine them into the model if we know the structures of those systematic errors. To obtain 

samples from the joint posterior distribution given in equation 10, we first derive 

conditional distributions for unknown variables and then use the MCMC sampling 

methods to obtain many samples of the unknowns. Details about the MCMC sampling 

methods are provided in Chen et al. [2006] and appendix C. 

4. Estimation Using Laboratory Column Experimental Data 

4.1 Estimation of Volume Fraction of FeS and ZnS Precipitates 

We first estimate volume fraction of FeS and ZnS precipitates using only the 

measured acetate concentrations. By dropping the last two terms on the right side of 

equation 10, we can obtain the joint distribution of evolved precipitate volume fraction as 

functions of the measured acetate concentrations and the evolution model given in 

equation 7. For the given evolution model 1 2( , , )tB z θ θ , we choose the prior ranges of 

parameters 1θ  and 2θ  on which the estimated medians of the volume fraction have a 

similar range to the values calculated from direct measurements of metal sulfide 

precipitates. The estimates of volume fraction are very sensitive to the choice of 

parameter 1θ , which is the limit or maximum increment of volume fraction for given 

acetate concentrations. Figure 8 shows the effect of its prior range on the estimates of 

volume fraction. If we assume the maximum increment of volume fraction is in the range 
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of , the estimated medians of volume fraction (circles in Figure 8) are one 

order larger than those calculated from direct measurements of dissolved metal 

concentrations (triangles in Figure 8). However, if we choose a prior range of 

 for parameter 

(1 3,  5 3)e e− −

(1 4,  1 3)e e− − 1θ , we can obtain the medians of volume fraction (squares 

in Figure 8) that are in the same order as those calculated from dissolved metal 

concentrations. Therefore, in this example, we assume that parameter 1θ  is uniformly 

distributed over (1 . The estimates of volume fraction are less sensitive to the 

value of parameter 

4,  1 3)e e− −

2θ , the increment rate of volume fraction for given acetate 

concentrations. We assume that the parameter 2θ  is uniformly distributed on .  (1,  10)

We combine information from complex resistivity data into the estimation using all 

the terms in equation 10. The added data are normalized chargeability and time constant, 

both of which are obtained from fitting complex resistivity data with Cole-Cole models 

following Chen et al. [2008]. In this case, we must also invert the fraction of dispersed 

cells over time and three additional time-independent parameters 3θ , 4θ , and 5θ . As will 

be subsequently discussed, all those parameters can be estimated well from the joint 

inversion. Figure 9(a) shows the estimated medians of volume fraction of FeS and ZnS 

precipitates obtained using the acetate concentrations only (squares) and using both 

acetate concentrations and complex resistivity data (circles). The calculated volume 

fraction using equation 6 from the dissolved Fe2+ and Zn2+ concentrations are also shown 

in the figure as triangles. Comparing the estimated and calculated volume fraction, we 

find that the estimates of volume fraction of FeS and ZnS precipitates obtained using both 

acetate concentration and complex resistivity data are much better, having a root-mean-
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square (RMS) difference of 0.0337, relative to those using acetate concentration data 

only, having a RMS value of 0.0453. Figure 9(b) shows the 95% highest probability 

domains (HPDs) of the estimated volume fraction. We can see that combination of 

complex resistivity and acetate concentration data yield only slightly smaller uncertainty 

bounds. Although we include more data in the procedure, we have also added more 

unknown parameters. 

4.2 Estimation of Fraction of Dispersed Cells and Mean Radius of Aggregated 

Clusters 

We can directly estimate the fraction of dispersed cells as a function of time as 

shown in equation 10 through incorporating complex resistivity data into the inversion. 

Figure 10 shows the medians of the marginal posterior probability distribution of the 

fraction of the dispersed cells and their corresponding 95% HPDs. The fraction of 

dispersed, coated cells decreases from about 90-percent to about 10-percent from Day 13 

to Day 48 due to aggregation of dispersed cells into large clusters. 

Although we did not directly estimate the mean radius of aggregated clusters in 

equation 10, we can calculate it through the formula: 5 0 1tr l wθ t= −  from the fraction of 

dispersed cells and time-independent parameter 5θ . Figure 11 shows the estimated 

medians of the mean radius of aggregated clusters, together with their corresponding 95% 

HPDs. From the figure, we can see that the mean radius of aggregated clusters increases 

as we expected from about 10 microns to about 30 microns, which is reasonable 

according to the observations from SEM images of samples from the destructed 

experimental columns  (10-20 microns) [Williams et al., 2005]. 

 24



4.3 Estimation of Permeability 

We can also estimate effective permeability and its change over time in the zone 

impacted most significantly by the biostimulation using the developed petrophysical 

model and the complex resistivity data. Permeability is a key parameter for flow transport 

and is difficult to measure in hydrogeology. Following Thompson et al. [1987], we can 

obtain permeability at time t  as below: 

2
0 0

1 ( (1 )( 2 ))
226t tk lφ= −Π − tr ,                                          (11) 

where  is the volume fraction of the pores occupied by clusters, which is a function of 

both 

tΠ

tp  and  (see appendix A) and typically is much larger than the fraction of FeS 

and ZnS precipitates 

tw

tp . Symbol 0 0.37φ =  is the initial porosity of sand grain prior to 

precipitation. Figure 12 shows the medians (solid lines with circles) of the estimated 

permeability over time, together with their corresponding 95% HPDs (dashed lines with 

triangles or squares). The effects of the evolved precipitates on the effective permeability 

are evident; the formation of the aggregated clusters reduces permeability at the location 

from about 8 Darcy to 2 Darcy. 

To justify the estimated permeability, we compare these results with those 

calculated from the measured permeability of sand column by Williams et al. [2005]. In 

the column experiments, after the initial migration of the precipitation front toward the 

column based (influent), the microbially mediated sulfide precipitation mainly occurred 

in the first several centimeters of the soil column. Let sck  be the permeability of the sand 

column, which is calculated from the measured hydraulic conductivity data by Williams 
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et al. [2005] and has a value of 10.4 Darcy before precipitation, 9.15 Darcy on Days 17 

and 20, and 0.4 Darcy on Day 53. Let  be the volume fraction of the location where 

cluster development is occurring, which is about 0.17 in the case. Thus, we have: 

cv

0

11 c

sc t

v
k k k

cv−
= + ,                                                       (12) 

where  is effective permeability prior to biostimulation and has a value of 10.4 Darcy. 

Using the available information and equation 12, we can calculate the effective 

permeability as a function of time, which is shown as solid lines with crosses in Figure 

12. Comparison between the estimated and calculated effective permeability suggests that 

the developed estimation framework and petrophysical model permit a reasonable 

estimation of changes in permeability conditioned on complex resistivity data. 

0k

4.4 Estimation of Time-independent Parameters 

Figure 13 shows the marginal posterior probability distribution functions (pdfs) of 

five time-independent parameters. We show these results in order to demonstrate an 

important benefit provided by Bayesian estimation approaches. This is that they allow us 

to consider those parameters in the model that we do not have enough information as 

unknowns with prior ranges. The posterior results of those parameters may or may not 

get information from the data that we are conditioning to, depending on relationships 

between the data and those parameters. For a parameter, such as 1θ , the limit of 

increment of volume fraction, whose posterior pdf is almost the same as its prior pdf, we 

should generally be careful in choosing its prior range and analyzing its effects on the 

estimated results. However, in the current study, since our goal is to show the increasing 

values of complex resistivity data for a given prior model, we pick such a prior range. 
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However, for parameters, such as 2θ , 3θ , 4θ , and 5θ , the choice of prior 

distributions is not crucial. For example, from Figure 13, we can see that parameter 5θ  is 

well-resolved. Even if we start from a wider prior range, we still get a similar posterior 

pdf. We can use the estimated results as calibration of the rock-physics model and apply 

it for prediction. We can also gain insights from the results that justify the developed 

petrophysical model. 

5. Discussion and Conclusions 

We developed a general Bayesian framework based on a state-space approach to 

estimate biogeochemical end-products using time-lapse geochemical and geophysical 

data. The developed framework is very flexible, as it allows for systematic incorporation 

of multi-source and multi-scale information and permits use of different forms of forward 

geochemical and petrophysical models. 

We demonstrated the utility of the developed estimation framework for quantitative 

estimation of biogeochemical parameters by applying it to geophysical and geochemical 

datasets collected during laboratory column biostimulation experiments. In the case 

study, we estimated the evolution of several parameters in connection with 

biostimulation-induced metal sulfide precipitates. We used empirical relationships to link 

the total concentrations of acetate to volume fraction of FeS and ZnS precipitates and 

developed a novel rock-physics model based on face-centered sphere packing to link 

normalized chargeability and time constant obtained from complex resistivity data to 

various time- dependent and independent parameters related to the aggregated 

precipitates. We note that the petrophysical model included within the estimation 
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framework is expected to be refined as our understanding of the evolution of 

biogeochemical end products and their impact on pore structures become available; this 

topic is a subject of ongoing research by the authors. For testing of the developed 

estimation framework, we have developed a model that is conceptually simple and 

consistent with all available observations made by Williams et al. [2005]. 

Our results show that we can obtain quantitative estimates of the evolution of 

volume fraction and several other types of information related to the precipitation from 

the time-lapse complex resistivity data using the developed Bayesian framework and the 

assumed petrophysical model. The incorporation of time-lapse complex resistivity data 

improves the estimates of volume fraction over the estimates obtained using measured 

geochemical data alone, and provides the estimates of dispersed cell fraction, mean radius 

of aggregated clusters, and permeability, which geochemical data alone could not 

provide. 

Estimation of biogeochemical parameters using time-lapse geochemical and 

geophysical data is subject to uncertainty. This may come from the choice of models for 

linking geochemical and geophysical properties to parameters related to biogeochemical 

end-products, from the choice of prior distribution of unknown parameters, and from the 

estimation of parameters associated with the petrophysical model. To address those 

uncertainties, we assume the output of models includes Gaussian relative random errors 

and the associated model parameters are uniformly distributed on given prior ranges. The 

uncertainty can be reduced through two different approaches. The first one is to 

incorporate multiple types and multiple scales of information using the Bayesian 

integrated approach; the other approach is to improve our understanding of the 
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petrophysics of precipitation through additional laboratory, theoretical, and numerical 

experiments. Ongoing efforts within the environmental community to advance our 

understanding of petrophysical models and to incorporate a variety of datasets for 

exploring system behavior are expected to lead to improved quantitative estimates of 

biogeochemical end-product characteristics. 

The obvious potential of the developed framework is its use for quantitative 

estimation of biogeochemical parameters at the field-scale, using time-lapse direct 

borehole and indirect geophysical datasets. Application of the developed procedure with 

time-lapse geophysical datasets has the potential to provide a wealth of information about 

the spatio-temporal evolution of biogeochemical processes associated with remedial 

treatments that are difficult to obtain using borehole data alone. However, for use at the 

field-scale, we may need to consider state vectors and time-lapse geophysical data as 

functions of the spatial variability associated with natural heterogeneity and its controls 

on geophysical and geochemical responses. We need to develop models to characterize 

spatial patterns of biogeochemical properties and geochemical and geophysical data as 

functions of time. 

Extension of the estimation framework to the field-scale presents other challenges 

as well. Different types of geochemical and geophysical data typically have different 

measurement support scales. For example, geochemical data are typically collected from 

borehole fluid samples and are often considered to provide high resolution ‘point 

measurements’, whereas geophysical data often are collected from crosshole or surface 

surveys at relatively lower resolution but with larger spatial coverage. To use those data 

together, we need to find ways to bridge the scale discrepancies for integration and to 
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permit development and validation of petrophysical models. Additionally, in situ 

remediation treatments often lead to multiple and competing biogeochemical reactions in 

the subsurface. In our case study, the column experiments only involved the stimulation 

of sulfate reducing bacteria through a use of a pure culture, which led to the controlled 

precipitation of metal sulfide minerals following the introduction of dissolved metal ions 

at a known concentration. However, in nature many biogeochemical processes often exist 

that can occur within the footprint of the geophysical measurements, such as dissolution, 

precipitation, gas generation, and biofilm formation. To apply the developed approach to 

natural field conditions, we will likely need to augment the Bayesian framework to 

distinguish the dominant process and associated end-products. 

Our study focused on developing and testing a stochastic approach for estimating 

biogeochemical end-products associated with bioremediation treatments using time-lapse 

geophysical laboratory datasets. This approach builds upon recent biogeophysical 

research that indicated that geophysical data can track system responses over time; it now 

allows for quantitative estimation of transformational end-products in a minimally 

invasive manner. Further development and application of the estimation framework is 

expected to significantly improve our understanding of complex biogeochemical 

processes in naturally heterogeneous subsurface systems and our ability to monitor 

processes remotely. An improved understanding and ability to monitor in situ 

biogeochemical processes is expected to lead to an improved ability to design, guide, 

predict, and assess in-situ remediation approaches at the field-scale.  
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Appendix A: Rock-physics Model for Cells Aggregating Into Clusters 

We develop a rock-physics model in this section to link Cole-Cole parameters (i.e., 

normalized chargeability and time constant) to the properties of metal precipitates. The 

derivation is mainly based on observations from the column experiments performed by 

Williams et al. [2005]. 

As shown in Figure 7, we assume that the bacterial cells in the system produce 

sulfide minerals to the point that they become covered in a sulfide layer and ultimately 

die. In a highly simplified model, we assume that all sulfides in the system reside as 

spherical shells around the cells; we distinguish between dispersed cells and clustered 

cells. Initially, all cells with a sulfide coating are dispersed (i.e., widely separated from 

one another); through time, the dispersed cells aggregate into clusters with the form of 

spheres in the present simple model. These spherical clusters grow through the 

attachment of additional dispersed cells. Since an isolated cell has a larger mineral-fluid 

surface area than a cell attached to a cluster, the mineral-fluid surface area of sulfides will 

decline as long as the rate of cells attaching to clusters is greater than the rate at which 

new dispersed cells are being formed. We assume this is the case in the column 

experiments. To account for the observation that total sulfide volume in the pores is 

increasing through time, we assume that the cells in a cluster have a thicker layer of 

sulfides on them than do the dispersed cells. 

We assume that there are  cells with sulfides on them in every unit volume of 

pore space, which are partitioned into  dispersed cells and  clustered cells such that 

. The dispersed cells are coated with a sulfide layer of thickness  while 

the clustered cells have a sulfide layer with thickness of  (see Figure 7). For ease of 

tN

dN cN

t dN N N= + c dh

ch
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description, we define two time-invariant dimensionless parameters /d dh Rχ =  and 

/c ch Rχ = , where R  is the radius of a cell without sulfides on it. Thus, we can obtain the 

volume of sulfides surrounding a single dispersed cell by  and that 

surrounding a coated cell within the cluster approximately by . Let 

, which varies over time and has a value between 0 and 1. Let 

 and . Consequently, the fraction of pore 

volume 

24 (1 /d d dR hπ χ χ+ + 2 3)

3)

T

2 24 (1 /c c cR hπ χ χ+ +

/t dw N N=

2(1 / 3)d d d dg χ χ χ= + + 2(1 / 3)c c c cg χ χ χ= + +

tp  occupied by sulfide precipitate is given by 

34 ( (1t T d t cp N R g w g wπ= + ))t− .                                       (A1) 

The relationship between tp  and  given by equation A1 requires knowledge of the 

total number  of cells per unit pore volume covered with precipitates. Since this 

generally is unknown, we consider both 

tw

TN

tp  and  as unknown parameters that are 

determined by the inversion at each time step. We subsequently express all other time-

varying petrophysical parameters required within the modeling as functions of 

tw

tp  and 

. tw

We first derive the specific surface area , defined as the area of sulfides in 

contact with water per unit pore volume, in terms of 

tS

tp  and . Note that the number of 

coated cells  in a cluster is given by 

tw

cn 3( / ) (1 ) /(1 )c t c cn r R 3φ χ= − + , where cφ  is the 

porosity in a cluster. Therefore, the total number of clusters per unit volume of pore space 

cM  is given by 

3 3(1 )(1 )
(1 )

T d c
c T t

c t

N N RM N w
n r c

χ
φ

⎛ ⎞−
= = − ⎜ ⎟ −⎝ ⎠

+ ,                                  (A2) 
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and the volume fraction ( ) of pores occupied by aggregated clusters is given by tΠ

3
3 (1 ) (1 )4

3 3(1 )( (1 ))
c t t

t t c
c d t c t

w pr M
g w g w
χπ

φ
+ −

Π = =
− + −

.                                (A3) 

The specific surface area  can be modeled as tS 2 24 (1 ) (1 )4d d c cN R M r 2
tπ χ φ+ + − π , 

where the first term is the surface area associated with the individual dispersed cells and 

the second term is the surface area of the clusters. Since a cluster is an electronically 

conducting object, only its exterior surface contributes to the IP effect. Thus, we obtain  

1 2 1( (1 ) (1 )(1 )
(1 )

t t d t t c
t

d t c t

p R w r wS
g w g w
χ− −+ + − +

=
+ −

3 )χ ,                                    (A4) 

where  m is the radius of a cell, based on SEM imagery described by 

Williams et al. [2005]. The time-invariant parameters 

60.3 10R −≈ ×

dχ  and cχ  that represent the 

fraction of a cell radius occupied by sulfide are not well-known. We model them as 

3
310dχ θ−=  and 1

310cχ θ−= , where 3θ  is a parameter that must be determined from the 

inversion with allowed values in the range between 1 and 3. The observation that 

 is consistent with the SEM images of cells from clusters obtained by Williams 

et al. [2005]. 

110cχ
−≈

We can derive the mean radius of the cluster within the rock-physics model in 

terms of tp  and . Let  be the number of cells, with the radius of tw ln (1 )cR χ+ , needed 

to uniformly coat a cluster with radius of , where , we 

can obtain  

tr
2 24 (1 ) /( (1 )l t c cn r Rπ φ π χ= − + 2 )

1 1
2 (1 )

t

c l c

dr dNc

R dt n M dtχ
=

+
.                                        (A5) 
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To understand the rate  at which cells in clusters are increasing, we consider the 

rate at which  is changing. A change  occurs whenever new dispersed 

cells are created (presumably, this is occurring to some degree); a change  occurs 

both as a loss  to clusters and as a gain  from the newly created cells. From the 

definition of the derivative, we have  

/cdN dt

/t dw N N= T TdN

ddN

cdN− TdN

d d c T

T T T

N N dN dN Nd
N N dN

⎛ ⎞ − +
=⎜ ⎟ +⎝ ⎠

d

TN
− .                                    (A6) 

After rearranging and ignoring products of infinitesimals, we obtain 

(1 ) T
c T t t T

T

dNdN N dw w N dw
N

⎛ ⎞
− = − − ≈⎜ ⎟

⎝ ⎠
t .                              (A7) 

The second term in equation A7 can be neglected at early times where  is close to one. 

At later time, it is expected that the rate at which new dispersed cells is forming is much 

smaller than that at which dispersed cells are attaching to clusters. Equation A7 should 

thus be a reasonable approximation at all the time.  

tw

We can obtain the following differential equation that relates  to  from 

equations A5-A7, 

tr tw

(1 )1 1
2(1 )

t

t t

dr d w
r dt w dt

t−
=

−
.                                        (A8) 

By solving the equation, we have max 1t tr r w= − , where  is the maximum cluster 

size that occurs when all dispersed cells have been deposited on clusters ( ) and it 

depends on  and other parameters that are not precisely known. Our final result is 

given by 

maxr

0tw =

TN

5 0 1tr l wθ= − t , where  is the characteristic pore-throat radius in the system 0l
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and has a value of  m and 41.3 10−× 5θ  is a time-independent parameter that will be 

determined as part of the inversion with allowed values in the range between 0.2 and 0.9. 

Appendix B: Bayesian Model for the Column Experiment Data 

The joint posterior distribution function in equation 10 combines information from 

the evolution model in equation 7 and petrophysical models in equations 8 and 9. On the 

basis of equation 5, we can write the joint pdf as follows: 
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 where  and 0 0p = 1 2 5, , ,θ θ L θ

)

 are assumed to uniformly distributed on given ranges. 

We first derive conditional probability distribution 1 1 2( | , ,t tf p p θ θ−  from the 

normal distribution 1(0, )N β  using variable transformations, which is given by 

2

1 1 2
1 1 2 2

1 2 1 1 1 2
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   (B2) 

Similarly, we can obtain likelihood functions of chargeability using variable 

transformations from the normal distribution as below: 

2

1 3 4
3 4 2

2 2

( , , , )1 1( | , , , ) exp
2

obs
obs t t t
t t t obs

t

m G p wf m p w
m

θ θθ θ
β β

,
⎧ ⎫⎛ ⎞−⎪ ⎪∝ −⎨ ⎬⎜ ⎟
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               (B3) 

and 
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                            (B4) 

Combing equations B1 to B4, we can obtain the joint posterior distribution given in 

equation 10. 

Appendix C: Sampling Methods 

We group unknown parameters in equation 10 into five subsets: (1) 1 2{ , }θ θ , 

parameters related to the geochemical model ( )tB z , (2) 3 4{ , }θ θ , parameters related to 

normalized chargeability, (3) 5θ , a parameter related to time constant, (4) 1 2{ , , , }np p pL , 

the volume fraction of metal precipitates, and (5) , the partition factors of 

dispersed biominerals. We use block-sampling methods [Chen et al., 2006] to obtain 

many samples from the joint posterior distribution function given in equation 10. The 

conditionals for those subsets are given below: 
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Figure Captions 

Figure 1: Schematic map of the state-space Bayesian estimation framework. 

Figure 2: Measured acetate concentrations over time from the column experiments. 

Figure 3: Comparison between the measured and calculated extractable (a) Fe and (b) 

Zn. 

Figure 4: Complex resistivity data (symbols) and their corresponding fits (solid curves) 

for Cole-Cole models using the stochastic inversion method developed by Chen et al. 

[2008]. 

Figure 5: Time-lapse normalized chargeability data (squares) and their corresponding fits 

(circles). 

Figure 6: Time-lapse time constant data (squares) and their corresponding fits (circles). 

Figure 7: Schematic representation of FeS and ZnS precipitation for the induced 

polarization (IP) data inversion. 

Figure 8: Effects of parameters in the geochemical model on the estimates of volume 

fraction. 

Figure 9: (a) Estimates of volume fraction obtained using acetate data only (squares) and 

using both acetate and IP data (circles), and those calculated from the dissolved iron and 

zinc concentrations (triangles); (b) 95% highest probability domains (HPDs) obtained 

using acetate data only (squares) and using both acetate and IP data (circles). 

Figure 10: Estimated fraction of dispersed biominerals over time. 

Figure 11: Estimated mean radius of aggregated clusters over time. 
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Figure 12: Comparison between the estimated (circles) and measured (crosses) 

permeability. 

Figure 13: Estimated posterior probability density functions (pdfs) of time-independent 

parameters, where priors are uniform distributions on given ranges showing on each 

figure. 
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