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Abstract: Hormones are indispensable for bone development, growth, and maintenance. While
many of the genes associated with osteogenesis are well established, it is the recent findings in
endocrinology that are advancing the fields of bone biology and toxicology. Endocrine-disrupting
chemicals (EDCs) are defined as chemicals that interfere with the function of the endocrine system.
Here, we report recent discoveries describing key hormone pathways involved in osteogenesis and
the EDCs that alter these pathways. EDCs can lead to bone morphological changes via altering
hormone receptors, signaling pathways, and gene expression. The objective of this review is to
highlight the recent discoveries of the harmful effects of environmental toxicants on bone formation
and the pathways impacted. Understanding the mechanisms of how EDCs interfere with bone
formation contributes to providing a comprehensive toxicological profile of a chemical.

Keywords: osteoblasts; osteogenesis; hormones; endocrine toxicity; endocrine-disrupting chemicals;
bone defects

1. Introduction

Congenital bone defects are a major public health concern. According to the World
Health Organization (WHO) [1], birth defects are the second leading cause of deaths for
infants (in 28 days) and children under 5 years of age, resulting in nearly 3.3 million deaths
globally [1]. In the United States alone, 1 in every 33 babies are born with a birth defect each
year, and accounts for 20% of infant and child mortality. This is a highly concerning issue
that needs to be addressed. Congenital malformations can be attributed to genetic and
non-genetic factors. Non-genetic factors, particularly environmental factors, are among the
most concerning leading to an increased risk of birth defects [2,3]. Therefore, it is imperative
to uncover the mechanisms by which environmental toxicants affect bone development
and prompt the risk of skeletal defects. Osteogenesis is the process of bone formation,
whereby osteoblasts, the bone forming cells, produce a mineralized extracellular matrix
during early development, adult bone homeostasis, and bone remodeling after an injury [4].
Osteoblast lineage commitment is tightly controlled by mechanisms including epigenetic,
transcription factors, and signaling pathways. Elucidating such genetic processes is key
to understanding normal and abnormal bone development. Specifically, understanding
how environmental factors contribute to the dysregulation of hormone signaling pathways
during osteogenesis will help provide insights into the molecular mechanisms of bone
disorders and diseases and the development of diagnostic tools and treatments.

This review brings forth recent information showing the effects EDCs on bone devel-
opment and remodeling. Further, the review aims to identify the underlying mechanisms
involved that are negatively impacted due to EDC exposure resulting in skeletal damage.
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2. Method

A literature search was conducted on PubMed and Google Scholar for studies related
to hormones and osteogenesis as shown in Table 1. Publications were screened for relevance
to hormones role in osteogenesis and toxicant dysregulation.

Table 1. Literature search and selection criteria.

Literature Search Strategy

A.

PubMed and Google Scholar combinations (name of hormone + bone-related term or
toxicant + hormone + bone-related term) of the following terms: hormones, thyroid
hormone, parathyroid hormone, vitamin D, estrogen, osteogenesis, bone, bone
development, bone damage, bone birth defects, bone toxicology, endocrine disruptors,
endocrine-disrupting chemicals, tobacco, cigarette smoke, air pollution, flame retardants,
bisphenol A, PFAS, TCDD, DDT, para-nonylphenol, and pesticides.

B.

English language papers were screened from publication date 1 January 2000 to 30 April
2023. Publications included original research articles, reviews, and book chapters consisting
of in vitro studies, in vivo animal studies, human studies, and meta-analyses. Non-English
and unavailable full-text articles were excluded.

3. Osteogenesis

Bone formation is the result of two processes: intramembranous ossification, which
is the formation of flat bone, i.e., thin layers of connective tissue and top of the skull;
and endochondral ossification, which is the process by which bone tissue, cartilage, is
formed in early fetal development and then replaced with bone later [5–7]. Osteoblasts are
derived from progenitor neural crest (NC) and mesodermal cells, where NC cells typically
go through intramembranous ossification and endochondral ossification for mesoderm
derived osteoblasts. A shared precursor between NC and mesoderm cells are mesenchymal
stem cells (MSCs), which have the capacity to differentiate into osteoblast, chondrocytes,
myoblasts, and adipocytes [8]. Proliferation, matrix maturation, and mineralization are the
key stages of osteoblast development which require the expression of distinct osteoblast
markers. The most common markers of osteoblast development are alkaline phosphatase
(ALP), runt-related transcription factor 2 (RUNX2), type I collagen (COL1A1), osteopontin
(OPN), bone sialoprotein (BSP), and osteocalcin (OCN). ALP, RUNX2, and COL1A1, which
are early osteoblast markers, and OPN, BSP, and OCN represent later stages of osteoblast
differentiation [9–12]. Exposure to environmental toxicants, such as air pollution, flame
retardants, or tobacco products, during these susceptible periods of development can lead
to unwanted life-long bone defects, diseases, and disorders [13]. Therefore, it is necessary
to understand how exposure can impact the mechanisms of bone development and result
in the developmental toxicity of bone.

4. Osteogenesis and Its Hormone Regulation

Hormones are major contributors to osteogenesis and deviations in hormone expres-
sion can lead to an undesired bone formation outcome. Bone development is hormone
dependent, with each hormone having its own receptor in bone tissue and controlled by
several endocrine glands [14]. Therefore, these pathways are susceptible to endocrine
disruption by environmental insults, including EDCs, that can cause osteogenic defects.

Thyroid hormone. Thyroid signaling plays an important role in many cells within
the human body and is involved in metabolism maintenance as well as body growth and
development [15,16]. Thyroid hormones (TH) aid in osteoblast formation in the early
stages of skeletal development, as well as bone growth and maturation. There are three
subtypes make up thyroid receptors (TRs): TRα1, TRβ1, and TRβ2, where TRα1 and TRβ1
are most expressed in bone [17]. Thyroid hormones positively regulate osteoblast differ-
entiation via bone morphogenetic protein (BMP) and IGF1 signaling as seen in Figure 1.
Positive osteoblast development is supported through the BMP/SMAD signaling pathway
observed in mouse osteoblasts treated with TH (T3). Hormones triidothyronin (T3) and
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thyroxine (T4) are the two main forms of TH, where T4 is the primary form. Secondary,
T3 is produced through the enzymatic conversion of T4 [15–17]. T3 led to BMP activation
and SMAD1/5/8 phosphorylation that yielded enhanced osteoblast differentiation poten-
tial [18]. In differentiating MC3T3-E1 pre-osteoblast cells, T3 and T4 treatments increased
Igf-1 mRNA levels supporting osteoblast differentiation [19]. TH has been shown to regu-
late osteoblast differentiation through WNT/β-catenin signaling pathway stimulation or
inhibition. The crosstalk between THs and WNT signaling needs to be fully delineated in
bone compared to more established mechanisms in other tissues [20]. When treated with
T3, WNT signaling activity was decreased in mouse osteoblast cells [21]. In vivo, β-catenin
levels were stabilized with a mutant thyroid hormone receptor to activate WNT signaling
in the presence of TH and increase bone mass [21]. In contrast, Tsourdi et al. [22] found
WNT signaling inhibitor DKK1 serum levels were increased in hypothyroid mice, which
correlated with decreased bone formation [22]. In addition, BMP signaling can regulate
WNT/β-catenin signaling to regulate osteoblast differentiation and bone formation [23].
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Figure 1. Crosstalk between thyroid hormones and signaling pathways. The schematic depicts the
complex interaction between thyroid hormones, such as T3, and BMP, WNT, and IGF1 signaling,
which are responsible for osteoblast differentiation. BMPs bind to receptors on osteoblast progenitors
to activate SMADS, leading to increased RUNX2. RUNX2 is an osteogenesis specific transcription fac-
tor that promotes osteogenic related genes expression. In the WNT/β-catenin pathway, TH regulates
osteoblast differentiation through either inhibiting β-catenin, which prevents osteoblast differentia-
tion, or binding to WNT, which promotes osteoblast differentiation through accumulating β-catenin,
increasing the levels of TCF/LEF and RUNX2. IGF-1 receptor-induced osteogenesis activates the
Ras/Raf/MEK/ERK pathway, leading to an increase in osteogenic genes.

Parathyroid hormone. The parathyroid hormone (PTH) is an 84-amino acid peptide
hormone secreted by the parathyroid glands. PTH mainly acts on the bone and kidney.
It is crucial for osteoblast differentiation and post-natal bone calcium and phosphorus
maintenance. PTH-related protein (PTHrP) is crucial for endochondral bone formation
during pre- and post-natal bone formation [24]. PTH and PTHrP are similar peptide hor-
mones that share interaction with a single common receptor, PTH type I receptor (PTH1R),
predominantly through cyclic adenosine monophosphate/protein kinase A (cAMP) [24].



Int. J. Mol. Sci. 2023, 24, 8263 4 of 14

These receptors are found in progenitor and osteoblast cells. Figure 2 demonstrates PTH
stimulation of osteoblast development mediated through the cyclic AMP and BMP signal-
ing pathways downstream of the PTH1R [24–28]. PTH-induced BMP signaling stimulation
phosphorylates SMAD1, which prevents the inhibitory effect of NOGGIN and increases
the endocytosis of PTH/PTH1R/LRP6, which induces β-catenin stabilization. Increased
PTH enhances MSC differentiation into osteoblasts through BMP signaling [29]. PTH and
PTHrP stimulate pro-osteogenic genes, RUNX2, ALP, and OCN. Expressed at the correct
timing of development, PTH increases osteoblast differentiation. PTH receptor (PTHR)
deletion in bone marrow cells resulted in an increase in bone marrow adiposity and bone
resorption, along with a physically visible low bone mass in mice [30].
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Figure 2. PTH and PTHrP signaling pathways. PTH and PTHR stimulate the proliferation and
differentiation of osteoblasts. To promote proliferation, cAMP is activated followed by an increase in
PKA levels. These cellular outcomes are mediated through elevation of intracellular cAMP via the
PTH receptor. This increase leads to the activation of CREB in osteogenic cells.

Vitamin D. Cells of the osteoblast lineage are responsive to systemic hormones such
as 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Vitamin D is a steroid hormone with an
essential role in bone metabolism. The active form of vitamin D, 1,25(OH)2D3, binds
to the vitamin D receptor (VDR), which heterodimerizes with the retinoic X receptor
(RXR) and activates target genes. Increased vitamin D levels enhance bone formation by
promoting osteoblast differentiation and mineralization [31], provided in Figure 3. Mouse
overexpression of the human VDR gene increased cortical and trabecular bone supporting
1,25(OH)2D3 impact on bone. Similarly, in antigen-induced arthritis (AIA) rats that have
significant bone loss, 1,25(OH)2D3 treatment increased trabecular bone volume compared to
untreated AIA rats and healthy control rats [32]. However, the 1,25(OH)2D3 administration
did not have any anti-inflammatory effect. MSCs treated with exogenous 1,25(OH)2D3
differentiate into osteoblasts that produce a mineralized extracellular matrix that enhanced
differentiation. Cell culture medium supplementation with 1,25(OH)2D3 triggers human
embryonic and induces pluripotent stem cell osteoblast differentiation [33,34]. Human
MSC and mouse embryonic stem cell studies resemble human pluripotent stem cell studies
showing increased osteoblast differentiation with 1,25(OH)2D3 treatment [35,36].
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Figure 3. Impact of vitamin D3, 1,25(OH)2D3, on osteoblast differentiation. A schematic illus-
trating 1,25(OH)2D3 stimulating the expression of osteoblast promoting genes for extracellular
matrix mineralization.

Estrogen. Estrogen is a key hormone involved in the development and homeostasis
of bone tissue in both males and females. Estradiol is the most potent estrogenic hormone
in the human body. Estrogen action is controlled by two main estrogen receptors (ER),
alpha and beta (ERα and ERβ), encoded by ESR1 and ESR2, respectively. It regulates
gene expression, metabolism, cell growth, and proliferation by acting through cytoplasmic
signaling pathways or activating transcription in the nucleus, seen in Figure 4A. Estro-
gens bind to their receptors in the nucleus, acting as transcription factors regulating the
expression of target genes. Estrogens can also bind to their receptors outside of the nucleus
activating signaling pathways in the cytoplasm. The cytoplasmic signaling pathway is acti-
vated by estrogen and growth factors and acts though the kinase signaling cascade which
phosphorylates substrate proteins and transcription factors [37,38]. Estrogen treatment
has been found to induce osteoblast differentiation and activate ERK/JNK signaling, cell
cycle regulation, cell growth, and the survival pathway in rat bone marrow-MSCs. In the
WNT pathway, activation of ER signaling induces osteogenic differentiation and matrix
mineralization [39–41]. A deficiency in estrogen is associated with reduced bone formation.
Estrogen prevents bone loss by inhibiting osteoclast—the bone-resorbing cell—activity. Esr1
deletion in female mice osteoclasts resulted in increased osteoclast numbers and reduced
trabecular bone mass [42]. Nakamura et al. [42] concluded that estrogen’s osteoprotective
effect was through the expression of Fas ligand (FasL) in osteoblasts that induced osteo-
clast apoptosis, as depicted in Figure 4B [42]. Another mechanism of estrogen-mediated
osteoclast inhibition involves the receptor activator of nuclear factor κB ligand (RANKL)
regulation [42]. RANKL is essential for osteoclast differentiation and can be suppressed
by osteoprotegerin (OPG). In estrogen deficient C57BL/6 mice, increased bone resorption
activity was found due to the lack of ERα-mediated suppression of Rankl expression in
bone lining cells, which RANKL binds to RANK on the surface of osteoclast progenitors
to initiate the bone breakdown [43]. In addition, estrogen deficiency has been linked to
oxidative stress and inflammation, which can increase bone resorption [44].
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Figure 4. Mechanisms of Estrogen Signaling. (A) P13K/AKT is impacted by either G protein-
coupled estrogen receptor, GPER, or by the estrogen/estrogen receptor (ER) complex, resulting in
the phosphorylation of the estrogen/ER complex. The complex then crosses the nucleus and elicits
its response on target genes. (B) Estrogen impacts both osteoblasts and osteoclasts. In the presence
of estrogen, osteoblasts experience an increase of WNT signaling and OPG levels and produce
FasL. FasL inhibits osteoclast activity through reduced RANKL expression and osteoclast apoptosis,
resulting in osteoblast protection and maintenance (osteoprotection). The absence of estrogen leads
to bone resorption.

5. Mechanisms of Endocrine Disruption and Bone Damage

In the past two decades, globally, considerable efforts have been made in assessing
endocrine disruption/dysfunction and the adverse effects on tissues, particularly of liver,
kidney, heart, bone, and the nervous system. Environmental chemicals can mimic or
interfere with the body’s hormones. EDCs and have been linked to poor reproductive,
developmental, neurogenic, and osteogenic outcomes [45]. EDCs are found in common
everyday products, such as plastics, metal food cans, toys, detergents, flame retardants,
and air pollution; thus, endocrine toxicology has become an important field of research.
Animal and epidemiological studies support the findings of adverse effects of EDCs on
bone formation. It is important to understand the molecular mechanisms of how chemicals
can exert effects on hormone systems resulting in adverse effects on bone development and
maintenance [46].

Tobacco. Tobacco is a key player in various health complications, including chronic
diseases, cancers, reproductive and developmental disorders, and premature death [47].
It has also been confirmed that tobacco smoking contributes to bone defects, including
imbalanced bone turnover and delayed healing after injury, which, in turn, results in
both low bone mass and bone mineral density. Smoking is a strong lifestyle risk factor
for osteoporosis and bone fracture [48]. Cross-sectional studies suggested that smoking
enhances bone loss, where postmenopausal smoking women had decreased bone density
compared to nonsmokers, which continued to decline overtime [49]. The association
between tobacco smoking, hormone system dysregulation, and bone defects has been
reported. Studies have shown that exposure to cigarette smoke has altered estrogen levels
within women, leading to fertility problems and early menopause [50–52]. In addition,
tobacco also impacts estrogen by preventing the conversion of androgen to estrogen by
inhibiting aromatase [53]. Vitamin D levels are often reduced by the introduction of tobacco
into the body [54]. There is a negative correlation between vitamin D levels and cigarette
smoking in humans [55]. In vitro studies have suggested a link between tobacco use and
WNT signaling inhibition, reporting that smoking increases DKK1 levels and reduces bone
formation [56], and further, showing that WNT inhibition caused by cigarette smoking
induced osteoclast differentiation via increased RANKL expression [56]. Though more
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studies are needed to understand the mechanisms of toxicity, zebrafish embryos’ exposure
to cigarette smoke was shown to be developmentally toxic to the craniofacial skeleton [57].

Air pollution. Air pollution was estimated to cause 100,000 and 4.2 million premature
deaths annually in the United States and worldwide, respectively. These deaths are related
to respiratory disease, cancers, cardiovascular disease, adverse birth outcomes, and other
health impacts [58]. Worldwide, air pollution was the second largest risk for noncommuni-
cable diseases and the largest environmental health risk [59,60]. A major contributor to air
pollution is particulate matter (PM), particles (solid or liquid) suspended in air and defined
by their size that are typically attributed to the health effects of air pollution [59,61–63]. Air
pollution is highly concerning because of how prevalent it is in our everyday lives and is a
major contributing factor to multiple diseases and cancers, which can result in premature
deaths [64]. Air pollution has been linked to decreased bone mineral density, increased risk
of bone fracture, and effects on the hormonal routes involved with osteogenesis. Studies
have shown postmenopausal women with decreased estrogen levels and increased RANKL
expression associating to bone loss [59]. There is evidence of a negative correlation between
the air pollutant indicators, PM2.5 and PM10, and bone mineral density [65], emphasizing
the impact of air pollution as a risk of poor bone health. PM exposure can lead to a vitamin
D deficiency, inhibiting conversion of inactive vitamin D to active 1,25(OH)2D3 [59]. Cross-
sectional analysis suggested PM exposure decreased bone mineral content through PTH
impairment [61].

Flame Retardants. Flame retardants are used in a multitude of everyday items, in-
cluding furniture, carpets, and electronics to prevent combustion and reduce the risk of fire.
Traditional flame retardants, such as polybrominated diphenyl ethers (PBDEs), are being
replaced with organophosphorus flame retardants (OPFRs). Two globally used OPFRs
are Tris (1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) [66].
OPFRs have been revealed to be developmentally toxic and can disrupt the endocrine
system, where changes in TH levels are associated with developmental neurotoxicity [67].
Medaka Oryzias melastigma toxicology studies reported both TDCIPP and TPhP are bone
developmental toxicants. Medaka exposed to TDCIPP and TPhP presented malformed
pectoral fins, reduced body length, and curvature of the spine. TDCIPP and TPhP in-
duced bone developmental toxicity through the misregulation of bmp and runx2 [66]. The
endocrine-disrupting capability of TDCIPP and TPhP requires further exploration, but a few
reports suggest that flame retardants mimic estrogen and inhibit estrogen sulfotransferase,
altering estrogen metabolism, and thus eliciting endocrine disruption [68].

Pesticides. Common household products, pesticides, are a threat to human health and
wildlife, and many have been identified as endocrine disruptors. Pesticides are hazardous
chemicals used to prevent, destroy, repel, or mitigate organisms, including insects, rodents,
and plants [69]. Due to its increasing usage and persistence in the environment, humans are
exposed to pesticides through their diet, environment, and occupation that can be harmful.
Prolonged pesticide exposure can result in organ damage/failure, reproductive issues
birth defects, and various cognitive impairments [70,71]. Pesticides can disrupt hormones
of the human body’ by binding to and activating or inactivating major receptors, such
as ER and androgen receptor, they disrupt hormone synthesis, metabolism, and natural
hormone levels [72–75]. Organophosphate pesticides, including dichlorvos, dimethoate,
acephate, and phorate, have been associated with bone loss. This bone loss is due to kidney
dysfunction and obstruction of vitamin D to 1,25(OH)2D3 conversion [76]. Chronic kidney
disease individuals often have increased risk of low bone mineral disorders and bone
fractures [77].

Dichlorodiphenyltrichloroethane (DDT) is a common pesticide that can alter natural
hormones levels [78]. Evidence points towards DDT mimicking estrogenic effects in vitro,
where DDT-treated MSC cells displayed ER binding and led to increased estrogen levels, as
with cells treated with estrogen alone [79]. DDT exposure changed the MSCs’ global gene
profiles and natural self-renewal, proliferation, and differentiation ability. DDT’s metabolite,
Dichlorodiphenyldichloroethylene (DDE), is a persistent metabolite; and exposure can
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induce vomiting, nausea, tumors, compromised immune systems, and increased chance
of preterm birth [80–82]. High levels of DDE have been correlated with bone marrow
defects, where bone marrow HL-60 cells had decreased cell viability, cell morphology
abnormalities, hindered cell differentiation, and increased Ca2+ [83]. DDT exposure can
cause thyroid dysfunction, which leads to bone loss [76]. However, DDT’s effects and
mechanisms on hormones and bone disorders have not yet been fully determined. In vivo
studies of imidacloprid, a neonicotinoid insecticide, have revealed that the insecticide can
change hormone levels, promote DNA damage, attack reproductive organs, disrupt in
utero development, and bone mineral composition [84–87]. When examining the effects
of imidacloprid on bone development, in vitro chicken embryo studies revealed that early
exposure to the pesticide results in cranial bone defects of the embryo. The study reported
cranial NC cell differentiation. The inhibition can be correlated to suppressed Msx1 and
Bmp4 expression and therefore attenuating osteogenesis [88].

Para-Nonylphenol (P-NP). P-NP is representative alkylphenol widely used in deter-
gents, emulsifiers, and solubilizers, which can accumulate in the environment and has
been known to reduce osteogenesis and cell viability through inducing apoptosis in os-
teoblast cells. In vitro studies revealed that MSC exposure to low-levels of p-NP inhibited
osteoblast mineralization compared to controls. In addition, the MSCs had increased apop-
tosis, observed by chromatin condensation and nuclear breakage, along with cytoplasm
shrinkage [89]. Rat MSCs differentiating into osteoblasts had diminished mineralization
when exposed to 2.5 µM p-NP and reduced expression of osteogenic genes Alp, Smad, Bmp,
and Runx2. In addition, the MSCs showed metabolic imbalance and oxidative stress [90].
Studies reporting the mechanisms of p-NP endocrine toxicity in bone are lacking. Reports
do suggest that p-NP acts with estrogen-like activity [91]. Since bone is an estrogen target
that expresses both ERα and ERβ, it is plausible that p-NP can decrease bone formation.
Similarly, p-NP is toxic to the thyroid gland, where pregnant dams exposed to p-NP had
decreased T3 and T4 serum levels [92]. The study found that p-NP affected litter size, body
weight, and tail length but did not report specific findings about the skeleton.

Bisphenol A (BPA). BPA is a chemical found in nature and a major component of
epoxy and polystyrene resins and polycarbonate plastics. Bisphenols can imitate or block
hormone receptors that have been linked to various health complications [93]. BPA and
its analogs (BPF, BPS, and BPAF) adversely affect osteogenic gene expression in human
osteoblasts. The analogs deregulated ALP, COL1A1, and OCN expression, inhibiting
matrix formation and mineralization, similar to the effects of BPA [94]. BPA can alter
bone formation by mimicking estrogen and competing for both ERα and ERβ. Female
rat offspring exposed to 10µg/kg of BPA per day during gestational days 14–21 had
delayed bone development and reduced bone mass. In vitro findings attributed attenuated
osteogenesis via ERβ downregulation [95]. BPA has been discovered to reduce the levels of
vitamin D. Pregnant women showed a negative correlation between vitamin D levels and
BPA exposure [96]. In an elderly sample population, a cross-sectional study over one year
reported an inverse relationship between urinary BPA concentrations and vitamin D serum
levels. The study suggests that the low vitamin d levels are due to inhibited 1,25(OH)2D3
synthesis and the population is at risk for bone-related diseases [97].

Perfluoroalkyl and polyfluoroalkyl substances (PFAS). PFAS are a large group of
chemicals that have been in use since the 1950s and are persistent environmental toxicants
due to their stability and presence in items we use every day. PFAS have been classified
as EDCs and many studies are reporting their toxicological effects. Primary exposure
to PFAS occurs through food and drinking water, where fish are a major contributor.
After exposure, PFAS can accumulate in multiple tissues, including bone, and alter bone
development [50,98–101]. However, the mechanisms associated with PFAS bone toxicity
are underexplored. From bone banks and cadaver samples, human trabecular and bone
marrow contained PFAS [99]. The potential consequence of PFAS accumulation is increased
bone resorption activity seen in human osteoclasts differentiated from bone marrow and
peripheral blood samples [99]. PFAS treatment in Jeg-3 cells suggests WNT/β-catenin
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suppression as a potential mechanism [98]. In vitro and in silico studies reported PFAS
binding to the VDR. PFAS’s competition for VDR binding resulted in reduced target gene
expression and osteoblast differentiation mineralization [101]. Epidemiological studies
suggest women are more responsive to PFAS compared to men. PFAS exposure was linked
to delayed puberty, early menopause, and low estradiol concentration, which correlated to
low bone mineral density and microarchitectural changes [50].

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a highly toxic chemical which
has been shown to disrupt hormone signaling. Exposure to TCDD is developmentally
toxic to bone and can cause craniofacial defects. TCDD inhibited human fetal palate
mesenchymal cells’ (hFPMCs) osteoblast differentiation [102]. The hFPMC differentiation
inhibition revealed that TCDD inhibited BMP/SMAD signaling and therefore promoted
osteoblast decline through decreased cell proliferation, ALP activity, and calcium deposition.
The aryl hydrocarbon receptor (AhR), involved in osteogenesis, regulates the synthesis
and metabolism of estrogen in bone tissue [103]. TCDD has a high binding affinity to
AhR that attenuates osteogenic transcriptional regulation, osteogenic differentiation, tibial
growth, and bone mineral density [14,102–106]. TCDD at 10 nM disrupted human bone
marrow MSC differentiation via downregulation of osteogenic markers ALP, DLX5, and
OPN [101]. Human MSC osteogenesis was rescued with coadministration of TCDD and
AhR antagonist GNF351 to block TCDD. TCDD has been found to decrease TH levels, T4,
and thyroid function. However, more studies are needed for better understanding of the
mechanism of TCDD toxicity on bone through thyroid hormone signaling [107].

6. Conclusions

The literature has established that hormones are key players in osteogenesis and
that their misexpression can cause differentiation inhibition, porous bone, and bone loss;
however, research about the mechanisms associated with bone loss and environmental
influences is lacking. This review aimed to shed light on current research about hormones
and osteogenesis, linking environmental-mediated endocrine disruption to skeletal diseases
and disorders. It should be noted that there are many hormones in the body, including
growth hormones, insulin, and follicle stimulating hormones, that were not addressed in
this review; the authors selected four hormones and discussed how they are influenced
by toxicant exposure. Hormones play a large role in the development of osteoblasts and
bone formation, supporting osteogenesis through genes and/or signaling that are/is pro-
osteoblast or osteoclast inhibitory. Our understanding of how environmental chemicals,
such as EDCs, can disrupt the molecular mechanisms of bone development has seen
recent progress, but more toxicological studies linking EDC exposure to hormone signaling
impairment and defected bone differentiation and formation are needed. So far, the effects
of environmental EDCs on hormone signaling resulted in reduced osteoblast differentiation
and adult bone mineral density due to increased osteoclast activity and changes in the WNT,
BMP, and vitamin D pathways (Figure 5). These studies primarily focused on epidemiology
data and adult bone formation using adult bone tissue and MSCs, excluding pre- and
post-natal bone development. Pre-natal, childhood, and adolescent periods should be
deemed as susceptible periods of development, vulnerable to toxicant exposure. Therefore,
we need an increase in studies investigating the impact of endocrine disruptors on pre-natal
and post-natal bone development. Further studies are needed to explore the toxicological
and mechanistic implications of EDC-related hormone disruption and to identify hormone-
disrupting toxicants as risk factors for skeletal diseases and disorders.
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7. Future Directions

To date, studies have shown that environmental chemicals, including EDCs, interfere
in the viability, differentiation, and function of osteoblasts and osteoclasts via hormone
signaling impairment, resulting in bone loss. Embryonic and early childhood exposure
to environmental factors that can cause birth defects are poorly understood and of great
interest. It is specifically the periods of rapid cell division and differentiation that make
pregnancy and early childhood susceptible to environmental factors that can exert an
adverse influence on human bone development. Future research efforts will need to work
towards understanding how endocrine disruptors affect pre- and post-natal bone devel-
opment; specifically, by teasing out differences between neural- and mesoderm-derived
bone responses to EDCs. This information will provide the scientific community with a
mechanistic understanding of endocrine and bone toxicity and will assist the development
of strategies for endocrine toxicity assessment, diagnostic tools, such as biomarkers of
osteotoxicity, and therapeutic strategies.
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