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ABSTRACT OF THE DISSERTATION 

 

 

 

Measuring Electrical Charge and Molecular Interaction at Solid/Liquid 

Interface from Integrated Transient Induced Molecular Electronic Signal (i-

TIMES) 

 

 

by 

 

Ping-Wei Chen 

 

Doctor of Philosophy in Chemical Engineering 

University of California San Diego, 2020 

 

Professor Yu-Hwa Lo, Chair 

 

To determine the surface charge density near the electrode surface plays an 

important role in the studies related to biomedical device and bio-related surface 

reaction. This dissertation presents a technique, Integrated Transient Induced 
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Molecular Electronic Signal (i-TIMES) method, which is an extended technique from 

our previous system, TIMES, to study surface charge density and biomolecular 

interaction on the electrode surface.  

i-TIMES method is consisted of a microfluidic device with two platinum 

electrodes embedded in it which are connected to the differential inputs of a 

transimpedance amplifier. Based on i-TIMES method and the designed experimental 

process, we are able to quantify the amount of the surface charge density within the 

electrical double layer at the liquid/solid interface for different buffer strengths, buffer 

types and pH values. Most uniquely, since i-TIMES signal is generated by the mobile 

ion or molecule which is not permanently adhered to the electrode surface, the surface 

molecular coverage can be obtained by comparing the surface charge density on the 

electrode surface before and after modification. We have measured the surface 

coverage for thiol-modified single-strand deoxyribonucleic acid (ssDNA) as anchored 

probe and 6-mercapto-1-hexanol (MCH) as blocking agent on the platinum surface to 

prove the concept.  

In addition, by introducing the biomolecule into the system, we can further 

demonstrate the effect on surface charge density with different type of biomolecules. 

The effect of molecular concentration on the surface charge density has been 

investigated based on various biomolecules including protein (lysozyme and bovine 

pancreatic ribonuclease A), ligand (N,N’,N″-triacetylchitotriose (TriNAG), p-

aminobenzamidine (pABA) and uridine-3'-phosphate(3’-UMP)) and aptamer. 

Furthermore, the biomolecular interaction can also be determined by analyzing the 
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change of the surface charge density after interaction based on our own developed i-

TIMES physical model.   

Overall, our results indicate that the i-TIMES technique is highly sensitive to 

the physical and chemical properties of buffer and molecules near the electrode surface. 

Through these experiments, we have demonstrated that i-TIMES method not only can 

offer a simple and accurate technique to quantify surface charge density on a metal 

surface but also can be an enabling tool for studies of biomolecular interaction and 

surface functionalization for biochemical sensing and reactions. Technologically, i-

TIMES provides an accurate and convenient tool for quantitative study of surface 

charge density and molecular interactions without molecular labeling or 

immobilization. The technique can be attractive to many applications including drug 

discovery or surface reaction in chemistry. 
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Chapter 1 Introduction 

 

 

1.1 Surface Charge Density at the Liquid/Solid Interface 

Due to chemical potential difference between a solid surface and a solution, 

electrical double layer is formed when the solution contacted to any solid surface [1,2]. 

Electrical double layer is consisted of two layers which are Stern layer and diffusion 

layer. The ions are absorbed on the atom in the solid more tightly in the Stern layer 

while it becomes highly mobile in the diffusion layer. The charges in these two layers 

are countered with each other to assure charge neutrality. The schematic diagram of 

typical electric double layer is shown in Figure 1.1. Depends on the interaction 

between charge-charge or charge-dipole, the surface electrical properties can be 

affected and thus influence the thermodynamics and kinetics of surface reactions. 

In many chemical and biomedical applications, surface charge density is 

always the key question in understanding the surface properties. As a result, the 

quantification of surface charge density gained much interest and several techniques 
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have been demonstrated that are capable of quantifying the surface charge density at 

the liquid/solid interface. To date, Atomic force microscopy (AFM) [3-7], surface 

plasmonic resonance (SPR) [8,9], streaming potential [10-14] and contact angle 

titration [15-17] are the most studied techniques which can provide the information 

about the surface charge density. The schematic diagrams of those techniques are 

shown in Figure 1.2. To our best knowledge, those techniques have their own 

limitations and can not directly measure the polarity and the actual amount of surface 

charge density near the surface which results in limited application in this research 

field.  

To apply AFM to measure surface charge, one measures the force of Coulomb 

interactions between the AFM tip and the local surface under the tip [3-7]. In this 

technique, the surface charge density at the liquid/solid interface is obtained by 

analyzing the electrostatic force as a function of the distance between the tip and the 

surface. By chemically functionalizing the sample surface, the force between the 

surface and the AFM tip is changed. Wu et al. investigated the force change by 

different functional molecules such as -Br, -NH2 and -CH3 on the surface [3]. The 

results show a strong relation between the surface charge density and the surface 

modifications as well as the liquid pH value. Although the AFM technique provides 

insights about the surface electric properties under different environments, the 

measurements require sophisticated instrument, have low throughput, rely on detailed 

information about the tip geometry and its surface charge distribution, and perturb the 

local environment due to the close proximity of the AFM tip to the surface under test.  



 

 

3 

Alternatively, SPR technique has been applied to study the effects of surface 

charge.  Shan et al. has used electrostatic repulsion between charged particles of the 

same polarity to balance the gravity in an SPR system [8,9]. Since SPR is sensitive to 

the refractive index change near a sensor surface, it can be used to measure the 

equilibrium distance of a particle from the SPR sensor surface. Using the SPR 

technique, people again show that ionic strength of the solution and surface 

modifications can change the equilibrium distance between the particle and the surface. 

However, due to the relatively large size of the particle, the surface properties of the 

particle itself which can alter the local distributions of the ions in the solution, and 

difficulties in measuring the distance between the particle and the surface, the SPR 

technique produces results with relatively large uncertainties and is more suitable for 

qualitative studies of surface properties in solution [18,19].  

There exist also significant efforts to use streaming potential measurements to 

characterize the surface charge density [10-14]. The technique measures the voltage 

difference generated by a pressure driven flow over a charged surface or membrane. 

This measured voltage difference can yield zeta potential.  Although one can find the 

charge density in the diffusion layer from zeta potential, the amount of charge in the 

diffusion layer is not equal to the total amount of surface charge according to the 

double layer model. As a result, the streaming potential technique is more suitable for 

comparing surface properties between different surface modifications. For example, 

Datta et al. has used streaming potential measurement to characterize synthetic 

membranes with different pore sizes and surface modifications [11]. Kim et al. has 
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applied the technique to show the electric property of a membrane is strongly 

dependent on the pH value and ionic strength of the solution [12].  In addition to the 

above methods, people have also measured contact angles to determine the surface 

charge density at the liquid/solid interface [15-17]. By combining the Young-

Lippmann equation with the Guoy-Chapman model for electrical double layer, 

Horiuchi et al. has applied a three-phase contact angle titration measurement to find 

the dependence of surface potential and surface charge density on the solution pH 

value [15]. However, since the contact angle is highly sensitive to the surface physical 

and chemical properties, the contact angle titration measurement is quite complex and 

difficult to obtain reliable results, and often underestimates the surface charge density.   
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Figure 1.1 The schematic diagram of electric double layer. 
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(a) (b) 

(c) (d) 

Figure 1.2 The technique for characterization of surface charge density (a) AFM [4], 

(b) SPR [8], (c) Streaming potential method [14] and (d) Contact angle titration 

method [15]. 
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1.2 Detection of Protein-Ligand Interaction  

Proteins are involved in all the biological process in living cells. Each protein 

has its own function including cell signaling, structure formation, transportation of 

ions, and etc. The biological function of the proteins can be inhibited when binding 

with specific small molecule (i.e. ligands) and change its molecular properties. As a 

result, to determine the binding affinity between protein with small molecule is an 

essential question in the field of drug discovery and biomedical process [20,21]. In 

early stage of drug discovery, hundreds of millions of drug candidates need to be 

screened. The goal for this screening is to find a potential drug candidate which has 

high selectivity and high stability to its specific target. Therefore, to find a method that 

can provide the information about binding affinity between protein and small molecule 

with high throughput and high reliability is the key to facilitate the drug discovery 

process.   

There are several existing techniques that shows the capabilities to measure 

the binding affinity of protein and small molecule such as SPR [22-25], isothermal 

calorimetry (ITC) [26-28], fluorescence resonance energy transfer (FRET) [29-31], 

biologically modified field effect transistors (BioFET) [32-35] and electrophoretic 

mobility shift assay (EMSA) [36-38]. Primo et al. performed the experiments based 

on three different nucleic acid-protein complexes by SPR to demonstrate the binding 

affinity between those biomolecules. From their result, it can be proved that protein 

and nucleic acids shows similar refractive index increments while binding which 

determine that no correction is needed for the protein and nucleic acids interaction 
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when using SPR [23]. Moreover, a single-walled carbon nanotube based BioFET has 

been used by Melzer et al. to investigate the pH and ionic strength effect on the binding 

between avidin and biotin [33]. Nevertheless, the need of surface modification in SPR 

and BioFET limit their application since the spatial limitation causes the reaction only 

occurred nanometer away from the surface. The entropy of the protein-ligand 

interaction on the surface and in its physiological conditions is much different which 

affect the accuracy of the experimental result [19,39]. 

For FRET, Lee et al. report an endogenous tryptophan residues and coumarin-

derived fluorophore Pacific Blue based FRET method to quantify the binding affinity 

between small molecules and protein down to nanomolar range [31]. However, the 

fluorescent labeling on the biomolecule would possibly occupy the active site of the 

biomolecule and prevent it from interacting with small molecule [40]. Pan et al. 

modified the original EMSA technique by a high-throughput format which is suitable 

for small volume samples. They then used the modified EMSA to characterize the 

binding affinity between a six-member library of recombinant antibodies with 

enhanced green fluorescence protein (eGFP) [38]. But for EMSA, it requires labeling 

and detects mobility change of the molecules under an external electric field. The non-

equilibrium state of molecules during the electrophoretic process could result in 

underestimate of the binding affinity [41].  

Moreover, ITC, a technique relies on heat releasing of the reaction, shows 

difficulties in detecting non-covalent complexes which exhibit rather small binding 

enthalpies. Large sample consumption and low throughput are also its disadvantages 
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compared to other techniques [42]. It also has difficulties in detecting non-covalent 

complexes exhibiting rather small binding enthalpy. Figure 1.3 shows the techniques 

which have been used to determine the binding affinity between protein and ligand.  
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(a) (b) 

(c) (d) 

(e) 

Figure 1.3 The technique for characterization of binding affinty (a) SPR [22-25], (b) 

FRET [29-31], (c) ITC [28] and (d) BioFET [32-35] and (e) EMSA [36-38]. 
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1.3 Design Motivation of i-TIMES Technique 

Different form other techniques mentioned above, the key idea of i-TIMES 

technique is to offer a label-free, immobilization-free, high throughput and 

quantitative method which can determine the surface charge density and the molecular 

interaction near the electrode surface. i-TIMES technique is a modified method from 

our previous TIMES technique [43,44]. In the previous TIMES technique, the reaction 

occurs in solution, and the reaction products are brought to an electrode surface via a 

microfluidic channel. The molecular constituents in the laminar flow approach the 

electrode by diffusion and induce changes in the surface charge on the electrode 

surface, generating a transient current that is amplified by a transimpedance amplifier 

connected to the electrode. By analyzing the transient current signal, the TIMES 

technique has shown the ability of measuring reaction dissociation constant (Kd). Like 

the ITC technique, the TIMES method measures the quintessential Kd for reactions in 

solution. It also has the advantages of high throughput and low reagent consumption 

in a microfluidic environment.  However, later studies found the analysis of transient 

current signals can suffer from reproducibility problems due to signal-to-noise limits, 

amplifier bandwidth limit, and external interfaces (e.g. syringe pumps or control 

valves). Another limit is that the mathematical model used to extract dissociation 

constant is based on the assumption of superposition, which means the surface 

concentration of one constituent is not affected by the surface concentration of another 

constituent. This condition is met only when the overall surface concentration is low 

or the dwelling time for each molecule (i.e. the amount of time the molecule is in 
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contact with the electrode surface) is short.  Otherwise, the measured reaction 

dissociation constant can be erroneous. To overcome the limitations, in this 

dissertation, we have modified the TIMES method by (a) integrating the current signal 

to obtain the change of surface charge density relative to the surface charge in contact 

with a reference buffer and (b) measuring the signal when the temporarily adsorbed 

molecules leave the electrode surface instead of approaching the electrode surface. 

The former removes the effect of current fluctuations and results in excellent signal-

to-noise ratio.  The latter improves the measurement reproducibility and controllability 

since the measurement is made during buffer wash when no molecule of interest is 

present in the flow, a condition we can confidently establish and repeat. Finally, 

without analyzing the transient current, the physical model can be simplified without 

the assumption of superposition. In fact, one can obtain the Kd by visualization of the 

data without going through detailed models, making the method more intuitively and 

user friendly. 

Similar to TIMES technique, i-TIMES technique is only consisted of a simple 

design microfluidic device and a transimpedance amplifier which is relatively more 

easily to fabricated and operated compared to most of the techniques so far. The goal 

of the dissertation is to determine that i-TIMES technique can not only characterize 

the surface properties but also reliably detect molecular interaction near the electrode 

surface. 

 

1.4 Scope of Dissertation 
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This dissertation discusses the extended development of i-TIMES based on our 

previous literature [43,44] which can be used to measure the surface charge density at 

the liquid/solid interface affected by buffer condition or molecular interaction. 

In Chapter 2, we will discuss the mechanism and fabrication of the i-TIMES 

technique. The physical model we developed by our own will also be demonstrated. 

In Chapter 3, we will determine how the buffer strength, pH value and the buffer type 

will affect the surface charge density on the electrode surface. In addition to buffer 

condition, we will also demonstrate how i-TIMES technique can be used to determine 

the molecular coverage on the surface. Chapter 4 will investigate the biomolecular 

effect on the surface charge density including protein, aptamer, small ligand and their 

complexes.  
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Chapter 2 The Principle of i-TIMES 

 

 

In this chapter, the i-TIMES device design and fabrication procedure will be 

discussed. Next, the experimental operation and the analytical model for the i-TIMES 

technique will be discussed in further detail.  

 

2.1 i-TIMES Device Design and Fabrication Procedure 

The i-TIMES system consists of a microfluidic device with two parallel 

microfluidic channels that are connected to a single channel via a Y-junction. Within 

each parallel channel that is 1 mm wide and 30 µm high, there is a platinum electrode 

connected to the external circuit by a bond wire. The electrode area within the channel 

is 1x1 mm2. One of the electrodes is used as the sensing electrode and the other as the 

reference electrode. Both electrodes are connected to the differential inputs of a 

transimpedance amplifier (TIA) with a tunable transimpedance (Figure 2.1).  
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To fabricate the i-TIMES device, a 1 mm thick glass substrate was cleaned by 

acetone, methanol and isopropanol (IPA) in sonication and blown-dried by nitrogen 

gas. On the glass substrate there are two electrodes with 100 nm titanium (Ti) and 200 

nm platinum (Pt) formed by sputtering (Denton Discovery 18, Denton Vacuum, LLC, 

USA) and photoresist (NR9-1500 PY photoresist) (Futurrex, USA) lift-off process. 

The 100 nm Ti layer was sputtered in 90 seconds under 200W of power with 35 sccm 

Argon flow and 2.6 mT chamber pressure. Subsequently, the 200 nm Pt layer was 

sputtered in 6 minutes under almost the same conditions (200W, 37 sccm Argon flow, 

2.9mT chamber pressure). Each Ti/Pt electrode has an area of 1 mm2 within the 

microfluidic channel and an extended area outside the channel for wire connection to 

the external instrument. On the other hand, the microfluidic device contained two 1 

mm wide, 30 µm high parallel channels connected to single channel by a Y-junction 

(Figure 2.1) and was fabricated by soft lithography process. To create the mold for 

soft lithography, a layer of 30 µm thick SU8-2050 photoresist (Microchem, USA) was 

formed by UV lithography to create channel patterns. To transfer the patterns from the 

mold to polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, USA), uncured 

PDMS was poured onto the SU8 mold and cured at 65oC for 10 hours. After demolding, 

fluid inlets and outlets were formed at the end of each channel by hole punching. In 

the final step of device fabrication, the channel-patterned PDMS and the electrode-

patterned glass substrate were bonded together after UV ozone treatment. The detailed 

fabrication procedure is shown in Figure 2.2. To mount the device onto the system for 

experiment, the branches connected to the reference electrode and the single channel 
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of the Y-junction were connected to two syringe pumps (PHD Ultra, Harvard 

Apparatus, USA) which introduced reference buffer and sample solutions into the 

microfluidic device. 
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Figure 2.1 The schematic diagram of i-TIMES system set up. 
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Figure 2.2 The fabrication procedure of i-TIMES device. 
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2.2 Operation Procedure of the i-TIMES Device 

In the beginning of the experiment, the channel with the reference electrode is 

filled up with reference buffer, and the channel with the sensing electrode is filled up 

with the sample solution. After soaking each electrode in the respective solution for a 

sufficient amount of time for the system to reach its steady state, we flow the reference 

buffer into the channel with the sensing electrode at a flow rate of 100 µL/min so that 

the sample solution in contact with the sensing electrode is displaced by the reference 

buffer. We call this step the “washing process” and it is during this “washing process” 

that the i-TIMES signal is recorded. In other words, we measure the transient current 

flowing from the sensing electrode into the transimpedance amplifier when the 

solution above the sensing electrode is switched from the sample solution to the 

reference buffer. The i-TIMES signal is recorded by connecting both electrode 

electrically to the differential inputs of a low-noise TIA (SR570, Stanford Research 

System, Inc, USA). The output voltage of the transimpedance amplifier was connected 

to a data acquisition (DAQ) board (USB-6251, National Instrument, USA) that 

digitized the signal. The output from the DAQ board was then recorded by Labview 

Signal Express under a sampling rate of 1kHz. The typical i-TIMES signal obtained 

from the “washing process” is shown in Figure 2.3. The polarity of the signal depends 

on the local buffer condition and molecules within the Debye length.  
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Figure 2.3 Typical i-TIMES signal (Current vs Time). 
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2.3 Analytical Model of i-TIMES 

In this section, a detailed physical model for the biomolecular behavior is 

presented. The i-TIMES signal produced by different buffer condition and 

biomolecule (protein, ligand, or protein-ligand complex) are discussed step by step.  

 

2.3.1 Basic Concept of i-TIMES on Surface Charge Density 

We can apply the above “washing” procedure to measure the absolute amount 

and polarity of surface charge for essentially any buffer/electrode combinations. The 

relative difference in the surface charge density between the sample solution and the 

reference buffer can be obtained by integrating the i-TIMES current signal over the 

duration of buffer switching from sample solution to reference buffer. We can obtain 

the absolute amount of surface charge for the sample solution by choosing a reference 

buffer that has zero surface charge for a certain electrode. Since we know 0.099 M 

KClO4/0.001 M HClO4 (pH = 3.4) solution produces zero surface charge with Pt 

electrode [45], we can use this buffer and another electrode (e.g. Au) to find the surface 

charge between the buffer and the new electrode material. Similarly, for a given 

electrode (e.g. Pt), we can also find the surface charge between a new buffer and the 

electrode by comparing its signal with the signal from the reference (e.g. 0.099 M 

KClO4/0.001 M HClO4) buffer. 

The above process can be described in a simple mathematical formula.  

𝑆(𝑡) = ∫ 𝐼(𝜏)𝑑𝜏
𝑡

0

= 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒    (2 − 1) 
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where Qsample is the surface charge in the double layer of the sample solution and 

Qreference is the corresponding quantity for the reference buffer. Equation (2-1) also 

shows that any permanently adhered molecules do not contribute to the signal since 

only movable charge produces current. Using this important property, we further 

demonstrated how the i-TIMES technique can be used to measure surface coverage of 

molecules anchored to the surface in the later chapter. The surface charge density 

obtained from the integration of typical i-TIMES signal is shown in Figure 2.4. 
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Figure 2.4 The surface charge density obtained from the integration of typical i-

TIMES signal (Surface charge density vs Time). 
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2.3.2 Physical Model of i-TIMES for Biomolecular Interaction 

In this section we propose a physical model to describe the relationship 

between surface charge density and molecular concentration in logarithmic scale. We 

stress that the measured current signal comes from the mobile charge that leaves the 

electrode surface during washing. These mobile charges, present in the so-called 

double layers at the electrode liquid interface, are established when the electrode in 

the microfluidic channel is immersed in the solution that contains the molecule.  When 

the solution is displaced by the reference buffer, a new equilibrium state between the 

reference buffer and the electrode is established and the motions of charges in the 

double layer to establish the new equilibrium state gives rise to the current signal.  

When integrated, we obtain the total amount of change in surface charge. 

We assume that when the electrode is immersed in the solution containing a 

given kind of molecule, the surface concentration, 𝑛𝑠, and the volume concentration, 

𝑛, of the molecule follow the relation, 

𝑛𝑠 = (
𝑘𝑎

𝑘𝑑
) 𝑛𝑒−𝑞𝜁/𝑘𝑇   (2 − 2) 

where 𝑘𝑎 and 𝑘𝑑 are the adsorption and desorption coefficients of the molecule at the 

electrode surface, 𝜁  is the zeta potential, 𝑘  is Boltzmann constant, 𝑇  is absolute 

temperature, and 𝑞 is the “effective charge” of the molecule.  Here effective charge 

can be different than the actual charge of the molecule in the buffer due to (partial) 

charge screening (meaning the molecule is “dressed” by ions around it) and the local 

change in the pH value. Since proton distribution near the liquid/electrode interface is 
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affected by the potential profile within the Debye length, the molecule at the electrode 

surface could experience a different local pH value and subsequently, a different 

charge than it does in the bulk.  All these effects determine the effective charge of the 

molecule near the electrode surface.  We further hypothesize that the zeta potential is 

affected by the surface charge density according to Equation (2-3), 

𝜁 = 𝜁𝑜 −
1

𝐶𝑇
𝑄𝑇   (2 − 3) 

where 𝑄𝑇 is the change in surface charge, the quantity we measure as i-TIMES signal.  

𝐶𝑇 is the effective capacitance experienced by 𝑄𝑇. Equation (2-3) can also be viewed 

as the first term in the Taylor series expansion of zeta potential over the surface charge 

density. Physically, we can represent 𝐶𝑇  by the series of two capacitances, the 

capacitance associated with the Debye length and the capacitance due to the (partial) 

layer deposition of the molecule. 

1

𝐶𝑇
=

1

𝐶𝐷
+

1

𝐶𝑀
~

1

𝐶𝑀
   (2 − 4) 

We can write 
1

𝐶𝐷
=

𝐿𝐷

𝐴𝜖𝑜𝜖𝐻2𝑂
 (A: area of electrode, 𝐿𝐷:  Debye length, 𝜖𝑜: 

permittivity in vacuum, and 𝜖𝐻2𝑂: dielectric constant of water) and 
1

𝐶𝑀
=

𝑑𝑀

𝐴𝑀𝜖𝑜𝜖𝑀
 (AM: 

effective area covered by the molecule, 𝑑𝑀:  effective thickness of the molecular 

deposition, and 𝜖𝑀: dielectric constant of molecule).  For typical ionic strength of the 

buffer, 𝐶𝐷 ≫ 𝐶𝑀, thus leading to the approximation in (2-4).  We can further model 

𝐶𝑀 as below 

𝐶𝑀 = 𝐶𝑀𝑜[𝛼 𝑢(𝑛𝑡ℎ − 𝑛) + 𝛽𝑢(𝑛 − 𝑛𝑡ℎ)]    𝑤ℎ𝑒𝑛   𝑛 > 𝑛𝑜 
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= 𝛼𝐶𝑀𝑜 (
𝑛

𝑛𝑜
)    𝑤ℎ𝑒𝑛    𝑛 < 𝑛𝑜   (2 − 5) 

𝐶𝑀𝑜 =
𝐴𝜖𝑜𝜖𝑀𝑜

𝑑𝑀𝑜
 is the capacitance of adsorbed molecules over the entire area of 

electrode.  𝑛𝑜 is the concentration above which the linear relation between the surface 

coverage and the molecular concentration ceases to hold. In most of our measurements, 

the molecular concentration is actually greater than 𝑛𝑜. 𝑢 is the unit step function. 𝑛𝑡ℎ 

denotes the threshold molecular volume concentration above which the capacitance 

𝐶𝑀 experiences a sudden change from 𝛼𝐶𝑀𝑜 to 𝛽𝐶𝑀𝑜likely due to molecular structural 

change on the electrode surface (e.g. protein denature or collapse on the metal surface).  

Separately, we approximate the relation between 𝑄𝑇 and the surface molecular 

concentration with Equation (6), 

𝑄𝑇 = 𝑞′𝑛𝑠 (1 −
𝑛𝑠

𝑛𝑠𝑎
)    (2 − 6) 

where 𝑞′ is the change in the surface charge due to departure of a single molecule from 

the electrode surface. The value or even the sign of 𝑞′ can be different from the actual 

charge because ions may take the place left by the molecule and the value of 𝑞′ 

depends on the ionic strength, buffer concentration, and pH value of the solution 

besides the charge of the molecule itself.  In other words, 𝑞′ may not be zero even for 

a charge neutral molecule because the molecule takes the place that can be otherwise 

occupied by ions in solution.  Here we introduce a parameter, 𝑛𝑠𝑎, above which the 

sign of the signal changed. Part of the reason is that even though we control the pH 

value of the solution to be constant for solutions of different molecular concentration, 

the actual pH value (i.e. proton concentration profile) near the electrode surface is 
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affected by the zeta potential. As zeta potential changes, the “local” pH value changes 

and this can alter the magnitude and even polarity of the charge contained by the 

molecule.  Hence, we introduce an empirical relation in Equation (2-6) to model this 

effect. Later on, we will find that the detailed relation in Equation (2-6) will not affect 

our ability to match the experimental results. 

From Equations (2-2) to (2-4), we have 

𝑛𝑠 ≅ (
𝑘𝑎

𝑘𝑑
) 𝑛𝑒−

𝑞𝜁𝑜
𝑘𝑇 𝑒

𝑞𝑄𝑇
𝐶𝑀𝑘𝑇   (2 − 7) 

The relation between the surface charge at two different volume concentrations 

𝑛1 and 𝑛2 can be represented as 

log (
𝑛2

𝑛1
) = log (

𝑛𝑠2

𝑛𝑠1
) − 0.434

𝑞

𝑘𝑇𝐶𝑇
(𝑄𝑇2 − 𝑄𝑇1)     (2 − 8) 

From Equation (2-6), 𝑄𝑇~𝑞′𝑛𝑠 𝑖𝑓 𝑛𝑠 ≪ 𝑛𝑠𝑎     𝑎𝑛𝑑    𝑄𝑇~ − 𝑞′ 𝑛𝑠
2

𝑛𝑠𝑎
    𝑖𝑓 𝑛𝑠 ≫

𝑛𝑠𝑎. Therefore, 

𝑛𝑠2

𝑛𝑠1
~

𝑄𝑇2

𝑄𝑇1
  𝑖𝑓 𝑛𝑠1,2 ≪ 𝑛𝑠𝑎     𝑜𝑟    

𝑛𝑠2

𝑛𝑠1
~√

𝑄𝑇2

𝑄𝑇1
   𝑖𝑓 𝑛𝑠1,2 ≫ 𝑛𝑠𝑎    (2 − 9) 

Substituting Equation (2-9) into Equation (2-8), we obtain 

log (
𝑛2

𝑛1
) = −0.434

𝑞

𝑘𝑇𝐶𝑀
(𝑄𝑇2 − 𝑄𝑇1) +

1

𝜑
log (

𝑄𝑇2

𝑄𝑇1
)    (2 − 10) 

where 𝜑 = 1 𝑖𝑓 𝑛𝑠1,2 ≪ 𝑛𝑠𝑎  𝑎𝑛𝑑 𝜑 = 2 𝑖𝑓 𝑛𝑠1,2 ≫ 𝑛𝑠𝑎. 
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Since the log (
𝑄𝑇2

𝑄𝑇1
) term is much smaller and changes much slowly than the 

(𝑄𝑇2 − 𝑄𝑇1) term unless 𝑄𝑇1 𝑎𝑛𝑑 𝑄𝑇2 are both very small, we can ignore the second 

term in most cases of our measurements.  Then Equation (2-10) can be reduced to 

Equation (2-11) using the relation in Equation (2-5), 

𝑄𝑇2 − 𝑄𝑇1

log (
𝑛2

𝑛1
)

≅ −𝛼
𝑘𝑇𝐶𝑀𝑜

2.3𝑞
≡ 𝑃𝛼  𝑤ℎ𝑒𝑛  𝑛𝑜 < 𝑛1,2 < 𝑛𝑡ℎ    (2 − 11𝑎) 

𝑄𝑇2 − 𝑄𝑇1

log (
𝑛2

𝑛1
)

≅ −𝛽
𝑘𝑇𝐶𝑀𝑜

2.3𝑞
≡ 𝑃𝛽  𝑤ℎ𝑒𝑛  𝑛1,2 > 𝑛𝑡ℎ   (2 − 11𝑏) 

The model describes the piecewise linear characteristics between the surface 

charge density change and the logarithmic concentration. The detailed on the 

experimental result will be discussed in later chapter to prove our own developed 

physical model of i-TIMES. 

 

2.4 Summary 

The design idea and fabrication process of the i-TIMES device is illustrated in 

this chapter, and a physical model is derived to analyze the i-TIMES signal based on 

the change of surface charge density.   

Part of this chapter is a reprint of the material as it appears in Scientific Reports, 

2019 and Analytical Chemistry, 2019. Ping-Wei Chen, Chi-Yang Tseng, Fumin Shi, 

Bo Bi, Yu-Hwa Lo. Measuring Electric Charge and Molecular Coverage on Electrode 

Surface from Transient Induced Molecular Electronic Signal (TIMES). Scientific 
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Reports, 2019, 9, 1-10 and Ping-Wei Chen, Chi-Yang Tseng, Fumin Shi, Bo Bi, Yu-

Hwa Lo. Detecting Protein-Ligand Interaction from Integrated Transient Induced 

Molecular Electronic Signal (i-TIMES). Analytical Chemistry, 2019, accepted. The 

dissertation author was the first author of these papers.   
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Chapter 3 Measuring the Effect of 

Buffer Condition and Molecular 

Coverage on Electrode Surface by i-

TIMES 

 

 

In chapter 3, the effect of buffer conditions on electrical charge including ionic 

strength, pH value and buffer type will be discussed. In addition, the molecular 

coverage on the electrode surface based on thiol-modified nucleic acid will also be 

determined from i-TIMES technique 

 

3.1 Overview 
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Charge density and molecular coverage on the surface of electrode play major 

roles in the science and technology of surface chemistry and biochemical sensing. 

However, there has been no easy and direct method to characterize these quantities. 

By utilizing i-TIMES, we are able to quantify the amount of charge in the double 

layers at the solution/electrode interface for different buffer strengths, buffer types, 

and pH values. Most uniquely, such capabilities can be applied to study surface 

coverage of immobilized molecules. As an example, we have measured the surface 

coverage for thiol-modified ssDNA as anchored probe and MCH as blocking agent on 

the platinum surface. Through these experiments, we demonstrate that i-TIMES offers 

a simple and accurate method to quantify surface charge and coverage of molecules 

on a metal surface, as an enabling tool for studies of surface properties and surface 

functionalization for biochemical sensing and reactions. 

 

3.2 Quantification of surface charge density on electrode 

surface from zero-surface charge buffer.   

Since we used 1X PBS as the reference and washing buffer for most of the 

experiments discussed in the dissertation, we first describe the method of measuring 

the surface charge density for 1X PBS in contact with the Pt electrode. According to 

Rizo et al., the solution of 0.099 M KClO4 and 0.001 M HClO4 (pH = 3.4) yields 

zero-surface charge (ZSC) when it contacts with Pt electrode [45]. Therefore, we can 

obtain the actual surface charge density for buffer 1X PBS (pH=7.41) by using ZSC 
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(KClO4/HClO4) as the reference and washing buffer. Following the “washing 

procedures” described in previous chapter, we obtained the i-TIMES signal (Figure 

3.1a) and the surface charge density (Figure 3.1b) using equation (2-1) with 1X PBS 

being the “sample” and ZSC buffer as the “reference”. The result shows that at the 1X 

PBS/Pt electrode interface, there exists a charge density of 70.67±0.37 mC/m2 in the 

electric double layers. For all the experiments in the Chapter 3 where we use 1X PBS 

as the reference and washing buffer, we will add this amount to the results to obtain 

the actual amount of surface charge density since our method measures the surface 

charge difference between the sample solution and the washing buffer. 
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Figure 3.1 i-TIMES signal with 1X PBS on the sensing electrode displaced by the 

zero-surface charge (ZSC) solution. (a) i-TIMES signal. The inset shows the detailed 

waveform of the current transient. (b) Change of surface charge density at the 

solution/solid interface by integration of the -TIMES signal over time. The final value 

when the system reaches steady state gives rise to the equilibrium surface charge 

density of the liquid (1X PBS) in contact with a conductive surface (Pt).  

(a) 

(b) 
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3.3 The effect of ionic strength on surface charge density 

The i-TIMES signals produced by PBS of different concentration (or ionic 

strength) are shown in Figure 3.2a. Applying equation (1) with the sample being the 

PBS of different concentration and the reference (washing buffer) being 1X PBS, we 

obtain the dependence of surface charge density on the PBS concentration (Figure 

3.2b). 1X PBS buffer has its ionic strength (IS) of 162 mM and pH value of 7.41. By 

varying its ionic strength from 1.6 mM to 1620 mM while keeping the pH value the 

same (by adding a very small amount of HCl or NaOH that did not alter the ionic 

strength of the buffer), we have found the following relation between the surface 

charge density and ionic strength: 

𝑄 − 𝑄𝑜 = −𝑄𝑛  𝑙𝑜𝑔 (
𝐼𝑆

𝐼𝑆𝑜
),   𝑄𝑛 = 2.59

𝑚𝐶

𝑚2
    (3 − 1) 

It becomes apparent that lower IS produces a greater amount of positive surface 

charge in the solution in contact with the Pt electrode. However, the effect of IS on 

the surface charge is rather small since the surface charge density changes from 

76.09±0.47 to 68.73±0.06 mC/m2 when the IS varies by 1000 times from 1.6 mM to 

1620 mM.  
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Figure 3.2 i-TIMES signals (a) and surface charge density (b) for different PBS 

concentration (ionic strength). 
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3.3 The effect of pH value on surface charge density 

The effect of pH value on the surface charge can be obtained following a 

similar approach. In this study, we have fixed the ionic strength to 1X PBS (162mM) 

and varied its pH value from 5.69 to 9.65 by adding a small amount of HCl or NaOH. 

Again, using equation (2-1) with 1X PBS (pH=7.41) being the reference and washing 

buffer, we have measured the i-TIMES signals (Figure 3.3a) and the surface charge 

density dependence on the pH value of the buffer (Figure 3.3b). From Figure 3.3b, we 

can obtain the relation: 

𝑄 − 𝑄𝑜 = −𝑄𝑚 𝑙𝑜𝑔 (
[𝐻+]

[𝐻+]𝑜
),   𝑄𝑚 = 13.67

𝑚𝐶

𝑚2
    (3 − 2) 

It was found that the surface charge density shows a much stronger dependence 

on the pH value than the ionic strength. Also, the surface charge density becomes more 

positive with increasing pH value of the buffer. 
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Figure 3.3 i-TIMES signals (a) and surface charge density (b) for different pH value 

of 1X PBS (IS=162 mM). 
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3.4 Surface charge density for different buffer types 

A biological buffer typically consists of a weak acid and its conjugate base to 

provide a stable pH environment. We have measured the surface charge for some 

popular buffer solutions for biological samples, including Tris buffer and HEPES 

buffer. Figure 3.4 shows the i-TIMES results when we used 25 mM PBS, 25 mM Tris 

buffer, and 25 mM HEPES buffer as sample solutions and 1X PBS (162 mM, 

pH=7.41) as the reference and washing buffer at room temperature (25oC). The IS of 

25 mM was chosen because it is the preferred concentration for many biological 

samples. Also noted that for sample solutions under test, we have kept their pH value 

at their natural state: 7.26 for 25 mM PBS, 7.56 for Tris, and 7.16 for HEPES. After 

integrating the i-TIMES signals as before, we have found that the actual surface charge 

density for 25 mM PBS, 25 mM Tris buffer, and 25 mM HEPES buffer are nearly the 

same: 73.94±0.03, 74.19±0.04 and 75.95±0.04 mC/m2, respectively. 

Next, we found the pH value dependence of surface charge density for each 

buffer and the results are summarized in Figure 3.5. The i-TIMES signals in Figure 

3.5a-c were generated by washing the test samples of different pH value with the same 

type of 25 mM buffer at its natural pH value (i.e. 7.26 for PBS, 7.56 for Tris buffer, 

and 7.16 for HEPES buffer). Figure 3.5d shows the pH dependence of surface charge 

density for all three buffers. 
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Figure 3.4 i-TIMES signals for 25 mM PBS, 25 mM Tris buffer, and 25 mM HEPES 

buffer with 1X PBS (162 mM) being the reference and washing buffer. 
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Figure 3.5 i-TIMES signals for 25mM PBS (a), 25mM Tris buffer (b), and 25mM 

HEPES buffer (c) of different pH value.  (d) pH dependence of surface charge density 

for 25mM PBS (blue), 25mM Tris buffer (orange), and 25mM HEPES buffer (green) 

buffers. 
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3.5 Effects of surface modification and surface coverage by 

immobilized molecules 

In this section, we will discuss the effect of surface modification on the surface 

charge density near the electrode surface by thiol-related molecule. In addition, the 

determination of surface molecular coverage will also be presented in the section along 

with the experimental result.  

 

3.5.1 Test strategy 

Based on our physical model of i-TIMES, we can measure the effects of 

surface modification and the fraction of molecular coverage. Here, we have used the 

concept that any fixed charge created by immobilized molecules on the electrode 

surface does not contribute to the i-TIMES signal. Therefore, when a fraction of the 

electrode surface is covered by immobilized molecules, the magnitude of the i-TIMES 

signals decreases. Provided α be the fraction of surface area covered by a type of 

molecule bonded to the surface, the surface charge density measured by the i-TIMES 

signal is expected to be 1-α times of signal without surface coverage. Therefore, by 

taking the ratio of the integrated i-TIMES signal with and without molecular coverage, 

we can obtain the fraction of molecular coverage after surface modification. The 

concept is shown in Figure 3.6 which shows that the molecules bonded on the 

electrode surface will occupy the available site of the mobile ion and results in less 

detectable surface charge by i-TIMES. Such information is highly valuable because 
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quantifying the surface coverage by molecules is essential to assure effective surface 

treatment and repeatable test results for nucleic acid hybridization, immunoassay, 

particle capturing, and many surface reactions. In our experiment, we used thiol-

modified ssDNA and MCH to demonstrate the ability of measuring surface coverage 

by adherent molecules. 
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(a) 

(b) 

Figure 3.6. The schematic diagram of Pt electrode (a) before the surface modification 

(b) after surface modification. 
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3.5.2 Surface modification on Pt electrode 

In the experiment of measuring surface coverage, the Pt sensing electrode was 

modified through sulfur-metal bond. The Pt electrode surface was modified by two 

types of molecules, MCH (Sigma Aldrich, USA) and thiol-modified ssDNA. The 

thiol-modified oligos ordered from Integrated DNA Technologies (IDT, USA) were 

protected by disulfide bond. To reduce the thiol-modified oligos from the disulfide 

bond, 10 µM oligos solution directly from the stock was mixed with 1 mM 

dithiothreitol (DTT) in PBS buffer under 4oC for overnight. Afterwards, the mixture 

went through a Sephadex column to remove DTT. The deprotected oligos solution 

was then injected into the sensing electrode channel to immobilize ssDNA on the 

platinum surface via thiol-Pt bonding. The MCH treatment was performed after the 

ssDNA modification to occupy the surface area uncovered by ssDNA. The MCH 

treatment was done by filling the same channel with 1 mM MCH in 25 mM PBS for 

3 hours. Between each modification, 1X PBS was introduced into the channel at 100 

µL/min for 15 mins to remove any unbonded molecule inside the channel. 

 

3.5.3 The surface coverage of MCH 

We first tested the surface coverage of MCH as a blocking agent to prevent 

non-specific binding for sensors of nucleic acid since MCH is supposed to cover any 

surface area that was not occupied by DNA probes. The sensing electrode in the 

microfluidic channel was first soaked in 1 mM MCH solution for 3 hours for surface 

modification. Then the sensing electrode was filled up with 1X PBS with pH=5.69 as 
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the “sample solution”. When the sample solution was displaced by 1X PBS with 

pH=7.41, the i-TIMES signal was recorded, as shown in Figure 7a. One can relate 

surface coverage by MCH to the i-TIMES signal using the following relations: 

𝑆1 = 𝑄𝑝𝐻5.69 − 𝑄𝑝𝐻7.41   (3 − 3) 

𝑆2 = (1 − 𝛼𝑀𝐶𝐻)(𝑄𝑝𝐻5.69 − 𝑄𝑝𝐻7.41)  (3 − 4) 

where S1 and S2 are the i-TIMES signals with and without MCH surface 

treatment and αMCH is the fractional area coverage by MCH molecule. From equation 

(2) and (3), we obtain: 

𝛼𝑀𝐶𝐻 = 1 −
𝑆2

𝑆1
   (3 − 5) 

Figure 3.7 shows the i-TIMES signals of the above experiment, and the fractional 

surface coverage for MCH molecule was found to be αMCH=0.943±0.003, as indicated 

in the first row of Table 3.1. The result shows that 94.3±0.3% of electrode surface area 

has been covered by MCH as an effective agent to prevent non-specific binding in 

biosensing.  
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Figure 3.7 i-TIMES signals produced by displacing 1X PBS (pH=5.69) by 1X PBS 

buffer (pH=7.41) under surface modification of MCH treatment only. 
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Table 3.1. Fraction of surface coverage by MCH and ssDNA/MCH surface 

treatments. 

Condition 
Surface coverage (%) 

ssDNA MCH ssDNA+MCH 

1 mM MCH - 94.3±0.3 - 

1 µM ssDNA followed by 

MCH 
48.2±3.3 33.9±3.1 82.2±0.9 

10 nM ssDNA followed by 

MCH 
22.6±1.7 69.0±1.6 91.5±0.2 

100 pM ssDNA followed by 

MCH 
12.2±0.8 78.8±0.6 91.1±0.7 
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3.5.4 The surface coverage of thiol-modified ssDNA 

Next, we performed experiment with bonding of thiol-modified ssDNA probe 

of different concentrations (1 µM, 10 nM and 100 pM) to the Pt surface. The ssDNA 

solution was introduced to the sensing electrode and kept overnight to reach the 

equilibrium state. Then the channel with the ssDNA treated electrode was filled up 

with the “sample solution” of 1X PBS with pH=5.69. i-TIMES signals were recorded 

when the sample solution was displaced by the reference buffer (1X PBS with 

pH=7.41). Following the measurement, 1 mM MCH was introduced to the ssDNA 

treated electrode as a blocking agent to cover areas uncovered by ssDNA. 

    Following the same procedure described previously, we measured i-TIMES 

signal after MCH treatment. For the ssDNA/MCH treated surface, the signals are 

expected to follow the relations:  

𝑆4 = (1 − 𝛼𝑠𝑠𝐷𝑁𝐴)(𝑄𝑝𝐻5.69 − 𝑄𝑝𝐻7.41)  (3 − 6) 

𝑆5 = (1 − 𝛼𝑠𝑠𝐷𝑁𝐴 − 𝛼𝑀𝐶𝐻)(𝑄𝑝𝐻5.69 − 𝑄𝑝𝐻7.41)  (3 − 7) 

where S4 and S5 are the i-TIMES signals after ssDNA modification and after MCH 

treatment, respectively. From equation (3-3), (3-6) and (3-7), we can obtain the 

fractional surface coverage by ssDNA (αssDNA) and by MCH (αMCH). The i-TIMES 

signals for different ssDNA concentrations and for the MCH treatment that followed 

the ssDNA surface modification are shown in Figure 3.8a-c. 

The fractional surface coverage by ssDNA and MCH under different conditions 

is listed in Table 3.1. It was found that when the ssDNA volume concentration changes 
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from 1µM to 100pM, the surface coverage over the Pt surface changes from 

48.2±3.3% to 12.2±0.8%. The results approximately follow the logarithmic relation: 

𝛼𝐷𝑁𝐴~𝛼𝐷𝑁𝐴𝑜𝑙𝑜𝑔 (
𝑛𝐷𝑁𝐴

𝑛𝐷𝑁𝐴𝑜
) 
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(a) 

(b) 

(c) 

Figure 3.8. i-TIMES signals produced by displacing 1X PBS (pH=5.69) by 1X PBS 

buffer (pH=7.41) under different surface modification. (a) 1 µM ssDNA modification 

followed by MCH treatment, (b) 10 nM ssDNA modification followed by MCH 

treatment (c) 100 pM ssDNA modification followed by MCH treatment. 
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3.6 Summary 

The effect of buffer condition on the surface charge density is presented in this 

chapter. Moreover, the molecular coverage on the electrode surface by the thiol-

modified nucleic acid is also discussed in this chapter. In the next chapter, we will use 

the same test strategy to determine the molecular interaction effect on surface charge 

density. 

Part of this chapter is a reprint of the material as it appears in Scientific Reports 

2019. Ping-Wei Chen, Chi-Yang Tseng, Fumin Shi, Bo Bi, Yu-Hwa Lo. Measuring 

Electric Charge and Molecular Coverage on Electrode Surface from Transient Induced 

Molecular Electronic Signal (TIMES). Scientific Reports, 2019, 9, 1-10. The 

dissertation author was the first author of this paper.   
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Chapter 4 Detecting Molecular 

Interaction Near the Electrode Surface 

from i-TIMES 

 

 

In this chapter, the i-TIMES system is used to measure the surface charge 

density produced by biomolecules such as protein, ligand and aptamer. Moreover, the 

interaction between protein-ligand/aptamer will be also discussed in this chapter. In 

this chapter, the result we show is the surface charge density “difference” between the 

sample solution and the reference buffer which is 1X PBS. 

 

4.1 Overview 

Quantitative information about protein-ligand interactions is central to drug 

discovery. To obtain the quintessential reaction dissociation constant, ideally 
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measurements of reactions should be performed without perturbations by molecular 

labeling or immobilization. In this dissertation, we further the development by using 

i-TIMES to greatly enhance the accuracy and reproducibility of the measurement. 

While the transient response may be of interest, the integrated signal directly measures 

the total amount of surface charge density resulted from molecules near the surface of 

electrode. The i-TIMES signals enable quantitative characterization of protein-ligand 

interactions. We have demonstrated the feasibility of i-TIMES technique using 

different biomolecules including lysozyme, N,N’,N″-triacetylchitotriose (TriNAG), 

aptamer, p-aminobenzamidine (pABA), bovine pancreatic ribonuclease A (RNaseA), 

and uridine-3'-phosphate (3’-UMP). The results show i-TIMES is a simple and 

accurate technique that can bring tremendous value to drug discovery and research of 

intermolecular interactions. 

 

4.2 i-TIMES Signal from the Biomolecules and their 

complexes 

As a proof of concept, we have used i-TIMES technique to determine the 

relationship between the biomolecule concentration and surface charge density. 

Similar experimental procedure, washing process, was performed for all the 

experiments based on the biomolecules. In brief, the sample solution was first prefilled 

into the channel where the sensing electrode locate and the i-TIMES signal was then 

recorded when it was replaced by the reference buffer which is 1X PBS for all the 
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experiment. All the pH value of the bio-related solution and buffer was kept at 7.41 

by adding a little amount of HCl/NaOH. The related properties obtained from our 

physical model in chapter 2 are also discussed in this chapter. 

 

4.2.1 Lysozyme, TriNAG and their mixture 

Lysozyme is an antimicrobial enzyme that forms part of the innate immune 

system. TriNAG is an inhibitor which binds to the active site of lysozyme with a 

dissociation constant (Kd) of 10-30 µM according to literatures [44,46,47]. Figure 4.1a 

and 4.1b shows the current signal of lysozyme over a concentration range from 0.3nM 

to 200 µM. Figure 4.1c shows the i-TIMES signals obtained by integrating the current 

from Figure 4.1a and 4.1b. Each data point in Figure 4.1c is the average of 3 

measurements and the variations among measurements are nearly indistinguishable in 

the plot, showing excellent repeatability. The aforementioned piecewise linear 

characteristic is clearly shown in Figure 4.1c with two turning points at around 10 nM 

and 80 µM, respectively. 

A similar characteristic can be found from TriNAG. Figure 4.2a and 4.2b show 

the current signals of TriNAG and TriNAG/lysozyme 1:1 mixture, and Figure 4.2c 

shows the change of surface charge density with lysozyme, TriNAG, and 1:1 mixture 

of lysozyme and TriNAG. Again, all the i-TIMES signals show piecewise linear 

characteristics. Compared with the data from lysozyme and TriNAG alone, the data 

from the lysozyme/TriNAG mixture sample show a distinct turning point at 10 µM, 

close to the Kd of the reaction.  
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Figure 4.1 i-TIMES signal of (a) Lysozyme (higher concentration), (b) Lysozyme 

(lower concentration) and (c) dependence of surface charge density on lysozyme 

concentration (blue). The error bars show the range of 3 measurements. 
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Figure 4.2 i-TIMES signal for (a) TriNAG, (b) 1:1 mixture of TriNAG and lysozyme. 

(c) Surface charge density of Lysozyme (blue), TriNAG (green) and the 

TRiNAG/Lysozyme 1:1 mixture (brown).  The red arrow indicates the turning point 

that is approximately equal to the reaction dissociation constant Kd. The error bars 

show the range of 3 measurements. 
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4.2.2 Lysozyme, aptamer and their mixture  

In another experiment, we applied the i-TIMES method to measure protein-

aptamer interaction. Aptamers are ssDNA that can be folded into unique 

conformations and show high binding affinity to specific target molecule. Using 

aptamers as ligands for target proteins can be attractive because aptamers can work 

with a wide range of targets, have high binding affinity and stability, and are easy and 

inexpensive to produce by polymerase chain reaction (PCR). Literatures have shown 

several aptamers can react with lysozyme [48]. In our experiment, we used the aptamer 

sequence GCA GCT AAG CAG GCG GCT CAC AAA ACC ATT CGC ATG CGG 

C for lysozyme binding, which is reported to produce a Kd of around 3 nM. Figure 

4.3a and 4.3b show the current signals for the aptamer molecule alone and the 1:1 

mixture of lysozyme and aptamer. The i-TIMES results are plotted in Figure 4.3c. A 

notable feature for aptamer is that the sign of the current signal is different from the 

other molecules due to its large density of negative charge. Comparing the i-TIMES 

data of aptamer, lysozyme, and 1:1 mixture of both, we found that the data of 1:1 

mixture follow a similar trend as that of lysozyme, but significantly different from the 

data of aptamer.  However, a closer look at the data of the mixture shows the existence 

of a new turning point at the concentration of 3 nM, which is very close to the Kd for 

the lysozyme/aptamer reaction.  A zoom-in plot near the turning point of the i-TIMES 

signal is shown in Figure 4.3d separately. 
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Figure 4.3 i-TIMES signal of (a) Aptamer molecule and (b) 1:1 mixture of aptamer 

and lysozyme. Note the change of the sign of slope for aptamer because of its large 

density of negative charge. (c) Surface charge density of Lysozyme (blue), Aptamer 

(light green) and 1:1 mixture of aptamer and lysozyme (pink). (d) The detailed surface 

charge density of lysozyme (blue) and 1:1 mixture of aptamer and lysozyme (pink). 

The red arrow indicates the turning point that is approximately equal to Kd. The error 

bars show the range of 3 measurements. 
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4.2.3 Lysozyme, pABA and their mixture 

For negative control, we have chosen pABA as the non-reactive ligand to mix 

with lysozyme. pABA can prevent trypsin from hydrolyzing proteins but does not 

react with lysozyme. We followed the same procedure to detect the i-TIMES signal of 

pABA and its 1:1 mixture with lysozyme, and the current signals are shown in Figure 

4.4a and 4.4b. After integrating the current signal to obtain the i-TIMES signal, we 

find the curve of surface charge density for lysozyme and lysozyme/pABA mixture 

(Figure 4.4c) are very similar, lacking any additional turning point or a slope change 

as an indicative of the presence of a new molecule. The result shows the absence of 

enzyme-inhibitor reaction between lysozyme and pABA.  
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Figure 4.4 i-TIMES signal of molecule (a) pABA (b) 1:1 molar ratio of lysozyme and 

pABA. (c) Surface charge density of Lysozyme (blue), pABA (orange) and a 1:1 

molar ratio of lysozyme and pABA (red). 
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4.2.4 RNaseA, 3’UMP and their mixture 

In another experiment to demonstrate the utility of i-TIMES technique for 

label-free detection of molecular interactions, we characterized the reaction of 

RNaseA and its ligand. RNaseA plays an important role in cleaving single-stranded 

RNA and its property as an enzyme has been studied extensively. The dissociation 

constant Kd between RNaseA and its ligand, 3’-UMP, has been reported to be 9.7±0.9 

µM [49]. The current signals produced by RNaseA, 3’-UMP, and their 1:1 mixture are 

shown in Figures 4.5a to 4.5c. Similar to the previous experiments, the surface charge 

density of all the molecules under test displays piecewise linear characteristics with 

the concentration in logarithmic scale.  From Figure 4.5d, an extra turning point for a 

slope change occurs at 10 µM, which matches well with the published Kd value for 

RNaseA and 3’-UMP reaction. 
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Figure 4.5 i-TIMES signal of molecule (a) RNaseA, (b) 3’-UMP, (c) its complex. (d) 

Surface charge density of RNaseA (purple), 3’-UMP (light blue) and its complex 

(black). The red arrow indicates the turning point at the concentration of Kd value.  
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4.2.5 The parameters obtained from i-TIMES model 

Table 4.1 summarized all the parameters obtained from i-TIMES model in 

chapter 2 which includes 𝑃𝛼 , 𝑃𝛽, 𝛾, nth and nsa. To summarize, in a semi-empirical 

model, we can describe the general behaviors of the i-TIMES signal over a wide 

concentration range.  For each kind of molecule, its i-TIMES signal can be depicted 

by a set of parameters: 𝑃𝛼 , 𝑃𝛽 , 𝑛𝑡ℎ. The turning point of piecewise linear curve occurs 

at the concentration 𝑛𝑡ℎ . All three key parameters in the model can be directly 

obtained experimentally. When a new type of molecule is present in a significant 

amount, its features appear in the i-TIMES and are most distinctly represented by the 

turning points, enabling us to tell the Kd directly from the i-TIMES signal. Finally, 

observing the ratio of the slopes 𝛾 =
𝑃𝛽

𝑃𝛼
 in Table 4.1, we find that the slope ratio, 𝛾, is 

related to the molecular weight or the size of the molecule.  Larger molecules tend to 

have a greater value of 𝛾, which seems to suggest that when denatured or collapsed to 

the electrode surface, the effective thickness of the molecule, 𝑑𝑀, decreases and the 

effective dielectric constant, 𝜖𝑀 , increases, causing significant increase in the 

capacitance in Equation (2-5).  Future work with molecular dynamic simulations may 

provide insight for this interesting trend that seems to provide a good intuitive 

explanation for the experimental observations from the i-TIMES data. 
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Table 4.1 Parameters of each molecule obtained from i-TIMES measurements 

 

Molecule 

Molecular 

weight 

(Da) 

𝑃𝛼 

(mC/m2) 

𝑃𝛽 

(mC/m2) 
𝛾 =

𝑃𝛽

𝑃𝛼
 

nth 

(µM) 

nsa 

(µM) 

Lysozyme 14300 -0.09 -1.14 12.67 93.41 0.50 

TriNAG 627 -0.15 -1.14 7.60 103.18 5.33 

pABA 135 -0.035 -0.11 3.14 325.75 5.71*10-8 

Aptamer 18587 0.035 0.59 16.86 0.1143 1.01*10-8 

RNaseA 13700 -0.035 -1.06 30.29 92.08 120.59 

3’-UMP 322 -0.16 -0.58 3.63 278.77 0.0058 
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4.3 Summary 

By integrating the transient induced molecular electronic signals, we have 

demonstrated the i-TIMES technique for label-free, immobilization-free detection of 

protein-ligand interactions to measure the reaction dissociation constant.  To evaluate 

the viability of the technique, we have used lysozyme-TriNAG and lysozyme-aptamer 

for positive control while lysozyme-pABA for negative control and RNaseA and 3’-

UMP as another set of protein-ligand pair. The results show the existence of clear 

features in the i-TIMES signal at concentrations that are very close to the reaction Kd.  

Portions of this chapter is a reprint of the material as it appears in Analytical 

Chemistry, 2019. Ping-Wei Chen, Chi-Yang Tseng, Fumin Shi, Bo Bi, Yu-Hwa Lo. 

Detecting Protein-Ligand Interaction from Integrated Transient Induced Molecular 

Electronic Signal (i-TIMES), Analytical Chemistry, 2019, accepted. The dissertation 

author was the first author of this paper.  
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Chapter 5 Conclusion 

 

 

This chapter will provide a brief summary on the material presented in the 

dissertation and an outlook on the related research directions.  

 

5.1 Summary of Dissertation 

This dissertation summarized the extended application of i-TIMES technique. 

i-TIMES method has been proved to be capable of measuring surface charge density 

with high signal quality. By using the ZSC solution to the Pt electrode as a reference, 

we were able to measure the actual value of surface charge density for any chosen 

buffer suitable for biochemical applications. Using the i-TIMES method and the 

designed experimental procedures, we have shown quantitatively how the surface 

charge density is affected by the ionic strength, pH value and type of buffer. Taking 

advantage of the salient feature that any molecules, charged or not, immobilized on 

the surface does not contribute to the i-TIMES signal, we have developed schemes to 
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measure surface coverage for immobilized molecules. We have used thiol-modified 

ssDNA and MCH molecules as examples to prove the concept. 

In addition, i-TIMES has been determined that is able to detect the protein-

ligand interaction by analyzing the surface charge density change near the electrode 

surface. We have used several different protein-ligand pair such as lysozyme-TriNAG 

(Kd~10-30 µM), lysozyme-aptamer (Kd~3nM), lysozyme-pABA (No reaction) and 

RNaseA-3’-UMP (Kd~10 µM) to prove the concept.  The results clearly show that 

turning point will be shown up from it piecewise linear curve around the concentration 

at reaction Kd from i-TIMES which is easily and friendly for the user to prevent any 

further post data processing. We have also developed a semi-empirical model to 

elucidate the physical process giving rise to the i-TIMES signal.  

Overall, i-TIMES provides a technique with high sensitivity, excellent 

repeatability and good feasibility which can facilitate the drug discovery process. The 

label-free, immobilize-free and easy fabrication are the advantages of i-TIMES 

technique compared to other techniques that makes the result from i-TIMES is more 

accurate because the properties of molecules will not be affected by any chemical 

modification. Further application of i-TIMES can be expected since rich information 

is also contained in the temporal waveform of i-TIMES signal which possibly may 

provide more insight on the reaction kinetics and charge transport at the solid/liquid 

interface.   

 

5.2 Outlook 
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i-TIMES is a promising technique which has the capability to detect the surface 

properties at the solid/liquid interface by quantification of the surface charge density 

on the electrode surface. In addition, the molecular interaction can also be detected by 

i-TIMES technique as long as the surface properties of the molecules are changed. 

Based on these salient features of i-TIMES, we believe there are several potential 

applications which can be achieved in the future. 

First of all, the material of the electrode in i-TIMES can be replaced such as 

graphene, carbon nanotube or conductive oxide. For carbon-related material, the 

excellent electron transfer ability might be beneficial to sensitivity of the i-TIMES 

technique. In addition, it is relatively easier to modify the surface of carbon-related 

material by different compound to make it hydrophobic/hydrophilic or 

positively/negatively charged which can extended the i-TIMES technique to further 

characterize the surface properties of various type of solid/liquid interface. On the 

other hand, the transparency of the conductive oxide makes the i-TIMES has 

possibility to combine with optical readout which makes i-TIMES become promising 

by compared the result of electrical and optical readout. 

Second, in this dissertation, we demonstrate the molecular interaction at steady 

state which is performed by premixing the molecules for a certain time period before 

introducing into the i-TIMES system. However, by applying a series of multiple 

electrodes in a single channel, a change of surface properties during the interaction 

can be determined by analyzing the surface charge different on each electrode along 
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the channel. By this way, more insight about reaction kinetic of the molecular 

interaction can be obtained. 

Third, by minimizing the i-TIMES device and integrating it with an analog 

front-end, the signal-to-noise and the sensitivity can be further improved because it 

can eliminate the noise due to long cable traces from the sensor to instrument. 

Therefore, the high sensitivity might lead to a great potential for i-TIMES to detect 

the surface properties of single molecules. 

Last, although we only demonstrate the molecular interaction with a single 

binding site in this dissertation, it is promising that i-TIMES can be further applied to 

investigate the interaction which involves multiple binding sites by utilizing different 

test strategy.
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