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Systems/Circuits

Perceived Depth in Natural Images Reflects Encoding of
Low-Level Luminance Statistics

Emily A. Cooper and X Anthony M. Norcia
Department of Psychology, Stanford University, Stanford, California 94305

Sighted animals must survive in an environment that is diverse yet highly structured. Neural-coding models predict that the visual system
should allocate its computational resources to exploit regularities in the environment, and that this allocation should facilitate perceptual
judgments. Here we use three approaches (natural scenes statistical analysis, a reanalysis of single-unit data from alert behaving ma-
caque, and a behavioral experiment in humans) to address the question of how the visual system maximizes behavioral success by taking
advantage of low-level regularities in the environment. An analysis of natural scene statistics reveals that the probability distributions for
light increments and decrements are biased in a way that could be exploited by the visual system to estimate depth from relative
luminance. A reanalysis of neurophysiology data from Samonds et al. (2012) shows that the previously reported joint tuning of V1 cells for
relative luminance and binocular disparity is well matched to a predicted distribution of binocular disparities produced by natural
scenes. Finally, we show that a percept of added depth can be elicited in images by exaggerating the correlation between luminance and
depth. Together, the results from these three approaches provide further evidence that the visual system allocates its processing resources
in a way that is driven by the statistics of the natural environment.

Key words: binocular vision; depth perception; efficient coding; natural scene statistics; optimal coding; primary visual cortex

Introduction
Natural scenes have statistical regularities that constrain the the-
oretically infinite space of visual input that strikes the retina.
These regularities appear to be exploited by the brain as it encodes
this visual input (Simoncelli and Olshausen, 2001; Geisler, 2008).
According to two common frameworks for neural coding (effi-
ciency and optimal-inference), sensory input from the environ-
ment is encoded according to its probability and relevance. The
distribution of environmental probabilities is used to describe a
prior assumption made by an optimal or efficient visual system.
When this distribution is nonuniform, an efficient encoder up-
weights the processing resources allocated for more likely input
patterns, and this up-weighting is related to biases and improved
performance on perceptual tasks (Brunel and Nadal, 1998; Gei-
sler et al., 2009; Ganguli and Simoncelli, 2010; Girshick et al.,
2011).

Seeing the world in three dimensions (3D) requires the visual
system to infer an underlying scene layout from flat patterns of
light. In making this inference, it has been proposed that the

visual system should use prior assumptions consistent with sta-
tistical relationships between visual input and depth in nature.
For example, color and luminance changes tend to occur along
with depth changes, and convex edges tend to belong to near
surfaces (Burge et al., 2010; Su et al., 2013). Previous work
showed that natural scenes also contain a negative correlation
between luminance and depth: darker regions tend to be farther
away than brighter regions (Potetz and Lee, 2003, 2006; Samonds
et al., 2012). This correlation suggests that luminance could pro-
vide the basis for another prior assumption about depth. How-
ever, a body of previous work using synthetic stimuli has reported
that human depth perception does not reflect a “brighter is
nearer” prior assumption (Farnè, 1977; Egusa, 1982; Schwartz
and Sperling, 1983; O’Shea et al., 1994).

To investigate the utility of luminance information for depth
perception, we first determined whether a biologically plausible
computation that links depth and luminance would lead to useful
priors. It is well known that precortical stages of visual processing
segregate luminance into increments (relatively bright points)
and decrements (relatively dark points) via parallel ON/OFF
pathways (Werblin and Dowling, 1969; Nelson et al., 1978). We
asked whether the correlation between depth and luminance in
natural scenes could create differences between the depths en-
coded in these relative luminance pathways (for bright and dark).
We separately measured the distribution of depths produced by
the natural environment for light increments and decrements
and found differences that are well matched to biases in the joint
tuning preferences of cells in primary visual cortex (Samonds et
al., 2012), suggesting a potential mechanism for implicitly encod-
ing two separate prior distributions based on whether a point is
bright or dark relative to the surroundings. We also conducted a
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perceptual experiment using natural scenes, rather than synthetic
patterns, as stimuli. We manipulated the luminance patterns of
photographs to create versions that were biased either toward the
environmental priors (“brighter is nearer”) or against them
(“brighter is farther”), as a test of whether these priors actually
influence depth perception. Observers judged the more prior-
consistent images as having more depth, regardless of the original
scene content. These results suggest that humans do indeed use
prior information about luminance/depth correlations when
making depth judgments in complex natural scenes.

Materials and Methods
Natural scene statistics
To analyze the depth distributions of different relative luminance polar-
ities in the natural environment, we selected 31 scenes from a database of
coregistered natural image and range measurements (Potetz and Lee,
2003) using three criteria: (1) resolution between 2.4 and 3.3 arcminutes
per pixel, (2) rural/natural setting, and (3) minimal missing image pixels.
Red, green, and blue channel values (RGB) were transformed to light
intensity using a standard conversion: 0.299*R � 0.587*G � 0.114*B.
This weighting of the RGB values is consistent with a luminosity function
peaking in the mid-range of the visible spectrum. Scenes were segmented
into 3° diameter circular patches, overlapping by 1⁄2 diameter. Patches
with fewer than 95% valid depths were excluded, yielding 13,393 patches
and 40,045,314 pixels in all. Pixels were categorized as an increment or a
decrement if their intensity was greater than or less than the average
within the patch and their Michelson contrast was at least 5%. Using
these criteria, 36% of pixels were increments and 46% were decrements.

We wanted to compare the distance distributions of these increment
and decrement points to previously reported neuronal tuning properties.
This required converting absolute distance from the range data into es-
timates of binocular disparity. Binocular disparity, the displacement of a
point in the two eyes’ images, is proportional to that point’s depth rela-
tive to a reference fixation distance. Because the range data by design did
not contain fixation distances, we first selected a small central region of
each patch (�21 arcminutes wide) as the simulated fixation distance (z0).
This average central distance value was subtracted from the distance of
each other pixel, resulting in a distribution of relative depths that simu-
lated those seen by an observer looking at the patch center. We then
converted the depth of each pixel to an estimate of the binocular disparity
that would be cast on the retinas by a point at that depth. To do this, an
observer was simulated with an interpupillary distance � of 0.064 m and
a fixation distance of z0. The approximate binocular disparity � in radians
of a point at distance z1 was calculated for the distance of each pixel in the
patch as follows:

� � �� 1

z0
�

1

z1
� . (1)

These disparities were then converted to arcminutes. We used a kernel-
smoothing method to compute probability density distributions from
these samples using MATLAB (MathWorks). Separate distributions for
increments and decrements were computed in terms of relative depth
and binocular disparity. We used normal kernel-smoothing windows
with bandwidths of 0.09 m for relative depth and 0.03 arcminutes for
disparity.

Physiology analysis
Neurophysiology data were reanalyzed from Samonds et al. (2012), who
measured the tuning properties of neurons in macaque primary visual
cortex for both relative luminance and depth (via binocular disparity);
their Figure 3d shows histograms of disparity preference grouped by
“luminance index” (a normalized ratio of a cell’s mean firing rate for light
increments vs decrements). From the original sample of 199 cells, we
analyzed 189 cells that had a luminance index greater than 0.05 (incre-
ment preferred, 27 cells) or less than �0.05 (decrement preferred, 162
cells). The smaller number of cells tuned for increments is consistent with
previous measurements (Yeh et al., 2009). For this reanalysis, the pro-

portion of the total number of cells within each disparity bin (ranging
between �60 arcminutes in steps of 12 arcminutes) was calculated sep-
arately for increment and decrement populations. Statistical analyses
(Wilcoxon rank-sum tests) on these cells tunings and on the natural
scene statistics were performed in MATLAB using the ranksum function.

Participants
Twenty adults (age range 18 – 64 years; 9 females) participated in the
main perceptual experiment designed to determine the way in which the
human perceptual system is influenced by different patterns of lumi-
nance/depth correlation in natural scenes. Twenty additional adults (age
range 18 –35 years; 15 females) participated in the control experiment.
Five additional participants completed the control experiment but were
excluded from analysis because debriefing interviews revealed that they
had not followed the instructions. Participants were recruited from the
surrounding community and screened for normal visual acuity and ste-
reoacuity. All participants were naive to the experimental hypotheses.
The study protocol was approved by the Stanford University Institu-
tional Review Board.

Stimuli
Fifteen photographs with registered depth information were selected
from public datasets: Live Color�3D (Su et al., 2011; Su et al., 2013) and
Middlebury Stereo (Hirchmuller and Scharstein, 2007; Scharstein and
Pal, 2007). These smaller datasets were used for the perceptual experi-
ment stimuli because they contain high-resolution, low-noise digital
camera images. In the larger dataset used for the natural scene statistics
analysis described above (Potetz and Lee, 2003), the use of a photo-
sensor integrated within the laser range scanner resulted in images with
an amount of noise that precluded their use as perceptual stimuli.

The scenes included a mixture of interior and exterior settings, as well
as natural and man-made content. Each of the 15 photographs is shown
in Figure 1a, along with a grayscale depth map. These scenes were se-
lected to include a range of luminance/depth correlations from strongly
negative (consistent with the “brighter is nearer” prior) to strongly pos-
itive (inconsistent with the prior). In Figure 1b, circle symbols indicate
the original scenes’ correlations (Pearson’s r), sorted from most negative
to most positive. The y-axis is inverted, so that negative correlations
point upward. The selected photographs were each manipulated to create
two new versions: one version that was shifted toward the prior (these all
had a negative luminance/depth correlation, regardless of the original
scene pattern) and one version that was shifted against the prior
(these all had a positive luminance/depth correlation). The correla-
tion values for these new versions are indicated by the up and down
facing triangles in Figure 1b, respectively. In this way, participants
could be shown the same scene content conveyed with luminance/
depth patterns that either played into or violated the predicted
“brighter is nearer” prior assumption.

Image manipulation
To create the new image versions, the original photographs were manip-
ulated in MATLAB using the underlying depth maps as a guide. First,
each image was cropped to a square region that contained minimal miss-
ing depth values. The depth maps were clipped to the 99th and first
percentiles, and the remaining missing values were linearly interpolated.
The RGB channels were gamma-corrected with a point-wise nonlinearity
(� � 2.2) (Stokes et al., 1996). This is an approximation to the inverse of
the camera nonlinearities, which were unknown. Images were converted
from RGB to hue/saturation/value representation. In this representation,
the value channel carries the luminance-related image information. To
create the “toward the prior” manipulation, a linear remapping was de-
fined to transform the original value channel V(x,y) to V�(x,y) as follows:

V�� x,y	 � V� x,y	�1 � �Z�� x,y		 (2)

for all rows x and columns y in the channel. A constant, �, was set to 0.75
for this experiment and Z�(x,y), the normalized pixel depth, was defined
as follows:
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Z�� x,y	 � �0 Z� x,y	 � zmed

Z� x,y	 � zmed

zmax � zmed

Z� x,y	 	 zmed
(3)

where zmed and zmax are the median and maximum depth values. The new
values were substituted into the value channel, and the images were
converted back to RGB and gamma encoded for display. This resulted in
a new image with a smoothly darkening background. To create the
“against the prior” manipulation, the depth maps were inverted and the
same remapping was performed, so that the new images had a smoothly
darkened foreground. Figure 1c shows three example scenes in their
manipulated versions.

No high-level scene segmentation, lighting, or shape estimation was
performed, and image alterations were kept small to avoid appearing
artificial. Nonetheless, in dealing with natural scenes, it is always possible
that preexisting shape cues could be disturbed by image manipulation.
As can be seen in the three examples in Figure 1c, however, this manip-
ulation created global differences in the images but also largely preserved
important shape-from-shading and shadow cues, such as those seen in
the folds in cloth and the overlapping rocks. Possible interactions be-
tween the manipulation and the original scene will be discussed in inter-
preting the experimental results.

Five additional scenes were included in the study but excluded from
analysis because this subtle manipulation was insufficient to invert the
luminance/depth correlation. Pilot testing suggested that the specific �
did not fundamentally alter the perceptual effect, so that a value was
chosen that created moderate but noticeable changes across all 15 scenes.

Stereo images
In addition to these image manipulations, each scene also had a stereo
depth version. Stereo depth served as a benchmark for the 3D judgments
made by the experiment participants. The stereo depth version was cre-
ated using the original, unmanipulated images and showing slightly dif-
ferent views to the two eyes to create non-zero binocular disparities. For
the Middlebury Stereo Dataset, left and right eye images were taken from
two adjacent camera views. Live Color�3D did not include multiple
views, so for these scenes the two views were synthesized from the single
camera view using the Adobe Photoshop (CS3) displacement filter tool.
This tool allows a grayscale depth-map image to be used as a displace-
ment map for shifting image pixels to the left or right. In this case, the
Live Color�3D depth maps were converted to grayscale images. Larger
areas of missing pixels were painted in manually to avoid large distor-
tions. To synthesize the left eye view, near pixels were shifted rightwards
and far pixels leftwards. All stereo depth images had a compelling 3D
appearance.

Main experiment: task and conditions
Participants were instructed that they would be taking part in a “3D
experiment” conducted on a 3D display system. Before starting the ex-
periment, they were shown a stereo depth view of one of the stimuli on
the stereoscope apparatus (described below). They were told to focus on
the 3D quality of the pictures and try to ignore other changes they may
notice.

Stimulus presentation was controlled using MATLAB and the Psycho-
physics Toolbox Version 3 (Brainard, 1997; Pelli, 1997). Each trial con-

Figure 1. Stimuli for the perceptual experiment. a, Photographs with registered ground-truth depth information. Grayscale depth maps are shown to the left, with darker values indicating near
depths. b, Correlations between luminance and depth in the experimental stimuli. Each circle represents one of the 15 scenes used in the perceptual experiment and shown in a. The circle symbols
represent the correlation (Pearson’s r) between luminance and depth in the original scenes. Markers are colored to indicate the relative strength of the correlation: red represents negative and
consistent with overall scene statistics; blue represents positive and inconsistent with overall scene statistics; white represents neutral, or near zero correlation. We performed an image manipulation
to create two new versions of each scene. Upward and downward triangles represent the new correlations after manipulating the images toward the prior or against the prior, respectively. The y-axis
is reversed so that negative correlations (consistent with prior from scene statistics) point upward. c, Example photographs after manipulation. One new version was shifted toward the prior; these
all have a negative luminance/depth correlation (upward triangle symbols in b). The other new version was shifted against the prior; these all have a positive luminance/depth correlation
(downward triangle symbols in b).
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sisted of a sequential presentation of two different versions of the same
scene (2 s each, with 0.5 s in between). After each trial, participants
indicated with a key press which version of the image gave them a better
sense of the 3D scene. Each scene version (original, stereo depth, toward
the prior, and against the prior) was paired with each of the other ver-
sions four times, with the order of presentation counterbalanced. Partic-
ipants only judged differences between two versions of the same scene,
never between difference scenes. Trial order was randomized, and each
participant made 60 judgments for each condition (15 scenes, 4 repeti-
tions). Across all 20 participants, a total of 1200 3D judgments were
collected for each condition. Participants were not instructed as to when
a picture did or did not contain binocular disparities (stereo depth). The
stereo depth trials were used to ensure that the participants understood
the task and to measure their level of performance when a strong depth
cue was added. We could then examine whether the image-based statis-
tical manipulation affected 3D judgments on the trials where stereo
depth was absent.

Control experiment: task and conditions
Although the images used in the main experiment only had minor pho-
tometric differences, we wanted to determine whether perceived 3D
might be confounded with perception of low-level image differences.
The procedure of the control experiment was the same as the main ex-
periment with a few modifications. Instead of being asked to judge the 3D
scene appearance, participants were asked to judge which image had
greater contrast (the range between the brightest and darkest image ar-
eas). The stereo depth images were excluded from this experiment be-
cause they were photometrically identical to the original images. Images
were presented as described for the main experiment. Pilot testing re-
vealed that many participants would use the scene depth to judge the
scene contrast (e.g., they indicated that they would intentionally select
the scene with a darker background as having more contrast), so we
displayed the images upside down to encourage participants to focus on
contrast alone.

Apparatus
All stimuli were displayed on a stereoscope at a viewing distance of 71 cm.
The display system consisted of a Sony PVM-2541 OLED panel and an
Apple MacPro (mid-2010). Left and right eye views were separated by a
septum. Participants viewed the images through 15 Diopter wedge
prisms placed in front of each eye, and the images were shifted 10.7 cm

each to the left and right of the screen center, creating a convergence
angle consistent with the screen distance. In this setup, each pixel sub-
tended �1.4 arcminutes. Images were rescaled to subtend 13.2° in the
visual field (580 
 580 pixels) and warped to remove keystoning and
curvature distortions introduced by the prisms. This resulted in a field of
view close to the original camera frustum for the Middlebury images (17°
vertically) but smaller than the Live3D�Color images (62° vertically).
For all conditions except stereo depth, both eyes were presented with the
same image, so that the binocular disparities were zero. In the stereo
depth condition, the left and right eye images differed.

Results
To investigate how the negative correlation between luminance
and depth in natural scenes may be exploited as a prior assump-
tion by the visual system, we simulated luminance segregation
similar to the visual system’s ON/OFF pathways and calculated
probability distributions for depth separately for locally defined
light increments (ON) and decrements (OFF). Figure 2a shows
these two distributions: increments in solid red and decrements
in dashed blue. Depth is defined in relative terms: zero indicates
the simulated fixation distance, negative values are nearer than
that distance, and positive values are farther. Both distributions
peak near zero, indicating that the most likely depths are very
close to the fixation distance. This makes sense because neighbor-
ing pixels in the scene image tend to belong to physically neigh-
boring surfaces and therefore have similar depths. Both
distributions fall off with increasing distance from fixation in
both directions (near and far). However, whereas the decrement
distribution falls off similarly in both directions, the distribution
for increments is substantially asymmetric.

Previous neurophysiological work has identified cells in pri-
mary visual cortex (V1) that are jointly tuned for both relative
luminance (increments and decrements) and depth (via binocu-
lar disparities). This previous work reported systematic biases in
the joint tuning properties of these cells but did not directly com-
pare these biases to the statistical distributions of luminance and
depth in natural scenes (Samonds et al., 2012). We sought to
compare these neurophysiology data with the information avail-

a b

c

d

Figure 2. Estimating perceptual priors. a, The probability density of relative depth for luminance increments (solid red) and decrements (dashed blue) within natural scene patches. The relative
depth of each pixel is the distance from the mean depth of a small central region, a simulated fixation distance. Negative values are nearer than this distance; positive values are farther. b,
Probabilities for the absolute distance of the simulated fixations in the patch dataset. c, Predicted approximate binocular disparities for increments and decrements seen by an observer viewing the
natural scene patches and fixating at the central distance. d, Binocular disparity tuning of V1 cells. Data are reanalyzed from Samonds et al. (2012). Cell density is the proportion of cells tuned to values
of absolute binocular disparity between�60 arcminutes. Density was calculated separately for cells preferring increments (solid red) and decrements (dashed blue). The shift in increment preferring
cells toward greater cell density at near disparities mirrors the natural scene distribution shown in c.
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able in natural scenes to determine whether these cell tunings
indeed reflect an efficient encoding of the available depth infor-
mation (Ganguli and Simoncelli, 2010). To do this, we converted
the relative depths shown in Figure 2a to predicted binocular
disparities for a simulated observer. The distribution of simu-
lated fixation distances used for this analysis is shown in Figure
2b. Because this distribution contains many far distances (�50
m), the predicted binocular disparities tended to be quite small.
The predicted binocular disparities are shown in Figure 2c. The
disparity range shown here (�20 arcminutes) contains �99% of
all of the predicted disparities.

Like the distributions for near and far depths, these binocular
disparity distributions differ between increments and decre-
ments, with a stronger near-bias for increments. In this simula-
tion, 60% of the increment points belong to near disparities,
compared with 49% of the decrement points. Additionally, a
one-sided Wilcoxon rank-sum test indicated a relative bias to-
ward near disparities; the increment distribution was shifted sig-

nificantly lower than the decrement
distribution: increment median � �0.09
(n � 14,219,793); decrement median �
0.01 (n � 18,311,324); rank sum � 3.15 

10 14; z � 667.1; p � 0.01. The predicted
disparity increment and decrement distri-
butions in Figure 2c can now be compared
with the distributions of disparity tunings
for increment-preferred and decrement-
preferred V1 cells shown in Figure 2d. The
distribution of joint tunings has a pattern
similar to the environment: cells that pre-
fer luminance increments (red line) have
a more asymmetric distribution, biased
more toward near disparities (74% near-
preferring) than cells that prefer decrements
(blue line; 65% near-preferring). The
overall bias toward near disparities across
all cell tunings may be due to the fact that
large far disparities are physically impos-
sible at fixation distances beyond a few
meters (Cooper et al., 2011). Despite this
overall bias and a small sample size for
increment-preferring cells, a rank-sum
test also indicated a significant shift toward
near disparities in the increment-preferring
cells relative to the decrement-preferring
cells: increment median � �0.18 (n � 27);
decrement median � �0.06 (n � 162);
rank sum � 1.60 
 104; z � 2.5; p � 0.01.

Both the natural scene probability dis-
tributions and the neuronal tuning distri-
butions could be summarized as reflecting
a “brighter is nearer” prior assumption.
Using the rank sum statistics, we calcu-
lated the probability that an increment
disparity value is lower than a decrement
disparity value for both the natural scene
and cell-tuning distributions (this is the
Mann–Whitney U test statistic normal-
ized by the total number of paired obser-
vations). These probabilities were 0.57
and 0.64, for the scenes and cells, respec-
tively, indicating a similar level of overlap
and overall shift between the natural scene

and cell-tuning distributions. This suggests that the V1 cells de-
scribed here might implicitly encode a prior, based on the environ-
mental distribution, by up-weighting the processing resources for
the most likely disparities to be processed in separate ON and OFF
pathways.

Given this basis for a visual prior toward near depths for bright
points, it is surprising that previous psychophysical studies have
failed to clearly show a perceptual bias in this direction (Farnè,
1977; Egusa, 1982; Schwartz and Sperling, 1983; O’Shea et al.,
1994). We wondered whether a perceptual bias to see bright
points as nearer might be measured when people view natural
scenes. The results of our perceptual experiment are shown in
Figure 3. The percentage of trials in which one version of an
image was judged more 3D than the other is shown in Figure 3a.
Chance performance (50%) is plotted as a dashed line. As ex-
pected, when the stereo depth version was present, it was almost
always (92% of trials) judged as more 3D than the other image
(first three bars). When neither image contained stereo depth,

a

b

Figure 3. Perceptual experiment results. a, Results for each condition collapsed across all scenes. Bar heights indicate the
percentage of all trials in which the first-listed image version was judged as more 3D than the second-listed image version. pr, Prior.
Error bars indicate 95% confidence intervals. b, Results for the “toward the prior” versus “against the prior” comparison (arrow in
a) separately for each scene. Bar coloring is the same as Figure 1b.
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participants exhibited a significant prefer-
ence for the “toward the prior” images,
compared with both the “against the
prior” images and the originals (60% and
55%, respectively). They also exhibited a
preference for the original compared with
the “against the prior” (which was only
selected on 42% of trials). All of these re-
sults were statistically inconsistent with
chance performance (p � 0.05) as deter-
mined by Clopper–Pearson confidence
intervals for the binomial distribution.

Recall that some of the original scenes
before manipulation were consistent with
the predicted priors, and others were in-
consistent (Fig. 1b). If the participants’
behavior reflects implicit knowledge of
overall scene statistics, we would predict
that the “toward the prior” version should
appear more 3D for all scenes, even when
the original scene was inconsistent (i.e., scenes in which darker
areas tended to be near instead of far). In contrast, if the image
manipulation is simply exaggerating preexisting lighting and
shape cues, we would predict for there to be an interaction, with
“toward the prior” preferred for consistent scenes and “against
the prior” preferred for inconsistent scenes. For example, accord-
ing to this second prediction, a scene with a shadowed or darker
foreground (inconsistent) would be preferred if this foreground
was further darkened (against the prior). Figure 3b shows the
results for this comparison for each scene. The “toward the prior”
version was preferred for 14 of the 15 scenes. That is, with one
exception, scenes appeared more 3D when they were represented
as more consistent with overall scene statistics, even when the
geometry of the original scene led to the opposite pattern. This
suggests that luminance is indeed operating as an independent
depth cue, rather than interacting with global scene structure,
preexisting lighting, and shape cues.

Although all image manipulations were subtle, it would be less
interesting if participants simply chose the scene with greater
dynamic range (i.e., more overall perceived contrast between the
darkest and lightest areas) as more 3D. We compared the results
of this 3D experiment with the control experiment in which par-
ticipants were asked to select the scene with greater apparent
contrast. Across all nonstereo comparisons in the main experi-
ment, there were 38 pairings in which one version was judged as
more 3D at a rate of 
5% above chance. Of these more 3D
versions, 92% had a more negative luminance/depth correlation
than their comparison, but only 61% were also judged as having
more contrast. Using a second metric of image contrast (the vari-
ance of the image intensity values) also did not reveal a strong
relationship between contrast and perceived 3D: 55% of scenes
judged more 3D also had greater intensity variance. Although
there was an overall tendency for participants to judge the “to-
ward the prior” scenes as having more contrast than “against the
prior” scenes (58% of trials), there was no correlation between
the two judgments (r � 0.01), suggesting that perceived 3D in
these natural scenes cannot be well predicted by their perceived
contrast.

Discussion
Natural scene statistics and ON/OFF pathway segregation
The functional significance of separating out ON and OFF visual
signals is typically explained as having benefits for encoding

small contrast changes over a large dynamic range (Wes-
theimer, 2007). This explanation, however, does not account
for well-documented perceptual asymmetries between lumi-
nance increments and decrements in 2D spatial perception. For
example, human observers have substantially better contrast dis-
crimination thresholds for decrements compared with incre-
ments (Blackwell, 1946; Lu and Sperling, 2012). Better
discrimination thresholds for decrements have been linked to
efficient encoding of natural scenes, which contain more local
decrements than increments, via up-weighting of the OFF path-
ways in early visual processing (Yeh et al., 2009; Ratliff et al., 2010;
Baden et al., 2013).

It is often assumed that later-stage visual computations, such
as motion and depth estimation, combine the ON and OFF
streams and discard polarity information via energy-model type
computations (Adelson and Bergen, 1985; Ohzawa et al., 1990;
Edwards and Badcock, 1994; Harris and Parker, 1995). To the
extent that the statistical distributions of the input to the ON and
OFF pathways differ in natural scenes, it would make sense for the
visual system to exploit the unique information that each path-
ways carries, rather than discard it completely. In motion pro-
cessing, recent work has suggested that ON/OFF segregation is
maintained and used to exploit higher-order patterns that are
created by motion in natural scenes (Clark et al., 2014). In depth
processing, as discussed in the Introduction, neurons involved in
stereo-depth computations are jointly tuned for luminance with
an overall correlation consistent with natural scenes (Samonds et
al., 2012).

We have built on this previous work to specifically character-
ize how the distributions of depth signals carried in the ON and
OFF visual pathways should differ from each other if these path-
ways evolved to efficiently encode natural scene correlations be-
tween luminance and depth. We then showed that these prior
distributions are reflected in the tuning of macaque V1 cells.
Specifically, we predicted from natural scene statistics that the
ON pathway depth distribution should be biased toward near
depths, whereas the OFF pathway distribution should be more
symmetric. A simple observer model shows a qualitative match
between scene disparities and cell disparity tuning. Maintaining
the sign of luminance while processing disparity is critical if the
visual system is to exploit the natural relationship between depth
and luminance. There are thus now two cases, the disparity sys-
tem as studied here and by Samonds et al. (2012) and the motion

Figure 4. Example of illusions of depth from luminance and contrast. Dark and light gray circular patches are shown against a
background that is either darker (a) or brighter (b) than both patches. Although the common observation is that brighter objects
appear near, more recent work has shown that this illusion reverses against a bright background.
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system (Clark et al., 2014), in which the statistics of the natural
environment appear to have led to a continuation of at least a
partial segregation of the ON and OFF pathways into cortex.

Illusions of depth from brightness
Previous studies investigating the relationship between perceived
brightness and perceived depth have largely used simple sche-
matic stimuli and shown that the illusion of depth differences can
be induced simply by introducing differences in luminance (Ash-
ley, 1898; Ames, 1925; Taylor and Sumner, 1945; Johns and Sum-
ner, 1948; Coules, 1955; Farnè, 1977; Egusa, 1982, 1983; Schwartz
and Sperling, 1983; Dosher et al., 1986; O’Shea et al., 1994). Fig-
ure 4a shows an example image, for which the brighter patch is
typically judged as nearer. With this type of visual stimulus, how-
ever, switching the surrounding area to be brighter than the two
patches reverses the effect, and the darker patch appears nearer
(Fig. 4b). This has led to the conclusion that it is contrast, or the
amount of dynamic range, rather than the relative luminance
(brighter or darker) that creates this illusion of nearness (Farnè,
1977; Egusa, 1982; Schwartz and Sperling, 1983; O’Shea et al.,
1994). Other investigations have focused on specific lighting sit-
uations, such as diffuse illumination, in which there is a defined
relationship between surface shape and the reflected luminance,
but which are unlikely to be representative of overall visual expe-
rience (Langer and Zucker, 1994; Tyler, 1998; Langer and Bül-
thoff, 2000).

Our results differed from these previous reports because par-
ticipants were biased to prefer a “brighter is nearer” scene, rather
than a scene with greater perceived dynamic range, across a wide
variety of images with natural lighting. Although simple, sche-
matic stimuli can provide insight into the prior assumptions of
the visual system, it is interesting to observe that those stimuli
also represent atypical visual input. For instance, the images in
Figure 4 contain only three different luminance values, two dis-
tinct objects, and largely appear quite flat compared with the
images in Figure 1a, c. Perhaps in the case of the simplified illu-
sions, object contrast is the best information for segmenting from
the background because relative luminance does not provide
enough discriminating information. Typically, it is assumed that
the best way to measure a prior assumption is to present people
with an impoverished, weak cue situation. We propose that an
alternative method for investigating perceptual priors is to create
scenes that are typical of the visual input (i.e., natural scenes) but
that have properties that have been exaggerated to play into the
prior.

It is important to note that abstract visual patterns are often
the preferred stimuli in neurophysiology studies as well. Indeed,
the luminance preferences of the V1 cell population described in
this report were measured using bright and dark circular patches
similar to those illustrated in Figure 4 (Samonds et al., 2012). It is
difficult to apply our observations from human perceptual exper-
iments to the current neurophysiology data, however, because
the perceptual effects necessarily include both low- and high-
level processes. The current neurophysiology measurements
were restricted to primary visual cortex. It would be interesting to
investigate whether the joint luminance/disparity preferences of
such cells would be different if natural scene patches were used
instead, and whether the joint tuning continues in later visual
areas that also have disparity-selective cells.

Applications
Exaggeration of priors also lends itself to computational photog-
raphy or videography applications in which it is desirable to en-

hance the 3D appearance of real-world content. This type of
enhancement has been applied previously in traditional 3D
computer-graphics rendering. The technique, which is called
“depth cuing,” works by using the underlying 3D model to add a
correlation between luminance and depth to the rendered image.
This method has been reported to be effective at enhancing the
3D appearance of computer graphics regardless of the sign of
the correlation (Schwartz and Sperling, 1983; Foley et al., 1993).
The current work builds on the small number of previous studies
that have manipulated photographic content with similar meth-
ods (Rößing et al., 2012; Easa et al., 2013). These previous studies
focused on either abstract photographic images (medical scans)
or did not explicitly evaluate 3D appearance in the resulting im-
ages. The current results now show that depth cuing of complex
photographic content can be effective at enhancing 3D appear-
ance. In particular, a rendering algorithm that selectively darkens
image backgrounds should have more enhanced 3D qualities
than the reverse. This enhancement would be relatively easy to
implement because a single processing algorithm appears to work
on wide variety of scenes without manual intervention.

Conclusions
Seeing in 3D is typically understood as relying on a patchwork of
canonical depth cues requiring demanding computations (e.g.,
stereo correspondence, object recognition, shape from shading)
(Ramachandran, 1988; Arman and Aggarwal, 1993; Zhang et al.,
1999; Riesenhuber and Poggio, 2000; Scharstein and Szeliski,
2002; Nieder, 2003). The availability of databases of natural scene
and depth information have made it possible to expand our un-
derstanding of the variety of statistical depth information avail-
able in natural scenes beyond this classic taxonomy of depth cues
(Potetz and Lee, 2003; Burge et al., 2010; Liu et al., 2010; Su et al.,
2011, 2013). At the same time, natural scene stimuli open up the
possibility for conducting controlled perceptual experiments us-
ing more typical visual content.

Here, we have shown that local luminance increments and
decrements carry information about depth that could plausibly
be extracted by the earliest stages of visual processing. Given the
complexity of 3D inference, it would make sense for the visual
system to exploit this low-cost information source. We have pro-
posed that this could be accomplished via separate prior assump-
tions for depth in the ON/OFF visual pathways, and we have
demonstrated that there is evidence for the implicit encoding of
such priors in the distributions of cell tunings in V1. We also
report a perceptual effect potentially caused by these priors: rel-
ative depth judgments are biased toward natural scenes that are
shifted in the direction of the predicted prior. Future work could
investigate how ON/OFF pathway segregation and integration
are balanced to best exploit higher-order correlations in natural
scenes.

Notes
Supplemental material for this article is available at http://purl.stanford.
edu/yg499sy5636. The online Supplemental Material contains high-
resolution versions of all images used in the perceptual experiments. Also
included is MATLAB code for performing the analyses reported in the
article. This includes the natural scene statistics analysis, the image ma-
nipulation, and the perceptual experiment analysis (raw response data
from both experiments is provided). This material has not been peer
reviewed.
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Farnè M (1977) Brightness as an indicator to distance: relative brightness
per se or contrast with the background? Perception 6:287–293. CrossRef
Medline

Foley JD, van Dam A, Feiner SK, Hughes JF, Phillips RL (1993) Introduction
to computer graphics. Reading, MA: Addison-Wesley.

Ganguli D, Simoncelli EP (2010) Implicit encoding of prior probabilities in
optimal neural populations. In: Advances in neural information process-
ing systems (Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel RS, Cu-
lotta A, eds), pp 658 – 666. Cambridge: MIT.

Geisler WS (2008) Visual perception and the statistical properties of natural
scenes. Annu Rev Psychol 59:167–192. CrossRef Medline

Geisler WS, Najemnik J, Ing AD (2009) Optimal stimulus encoders for nat-
ural tasks. J Vis 9(13):17 1–16. CrossRef Medline

Girshick AR, Landy MS, Simoncelli EP (2011) Cardinal rules: visual orien-
tation perception reflects knowledge of environmental statistics. Nat
Neurosci 14:926 –932. CrossRef Medline

Harris JM, Parker AJ (1995) Independent neural mechanisms for bright and
dark information in binocular stereopsis. Nature 374:808 – 811. CrossRef
Medline

Hirchmuller H, Scharstein D (2007) Evaluation of cost functions for stereo
matching. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp 1– 8. Minneapolis.

Johns EH, Sumner FC (1948) Relation of the brightness differences of colors
to their apparent distances. J Psychol 26:25–29. CrossRef Medline

Langer MS, Bülthoff HH (2000) Depth discrimination from shading under
diffuse lighting. Perception 29:649 – 660. CrossRef Medline

Langer MS, Zucker SW (1994) Shape-from-shading on a cloudy day. J Opt
Soc Am 11:467– 478. CrossRef

Liu Y, Cormack LK, Bovik AC (2010) Dichotomy between luminance and
disparity features at binocular fixations. J Vis 10(12):23 1–17. CrossRef
Medline

Lu ZL, Sperling G (2012) Black-white asymmetry in visual perception. J Vis
12(10):8 1–21. CrossRef Medline

Nelson R, Famiglietti EV, Kolb H (1978) Intracellular staining reveals dif-
ferent levels of stratification for on- and off-center ganglion cells in cat
retina. J Neurosci 41:472– 483. Medline

Nieder A (2003) Stereoscopic vision: solving the correspondence problem.
Curr Biol 13:R394 –R396. CrossRef Medline

Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrim-
ination in the visual cortex: neurons ideally suited as disparity detectors.
Science 249:1037–1041. CrossRef Medline

O’Shea RP, Blackburn SG, Ono H (1994) Contrast as a depth cue. Vision
Res 34:1595–1604. CrossRef Medline

Pelli DG (1997) The VideoToolbox software for visual psychophysics:
transforming numbers into movies. Spat Vis 10:437– 442. CrossRef
Medline

Potetz B, Lee TS (2003) Statistical correlations between two-dimensional
images and three-dimensional structures in natural images. J Opt Soc Am
A 20:1292–1303. CrossRef Medline

Potetz B, Lee TS (2006) Scaling laws in natural scenes and the inference of
3D shape. In: Advances in neural information processing systems
(Scholkopf B, Platt JC, Hoffman T, eds.), pp 1089 –1096. Cambridge:
MIT.

Ramachandran VS (1988) Perception of shape from shading. Nature 331:
163–166. CrossRef Medline

Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V (2010)
Retina is structured to process an excess of darkness in natural scenes.
Proc Natl Acad Sci U S A 107:17368 –17373. CrossRef Medline

Riesenhuber M, Poggio T (2000) Models of object recognition. Nat Neuro-
sci 3:1199 –1204. CrossRef Medline
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