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ABSTRACT OF THE DISSERTATION

Physical Layer Optimization for Wireless Sensing and Network Connectivity

By

Feng Jiang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2015

Professor A. Lee Swindlehurst, Chair

Wireless sensor networks (WSNs) have been widely studied for detection and esti-

mation problems. When a coherent multiple access channel is employed between the

sensor nodes and fusion center (FC), each sensor takes a noisy measurement of the

signal of interest, amplifies and forwards the measurement to a FC through a wire-

less fading channel, and the FC makes a decision about the presence of the signal

and estimates its parameters based on the coherent sum of the signals from all the

sensor nodes. To minimize estimation error or maximize probability of detection,

the transmit power at the sensors is optimized under either sum or individual power

constraints.

Most of the existing works assume that the FC is configured with a single antenna.

It is well-known that multiple antennas can effectively increase the throughput of a

wireless link, and in this thesis, we investigate how to exploit the benefit of the mul-

tiple antennas in WSN, and we study the detection and estimation performance of a

coherent amplify-and-forward WSN, in which the sensor node has single antenna and

the FC is configured with a massive number of antennas. When the perfect channel

state information (CSI) is available at FC, we derive optimal closed-form sensor trans-

mission gains to optimize the performance of Neyman-Pearson (NP) detector and the

xi



linear minimum mean-squared error estimator (LMMSE), and if CSI is unknown at

FC, we find the optimal sensor transmission gains to maximize the deflection coeffi-

cient of the energy detector (ED). Regarding the energy efficiency, our analysis show

that the performance of NP detector and LMMSE estimator remain asymptotically

constant if the sensor transmit power decreases proportionally with the increase in

the number of antennas, and for the ED which does not require CSI, we show that a

constant deflection can be asymptotically achieved if the sensor transmit power scales

as the inverse square root of the number of FC antennas.

Additionally, we consider the problem of optimize the sensor phase to minimize the

estimation error at FC, when the FC has a limited number of antennas. Two phase

optimization algorithms are proposed and the sensor selection problem is formulated

and solved. In addition to the case with multi-antenna FC, we also investigate the

optimal power allocation for the WSN with single-antenna FC, when the FC use

sensor measurements as input for a Kalman filter to track a dynamic parameter of

interest.

When a fixed network infrastructure is not available (e.g. in military or disaster

response scenarios), we investigate how to use the multi-antenna unmanned aerial ve-

hicles (UAVs) as a relay to improve the connectivity between the mobile sensor nodes

and the FC, which may be separated by a distances greater than their communication

range. Several algorithms are proposed to optimize the trajectory of UAV.

xii



Chapter 1

Introduction

1.1 Challenges in Wireless Sensing with a Coher-

ent MAC

Wireless sensor networks (WSNs) have been widely studied for detection and estima-

tion problems. Recently, considerable research has focused on the fusion of analog

rather than encoded digital data in a distributed sensor network to improve estima-

tion or detection performance. The advantages of analog WSNs have been established

in [1–3], where it was shown that when using distortion between the source and re-

covered signal as the performance metric, digital transmission (separate source and

channel coding) achieves an exponentially worse performance than analog signaling.

In a distributed analog amplify-and-forward sensor network, the sensor nodes multiply

their noisy observations by a complex factor and transmit the result to a fusion center

(FC). In a coherent multiple access channel (MAC), the FC uses the coherent sum of

the received signals to detect the signal and estimate the signal parameter. The key

problem in this setting is designing the multiplication factor for each sensor to meet

1



some goal in terms of sensing performance or power consumption. Furthermore, for

an optimal solution, these multipliers would have to be updated in scenarios where

the parameter or wireless channels are time-varying. After the sensor network is de-

ployed, the FC can estimate the wireless channels periodically. Based on the channel

coefficients, the FC can first optimize the complex multipliers at sensor nodes un-

der constraint of the sensing performance or power consumptions requirement, then

feedback these complex multipliers to sensor nodes for future signal transmission.

Most of the existing results assume that the FC is equipped with only one antenna.

Just as multi-antenna receivers can provide significant capacity or diversity gains in

communication systems, the estimation or detection performance of a WSN should

also benefit from the use of a multi-antenna FC, though prior work on this scenario is

limited. Recently researchers have investigated the use of arrays with a massive num-

ber of antennas in wireless communication systems in order to improve spectral and

energy efficiency [4–7]. Most of the research on so-called “massive MIMO” systems

has been focused on cellular networks where the base station (BS) is configured with

many antennas while the individual mobile stations have a single antenna. When

perfect channel state information (CSI) is available at the BS, it has been shown that

the transmit power of the mobile terminals can be reduced proportionally to the in-

crease in the number of antennas without impacting the asymptotic rate of the users

in the system [4]. The benefit is somewhat less when the BS uses an imperfect channel

estimate; in this case the mobile users’ transmit power can be inversely proportional

to the square root of the number of antennas in order to achieve a constant rate [5].

For parameter detection or estimation problems in WSNs, an important question is

how to design the complex multipliers at sensor nodes to exploit a multi-antenna FC

to improve the probability of detection or estimation error.

For the network with fixed infrastructure, the network configuration (e.g., sensor

2



transmission gain and phase) can be optimized at FC, and then feedback the to the

sensor nodes. When a fixed network infrastructure is not available (e.g., in military or

disaster response scenarios), the sensor nodes (user) and the FC may be separated by

distances greater than their communication range, or the signals may be shadowed due

to mountainous terrain or dense surroundings (forests, buildings, etc.). Furthermore,

since the users are mobile, the communications environment is constantly changing

and thus connectivity between the user nodes and FC is often only sporadic. In such a

scenario, the unmanned aerial vehicles (UAVs) can act as airborne relays (essentially

“flying basestations”) to provide an attractive solution since their altitude allows them

to get above the ground-based shadowing and obtain line-of-sight (LOS) or near LOS

communication channels over a large area. The UAV can collect the messages from

the co-channel users on the ground and then forward them to some remote FC. Also

and perhaps most importantly, the inherent mobility of UAVs allows their position to

be adjusted in order to best accommodate the evolving network topology. To further

improve the communication performance, the UAV can be configured with multiple

antennas, and an interesting problem is how to control the motion of the UAV so as

to optimize the uplink communications performance.

1.2 General Approach and Contributions

1.2.1 Transmit Power Allocation for Single-antenna FC

Most prior work on estimation in distributed amplify-and-forward sensor networks

has focused on the situation where the parameter(s) of interest are time-invariant,

and either deterministic or i.i.d. Gaussian. For the single-antenna FC, we consider

a scenario in which the parameter of interest is dynamic, and at the sensors, the

3



observation of this dynamic signal is corrupted by measurement noise. The sensors

amplify and forward the measurement to the FC through a coherent MAC, and a

Kalman filter is used to track this signal at FC. Utilizing SDP, the optimal power

allocations of sensor nodes to the following four problems have been found [8]:

- Minimize MSE under constraint of the sum transmit power of all sensor nodes

- Minimize the sum transmit power under the constraint of MSE

- Minimize MSE under individual power constraint of sensor nodes

- Minimize the maximum individual transmit power of sensor nodes under MSE

constraint

Additionally, we generalize the tacking of a dynamic scalar parameter to the vector

process. We assume the state-space observations linearly depend on a set of gain

parameters, and these gain parameters can be optimized to improve the MSE of the

Kalman filter. For the vector-valued dynamic model, the following two problems have

been solved [9]:

- Minimize sum MSE under constraint of the sum transmit power

- Minimize the maximum MSE under the sum transmit power

1.2.2 Phase or Power Optimization for Multi-antenna FC

When the FC is configured with multiple antennas, the estimation or detection perfor-

mance of WSN should be improved due to the diversity gain from additional antennas.

For the multi-antenna FC, we consider a distributed WSN with single-antenna sensors

that observe an unknown signal corrupted by noise. The sensors apply a phase shift

4



or gain to their observation and then simultaneously transmit the result to a multi-

antenna FC over a coherent MAC. The FC will detect the existence of the signal and

estimate its parameters. Based on the availability of the channel state information

(CSI), the FC determines the optimal value of the phase or gain for each sensor in

order to improve the probability of detection and estimation error, and then feeds

this information back to the sensors so that they can apply the appropriate phase

shift or gain for future transmission.

If the number of antennas at FC is limited, we assume sensors apply a phase shift

(rather than both gain and phase) to their observation and then simultaneously trans-

mit the result to a multi-antenna FC over a coherent MAC. The advantage of a

phase-shift-only transmission is that it leads to a simpler analog implementation at

the sensor. The detailed contributions regarding the multi-antenna FC are listed

below [10]:

- Propose two algorithms to minimize maximum-likelihood (ML) estimation error

at FC through optimizing phase-shift of sensor nodes

- Derive conditions to determine whether multiple antennas can provide more

benefit than single-antenna FC

- Analyze the estimation performance degradation due to phase error at sensor

nodes

- Investigate sensor selection problems under different assumptions of measure-

ment noise

The benefit of the phase-shift and forward scheme is not always achievable. When the

FC have a massive number of antennas, we will show that the detection or estimation

performance at FC only depends on the gain at the sensor nodes and the phase can

5



be arbitrary. After receiving the signals from sensor nodes, the FC can optimize the

sensor gain to maximize probability of detection or minimize estimation error. For

the massive MIMO sensor network, the contributions are summarized as [11]:

- When perfect CSI is available at FC, we derive the optimal closed-form “water-

filling” sensor gain allocation solution for Neyman-Pearson (NP) detection or

linear minimum mean-squared error estimation(LMMSE)

- When CSI is unknown at FC, we study the performance of energy detector,

and to maximize the deflection of the energy detector, optimal sensor gain have

been found using quadratic constraint linear programming (QCLP).

- Analyze the energy efficiency at sensor nodes under different CSI assumptions.

When perfect CSI is known at FC, the sensor transmit power can decrease

proportionally to the antenna number, and meanwhile the NP detector and

LMMSE estimator can achieve a constant detection performance or estimation

error; when the CSI is unknown, the sensor transmit power can be scaled by

the inverse square root of FC antenna number to achieve a constant deflection.

- Derive performance bounds to show when the multi-antenna FC have better

detection or estimation performance than the single-antenna FC.

1.2.3 Connectivity Optimization for UAV Assisted Mobile

Network

For the UAV assisted mobile sensor network, we assume several ground-based sensors

(users) communicate simultaneously with a multi-antenna UAV relay. The users are

assumed to transmit signal with a single antenna and the UAV uses beamforming to

separate the co-channel data streams. There exist co-channel interference between

6



different users’ data streams and we quantify the connectivity of the relay network

using the ergodic achievable sum rate of the uplink communication, assuming that

the UAV uses a maximum signal-to-interference-plus-noise ratio (SINR) beamformer

for interference mitigation. The strength of the mutual interference depends on the

correlation between the users’ channel vectors, which in a channel with a strong line-

of-sight (LOS) component is a function of the signals’ angle of arrival (AoA). The

AoAs depend in turn on the UAV’s heading and the relative positions of the UAV

and the ground nodes. Consequently, we study the problem of how to adjust the

heading of the UAV to minimize the users’ mutual interference and improve the uplink

communications performance. The main results of the UAV heading optimization

problem are summarized as follows [12]:

- We investigate the case with two static ground nodes and the corresponding

heading optimization problem is solved using line search.

- For the general mobile network, we formulate a heading optimization problem

and develop a line-search algorithm for dynamically adjusting the UAV heading

to maximize the sum rate of the uplink channel, using a prediction filter to

track the positions of the mobile ground nodes.

- When a strong LOS channel exists between the ground nodes and UAV, we

derive asymptotic closed-form solutions for the heading optimization problem

for low and high SNR cases, the performance of which are very close to that of

the optimal algorithm.
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1.3 Outlines

The rest part of this dissertation is organized as follows. Chapter 2 provides a general

overview of the system models used in this thesis. In Chapter 3, we investigate

the scalar dynamic parameter tracking problem in amplify-and-forward WSN with a

single-antenna FC. Problems of MSE minimization under transmit power constraint

or transmit power minimization under MSE constraint have been formulated and

optimal solutions have been found using SDP. The power allocation for the tracking

of a vector process is studied in Chapter 4, and problems of minimizing sum MSE or

maximum MSE under power constraint have been formulated and solved.

Chapter 5 focuses on the deterministic parameter estimation in phase-shift and for-

ward WSN with a multi-antenna FC. Based on the perfect knowledge of CSI, to

minimize the estimation error at FC, we propose two algorithms for optimizing sen-

sor phase. Asymptotic performance analyses for cases involving large numbers of

sensors or large numbers of FC antennas are derived. The impact of phase errors at

the sensor transmitters and the sensor selection problem are also studied.

When the FC is configured with a large antenna array, the detection or estimation

performance of a zero-mean Gaussian signal are analyzed in Chapter 6. For the NP

detector and LMMSE estimator which requires perfect CSI, we show that detection

or estimation performance remains asymptotically constant with the number of FC

antennas if the sensor transmit power is scaled by the inverse of the number of an-

tennas. For the energy detector which does not require CSI, we derive optimal gains

that maximize the deflection coefficient of the detector, and we show that a constant

deflection can be asymptotically achieved if the sensor transmit power is multiplied

by the increase of square root of the number of FC antennas.

Chapter 7 considers a collection of single-antenna ground sensor nodes communicating
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with a multi-antenna UAV relay over a multiple-access ground-to-air communications

link. First, a simple scenario with two static ground nodes is investigated. We then

study a more general system setting with multiple mobile ground-based users, and

develop an algorithm for dynamically adjusting the UAV heading to maximize the

sum rate of the uplink channel. Last, the asymptotic closed-form solutions for UAV

heading optimization are derived under the assumptions of high or low SNR. The

conclusions of this thesis are summarized in Chapter 8.

The notation used in this dissertation is summarized as follows. Lower-case and

upper-case bold letters represent vectors and matrices respectively, and CM×1 denotes

the space of M-element complex vectors. We use (·)T and (·)H for transpose and

conjugate transpose respectively. The M ×M identity matrix and zero matrix are

denoted as IM and 0M respectively, and diag{d1 · · · dN} is a N ×N diagonal matrix

with di as the ith diagonal element. Probabilities and conditional probabilities are

denoted by Pr(·) and Pr(·|·), and p(·|·) represents a conditional probability density

function. The functions E{·} and Var{·} denote the expectation and variance of a

random variable, and CN (0,Σ) denotes the complex Gaussian distribution with zero

mean and covariance matrix Σ. The ith eigenvalue of a matrix is written as λi(·),

and for two Hermitian matrices A and B, A � B means that A − B is positive

semidefinite. The operators tr(·), ⊙ and ⊗ respectively denote the trace of a matrix,

the Hadamard (element-wise) product and the Kronecker product of two matrices .
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Chapter 2

System Models and Assumptions

In this chapter we introduce the general network and signal models used in this thesis.

For the distributed analog amplify-and-forward sensor network, we assume the single-

antenna sensor nodes can independently measure the signal of interest and then scale

the measurements with a complex multiplier and forward the signal to the FC. Based

on the detection or estimation performance, the FC can optimzie the gain or phase at

each sensor node, and feedback these information to the sensor nodes for future signal

transmission. For the UAV assisted mobile network, the mobile nodes on the ground

are assumed to have single antenna, and the UAV is configured with an antenna array.

The UAV can track the positions of the ground users through Kalman filtering. The

connectivity of the network can be optimized through adjusting the UAV’s relative

position to the ground nodes, and the trajectory of UAV is controlled by its heading.

The details of the system models are described below.

10



2.1 Parameter Tracking Using a Single-antenna FC

For the parameter tracking problem, we model the evolution of a complex-valued

dynamic parameter θn using a first-order Gauss-Markov process:

θn = αθn−1 + un ,

where n denotes the time step, α is the correlation parameter and the process noise

un is zero-mean complex normal variable with variance σ2
u (denoted by CN (0, σ2

u)).

We assume that θ0 is zero mean and that the norm |α| < 1, so that θn is a stationary

process. Thus, the variance of θn is constant and given by σ2
θ = σ2

u/ (1 − |α|2). A set

of N sensors measures θn in the presence of noise; the measurement for the ith sensor

at time n is described by

si,n = θn + vi,n ,

where the measurement noise vi,n is distributed as CN (0, σ2
v,i). In an amplify-and-

forward sensor network, each sensor multiplies its observation by a complex gain

factor and transmits the result over a wireless channel to a FC. The FC receives a

coherent sum of the signals from all N sensors in additive noise:

yn =

N
∑

i=1

hi,nai,nsi,n + wn

=

N
∑

i=1

(hi,nai,nθn + hi,nai,nvi,n) + wn , (2.1)

where hi,n is the gain of the wireless channel between sensor i and the FC, ai,n is the

complex transmission gain of sensor i, and wn is noise distributed as CN (0, σ2
w).

Based on the received signal yn, the FC can use a standard Kalman filter to get an

estimate θ̂n|n, and the MSE E{|θn − θ̂n|n|2} will be a function of the complex gain ai
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Figure 2.1: Block diagram for parameter tracking with a single-antenna FC

at the sensor nodes, thus the FC can minimize the MSE through optimizing ai. A

block diagram for the WSN with single-antenna FC is provided in figure 2.1.

2.2 Wireless Sensing with a Multi-antenna FC

When the FC is configured with multiple antennas, the received signal from different

antennas can be combined coherently to improve the detection or estimation perfor-

mance of the WSN. For the detection problem, the signal of interest θ is modeled as

a zero-mean circular complex Gaussian variable1 with variance σ2
θ , a distribution we

denote by CN (0, σ2
θ). The measurement available at the ith of N sensor nodes is

si = θ + vi ,

1 Although we use a Bayesian framework, our approach can be also used for the deterministic
case, in which θ is assumed to be a deterministic signal.
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where vi is measurement noise distributed as CN (0, σ2
v,i). The ith sensor multiplies

the measurement with a complex gain ai and coherently forwards the result to the FC

through a wireless fading channel. The received signal at the M-antenna FC under

the two hypotheses is

H0 : y = HDv + n

H1 : y = Haθ + HDv + n , (2.2)

where

v = [v1 · · · vN ]T

a = [a1 · · · aN ]T

D = diag{a1 · · · aN}

H = [h1 · · · hN ] ,

hi ∈ CM×1 is the channel gain between the ith sensor and the FC, and the vector

n ∈ C
M×1 represents additive Gaussian noise at the FC and has the distribution

CN (0, σ2
nIM).

Assuming that the FC has perfect knowledge of signal variance σ2
θ , the measurement

noise power σ2
v,i and the CSI in H, the NP criterion can be used to distinguish between

the hypotheses H0 and H1, and based on H1, the value of θ can be estimated using

LMMSE estimator. When the CSI is unknown at FC, the energy detector can be

used to detect the existence of the signal θ. The block diagram for wireless sensing

with a M-antenna FC is described in figure 2.2.
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Figure 2.2: Block diagram of wireless sensing with a multi-antenna FC

2.3 Connectivity of UAV Assisted Mobile Sensor

Network

When the UAV relay is used to improve the connectivity of the mobile network,

the mobile users first transmit the data to the UAV relay and the UAV relay will

decode and forward the data to the FC. We assume a UAV configured with an array

of M antennas, and a collection of N ground nodes each equipped with a single

antenna. We restrict attention to fixed-wing (non-hovering) UAVs that must maintain

a certain forward velocity to remain airborne. Fixed-wing UAVs have two advantages

for our application: (1) they tend to be somewhat larger than hovering UAVs and

allow more flexibility in deploying an antenna array with a larger aperture, and (2)

the rotary blade motion on hovering aircraft can lead to high-Doppler reflections of

the communications signals that are difficult to compensate for. We assume that,

during the period of time in which the UAV is receiving uplink data from the ground
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Figure 2.3: Block diagram of UAV relay assisted mobile network

nodes, the UAV maintains a constant altitude hu and a constant velocity vu. For

simplicity, we assume that each ground node transmits with the same power Pt, but

this assumption is easily relaxed. The signal received at the UAV array at time n can

thus be written as

yn =
N
∑

i=1

√

Pthi,nxi,n + nn,

where hi,n ∈ CM×1 is the channel vector between node i and the UAV, the data

symbol xi,n is a complex scalar with zero mean and unit magnitude, nn ∈ CM×1 is

zero-mean additive Gaussian noise with covariance E{nnn
H
n } = σ2IM . The UAV uses

a beamformer wi,n to isolate the data from the i-th node: x̂i,n = wH
i,nyn, and the

corresponding SINR is calculated as

SINRi,n =
Pt|wH

i,nhi,n|2
wi,nQi,nwi,n

, (2.3)
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where Qi,n =
∑N

j=1,j 6=i Pthj,nh
H
j,n+σ2IM . The connectivity of the network is evaluated

using the average sum rate of the uplink transmission which is calculated as

Cn =
N
∑

i=1

E {log2(1 + SINRi,n)} . (2.4)

From (2.3) and (2.4), we can observe that the uplink communication performance

depends on the channel vector hi,n through the SINRi,n. In this work, we assume

the channel between the ground nodes and the UAV is Rician fading and the LOS

component of the channel hi,n is decided by the AoA which is a function of the

positions of the UAV and the ground nodes. After estimating the mobile ground users’

positions, the UAV can adjust its heading direction to change its relative position to

the ground nodes such that the average uplink sum rate can be maximized.
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Chapter 3

Optimal Power Allocation for

Tracking of a Scalar Parameter

3.1 Introduction

In a distributed analog amplify-and-forward sensor network, the sensor nodes multiply

their noisy observations by a complex factor and transmit the result to an FC. In a

coherent MAC, the FC uses the coherent sum of the received signals to estimate

the parameter. Most prior work on estimation in distributed amplify-and-forward

sensor networks has focused on the situation where the parameter(s) of interest are

time-invariant, and either deterministic or i.i.d. Gaussian. The case of an orthogonal

MAC, where the FC has access to the individual signals from each sensor, has been

studied in [13–19]. For a coherent MAC, relevant work includes [10, 14, 18, 20–22].

In [13–15, 17], two kinds of problems were considered: minimizing the estimation

error under sum or individual power constraints, and minimizing the sum transmit

power under a constraint on the estimation error. Scaling laws for the estimation
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error with respect to the number of sensors were derived in [16, 18] under different

access schemes and for different power allocation strategies. In [10, 22], the authors

exploited a multi-antenna FC to minimize the estimation error.

More relevant to this chapter is interesting recent work by Leong et al, who model

the (scalar) parameter of interest using a dynamic Gauss-Markov process and assume

the FC employs a Kalman filter to track the parameter [23, 24]. In [23], both the or-

thogonal and coherent MAC were considered and two kinds of optimization problems

were formulated: MSE minimization under a global sum transmit power constraint,

and sum power minimization problem under an MSE constraint. An asymptotic ex-

pression for the MSE outage probability was also derived assuming a large number

of sensor nodes. The problem of minimizing the MSE outage probability for the

orthogonal MAC with a sum power constraint was studied separately in [24].

In this chapter, we consider scenarios similar to those in [23]. In particular, we

focus on the coherent MAC case assuming a dynamic parameter that is tracked via

a Kalman filter at the FC. As detailed in the list of contributions below, we extend

the work of [23] for the case of a global sum power constraint, and we go beyond [23]

to study problems where either the power of the individual sensors is constrained, or

the goal is to minimize the peak power consumption of individual sensors:

1. We find a closed-form expression for the optimal complex transmission gains

that minimize the MSE under a constraint on the sum power of all sensor

transmissions. While this problem was also solved in [23] using the KKT condi-

tions derived in [14], our approach results in a simpler and more direct solution.

We also examine the asymptotic form of the solution for high total transmit

power or high noise power at the FC.

2. We find a closed-form expression for the optimal complex transmission gain
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that minimizes the sum power under a constraint on the MSE. In this case, the

expression depends on the eigenvector of a particular matrix. Again, while this

problem was also addressed in [23], the numerical solution therein is less direct

than the one we obtain. In addition, we find an asymptotic expression for the

sum transmit power for a large number of sensors.

3. We show how to find the optimal transmission gains that minimize the MSE

under individual sensor power constraints by relaxing the problem to a SDP

problem, and then proving that the optimal solution can be constructed from

the SDP solution.

4. We show how to find the optimal transmission gains that minimize the maxi-

mum individual power over all of the sensors under a constraint on the maximum

MSE. Again, we solve the problem using SDP, and then prove that the optimal

solution can be constructed from the SDP solution.

5. For the special case where the sensor nodes use equal power transmission, we

derive an exact expression for the MSE outage probability.

The rest of this chapter is organized as follows. Section 3.2 describes the system

model for the parameter tracking problem and provides an expression for the MSE

obtained at the FC using a standard Kalman filter. Section 3.3 investigates the MSE

minimization problem under the assumption that the sensor nodes have a sum trans-

mit power constraint. The MSE minimization problem with individual sensor power

constraints is formulated and solved in Section 3.3.2. The problems of minimizing the

sum power or the maximum individual sensor power with MSE constraints are formu-

lated and optimally solved in Section 3.4. In Section 3.5, the MSE outage probability

for equal power allocation is derived. Numerical results are presented in Section 3.6

and the conclusions are summarized in Section 3.7.
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3.2 Signal Model

As introduced in section 2.1, the signal model in equation (2.1) can be written more

compactly in matrix-vector form, as follows:

yn = aH
n hnθn + aH

n Hnvn + wn ,

where hn = [h1,n · · ·hN,n]T , an = [a1,n · · ·aN,n]H is a vector containing the conjugate

of the sensor transmission gains, Hn = diag{h1,n · · ·hN,n} is a diagonal matrix, and

the measurement noise vector vn = [v1,n · · · vN,n]T has covariance V = E{vnv
H
n } =

diag
{

σ2
v,1 · · ·σ2

v,N

}

.

The FC is assumed to know the statistics of the various noise processes, the current

channel state hn, and the transmission gains an, and it uses a standard Kalman filter

to track the parameter θn according to the equations below [25]:

• Prediction Step: θ̂n|n−1 = αθ̂n−1|n−1

• Prediction MSE: Pn|n−1 = α2Pn−1|n−1 + σ2
u

• Kalman Gain:

kn =
Pn|n−1h

H
n an

aH
n HnVHH

n an + Pn|n−1aH
n hnhH

n an + σ2
w

• Measurement Update:

θ̂n|n = θ̂n|n−1 + kn

(

yn − aH
n hnθ̂n|n−1

)

• Filtered MSE:

Pn|n = (1 − kna
H
n hn)Pn|n−1 . (3.1)
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The goal is to determine an optimal choice for the gains an that minimizes the filtered

MSE under a power constraint, or that minimizes the power consumed in transmitting

the data to the FC under an MSE constraint. The optimal gains are then fed back

to the individual sensors to use at time n.

3.3 Minimizing MSE under a Power Constraint

3.3.1 Global Sum Power Constraint

In this section, we briefly consider the problem of minimizing the MSE under the

assumption that the sensor nodes have a sum power constraint. As mentioned earlier,

this problem has already been studied in [23], but the solution we provide here is

simpler and more direct. The optimization problem can be written as

min
an

Pn|n (3.2)

s.t. aH
n Dan ≤ PT ,

where aH
n Dan and PT respectively represent the actual and total available transmit

power, with D = diag{σ2
θ + σ2

v,1 · · ·σ2
θ + σ2

v,N}. From (3.1), minimizing the MSE Pn|n

is equivalent to maximizing

kna
H
n hn =

Pn|n−1a
H
n hnh

H
n an

aH
n HnVHH

n an + Pn|n−1a
H
n hnhH

n an + σ2
w

,

and after a simple manipulation, the optimization problem in (3.2) is equivalent to

max
an

aH
n hnh

H
n an

aH
n HnVHH

n an + σ2
w

(3.3)

s.t. aH
n Dan ≤ PT .
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Denote the optimal solution to (3.3) as a∗
n. It is easy to verify that the objective

function of (3.3) is monotonically increasing in the norm of an, which implies that at

the optimal solution, the sum transmit power constraint should be met with equality

a∗H
n Da∗

n = PT . Thus (3.3) becomes a Rayleigh quotient under a quadratic equality

constraint. Since the numerator involves a rank-one quadratic term, a simple closed-

form solution is possible. If we define B = HnVHH
n + σ2

w

PT
D, the optimal solution is

given by

a∗
n =

√

PT

hH
n B−1DB−1hn

B−1hn . (3.4)

Note that the phase of each sensor transmission gain is the conjugate of the channel

to the FC (recall that an contains the conjugate of these transmission gains). In

[23], this property was assumed from the beginning in order to get an optimization

problem with only real-valued variables; however, we see that this phase-matched

solution results even without this assumption.

The maximum value of the objective function in (3.3) can be expressed as

a∗H
n hnh

H
n a∗

n

a∗H
n (HnVHH

n + σ2
w

PT
D)a∗

n

= hH
n B−1hn .

Given that

hH
n B−1hn

(a)
< hH

n (HVHH)−1hn (3.5)

=

N
∑

i=1

1

σ2
v,i

, (3.6)

where (a) follows from B−1 ≺ (HVHH)−1, a lower bound on the MSE can be obtained
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by plugging (3.6) into (3.1):

Pn|n >











1 − 1

1 + 1
(

∑N
i=1

1

σ2
v,i

)

Pn|n−1











Pn|n−1

=
Pn|n−1

1 +
(

∑N
i=1

1
σ2

v,i

)

Pn|n−1

. (3.7)

Equation (3.5) becomes an equality when σ2
w/PT → 0 or when the signal-to-noise-

ratio (SNR) at the FC is very high, and the resulting optimal sensor transmission

gains become

a∗
n =

√

√

√

√

PT

∑N
i=1

σ2
θ
+σ2

v,i

σ4
v,i|hn,i|2

[

1

h1,nσ
2
v,1

· · · 1

hN,nσ
2
v,N

]H

. (3.8)

In this case, sensors with small channel gains or low measurement noise are allocated

more transmit power. On the other hand, for low SNR at the FC where σ2
w/PT → ∞,

we have B ≈ σ2
w

PT
D, and hence from (3.4) the optimal gain vector is proportional to

a∗
n∝
[

h1,n

σ2
θ + σ2

v,1

· · · hN,n

σ2
θ + σ2

v,N

]T

. (3.9)

Interestingly, unlike the high SNR case, for low SNR the sensors with large channel

gains are assigned higher power. This observation will be highlighted later in the

simulations of Section 3.6.

3.3.2 Individual Power Constraints

In a distributed sensor network, it is more likely that the power of the individual

sensors would be constrained, rather than the total sum power of the network. As

seen in the previous section, when the SNR at the FC is high (low), a weak (strong)
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channel for a given sensor can lead to a high transmission power that the sensor may

not be able to support. Thus, in this section we address the problem of minimizing

the MSE under individual sensor power constraints, as follows:

min
an

Pn|n (3.10)

s.t. |ai,n|2(σ2
θ + σ2

v,i) ≤ PT,i , i = 1, · · · , N ,

where PT,i is the maximum transmit power available at the ith sensor node. Similar

to (3.2), problem (3.10) can be rewritten as

max
an

aH
n hnh

H
n an

aH
n HnVHH

n an + σ2
w

(3.11)

s.t. |ai,n|2(σ2
θ + σ2

v,i) ≤ PT,i , i = 1, · · · , N .

Problem (3.11) is a quadratically constrained ratio of quadratic functions (QCRQ),

and as explained below we will use the approach of [26] to transform the QCRQ

problem into a relaxed SDP problem. Introduce a real auxiliary variable t and define

ãn = tan, so that problem (3.11) is equivalent to

max
an,t

ãH
n hnh

H
n ãn

ãH
n HnVHH

n ãn + σ2
wt

2
(3.12)

s.t. ãH
n Diãn ≤ t2PT,i , i = 1, · · · , N

t 6= 0 ,

where Di = diag{0 · · ·0 σ2
θ + σ2

v,i 0 · · ·0}. We can further rewrite problem (3.12) as

max
an,t

ãH
n hnh

H
n ãn (3.13)

s.t. ãH
n HnVHH

n ãn + σ2
wt

2 = 1

ãH
n Diãn ≤ t2PT,i , i = 1, · · · , N .
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Note that the constraints in problem (3.13) already guarantee that t 6= 0, so this

constraint is removed.

Define ān = [ãH
n t]H and the matrices

H̄n =







hnh
H
n 0

0T 0






, C̄n =







HnVHH
n 0

0T σ2
w






, D̄i =







Di 0

0T −PT,i






,

so that problem (3.13) can be written in the compact form

max
ān

āH
n H̄nān (3.14)

s.t. āH
n C̄nān = 1

āH
n D̄iān ≤ 0 , i = 1, · · · , N .

Defining the (N + 1) × (N + 1) matrix Ā = ānā
H
n , problem (3.14) is equivalent to

max
Ā

tr(ĀH̄n) (3.15)

s.t. tr(ĀC̄n) = 1

tr(ĀD̄i) ≤ 0 , i = 1, · · · , N

rank(Ā) = 1

Ā � 0 .

Were it not for the rank constraint, the problem in (3.15) would be a standard SDP

problem and could be solved in polynomial time using (for example) the interior point

method. Given the difficulty of handling the rank constraint, we choose to relax it
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and solve the simpler problem

max
Ā

tr(ĀH̄n) (3.16)

s.t. tr(ĀC̄n) = 1

tr(ĀD̄i) ≤ 0 , i = 1, · · · , N

Ā � 0 ,

which would provide an upper bound on the optimal value of problem (3.11), and

would in general lead to a suboptimal solution for the vector an of transmission gains.

However, in the following we show that the optimal solution to the original problem

in (3.10) can be constructed from the solution to the relaxed SDP problem in (3.16).

The optimality of a rank-relaxed SDP problem similar to the one we consider here

has previously been noted in [27], but for a different problem related to physical layer

security. To describe how to find the optimal solution from the rank-relaxed problem

in (3.16), define Ā∗ to be the solution to (3.16), Ā∗
l,m as the (l,m)th element of Ā∗,

and Ā∗
N as the Nth order leading principal submatrix of Ā∗ formed by deleting the

(N + 1)st row and column of Ā∗. Then the optimal solution can be found via the

following theorem.

Theorem 1. Define the optimal solution to problem (3.16) as Ā∗. Then Ā∗
N = aaH

is rank-one and the optimal solution to problem (3.10) is given by

a∗
n =

1
√

Ā∗
N+1,N+1

a .

Proof : We first utilize the strong duality between problem (3.16) and its dual to find
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properties of the optimal solution Ā∗. The dual of problem (3.16) is given by [28]:

min
yi,z

z (3.17)

s.t.
N
∑

i=1

yiD̄i + zC̄n − H̄n � 0

y1, . . . , yN , z ≥ 0 .

It is easy to verify that there exist strictly feasible points for problems (3.16) and (3.17).

In particular, for (3.16), we can construct

Āf = diag{ab · · ·ab b} ,

where 0 < a < mini
PT,i

σ2
θ
+σ2

v,i

, and b = 1
∑N

i=1 a|hn,i|2σ2
v,i+σ2

w

.

For (3.17), we can randomly select yf
i > 0, and set zf large enough such that

zf > max

{

hH
n hn+

∑N
i=1 y

f
i PT,i

σ2
w

,
hH

n hn−yf
i (σ2

θ +σ2
v,i)

|hn,i|2σ2
v,i

}

.

Then, according to Slater’s theorem, strong duality holds between the primal prob-

lem (3.16) and the dual problem (3.17) and we have the following complementary

condition:

tr(Ā∗G∗) = 0 , (3.18)

where G∗ =
∑N

i=1 y
∗
i D̄i + z∗C̄n − H̄n and y∗i and z∗ denote the optimal solution to

problem (3.17). Due to the special structure of D̄i, C̄n and H̄n, G∗ can be expressed

as

G∗ =







G∗
N 0

0T G∗
N+1,N+1






,

where G∗
N =

∑N
i=1 y

∗
i Di + z∗HnVHH

n − hnh
H
n and G∗

N+1,N+1 = z∗σ2
w −∑N

i=1 y
∗
iPT,i.
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Since both Ā∗ and G∗ are positive semidefinite, (3.18) is equivalent to

Ā∗G∗ = 0 .

Additionally, with consideration of the structure of G∗, we have

Ā∗
NG∗

N = 0 .

Define VG as a set of vectors orthogonal to the column space of G∗
N . Then the row

vectors of Ā∗
N must belong to span(VG) and rank(Ā∗

N) ≤ rank(VG). For any two

matrices M and N, we have [29] that rank(M + N) ≥ |rank(M) − rank(N)|, so

rank(G∗
N) ≥ rank

(

N
∑

i=1

y∗i Di + z∗HnVHH
n

)

− rank(hnh
H
n ) = N − 1 .

and

rank(VG) = N − rank(G∗
N) ≤ 1 . (3.19)

Since tr(Ā∗H̄) = hH
n Ā∗

Nhn and tr(Ā∗H̄) > tr(ĀfH̄) > 0, we have

Ā∗
N 6= 0 , rank(Ā∗

N) ≥ 1 . (3.20)

Combining (3.19) and (3.20) then leads to

rank(Ā∗
N) = 1 .

Although at this point we don’t know whether the optimal solution Ā∗ is rank-

one, we can construct a rank-one optimal solution based on Ā∗. Define the rank-one

decomposition of Ā∗
N as Ā∗

N = aaH , so that the optimal rank-one solution to problem
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(3.16) is

Ā
′

= ā∗ā∗H , (3.21)

where ā∗ =
[

aH
√

Ā∗
N+1,N+1

]H

. It is easy to verify that the rank-one matrix Ā
′
can

achieve the same result for problem (3.16) as Ā∗.

Since (3.11) is equivalent to problem (3.10) and (3.15), and (3.16) is realized from

problem (3.15) by relaxing the rank-one constraint, in general the solution to (3.16)

provides an upper bound on the optimal value achieved by (3.11). If the optimal

solution to (3.10) is a∗
n, then

a∗H
n hnh

H
n a∗

n

a∗H
n HVHHa∗

n + σ2
w

≤ tr(Ā∗H̄) , (3.22)

where a∗
n and Ā∗ are the optimal solutions to problems (3.10) and (3.16) respectively.

Equality can be achieved in (3.22) provided that an optimal rank-one solution exists

for (3.16), and (3.21) indicates that such a rank-one solution exists. In the following,

we will show how to construct a∗
n based on Ā∗. According to problem (3.16), since

tr(Ā∗C̄n) = 1 and Ā � 0, then we have Ā∗ 6= 0 and further Ā∗
N+1,N+1 > 0. Based

on ā∗, the optimal solution to (3.10) is given by

a∗
n =

ā∗
√

Ā∗
N+1,N+1

, (3.23)

and plugging (3.23) into (3.22) we have

a∗H
n hnh

H
n a∗

n

a∗H
n HVHHa∗

n + σ2
w

= tr(Ā∗H̄) ,

which verifies the optimality of a∗
n. �
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3.4 Minimizing Transmit Power under an MSE

Constraint

In this section, we consider the converse of the problems investigated in Section 3.3.

We first look at the problem addressed in [23], where the goal is to minimize the sum

power consumption of all the sensors under the constraint that the MSE is smaller

than some threshold. The asymptotic behavior of the solution is then characterized for

a large number of sensors, N . Next we study the case where the maximum individual

transmit power of any given sensor is minimized under the MSE constraint.

3.4.1 Minimizing Sum Transmit Power

We can express the problem of minimizing the sum transmit power under the con-

straint that the MSE is smaller than ǫ as follows:

min
an

aH
n Dan (3.24)

s.t. Pn|n ≤ ǫ .

To make (3.24) feasible, according to (3.1) and (3.7) the value of ǫ should satisfy

Pn|n−1

1 +
(

∑N
i=1

1
σ2

v,i

)

Pn|n−1

≤ ǫ ≤ Pn|n−1 . (3.25)

As discussed earlier, the MSE is monotonically decreasing in the norm of an, so it is

clear that setting Pn|n = ǫ results in the minimum possible transmit power, which we

refer to as P ∗
T . Conceptually, the problem can be solved by finding the value of P ∗

T
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for which Pn|n = ǫ, and then substituting this value into the solution found in (3.4):

a∗
n =

√

P ∗
T

hH
n B−1DB−1hn

B−1hn .

Unlike [23], where an unspecified numerical procedure was required to solve this

problem, in the following we present a direct “closed-form” solution that finds the

result in terms of the eigenvalue and eigenvector of a particular matrix.

Assuming that ǫ satisfies the feasibility constraint of (3.25), we use (3.1) and Pn|n = ǫ

to convert (3.24) to the following form:

min
an

aH
n Dan (3.26)

s.t. aH
n Enan ≥

(

Pn|n−1

ǫ
− 1

)

σ2
w ,

where En = Pn|n−1hnh
H
n −

(

Pn|n−1

ǫ
− 1
)

HnVHH
n . It’s obvious that the constraint in

problem (3.26) should be active at the optimal solution and we can rewrite problem

(3.26) as

min
an

aH
n Dan

aH
n Enan

(3.27)

s.t. aH
n Enan =

(

Pn|n−1

ǫ
− 1

)

σ2
w .

Since both of aH
n Dan and aH

n Enan are positive, problem (3.27) is equivalent to

max
an

aH
n Enan

aH
n Dan

(3.28)

s.t. aH
n Enan =

(

Pn|n−1

ǫ
− 1

)

σ2
w .
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Setting y = D
1
2an, problem (3.28) becomes a Rayleigh quotient maximization:

max
y

yHD− 1
2EnD

− 1
2y

yHy

s.t. yHD− 1
2EnD

− 1
2y =

(

Pn|n−1

ǫ
− 1

)

σ2
w ,

whose solution is given by

y∗ =

√

√

√

√

(

Pn|n−1

ǫ
− 1
)

σ2
w

vH
1 D− 1

2 EnD
− 1

2 v1

v1 ,

where v1 denotes the unit-norm eigenvector corresponding to the largest eigenvalue

of D− 1
2EnD

− 1
2 . The optimal solution to the original problem in (3.24) is thus

a∗
n =

√

√

√

√

(

Pn|n−1

ǫ
− 1
)

σ2
w

vH
1 D− 1

2 EnD
− 1

2 v1

D− 1
2 v1 .

The minimum transmit power required to achieve Pn|n = ǫ can be expressed as

P ∗
T = a∗H

n Da∗
n =

(Pn|n−1 − ǫ)σ2
w

ǫλmax{D− 1
2 EnD

− 1
2}

, (3.29)

where λmax(·) represents the largest eigenvalue of its matrix argument. A more precise

expression for P ∗
T can be found when the number of sensors N is large, as shown in

Theorem 2 below. The theorem assumes that the channel coefficients are described

by the following model:

hi,n =
h̃i,n

dγ
i

, h̃i,n ∼ CN (0, 1) , (3.30)

where di denotes the distance between sensor i and the FC, and γ is the propagation

path-loss exponent.
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Theorem 2. Assume the channels between the sensors and FC obey the model of (3.30).

When the number of sensors is large, the minimum sum transmit power P ∗
T that

achieves Pn|n = ǫ is bounded by

(

Pn|n−1 − ǫ
)

σ2
w

ǫ(Pn|n−1hH
n D−1hn − ξ)

≤ P ∗
T ≤

(

Pn|n−1 − ǫ
)

σ2
w

ǫPn|n−1hH
n D−1hn(1 − ζ)

,

where random variables ζ, ξ are defined as

ξ =

(

Pn|n−1

ǫ
− 1

)

min
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

ζ =

(

Pn|n−1

ǫ
− 1
)

maxi

{ |hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

}

Pn|n−1h
H
n D−1hn

,

and ζ, ξ converge to 0 in probability.

Proof : Since D− 1
2 EnD

− 1
2 is the sum of a rank-one and a diagonal matrix, we have

the following bounds for λmax{D− 1
2 EnD

− 1
2}:

λmax{D− 1
2 EnD

− 1
2} ≤ Pn|n−1h

H
n D−1hn −

(

Pn|n−1

ǫ
− 1

)

min
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

= Pn|n−1h
H
n D−1hn − ξ , (3.31)

λmax{D− 1
2 EnD

− 1
2} ≥ Pn|n−1h

H
n D−1hn −

(

Pn|n−1

ǫ
− 1

)

max
i

{ |hi,n|2σ2
v,i

σ2
θ + σ2

v,i

}

= Pn|n−1h
H
n D−1hn(1 − ζ) , (3.32)

where we define ξ =
(

Pn|n−1

ǫ
− 1
)

mini

{ |hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

}

, and ζ =

(

Pn|n−1
ǫ

−1

)

maxi

{

|hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

}

Pn|n−1h
H
n D−1hn

.
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For any positive constant ν, we have

Pr {ξ ≥ ν} ≤ Pr
{

ηmin
i

{

|h̃i,n|2
}

≥ ν̃
}

= Pr

{

min
i

{

|h̃i,n|2
}

≥ ν̃

η

}

=

(

1 − Pr

{

|h̃i,n|2 ≤
ν̃

η

})N

(b)
= e−

Nν̃
η ,

where ν̃ = ν
Pn|n−1

ǫ
−1

, η = maxi

{

σ2
v,i

(σ2
v,i+σ2

θ
)dγ

i

}

and (b) is due to the fact that 2|h̃i,n|2 is

a chi-square random variable with degree 2. When N → ∞, we have

lim
N→∞

Pr {ξ ≥ ν} ≤ lim
N→∞

e−
Nν̃
η = 0 ,

and thus ξ converges to 0 in probability.

From the definition of ζ ,

ζ =

(

Pn|n−1 − ǫ

Pn|n−1ǫ

)

max
i











|hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

∑N
k=1

|hk,n|2
σ2

θ
+σ2

v,k











≤
(

Pn|n−1 − ǫ

Pn|n−1ǫ

)

max
i











|hi,n|2σ2
v,i

σ2
θ
+σ2

v,i

∑N
k=1,k 6=i

|hk,n|2
σ2

θ
+σ2

v,k











≤ τ max
i

{

|h̃i,n|2
∑N

k=1,k 6=i |h̃k,n|2

}

,

where

τ =

(

Pn|n−1 − ǫ

Pn|n−1ǫ

) maxi

{

σ2
v,i

(σ2
θ
+σ2

v,i)d
γ
i

}

mini

{

1
(σ2

θ
+σ2

v,i)d
γ
i

} .
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For any positive constant µ, we have

Pr {ζ ≥ µ} = 1 − Pr {ζ ≤ µ}

≤ 1 − Pr

{

max
i

{

|h̃i,n|2
∑N

k=1,k 6=i |h̃k,n|2

}

≤ µ̃

}

= 1 −
(

Pr

{

|h̃i,n|2
∑N

k=1,k 6=i |h̃k,n|2
≤ µ̃

})N

= 1 −
(

Pr

{

∑N
k=1,k 6=i |h̃k,n|2

|h̃i,n|2
≥ 1

µ̃

})N

= 1 −
(

Pr

{

∑N
k=1,k 6=i |h̃k,n|2

(N − 1)|h̃i,n|2
≥ 1

(N − 1)µ̃

})N

, (3.33)

where µ̃ = µ/τ .

In (3.33), the random variable X =
∑N

k=1,k 6=i |h̃k,n|2

(N−1)|h̃i,n|2
has an F -distribution with param-

eters N − 1 and 2. Thus, the cumulative density function of X is given by [28]

F (x) =

(

(N − 1)x

(N − 1)x+ 1

)N−1

,

and thus

(

Pr

{

X ≥ 1

(N − 1)µ̃

})N

=

(

1 − Pr

{

X ≤ 1

(N − 1)µ̃

})N

=

(

1 − 1

(1 + µ̃)N−1

)N

=

(

1 − 1

(1 + µ̃)N−1

)(1+µ̃)N−1 N

(1+µ̃)N−1

.

Since µ̃ > 0 and hence limN→∞(1 + µ̃)N−1 = ∞, we have

lim
N→∞

(

Pr

{

X ≥ 1

(N − 1)ũ

})N

= lim
N→∞

(

1 − 1

(1 + µ̃)N−1

)(1+ũ)N−1 N

(1+µ̃)N−1

= lim
N→∞

e
N

(1+ũ)N−1 .
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Furthermore,

lim
N→∞

N

(1 + µ̃)N−1
= lim

N→∞

1

(1 + µ̃)N−1 ln(1 + µ̃)
= 0 ,

and thus

lim
N→∞

(

Pr

{

X ≥ 1

(N − 1)µ̃

})N

= 1 . (3.34)

Substituting (3.34) into (3.33) yields

lim
N→∞

Pr {ζ ≥ µ} = 0 , (3.35)

and we conclude that when N → ∞, ζ converges to 0 in probability. The proof of the

theorem is completed by substituting the results of (3.31), (3.32), (3.33) and (3.35)

into (3.29). �

According to the above theorem, when N → ∞, the term Pn|n−1h
H
n D−1hn is the

dominant factor in the denominator of the bounds on the sum transmit power, and

we have the following asymptotic expression

lim
N→∞

P ∗
T ≃ (Pn|n−1 − ǫ)σ2

w

ǫPn|n−1h
H
n D−1hn

. (3.36)

This expression illustrates that to achieve the same MSE, increasing the number

of sensors reduces the total required transmit power of the network, as well as the

required transmit power per sensor. A similar observation was made in [23]. As shown

later, our simulation results show that (3.36) provides an accurate approximation to

(3.29) as long as ǫ is not too small.
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As a final comment on this problem, we note that (3.24) is equivalent to

min
A

tr(AD) (3.37)

s.t. tr(AEn) ≥
(

Pn|n−1

ǫ
− 1

)

σ2
w

rank(A) = 1

A � 0

for A = ana
H
n . Relaxing the rank-one constraint on A, problem (3.37) becomes

min
A

tr(AD) (3.38)

s.t. tr(AEn) ≥
(

Pn|n−1

ǫ
− 1

)

σ2
w

A � 0 .

Based on the complementary conditions between the dual and primal problems, we

can prove that the solution to (3.38) is rank one, and hence that the relaxed SDP

yields the optimal a∗
n.

3.4.2 Minimizing Maximum Individual Transmit Power

Here we focus on the problem of minimizing the maximum transmit power of the

individual sensors while attempting to meet an MSE objective:

min
an

max
i

|ai,n|2(σ2
θ + σ2

v,i) (3.39)

s.t. Pn|n ≤ ǫ .

As in Section 3.3.2, we will convert the problem to a rank-relaxed SDP whose solution

nonetheless obeys the rank constraint and hence provides the optimal result. To
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proceed, introduce an auxiliary variable t and rewrite (3.39) as

min
an,t

t (3.40)

s.t. Pn|n ≤ ǫ

|ai,n|2(σ2
θ + σ2

v,i) ≤ t , i = 1, · · · , N .

Problem (3.40) is equivalent to

min
A,t

t (3.41)

s.t. tr(AEn) −
(

Pn|n−1

ǫ
− 1

)

σ2
w ≥ 0

tr(ADi) − t ≤ 0 , i = 1, · · · , N

A � 0

rank (A) = 1 ,

where A = ana
H
n , En is defined as in (3.26), and Di = diag{0 · · ·0 σ2

θ + σ2
v,i 0 · · ·0},

as before.

Relaxing the rank constraint and rewriting the problem to be in standard form,

problem (3.41) becomes

min
Ã

tr(ÃT) (3.42)

s.t. tr(ÃẼn) −
(

Pn|n−1

ǫ
− 1

)

σ2
w ≥ 0

tr(ÃD̃i) ≤ 0 , i = 1, · · · , N

Ã � 0 ,
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where

Ã =







A w

wH t






, T =







0N 0

0 1






, Ẽn =







En 0

0T 0






, D̃i =







Di 0

0T −1






,

and w is otherwise arbitrary. Theorem 3 establishes that the optimal solution to (3.39)

can be constructed from the solution to the above relaxed SDP.

Theorem 3. Define the optimal solution to problem (3.42) as Ã∗. Then Ã∗
N = ããH

is rank-one and the optimal solution to problem (3.39) is given by a∗
n = ã .

Proof : The dual of problem (3.42) is given by

max
yi,z

(

Pn|n−1

ǫ
− 1

)

σ2
wz (3.43)

s.t. T +

N
∑

i=1

yiD̃i − zẼn � 0

y1, . . . , yN , z ≥ 0 .

Using an approach similar to the proof of Theorem 1, one can verify that both (3.42)

and (3.43) are strictly feasible, and that strong duality holds between the dual prob-

lem (3.43) and the primal problem (3.42). Based on the complementary conditions, it

can be shown that rank(Ã∗
N) = 1. For brevity the details of the proof are omitted.�

Similar to problems (3.2) and (3.24), duality also exists between (3.10) and (3.39).

Define the optimal solution to problem (3.10) as a∗
n and the corresponding minimum

MSE as P ∗
n|n. If we set ǫ = P ∗

n|n in (3.39), the optimal solution is also a∗
n.
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3.5 MSE Outage Probability for Equal Power Al-

location

Here we calculate the MSE outage probability for the suboptimal solution in which

each sensor transmits with the same power. The outage probability derived here can

serve as an upper bound for the outage performance of the optimal algorithm with

individual power constraints. For equal-power transmission, the transmit gain vector

is given by

ae =

√

PT

N





1
√

σ2
θ + σ2

v,1

· · · 1
√

σ2
θ + σ2

v,N





T

,

and the corresponding MSE is

Pn|n =

(

1 − Pn|n−1a
H
e hnh

H
n ae

aH
e HnVHnae + Pn|n−1aH

e hnhH
n ae + σ2

w

)

Pn|n−1 .

As in Theorem 2, we will assume the Gaussian channel model of (3.30). The outage

probability Pout = Pr
{

Pn|n > ǫ
}

is evaluated as follows:

Pout = Pr

{

aH
e hnh

H
n ae

aH
e HnVHH

n ae + σ2
w

<
Pn|n−1 − ǫ

ǫPn|n−1

}

= Pr
{

aH
e hnh

H
n ae − βaH

e HnVHH
n ae < βσ2

w

}

= Pr

{

h̃H
n

(

Mãeã
H
e M− βQ

)

h̃n ≤ βσ2
w

PT

}

,

where

β =
Pn|n−1 − ǫ

ǫPn|n−1
, ãe =

1√
PT

ae , h̃n = [h̃1,n · · · h̃N,n]T ,

M = diag

{

1

dα
1

· · · 1

dα
N

}

,

Q = diag

{

σ2
v,1

N(σ2
θ + σ2

v,1)d
2α
1

· · · σ2
v,N

N(σ2
θ + σ2

v,N )d2α
N

}

.
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If we define R = Mãeã
H
e M − βQ, and label the eigenvalues of R as λ1, · · · , λN ,

then the random variable h̃H
n Rh̃n can be viewed as the weighted sum of independent

chi-squared random variables
∑N

i=1
λi

2
χi(2). From [30], we have

Pout = 1 −
N
∑

i=1

λN
i

∏

l 6=i(λi − λl)

1

|λi|
e
−

(Pn|n−1−ǫ)σ2
w

ǫPn|n−1PT λi u(λi) , (3.44)

where u(·) is the unit step function. Let e1 ≥ · · · ≥ eN denote the eigenvalues of Q,

so that from Weyl’s inequality [31] we have the following bounds for the λi:

ãH
e M2ãe − βe1 ≤ λ1 ≤ ãH

e M2ãe − βeN , (3.45)

−βeN−i+1 ≤ λi ≤ −βeN−i+2 , 2 ≤ i ≤ N , (3.46)

where ãH
e M2ãe =

∑N
i=1

1
N(σ2

θ
+σ2

v,i)d
2α
i

. From (3.45), when β is large, λ1 is negative,

and when β is small enough, λ1 is positive. Meanwhile, since all the eigenvalues of Q

is positive, then according to (3.46) we have that λi < 0 for 2 ≤ i ≤ N . Since only

λ1 can be positive, equation (3.44) can be simplified as

Pout =











1 − λN−1
1

∏

l6=1(λ1−λl)
e
−

(Pn|n−1−ǫ)σ2
w

ǫPn|n−1PT λ1 λ1 > 0

1 λ1 ≤ 0 .

(3.47)

From (3.47), when the threshold ǫ is too small, β =
Pn|n−1−ǫ

ǫPn|n−1
will be very large and

λ1 ≤ 0, then the outage probability Pout equals 1, which means the MSE Pn|n is

larger than ǫ for every channel realization hn. For PT → ∞, the outage probability

converges to

Pout =











1 − λN−1
1

∏

l6=1(λ1−λl)
λ1 > 0

1 λ1 ≤ 0 .
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Figure 3.1: MSE vs. number of sensors for Pmax = 300 or 3000.

3.6 Simulation Results

To investigate the performance of the proposed optimization approaches, the results

of several simulation examples are described here. Unless otherwise indicated, the

simulations are implemented with the following parameters: distance from the FC to

the sensors di is uniformly distributed over the interval [2, 8], path loss exponent is set

to γ = 1, the observation noise power σ2
v,i at the sensors is uniformly distributed over

[0, 0.5], the power of the additive noise at the FC is set to σ2
w = 0.5, the parameter

θ is assumed to satisfy σ2
θ = 1, and the initial MSE is given by P0|−1 = 0.5. The

MSE shown in the plots is obtained by averaging over 300 realizations of hn. Two

different sum power constraints are considered in the simulations: PT = 300 and

PT = 3000. To fairly compare the results under sum and individual power constraints,

we set PT,i = PT

N
, which means that all sensors have the same maximum power when

individual constraints are imposed.
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Figure 3.2: Required sum transmit power vs. number of sensors for various MSE
constraints.

Fig. 3.1 plots the MSE as a function of the number of sensors in the network for both

sum and individual power constraints. The results demonstrate that compared with

equal power allocation, the optimized power allocation significantly reduces the MSE;

in fact, adding sensors with equal power allocation actually increases the MSE, while

the MSE always decreases for the optimal methods. The extra flexibility offered by

the global power constraint leads to better performance compared with individual

power constraints, but the difference in this case is not large. The lower bound on

MSE in (3.7) is also plotted to indicate the performance that that could be achieved

with PT → ∞.

Figs. 3.2 and 3.3 respectively examine sum and peak transmit powers required to

achieve MSE values of 0.02, 0.04 and 0.1 for varying numbers of sensors. As expected,

individual power constraints lead to higher sum power requirements, while sum power

constraints result in higher peak power. Interestingly, the individual power constraints

lead to roughly a doubling of the required total sum power to achieve the same
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Figure 3.3: Maximum individual transmit power for various MSE constraints.

MSE regardless of the number of sensors, whereas the increase in peak power for

the sum constraint relative to individual power constraints grows with N , reaching a

factor of 4 to 5 on average when N = 30. Fig. 3.4 compares the minimum required

sum transmit power to achieve various MSE values in (3.29) with the approximate

expression obtained in (3.36). When ǫ ≥ 0.1, the approximation is reasonably good

even when N is on the order of only 20 to 40. The approximation is less accurate for

tighter requirements on ǫ, and requires a larger value of N for the approximation to

be valid.

The impact of the SNR at the FC on the sensor power allocation is illustrated in

Fig. 3.5 for a given channel realization and N = 30 sensors. The x-axis of each plot is

ordered according to the channel gain of the sensors, which is shown in the upper left

subfigure. The upper right subfigure shows the variance of the measurement noise for

each sensor, which for this example was uniformly drawn from the interval [0.4, 0.5]

to better illustrate the effect of the channel gain. The optimal power allocation
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Figure 3.4: Exact and approximate sum transmit power vs. number of sensors.

for this scenario was found assuming both sum and individual power constraints

under both low and high SNRs at the FC. The middle subfigures show the power

allocation for minimizing MSE assuming a low SNR case with PT = 5, while the

bottom subfigures show the allocation for high SNR with PT = 1000. Note that, as

predicted by (3.9), the power allocated to the sensors under the sum power constraint

for low SNR tends to grow with the channel gain, while as predicted by (3.8), the

allocated power is reduced with channel gain under high SNR. The explanation for

the different behavior at low and high SNR can be explained as follows: when the

SNR is high, the measurement noise will dominate the estimation error at the FC,

and the higher the channel gain, the more the measurement noise is amplified, so the

sensor nodes with higher channel gains will be allocated less power. When the SNR

is low, the additive noise at the FC will dominate the estimation error, the effect of

the measurement noise can be neglected, so the nodes with higher channel gains will

be allocated more power to increase the power of the desired signal. For individual

power constraints, we see that all of the sensors transmit with a maximum power of
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Sum Power Constraint, Low SNR
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Figure 3.5: Stem plot for the channel gain, measurement noise variance and the
individual transmit power allocated to the sensor nodes. The x-axis denotes the
sensor node ID and the sensor nodes are indexed according to their channel gain, in
ascending order. For the high SNR case the total transmit power is set to PT = 1000
and for the low SNR case the total transmit power is PT = 5.
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Figure 3.6: MSE outage probability for equal power allocation vs. sum transmit
power for N = 10 sensors.

PT/N = 5/30 at low SNR, while at high SNR only the sensors with small channel

gains use maximum power (in this case PT/N = 1000/30), and the power allocated

to sensors with large channel gains decreases, as with the sum power constraint.

Finally, in Fig. 3.6, we show that our analytical expression in (3.47) for the outage

probability under equal power allocation closely follows the simulation results for var-

ious transmit power levels for a case with N = 10 sensors. While these outage proba-

bilities represent upper bounds for the optimal (and generally unequal) transmission

gains, we note that these bounds are not particularly tight. The outage probabilities

achieved by the optimal algorithms are typically much lower than predicted by (3.47).
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3.7 Summary

In this chapter, we considered the problem of optimally allocating power in an analog

sensor network attempting to track a dynamic parameter via a coherent multiple

access channel. We analyzed problems with either constraints on power or constraints

on achieved MSE, and we also examined cases involving global sum and individual

sensor power constraints. While prior work had been published for minimizing MSE

under a sum power constraint and minimizing sum power under an MSE constraint,

we were able to derive closed-form solutions that were simpler and more direct. Going

beyond the prior work, we derived new asymptotic expressions for the transmission

gains that illustrated their limiting behavior for both low and high SNR at the fusion

center, and we found a simple expression for the required sum transmit power when

the number of sensors is large. Furthermore, we showed how to minimize MSE under

individual power constraints, or minimize peak sensor power under MSE constraints,

cases that had not been previously considered. In particular, we demonstrated that

solutions to these problems could be found by solving a rank-relaxed SDP using

standard convex optimization methods. Finally, we derived an exact expression for

the MSE outage probability for the special case where the sensors transmit with equal

power, and presented a number of simulation results that confirmed our analysis and

the performance of the proposed algorithms.
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Chapter 4

Power Allocation for Tracking of a

Vector Process

4.1 Introduction

Dynamic state-space models in which the observation equation depends on parameters

that can be adaptively tuned to improve performance have recently been proposed

by several authors. For example, in [32], dynamic wireless channel parameters such

as the delay of arrival, the angle of arrival, the angle of departure, etc, are tracked

via a Kalman filter whose performance depends on properties of the antenna array.

In [33], the parameters to be estimated are the position and velocity of a target and

the observations at a set of mobile sensors are the time delay and Doppler shift of

the signal reflected by the target. The positions of the mobile sensors are adjusted in

order to minimize the tracking error of a standard extended Kalman filter. In [34], a

distributed sensor network problem is considered where the observed signal is a linear

function of the transmission gain of each sensor, and optimal values for these gains
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are found under different power constraints to minimize the MSE of a scalar variable

at the fusion center.

In this chapter, we consider a scenario that generalizes the one assumed in [34] by

allowing the estimated parameters and the observations to be vector- rather than

scalar-valued. The state-space observation matrix is assumed to depend linearly on

a set of parameters, and we consider the problem of optimizing these parameters in

order to minimize the MSE obtained by a Kalman filter that tracks the unknown

state. Two different optimization problems are considered: one that minimizes the

sum MSE (Min-Sum-MSE) over all the parameters, and another that minimizes the

maximum MSE (Min-Max-MSE) of all parameters. In the general case, we divide

the overall problem into two sub-problems whose optimal solution can be found. The

first sub-problem estimates the optimal observation matrix without taking the linear

structure into account, and the second finds the set of parameters that are closest

to the resulting observation matrix under a quadratic constraint on the parameters

themselves. Dividing the problem into these two steps will cause a performance loss,

but simulations demonstrate that the loss is minimal, and performance is close to the

lower bound given by the solution to the unconstrained problem. We also consider

the special case of a scalar observation, and show that in this case the Min-Sum-

MSE problem is converted to a Rayleigh quotient maximization problem, for which

an optimal closed-form solution is obtained, and we show that for the Min-Max-MSE

problem, a relaxed version of the problem leads to a simple SDP feasibility test that

can be solved via the bisection algorithm. Simulation results show that in most cases,

the solution to the relaxed and unrelaxed problems are the same.

The rest of this chapter is organized as follows. Section 4.2 describes the signal

model for the vector observation case and formulates the sum MSE minimization

problem and maximum MSE minimization problem. The system model and problem
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formulation for the scalar observation case are presented in Section 4.3. Numerical

results are provided in Section 4.4 and the conclusions are summarized in Section 4.5.

4.2 Vector Observation Model

We assume the dynamic parameter to be estimated is a complex-valued vector that

obeys the following state-space model:

θn+1 = Fθn + un, (4.1)

where θn+1 ∈ CM×1 is the parameter at time step n + 1, F ∈ CM×M is the state

transition matrix, and un ∼ CN (0,Q) is the process noise. The observed signal

vector is given by

yn = Cθn + vn, (4.2)

where vn ∼ CN (0, σ2
vI) is the observation noise and C ∈ CL×M is the observation

matrix. We assume that C is a linear function of some parameters a ∈ CN×1 such

that vec[C] = Ga for a given G ∈ C
LM×N .

The MSE of the state estimate is found via the standard Kalman filtering [25]:

• Prediction MSE Matrix

Mn|n−1 = FMn−1|n−1F
H + Q (4.3)

• Kalman Gain Matrix

Kn = Mn|n−1C
H(σ2

vIL + CMn|n−1C
H)−1 (4.4)
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• MSE matrix

Mn|n = (IM − KnC)Mn|n−1

=

(

M−1
n|n−1 +

1

σ2
v

CHC

)−1

. (4.5)

4.2.1 Minimize Sum MSE

In this section we consider the problem of minimizing the sum-MSE under a quadratic

constraint of a. The ideal optimization problem is formulated as

min
a

tr(Mn|n) (4.6)

s.t. ‖C(a)‖2
F ≤ P .

The solution to (4.6) is difficult to obtain directly, so instead we divide the optimiza-

tion problem into two subproblems. We first find an unconstrained C∗ that minimizes

tr(Mn|n), and then based on C∗, we obtain the approximate solution a∗.

The first step is to solve

min
C

tr(Mn|n) (4.7)

s.t. ‖C‖2
F ≤ P .

Defining C̃ = CHC, we can rewrite (4.7) as

min
C̃

tr(D) (4.8)

s.t. D−1 = M−1
n|n−1 +

1

σ2
v

C̃

tr(C̃) ≤ P

C̃ � 0.
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Replacing the equality in the first constraint of (4.8) with an inequality yields an

equivalent optimization problem:

min
C̃,D

tr(D) (4.9)

s.t. D−1 � M−1
n|n−1 +

1

σ2
v

C̃

tr(C̃) ≤ P

C̃ � 0.

The problem in (4.9) is equivalent to (4.8) in the sense that for the optimal solution

of problem (4.9) the equality of the first constraint must hold. According to the Schur

complement [35], the first constraint in (4.9) is equivalent to :







M−1
n|n−1 + 1

σ2
v
C̃ IM

IM D






� 0. (4.10)

Plugging (4.10) into (4.9), we have

min
C̃,D

tr(D) (4.11)

s.t.







M−1
n|n−1 + 1

σ2
v
C̃ IM

IM D






� 0

tr(C̃) ≤ P

C̃ � 0.

By converting the constraints of problem (4.11) into a large block diagonal linear

matrix inequality, we can transform the problem into a standard SDP form, which

can be efficiently solved using the interior point method.

53



Denote the optimal solution to problem (4.11) as C̃∗, and define the singular value

decomposition of C̃∗ as C̃∗ = UΣUH , so that C∗ = UΣ
1
2 . The performance of C∗

provides a lower bound for problem (4.6). To estimate a∗, we solve1

min
a

‖vec(C∗) −Ga‖2
2 (4.12)

s.t. aHGHGa = P,

which directly leads to

a∗ = γ(GHG)−1GHvec(C∗), (4.13)

where γ is defined as γ =
√

P
vec(C∗)HG(GHG)−1GHvec(C∗)

.

4.2.2 Minimize the Maximum MSE

When the maximum MSE is to be minimized, the parameter optimization problem

can be stated as

min
a

max
i

[Mn|n]i,i (4.14)

s.t. ‖C(a)‖2
F ≤ P . (4.15)

Similar to (4.6), when treating C as the variable to be optimized, we can rewrite

problem (4.14) as

min
C

max
i

[Mn|n]i,i (4.16)

s.t. ‖C‖2
F ≤ P .

1At the optimal solution of (4.6), the constraint should attain equality.
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Introducing an auxiliary variable t, we can rewrite (4.16) as

min
C,t

t (4.17)

s.t. t ≥ [Mn|n]i,i ,

‖C‖2
F ≤ P .

Define ei as the vector with all zeros except for a 1 in the ith position, so that (4.17)

is equivalent to

min
C,t

t (4.18)

s.t. t ≥ eT
i Mn|nei,

‖C‖2
F ≤ P .

Again, we utilize the Schur complement to rewrite the first constraint in (4.18) and

we have

min
C̃,t

t (4.19)

s.t.







t ei

eT
i M−1

n|n−1 + 1
σ2

v
C̃






� 0, i = 1, · · · , N

tr(C̃) ≤ P

C̃ � 0

Similar to (4.11), we can write the constraints of problem (4.19) in a large block

diagonal linear inequality and convert the problem to a standard SDP form. After

obtaining C̃∗, we can use (15) to find the solution a∗.
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4.3 Scalar Observation Model

For a scalar observation, we have

yn = cH
θn + vn, (4.20)

where c = Ga and as before G ∈ CM×N . The MSE of the estimated state is given by

Mn|n = Mn|n−1 −
Mn|n−1cc

HMn|n−1

σ2
n + cHMn|n−1c

. (4.21)

4.3.1 Minimize Sum MSE

For a scalar observation, the sum MSE is computed as

tr(Mn|n) = tr(Mn|n−1) −
cHM2

n|n−1c

σ2
n + cHMn|n−1c

, (4.22)

and we formulate the following optimization problem:

max
a

aHGHM2
n|n−1Ga

σ2
n + aHGHMn|n−1Ga

(4.23)

s.t. aHGHGa ≤ P.

Since the objective function in (4.23) is monotonically increasing with the norm of c,

the constraint must be active at the optimal solution and we can rewrite the problem

as

max
a

aHGHM2
n|n−1Ga

aH(σ2
n

P
GHG + GHMn|n−1G)a

(4.24)

s.t. aHGHGa = P.
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The solution to the above problem can be found directly as

c∗ =

√

P

uHBu
B− 1

2 u, (4.25)

where B = σ2
n

P
GHG + GHMn|n−1G, and u is the eigenvector corresponding to the

largest eigenvalue of B− 1
2GHM2

n|nGB− 1
2 .

4.3.2 Minimize Maximum MSE

When the maximum MSE is to be minimized, the optimization problem becomes

min
a

max
i

[Mn|n]i,i (4.26)

s.t. aHGHGa ≤ P.

Substituting (4.21) into (4.26), we have

min
a

max
i

[Mn|n−1]i,i −
eT

i Mn|n−1GaaHGHMn|n−1ei

σ2
n + aHGHMn|n−1Ga

s.t. aHGHGa ≤ P.

Introducing the auxiliary variable t, we have

min
a

t (4.27)

s.t. [Mn|n−1]i,i −
eT

i Mn|n−1GaaHGHMn|n−1ei

σ2
n + cHMn|n−1c

≤ t, i = 1, · · · , N,

aHGHGa ≤ P .

After some mathematical manipulation, we can rewrite problem (4.27) into the fol-
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lowing form

min
a

t (4.28)

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ aHEia, i = 1, · · · , N ,

aHGHGa ≤ P,

where Ei is defined as Ei = GH(Mn|n−1eie
T
i Mn|n−1 − ([Mn|n−1]i,i − t)Mn|n−1)G.

Problem (4.28) is equivalent to

min
a

t (4.29)

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ tr

(

AEi

)

, i = 1, · · · , N ,

tr(AGHG) ≤ P ,

rank(A) = 1 ,

A � 0 .

At this point, we see that the problem could be efficiently solved were it not for the

rank constraint. So we relax this constraint to yield a quasi-convex problem:

min
a

t (4.30)

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ tr

(

AEi

)

, i = 1, · · · , N ,

tr(AGHG) ≤ P,

A � 0 .

In the above problem, given a deterministic t, all the constraints are convex. Denote

the optimal value of problem (4.30) as t∗, so that for a t̃ that makes the problem

(4.30) feasible, we have t∗ ≤ t̃, while if the problem is infeasible, we have t∗ > t̄. To

find t∗, we search over t using the bisection method [36]. For a given t, we solve the
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SDP feasibility problem:

find A (4.31)

s.t.
(

[Mn|n−1]i,i − t
)

σ2
n ≤ tr

(

AEi

)

, i = 1, · · · , N ,

tr(AGHG) ≤ P ,

A � 0

to obtain the optimal t∗, then we plug this t∗ into problem (4.30) to find A∗. If

rank(A∗) = 1, then A∗ is the optimal solution to problem (4.26), otherwise, a rank-

one solution a∗ can be reconstructed [28]. The optimal value t∗ of problem (4.30) can

be used as a lower bound for the minimum MSE of problem (4.26). Our simulations

indicate that in most cases, the rank of A∗ is one, which indicates the performance

of a∗ is very close to the lower bound provided by A∗.

4.4 Simulation Results

In the following simulations, the dimension of θk and a are M = 4 and N = 3

respectively and L is set to 4. The observation noise variance is set to σ2
v = 0.5, and

the covariance Q is assumed to be an identity matrix. The matrix F and the G are

generated as complex Gaussian matrices with independent unit variance elements, and

F is scaled to guarantee convergence of the Kalman filter. Once they are generated,

F and G are kept constant in the simulation. The MSE performance for different

constraints P are calculated after convergence of the Kalman filter.

In Figs. 4.1-4.2, for the vector-observation case the lower bound corresponds to the

MSE calculated using C∗. The performance gap between the lower bound and the

proposed method represents the performance loss introduced by reducing the number
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Figure 4.1: Sum MSE vs. the value of constraint P

of control parameters from 16 to 3. When the P is small, the proposed method can

achieve a performance close to the lower bound, e.g., when P = 0.5, the performance

degradation in the sum MSE is less than 10%. For the scalar observation case, we see

as expected that the Min-Sum algorithm has the lowest sum-MSE and the Min-Max

algorithm has the lowest maximum MSE. Surprisingly, however, in the vector case the

performance of the Min-Sum and Min-Max algorithms is essentially identical. The

performance of the Min-Max-MSE algorithm appears to be equal to the lower bound

which indicates that the solution A∗ to problem (4.30) is very likely rank-one even

with the constraint relaxed. With increasing P , a performance floor exists for the

scalar-observation case, while in the vector-observation case the MSE performance

continues to improve.
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Figure 4.2: Maximum MSE vs. the value of constraint P

4.5 Summary

In this chapter, we investigated the problem of a Kalman filter with a linearly re-

configurable observation matrix. Two kinds of problems were formulated: Min-Sum-

MSE or Min-Max-MSE. For the vector observation model, both of the optimization

problems are difficult to solve directly, and we divided the problem into two sim-

pler sub-problems that are easier to solve. Simulation results show that when the

quadratic constraint is small, the proposed approach provides performance close to

the MSE lower bound. For the scalar observation model, the Min-Sum-MSE prob-

lem is converted to a Rayleigh quotient maximization problem, for which an optimal

closed-form solution is obtained, and for the Min-Max-MSE problem, we relax the

rank-one constraint on the observation parameters and transform the optimization

problem to an SDP feasibility problem. Based on the solution to the SDP feasibility

problem, a rank-one solution can be reconstructed. Simulation results show that with

a very high probability the solution of the relaxed problem is indeed rank-one.
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Chapter 5

Sensor Phase Optimization for

Multi-antenna Fusion Center

5.1 Introduction

The detection and estimation problems in analog WSNs have been widely investi-

gated and a number of studies have focused on algorithm development and analysis

for WSNs with a single-antenna FC. In [13], the sensors amplify and forward their

observations of a scalar source to the FC via fading channels, and algorithms are de-

veloped to either minimize estimation error subject to transmit power constraints or

minimize power subject to estimation error constraints. The scalar source model for

this problem was generalized to correlated vector sources in [15]. An opportunistic

power allocation approach was proposed in [16], and the scaling law with respect to

the number of sensors was shown to be the same as the optimal power allocation

proposed in [13]. In [22], the asymptotic variance of the best linear unbiased estima-

tor of an analog WSN is derived, together with an analysis of the effect of different
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assumptions regarding channel knowledge at the sensors. Scaling laws with respect to

the number of sensors have been studied in [18] for a diversity-based method (where

only the sensor with the best channel transmits), as well as for the coherent multiple

access channel (MAC) and orthogonal channel cases, assuming a Gaussian source. In

[20], a power optimization problem was formulated to minimize the outage probabil-

ity of the MSE for the coherent MAC channel. More complicated settings involving

analog WSNs with nonlinear measurement models [17] or relays [37, 38] have also

been studied.

The results described above all assume that the FC is equipped with only one antenna.

Just as multi-antenna receivers can provide significant capacity or diversity gains in

communication systems, the estimation performance of a WSN should also benefit

from the use of a multi-antenna FC, though prior work on this scenario is limited.

A general scenario is investigated in [14], involving vector observations of a vector-

valued random process at the sensors, and linearly precoded vector transmissions

from the sensors to a multi-antenna FC. Optimal solutions for the precoders that

minimize the mean-squared error (MSE) at the FC are derived for a coherent MAC

under power and bandwidth constraints. In [39], single-antenna sensors amplify and

forward their observations to a multi-antenna FC, but it is shown that for Rayleigh

fading channels, the improvement in estimate variance is upper bounded by only a

factor of two compared to the case of a single-antenna FC. The performance of two

heuristic algorithms for choosing the gain and phase of the sensor transmissions is

also studied. Subsequent results by the same authors in [40, 41], have demonstrated

that when the channel undergoes (zero-mean) Rayleigh fading, there is a limit to the

improvement in detection performance for a multi-antenna FC as well, but when the

channel is Rician, performance improves monotonically with respect to number of

antennas.
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The term “amplify and forward” is often used to describe analog sensor networks like

those discussed above, since each sensor applies a complex gain to the observation

before sending it to the FC. For a coherent MAC, one can think of this as a type

of distributed transmit beamforming, although it is distinguished from distributed

beamforming applications such as those in communications since in a WSN the ob-

served noise is transmitted together with the signal of interest. Some prior research

in radar and communications has focused on scenarios where the beamformer weights

implement only a phase shift rather than both a gain and a phase. The advantage

of using phase shifting only is that it simplifies the implementation and is easily per-

formed with analog hardware. Phase-shift-only beamformers have most often been

applied to receivers that null spatial interference [42, 43], but it has also been con-

sidered on the transmit side for MISO wireless communications systems [44], which

is similar to the problem considered here. For the distributed WSN estimation prob-

lem, phase-only sensor transmissions have been proposed in [45], where the phase is a

scaled version of the observation itself. Phase-only transmissions were also considered

in the context of distributed detection in [40], leading to a problem similar to one of

those we consider here.

In addition to the work outlined above, other WSN research has focused on sensor

selection problems, particularly in situations where the sensors have limited battery

power. In these problems, only a subset of the sensors are chosen to transmit their

observations, while the others remain idle to conserve power. The sensor selection

problem has been tackled from various perspectives, with the goal of optimizing the

estimation accuracy [37, 46, 47] or some heuristic system utility [48, 49]. In [46],

the authors investigated maximum likelihood (ML) estimation of a vector parameter

by selecting a fixed-size subset of the sensors. An approximate solution was found

by relaxing the original Boolean optimization to a convex optimization problem. A

dynamic model is used to describe the parameter of interest in [47], and sensors use
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the Kalman filter to estimate the parameter. At each time step, a single sensor is

selected and the measurement at the selected sensor is shared with all other sensors.

A numerical sensor selection algorithm was proposed to minimize an upper bound on

the expected estimation error covariance. Instead of the estimation accuracy, a utility

function that takes into account the measurement quality or energy cost can also be

used as the metric for sensor selection. In [49], each sensor independently optimizes

its own operation status based on a utility function which depends on the sensor’s

own measurement and the predicted operation status of other sensors. A threshold

is then found to enable the sensor to switch its status for either energy efficiency or

energy consumption, and a power allocation algorithm was proposed to minimize the

MSE at FC.

In this chapter we consider a distributed WSN with single-antenna sensors that ob-

serve an unknown deterministic parameter corrupted by noise. The low-complexity

sensors apply a phase shift (rather than both a gain and phase) to their observation

and then simultaneously transmit the result to a multi-antenna FC over a coherent

MAC. One advantage of a phase-shift-only transmission is that it leads to a simpler

analog implementation at the sensor. The FC determines the optimal value of the

phase for each sensor in order to minimize the ML estimation error, and then feeds

this information back to the sensors so that they can apply the appropriate phase

shift. The estimation performance of the phase-optimized sensor network is shown to

be considerably improved compared with the non-optimized case, and close to that

achieved by sensors that can adjust both the transmit gain and phase. We analyze

the asymptotic behavior of the algorithm for a large number of sensors and a large

number of antennas at the FC. In addition, we analyze the impact of phase errors at

the sensors due, for example, to errors in the feedback channel, a time-varying main

channel or phase-shifter drift. We also consider a sensor selection problem similar

to that in [46], and analyze its asymptotic behavior as well. Some additional details
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regarding the contributions of this chapter are listed below.

1. We present two algorithms for determining the phase factors used at each sen-

sor. In the first, we use the semidefinite relaxation presented in [40, 50] to

convert the original problem to a SDP problem that can be efficiently solved by

interior-point methods. For the second algorithm, we apply the analytic con-

stant modulus algorithm (ACMA) [51], which provides a considerably simpler

closed-form solution. Despite the reduction in complexity, the performance of

ACMA is shown via simulation to be only slightly worse than the SDP solu-

tion, and close to the theoretical lower bound on the estimate variance. This

is especially encouraging for networks with a large number of sensors N , since

the SDP complexity is on the order of N3.5, while that for ACMA is only on

the order of N2.

2. We separately derive performance scaling laws with respect to the number of

antennas and the number of sensors assuming non-fading channels that take

path loss into account. For both cases, we derive conditions that determine

whether or not the presence of multiple antennas at the FC provides a significant

benefit to the estimation performance. Prior work in [39–41] has focused on

either AWGN channels with identical channel gains, or on fading channels where

the channel gains are identically distributed, corresponding to the case where the

distances from the sensors to the FC are roughly the same. References [39–41]

also assume a special case where the noise at each of the sensors has the same

variance, although [41] examines how certain upper bounds on performance

change when the sensor noise is arbitrarily correlated.

3. Using our model for the non-fading case, we are able to elucidate detailed con-

ditions under which the asymptotic estimation performance will improve with

the addition of more antennas M at the FC. While [39, 40] showed that perfor-
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mance always improves with increasing M for AWGN channels with identical

gains and identically distributed sensor noise, we derive more detailed condi-

tions that take into account the possibility of non-uniform distances between

the sensors and FC and non-uniform noise at the sensors.

4. We conduct an analysis of the impact of phase errors at the sensors assuming

relatively small phase errors with variance σ2
p ≪ 1 (square-radians). In particu-

lar, we show that the degradation to the estimate variance is bounded above by

a factor of 1+σ2
p. We note that the effect of errors in the transmit phase at the

sensors has previously been considered for the case of M = 1 in [22], although

using a different phase error model.

5. We consider the sensor selection problem separately for low and high sensor

measurement noise. For the low measurement noise scenario, we relax the sen-

sor selection problem to a standard linear programming (LP) problem, and we

also propose a reduced complexity version of the algorithm. For the high mea-

surement noise scenario, we show that the estimation error is lower bounded by

the inverse of the measurement noise power, which motivates the use of a simple

selection method based on choosing the sensors with the lowest measurement

noise.

This chapter is organized as follows. Section 5.2 describes the assumed system model.

Section 5.3 formulates the phase optimization problem and proposes a numerical so-

lution based on SDP as well as a closed-form solution based on the algebraic constant

modulus algorithm. In Section 5.4, the asymptotic performance of the algorithm is

analyzed for a large number of sensors and antennas. The effect of phase errors is

analyzed in Section 5.5 and the sensor selection problem is investigated in Section 5.6.

Simulation results are then presented in Section 5.7 and our conclusions can be found

in Section 5.8.
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5.2 Signal Model

We assume that N single-antenna sensors in a distributed sensor network indepen-

dently observe an unknown but deterministic complex-valued parameter θ. Each

sensor phase shifts its observation and transmits the signal to the FC. According to

the signal model in (2.2), the vector signal received at the FC can be expressed as

y = Haθ + HDv + n , (5.1)

where H = [h1 · · ·hN ] and hi ∈ CM×1 is the channel vector between the ith sensor

and the FC, a = [a1 · · ·aN ]T contains the adjustable phase parameters and |ai| = 1,

D = diag{a1 · · ·aN}, v is the sensor measurement noise vector with covariance V =

E{vvH} = diag
{

σ2
v,1, · · · , σ2

v,N

}

, and n is complex Gaussian noise at the FC with

covariance E{nnH} = σ2
nIM . Note that since the sensors can only phase shift their

observation prior to transmission, we ignore the issue of power control and assume

that the sensors have sufficient power to forward their observation to the FC.

The combined noise term HDv+n in (5.1) is Gaussian with covariance HVHH +σ2
nI,

since DVDH = V due to the phase-only assumption. Assuming the FC is aware of

the channel matrix H, the noise covariance V and σ2
n, it can calculate the ML estimate

of θ using [25]

θ̂ML =
aHHH(HVHH + σ2

nIM)−1y

aHHH(HVHH + σ2
nIM)−1Ha

.

The estimator θ̂ML is unbiased with variance

Var(θ̂ML) =
(

aHHH(HVHH + σ2
nIM)−1Ha

)−1
. (5.2)

Furthermore, since the Euclidean norm ‖a‖ = N when only phase shifts are used at
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the sensors, it is easy to see that the variance is lower bounded by

Var(θ̂ML)≥ 1

Nλmax (HH(HVHH + σ2
nIM)−1H)

, (5.3)

where λmax(·) denotes the largest eigenvalue of its matrix argument. Note that the

bound in (5.3) is in general unachievable, since with probability one the given matrix

will not have an eigenvector with unit modulus elements.

5.3 Optimizing the Sensor Phase

In this section we consider the problem of choosing a to minimize Var(θ̂ML) in (5.2).

The unit modulus constraint prevents a trivial solution, but as we note below, a direct

solution is not possible even without this constraint since the noise covariance would

then depend on a. The general optimization problem is formulated as

min
a

Var(θ̂ML) (5.4)

s.t. |ai| = 1, i = 1, . . . , N .

Defining B = HH(HVHH + σ2
nIM)−1H, the problem can be rewritten as

max
a

aHBa (5.5)

s.t. |ai| = 1, i = 1, . . . , N .

Note that this optimization can only determine a to within an arbitrary phase shift

ejφ, but this scaling has no impact on the estimate of θ. In other words, the vector a

and the vector aejφ for arbitrary φ will both yield the same estimate θ̂ML. Since the

FC is aware of the vector a determined by the optimization in (5.5), any arbitrary
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phase factor present in the Haθ term of the model in (5.1) will be canceled when

the ML estimate of θ is computed. This is also clear from the variance expression

in (5.2), which is insensitive to any phase shift to a.

If there are only two sensors in the network, a simple closed-form solution to (5.5)

can be obtained. Defining B =







a bejβ

be−jβ c






with a, b, c > 0 and a = [ejβ1, ejβ2],

then aHBa is calculated as

aHBa = a+ c+ 2b cos(β1 − β2 − β)

≤ a+ c+ 2b , (5.6)

and the equality in (5.6) can be achieved for any β1, β2 that satisfy β1 − β2 = β.

For the general situation where N > 2, a solution to (5.5) appears to be intractable.

Instead, in the discussion that follows we present two suboptimal approaches in order

to obtain an approximate solution. The first approach is based on an SDP problem

obtained by relaxing a rank constraint in a reformulated version of (5.5), similar to

the approach proposed in [40, 50]. The second converts the problem to one that can

be solved via the ACMA of [51]. It is worth emphasizing here that if the transmission

gain of the sensors was also adjustable, then the corresponding problem would be

max
a

aHHH(HDVDHHH + σ2
nIM)−1Ha (5.7)

s.t. aHa ≤ N ,

which also has no closed-form solution due to the dependence on a (through the ma-

trix D) inside the matrix inverse. While in general both our SDP solution and (5.7)

require numerical optimizations, we will see in Sections 5.4-5.6 that the theoretical

analysis of performance and the solution to the sensor selection problem is consider-

70



ably simpler with the phase-only constraint. The simulations of Section 5.7 will also

demonstrate that there is often little performance loss incurred by using phase-shift-

only transmissions.

5.3.1 SDP Formulation

To begin, we rewrite (5.5) as follows:

max
a

tr
(

BaaH
)

(5.8)

s.t. |ai| = 1, i = 1, . . . , N .

Making the association A = aaH , problem (5.8) is equivalent to:

max
A

tr(BA) (5.9)

s.t. Ai,i = 1, i = 1, . . . , N

rank(A) = 1

A � 0 ,

where Ai,i denotes the ith diagonal element of A. Following the approach of [40, 50],

we then relax the rank-one constraint, so that the problem becomes a standard SDP:

max
A

tr(BA) (5.10)

s.t. Ai,i = 1, i = 1, . . . , N

A � 0 .
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Defining Br = real{B}, Bi = imag{B}, and similarly for Ar and Ai, we can con-

vert (5.10) to the equivalent real form

max
{Ar,Ai}

tr(BrAr − BiAi) (5.11)

s.t. Ar i,i = 1, i = 1, . . . , N






Ar −Ai

Ai Ar






� 0 .

Problem (5.11) can be efficiently solved by a standard interior-point method [52].

In general, the solution to (5.11) will not be rank one, so an additional step is necessary

to estimate a. Let A∗
r, A∗

i denote the solution to problem (5.11), then the solution

to problem (5.10) is given by A∗ = A∗
r + jA∗

i . If rank(A∗) > 1, we can use a method

similar to Algorithm 2 in [28] to extract a rank-one solution, as follows:

1. Decompose1 A∗ = CHC, define B̃ = CBCH , and find a unitary matrix U that

can diagonalize B̃.

2. Let r ∈ CN×1 be a random vector whose ith element is set to ejωi, where ωi is

uniformly distributed over [0, 2π).

3. Set ã = CHUr, and the solution is given by a∗ = [a∗1 · · · a∗N ]T , where a∗i = ej∠ãi

and ∠z represents the phase of a complex number z.

A detailed discussion of the reasoning behind the above rank-one modification can be

found in [28].

1Since A
∗ is the solution to problem (5.10), A

∗ is positive semidefinite.

72



5.3.2 ACMA Formulation

For this discussion, we will assume that N > M , which represents the most common

scenario. Thus, the N×N matrix B in the quadratic form aHBa that we are trying to

maximize is low rank; in particular, rank(B) ≤M < N . Clearly, any component of a

orthogonal to the columns or rows of B will not contribute to our goal of minimizing

the estimate variance. In particular, if we define the singular value decomposition

(SVD) B = UΣUH , we ideally seek a vector a such that

a =
m
∑

k=1

wkuk = Umw (5.12)

|ai| = 1 ,

where Um = [u1 · · · um] contains the first m ≤ rank(B) ≤ M singular vectors of

B and w = [w1 · · · wm]T . The problem of finding the coefficient vector w of a

linear combination of the columns of a given matrix Um that yields a vector with

unit modulus elements is precisely the problem solved by the ACMA [51].

Our problem is slightly different from the one considered in [51], since there will

in general be no solution to (5.12) even in the absence of noise. However, in our

simulation results we will see that the ACMA solution provides performance close to

that obtained by the SDP formulation above. Note also that there is a trade-off in the

choice of m, the number of vectors in span(B) to be included in the linear combination

of (5.12). A small value of m allows us to focus on forming a from vectors that will

tend to increase the value of aHBa, while a larger value for m provides more degrees

of freedom in finding a vector whose elements satisfy |ai| = 1. Another drawback to

choosing a larger value for m is that the ACMA solution can only be found if N > m2.

As long as M is not too large, one could in principle try all values of m = 1, · · · ,M

that satisfy N > m2 and choose the one that yields the smallest estimate variance.
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We will see later in the simulations that a small value for m already provides good

performance, so the choice of m is not a significant issue.

The general ACMA approach can be formulated to find multiple solutions to (5.12),

but in our case we only need a single solution, and thus a simplified version of ACMA

can be used, as outlined here for a given m. The ACMA is obtained by defining the

rows of Um as UH
m = [ũ1 · · · ũN ], and then rewriting the constraint |ai| = |ũH

i w| = 1

as
(

¯̃ui ⊗ ũi

)H
(w̄ ⊗w) = 1 ,

where (̄·) denotes the complex conjugate. Stacking all N such constraints into a single

equation results in

P[(w̄ ⊗w)T 1]T = 0 , (5.13)

where

P =













(

¯̃u1 ⊗ ũ1

)H −1

...
...

(

¯̃uN ⊗ ũN

)H −1













. (5.14)

If an exact solution to (5.13) existed, then a vector in the null space of P would have

the form
[

(w̄ ⊗w)T 1
]T

, and w could be found by stripping away the 1 and then

unstacking the resulting vector into a rank-one matrix (see [51] for more details).

In our problem, an exact solution to (5.13) does not exist, so we use the following

approach to obtain an approximation:

1. Let q represent the right singular vector of P associated with the smallest

singular value, and define the vector q̃ to contain the first m2 elements of q.

2. Set w equal to the singular vector of Q̃+ Q̃H with largest singular value, where

the m×m matrix

Q̃ = vec−1(q̃) (5.15)
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is formed by dividing q̃ into sub-vectors of length m and stacking them together

in a matrix.

3. Set â = Umw. The vector a is then found by setting the magnitude of all the

elements of â equal to unity. In particular, the i-th element of a is given by

a∗i = ej∠âi .

5.3.3 Comparison of Computational Complexity

As discussed in [50], the computational load of the SDP problem in (5.10) is of the

order O(N3.5). The additional steps required to take the SDP result and find a rank-

one solution require an O(N3) eigenvalue decomposition, so the overall complexity

is dominated by the SDP. For ACMA, the dominant computational step occurs in

finding them principal eigenvectors of the Hermitian matrix B, which requires only an

order O(mN2) computation [53]. Finding the least dominant singular vector of P is an

O(N2)+O(m4) operation, and the remaining steps have relatively trivial complexity.

Since m ≪ N in typical scenarios, we see that ACMA enjoys a significantly lower

computational load compared to the SDP approach. Despite this, we will see that

ACMA has performance that is only slightly inferior to using the SDP solution.

5.4 Asymptotic Performance Analysis

In this section, we analyze the asymptotic performance achievable using only phase-

shifts for the sensor transmissions. We will separately study cases where the number

of sensors is large (N → ∞) or the number of FC antennas is large (M → ∞).

Our analysis will be based on a non-fading channel model that takes path loss into

75



account, similar to models used in [54, 55]. In particular, for the channel between the

FC and sensor i, we assume

hi =
1

dα
i

h̃i ,

where di denotes the distance between the ith sensor and the FC, α is the path loss

exponent and h̃i is given by

h̃i = [ejγi,1 ejγi,2 · · · ejγi,M ]T ,

where γi,k is uniformly distributed over [0, 2π).

5.4.1 Estimation Performance for Large N

From (5.3) we know that the lower bound on Var(θ̂ML) depends on the largest eigen-

value of HH(HVHH + σ2
nIM)−1H. We begin by deriving a lower bound for this

eigenvalue. The (m,n)th element of HVHH can be expressed as

(

HVHH
)

m,n
=

N
∑

i=1

ej(γi,m−γi,n)σ2
v,i

d2α
i

.

According to the strong law of large numbers, as N → ∞ we have

lim
N→∞

1

N

N
∑

i=1

ej(γi,m−γi,n)σ2
v,i

d2α
i

(a)
= E

{

σ2
v,i

d2α
i

}

E
{

ej(γi,m−γi,n)
}

(b)
=











E

{

σ2
v,i

d2α
i

}

m = n

0 m 6= n ,
(5.16)

where (a) follows from the assumption that γi,m, di and σ2
v,i are independent and (b)

is due to the fact that γi,m and γi,n are independent and uniformly distributed over
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[0, 2π). Thus, for sufficiently large N we have

lim
N→∞

HVHH = NE

{

σ2
v,i

d2α
i

}

IM . (5.17)

Based on (5.17), we have

lim
N→∞

λmax

(

HH(HVHH + σ2
nIM)−1H

)

=
1

NE

{

σ2
v,i

d2α
i

}

+ σ2
n

[

lim
N→∞

λmax(H
HH)

]

(c)
=

NE

{

1
d2α

i

}

NE

{

σ2
v,i

d2α
i

}

+ σ2
n

, (5.18)

where (c) is due to the fact that λmax(H
HH) = λmax(HHH). Substituting (5.18) into

(5.3), we have the following asymptotic lower bound on the estimate variance:

Var(θ̂ML) ≥
NE

{

σ2
v,i

d2α
i

}

+ σ2
n

N2E

{

1
d2α

i

} . (5.19)

For large enough N , the lower bound can be approximated using sample averages:

Var(θ̂ML) ≥
∑N

i=1

σ2
v,i

d2α
i

+ σ2
n

N
∑N

i=1
1

d2α
i

. (5.20)

Next, we derive an upper bound on the estimate variance and compare it with the

lower bound obtained above. The upper bound is obtained by calculating the variance

obtained when only a single antenna is present at the FC. For the given channel model,

the optimal choice for the vector of sensor phases is just the conjugate of the channel
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phases: a = [e−jγ1,1 · · · e−jγN,1 ]T , which when applied to (5.2) leads to

Var(θ̂ML) ≤
∑N

i=1

σ2
v,i

d2α
i

+ σ2
n

(

∑N
i=1

1
dα

i

)2 . (5.21)

When N → ∞, both the upper and lower bounds converge to 0, but the ratio of the

lower bound in (5.20) to the upper bound in (5.21) converges to

lim
N→∞

(

∑N
i=1

1
dα

i

)2

N
∑N

i=1
1

d2α
i

=

(

E

{

1
dα

i

})2

E

{

1
d2α

i

} = 1 −
Var

{

1
dα

i

}

E

{

1
d2α

i

} . (5.22)

Interestingly, we see that if Var
{

1
dα

i

}

≪ E

{

1
d2α

i

}

, the gap between the upper and

lower bound is very small, and the availability of multiple antennas at the FC does

not provide much benefit compared with the single antenna system when N → ∞.

On the other hand, if Var
{

1
dα

i

}

→ E

{

1
d2α

i

}

, the potential exists for multiple antennas

to significantly lower the estimate variance.

5.4.2 Estimation Performance for Large M

Using the matrix inversion lemma, we have

H
H(HVH

H + σ2
nIM )−1

H = H
H

(

1

σ2
n

IM− 1

σ4
n

H

(

V
−1 +

1

σ2
n

H
H
H

)−1

H
H

)

H

=
1

σ2
n

H
H
H− 1

σ4
n

H
H
H

(

V
−1+

1

σ2
n

H
H
H

)−1

H
H
H . (5.23)

Furthermore, the (m,n)th element of HHH is given by

(

HHH
)

m,n
=

1

dα
md

α
n

M
∑

i=1

ej(γn,i−γm,i) . (5.24)
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Similar to (5.16), as M → ∞ we have

lim
M→∞

1

M

M
∑

i=1

ej(γn,i−γm,i) =











1 m = n

0 m 6= n ,
(5.25)

and thus

lim
M→∞

HHH = Mdiag

{

1

d2α
1

· · · 1

d2α
N

}

. (5.26)

Substituting (5.26) into (5.23), we have

lim
M→∞

HH(HVHH + σ2
nIM)−1H = diag

{

M

d2α
1 σ

2
n +Mσ2

v,i

· · · M

d2α
N σ

2
n +Mσ2

v,N

}

,

and thus

lim
M→∞

Var(θ̂ML) =
1

M
∑N

i=1
1

d2α
i

σ2
n+Mσ2

v,i

. (5.27)

Note that this asymptotic expression is independent of the choice of a. Here, for

large M , the benefit of having multiple antennas at the FC hinges on the relative

magnitude of Mσ2
v,i versus d2α

i σ
2
n. If Mσ2

v,i ≪ d2α
i σ

2
n, a reduction in variance by a

factor of M is possible. In this case, where the SNR at the FC is low but the signals

sent from the sensors are high quality, the coherent gain from the combination of the

relatively noise-free sensor signals helps increase the SNR at the FC. On the other

hand, when Mσ2
v,i ≫ d2α

i σ
2
n, performance is asymptotically independent of M . Here,

the coherent gain not only applies to θ but also to the sensor noise, which is stronger

in this case.
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5.5 Impact of Imperfect Phase

The previous sections have assumed that the FC can calculate the vector a and feed

the phase information back to the sensors error free. Whether the feedback channel

is digital or analog, there are about to be errors either in the received feedback at the

sensors or in how the phase shift is actually implemented. Furthermore, the wireless

channel may change during the time required for calculation and feedback of a, so

even if the phase shifts are implemented perfectly at the sensors, they may no longer

be valid for the current channel. In this section, we evaluate the impact of errors in

the sensor phase shifts on the estimation accuracy.

Define the phase shift for the ith sensor as ai = ejαi, and assume that

αi = α∗
i + ∆i ,

where α∗
i is the optimized phase and ∆i is a Gaussian perturbation (in radians) with

zero mean and variance σ2
p. Define E = HH(HVHH + σ2

nIM)−
1
2 , so that V ar(θ̂ML)

can be expressed as

V ar(θ̂ML) =
1

‖aHE‖2
=

1
∑M

i=1 |aHei|2
, (5.28)

where ei is the ith column of E. Let ei,ke
jβk be a polar coordinate representation of

the jth element of ei, so that

|aHei|2 =

∣

∣

∣

∣

∣

N
∑

k=1

ei,ke
j(α∗

j +∆j+βk)

∣

∣

∣

∣

∣

2

=
N
∑

k=1

e2i,k +
N
∑

l=1

N
∑

m=1
m6=l

ei,lei,m cos(α∗
l + ∆l + βl − α∗

m − ∆m − βm).(5.29)
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Define δi
l,m = ∆l − ∆m and τ i

l,m = α∗
l + βl − α∗

m − βm. If we assume σ2
p ≪ 1, (5.29)

may be approximated via a 2nd order Taylor series as follows:

|aH
ei|2

≈
N
∑

k=1

e2

i,k +

N
∑

l=1

N
∑

m=1,
m 6=l

ei,lei,m

(

cos(τ i
l,m) − sin(τ i

l,m)δi
l,m −

cos(τ i
l,m)

2

(

δi
l,m

)2

)

=

N
∑

k=1

e2

i,k+

N
∑

l=1

N
∑

m=1,
m 6=l

ei,lei,m cos(τ i
l,m)−

N
∑

l=1

N
∑

m=1,
m 6=l

ei,lei,m

(

sin(τ i
l,m)δi

l,m+
cos(τ i

l,m)

2

(

δi
l,m

)2

)

.(5.30)

Substituting (5.30) into (5.28), we have

V ar(θ̂ML) ≈ 1
∑M

i=1(ai− bi)
, (5.31)

where

ai =

N
∑

k=1

e2i,k+

N
∑

l=1

N
∑

m=1
m6=l

ei,lei,m cos(τ i
l,m)

bi =
N
∑

l=1

N
∑

m=1
m6=l

ei,lei,m

(

sin(τ i
l,m)δi

l,m+
cos(τ i

l,m)

2

(

δi
l,m

)2

)

.

In equation (5.31), the effect of the phase error is confined to the second double sum

inside the outermost parentheses. If we define θ̂P
ML to be the estimate obtained with

no phase errors, then

V ar(θ̂P
ML) =

1

∑M
i=1

(

∑N
k=1 e

2
i,k+

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ i
l,m)

) , (5.32)

which is deterministic and does not depend on the random phase errors. We can then
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obtain the following approximation

V ar(θ̂ML)

(f)≈ V ar(θ̂P
ML)









1 +

∑M
i=1

(

∑N
l=1

∑N
m=1
m6=l

ei,lei,m

(

sin(τ i
l,m)δi

l,m +
cos(τ i

l,m
)

2

(

δi
l,m

)2
)

)

∑M
i=1

(

∑N
k=1 e

2
i,k+

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ i
l,m)

)









,

where (f) is due to the first order Taylor approximation (1− x
y
)−1 ≈ 1+ x

y
for x≪ y.

We use the ratio of V ar(θ̂ML) to V ar(θ̂P
ML) to measure the effect of the phase error,

which yields

V ar(θ̂ML)

V ar(θ̂P
ML)

≈









1 +

∑M
i=1

(

∑N
l=1

∑N
m=1
m6=l

ei,lei,m

(

sin(τ i
l,m)δi

l,m +
cos(τ i

l,m
)

2

(

δi
l,m

)2
)

)

∑M
i=1

(

∑N
k=1 e

2
i,k+

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ i
l,m)

)









.

Note that the only term in the above expression that is random is the numerator on

the right-hand side. Taking the expectation of the ratio with respect to the phase

perturbations ∆i, we have

E

{

V ar(θ̂ML)

V ar(θ̂P
ML)

}

=









1 +

∑M
i=1

(

∑N
l=1

∑N
m=1
m6=l

ei,lei,m

(

sin(τ i
l,m)E

{

δi
l,m

}

+
cos(τ i

l,m
)

2 E

{

(

δi
l,m

)2
}))

∑M
i=1

(

∑N
k=1 e2

i,k+
∑N

l=1

∑N
m=1
m6=l

ei,lei,m cos(τ i
l,m)

)









(h)
=









1 +

∑M
i=1

∑N
l=1

∑N
m=1
m6=l

ei,lei,m cos(τ i
l,m)σ2

p

∑M
i=1

(

∑N
k=1 e2

i,k+
∑N

l=1

∑N
m=1
m6=l

ei,lei,m cos(τ i
l,m)

)









, (5.33)

where in (h) we exploit the fact that E
{

δi
l,m

}

= 0 and E

{

(

δi
l,m

)2
}

= 2σ2
p. Since

N
∑

l=1

N
∑

m=1
m6=l

ei,lei,m cos(τ i
l,m) ≤ (N − 1)

N
∑

l=1

e2i,l ,
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the ratio in (5.33) is approximately upper bounded by

E

{

V ar(θ̂ML)

V ar(θ̂P
ML)

}

≤ 1 +

(

1 − 1

N

)

σ2
p . (5.34)

We see from (5.34) that the impact of the phase errors increases with N , but in all

cases the degradation in the estimate variance is approximately bounded above by a

factor of 1 + σ2
p .

5.6 Sensor Selection

As mentioned earlier, in situations where it is desired to use only a subset of the

sensors to estimate the parameter (e.g., in order to conserve power at the sensors),

the FC needs a method to perform the sensor selection. Assuming only K < N of

the sensors are to be selected for transmission to the FC, an optimal solution to the

problem would require solving the following maximization:

max
a,x

xTDHHH
(

HVXHH + σ2
nIM

)−1
HDx (5.35)

s.t.
N
∑

i=1

xi = K

xi = {0, 1}

|ai| = 1 ,

where D = diag {a1, · · · , aN}, x = [x1, · · · , xN ]T is the selection vector and X =

diag{x1, · · · , xN}. Even if one chooses one of the suboptimal approaches described in

Section III for estimating a, solving for x in (5.35) requires an exhaustive search over

all possible K-sensor combinations and is in general NP-hard. Instead, in this section

we derive conditions under which much simpler selection strategies can be applied.
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We consider the following two cases: (1) low sensor noise relative to the noise at the

FC, σ2
v,i ≪ σ2

n, and (2) relatively high sensor noise σ2
v,i ≫ σ2

n. For (1), we derive a LP

solution as well as a simpler greedy algorithm, and for (2) we show that the problem

reduces to choosing the sensors with the lowest measurement noise.

5.6.1 Algorithms for High FC Noise

Let a be the phase vector obtained using one of the algorithms in Section III assuming

all N sensors are active. When σ2
v,i ≪ σ2

n, we ignore the term HVXHH in (5.35),

and the problem simplifies to

max
x

xTDHHHHDx (5.36)

s.t.
N
∑

i=1

xi = K

xi = {0, 1} .

Define F = DHHHHD, so that (5.36) can be rewritten as

max
x

xT Re{F}x (5.37)

s.t.

N
∑

i=1

xi = K

xi = {0, 1} .

Since x2
i = xi, (5.37) is equivalent to

max
xi

N
∑

i=1

Fi,ixi + 2

N−1
∑

i=1

N
∑

j=i+1

Re{Fi,j}xixj (5.38)

s.t.
N
∑

i=1

xi = K

xi = {0, 1} ,
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where Fi,j denotes the (i, j)th element of matrix F. By linearizing the term xixj [56],

(5.38) is equivalent to

max
xi,yik

N
∑

i=1

Fi,ixi + 2

N−1
∑

i=1

N
∑

k=i+1

Re{Fi,k}yik (5.39a)

s.t.
N
∑

i=1

xi = K (5.39b)

1 − xi − xj + yik ≥ 0 (5.39c)

xi − yik ≥ 0 (5.39d)

xj − yik ≥ 0 (5.39e)

yik ≥ 0 (5.39f)

xi = {0, 1} , (5.39g)

where the constraints (5.39c)-(5.39g) lead to yik = xixk.

Note that all of the constraints in (5.39) are linear, except for (5.39g). If we relax the

constraint in (5.39g), the condition 0 ≤ xi ≤ 1 is implicitly included in (5.40c)-(5.40f),

and we are left with a LP problem in standard form [56]:

max
xi,yik

N
∑

i=1

Fi,ixi + 2
N−1
∑

i=1

N
∑

k=i+1

Re{Fi,k}yik (5.40a)

s.t.

N
∑

i=1

xi = K (5.40b)

1 − xi − xj + yik ≥ 0 (5.40c)

xi − yik ≥ 0 (5.40d)

xj − yik ≥ 0 (5.40e)

yik ≥ 0 . (5.40f)

To find the xi = {0, 1} solution needed for sensor selection, one can take the result
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of (5.40) and simply set the K largest elements to one and the rest to zero. If desired,

once the K sensors have been selected, the phase vector a for these K sensors can be

recomputed based on a reduced dimension version of the algorithms in Section III.

The above LP problem has N(N−1)
2

+N variables and 2N(N − 1)+1 constraints, and

thus will require on the order of
(

N(N−1)
2

+N
)2

(2N(N − 1) + 1) arithmetic opera-

tions [52]. A simpler greedy algorithm is presented below that only requires O(KN)

operations, and that achieves performance close to the LP approach. The greedy

algorithm is based on the following observation 2:

xTDHHHHDx =
K
∑

i=1

K
∑

l=1

āialh
H
i hl

=

K−1
∑

i=1

K−1
∑

l=1

āialh
H
i hl + ‖hK‖2 + 2Re

{

K−1
∑

l=1

āKalh
H
Khl

}

.

The idea behind the greedy algorithm is to add sensors one at a time based on those

for which the last two terms in the above sum are the largest. The steps of the

algorithm are detailed below.

Greedy Sensor Selection Algorithm

1. Select the first sensor as the one with the strongest channel: i = arg maxk ‖hk‖2,

and initialize the active sensor set as S = {i} .

2. While |S| ≤ K, perform the following:

(a) Solve

i = arg max
k/∈S

‖hk‖2 + 2Re

{

∑

l∈S
ākalh

H
k hl

}

.

(b) Update S = S⋃ i .

2For the simplicity of expression, we assume that the first K sensors are selected out.
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As with the LP algorithm, once the K sensors are selected, an updated solution for

the associated K elements of a can be obtained.

5.6.2 Algorithm for High Sensor Noise

When σ2
v,i ≫ σ2

n and assuming that N > M (the case of interest when sensor selection

is necessary), the original criterion can be simplified to

aHHH
(

HVHH
)−1

Ha = aHV− 1
2 V

1
2 HH

(

HVHH
)−1

HV
1
2 V− 1

2a

= aHV− 1
2 PV HV− 1

2a ,

where PV H = V
1
2 HH

(

HVHH
)−1

HV
1
2 is a rank M projection matrix. Ideally, to

maximize the criterion function, one should attempt to find a vector of the form V− 1
2 a

that lies in the subspace defined by PV H . Assuming the vector a can approximately

achieve this goal, the lower bound on variance is approximately achieved and we have

1

aHV− 1
2PV HV− 1

2 a
≈ 1

aHV−1a
=

1
∑N

i=1
1

σ2
v,i

. (5.41)

With respect to the sensor selection problem, this suggests that when σ2
v,i ≫ σ2

n, the

K sensors with the smallest values of σ2
v,i should be chosen.

5.7 Simulation Results

Here we present the results of several simulation examples to illustrate the perfor-

mance of the proposed algorithms. In all cases, the path loss exponent α is set to 1,

and each result is obtained by averaging over 300 channel realizations. The sensors

are assumed to lie in a plane at random angles with respect to the FC, uniformly
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Figure 5.1: Performance of the proposed algorithms with an increasing number of
sensors for a low measurement noise scenario (σ2

n = 0.1, σ2
v,i uniformly distributed

over [0.01, 0.1], di uniformly distributed over [3, 20] and M = 4). In the plot, the
Numerical Lower Bound, Asymptotic Lower Bound and Asymptotic Upper Bound
are defined in equations (5.3), (5.20) and (5.21) respectively.

distributed over [0, 2π). The distances of the sensors to the FC will be specified sepa-

rately below. To evaluate the performance without feedback, a is set to a vector of all

ones. In some of the simulations, we will compare the performance of the proposed

algorithms with that obtained by (5.7), where both the sensor gain and phase can

be adjusted. In these simulations, we use the active-set method to optimize (5.7),

and we use several different initializations in order to have a better chance of obtain-

ing the global optimum. When the ACMA algorithm is implemented, the subspace

dimension was set at m = 2.

In the first two examples, we study the estimation performance for M = 4 FC anten-

nas with increasing N for a case where the sensor measurement noise σ2
v,i is uniformly

distributed over [0.01, 0.1] and the FC noise σ2
n is set to 0.1. Fig. 5.1 shows the re-
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Figure 5.2: Performance of the proposed algorithms with an increasing number of
sensors for a low measurement noise scenario (σ2

n = 0.1, σ2
v,i uniformly distributed

over [0.01, 0.1], di = 11.5 and M = 4).

sults assuming that the sensor distances di are uniformly distributed in the interval

[3, 20], while in Fig. 5.2 di = 11.5 for all sensors. In both cases, even though the

lower bound of (5.3) is not achievable, we see that the performance of the proposed

SDP and ACMA methods is nonetheless reasonably close to the bound, and not sig-

nificantly worse than the performance obtained by optimizing both the phase and

gain. As N gets larger in Fig. 5.1, the estimation error for all of the methods (except

the no-feedback case) falls within the asymptotic lower and upper bounds of (5.20)

and (5.21). When N = 50, the ratio Var
{

1
dα

i

}

/E
{

1
d2α

i

}

is 0.304 for Fig. 5.1, and the

ratio between the lower and upper bound is 0.702, which is in excellent agreement

with the value of 1 − 0.304 predicted by Eq. (5.22). Since the upper bound in (5.21)

corresponds to the case of M = 1, one may suppose that the gap in Fig. 5.1 between

the bounds of (5.20) and (5.21) indicates that the presence of multiple antennas at

the FC could provide a benefit for large N . However, the performance of SDP and
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Figure 5.3: Performance of the proposed algorithms with an increasing number of
antennas (σ2

n = 0.1, σ2
v,i uniformly distributed over [0.001, 0.01], di uniformly dis-

tributed over [3, 20] and N = 4). In the simulation results, the Asymptotic Variance
is calculated using equation (5.27).

ACMA is approaching the upper bound more tightly, indicating that there is no ben-

efit from having multiple antennas in this case. In Fig. 5.2 where the di are all equal,

the asymptotic bounds in (5.20) and (5.21) are identical, and asymptotically we ex-

pect no benefit from multiple antennas at the FC. We see again that for large N the

performance of the SDP and ACMA methods is essentially at the predicted bound.

When the di are equal and
σ2

v,i

dα
i

≪ σ2
n, the matrix HH(HVHH + σ2

nIM)−1H asymp-

totically approaches a scaled identity matrix, so in this case the performance of the

proposed phase-shift only algorithms even approaches the lower bound of Eq. (5.3).

Fig. 5.3 illustrates the performance for N = 4 with an increasing number of FC

antennas M when σ2
v,i is uniformly distributed over [0.001, 0.01] and σ2

n = 0.1. In

this example, for most of the sensors we have Mσ2
v,i ≪ d2α

i σ2
n, so in this case we see

an improvement as the number of FC antennas increases. However, the benefit of
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Figure 5.4: Effect of phase errors on algorithm performance (σ2
n = 0.1, σ2

v,i uniformly
distributed over [0.01, 0.1] and di uniformly distributed over [3, 20]).

optimizing the transmit phase (and gain for that matter) is reduced as M increases.

In Fig. 5.4, we investigate the effect of phase errors for two cases, σ2
p = 0.1 and

σ2
p = 0.2 assuming the same noise parameter settings as in the first two examples.

For each channel realization, results for 3000 different phase error realizations were

obtained and averaged to obtain the given plot. The ratio of the variance obtained

by the SDP algorithm with and without phase errors is plotted for M = 2, 4, 6 for

both values of σ2
p , and the approximate bound of (5.34) is also shown. The results

show that the performance degradation increases with N , and that (5.34) provides a

reasonable indication of performance for large N . Fig. 5.4 also shows that increasing

the number of FC antennas improves the robustness of the algorithm to imprecise

sensor phase.

In Fig. 5.5, we compare the performance of the three different sensor selection al-
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Figure 5.5: Performance comparison between different sensor selection algorithms
(N = 35, M = 4, σ2

v,i uniformly distributed over [0.001, 0.01] and di uniformly dis-
tributed over [3, 20]).

gorithms discussed in this chapter (LP, greedy and min-sensor-noise) as a function

of σ2
n assuming M = 4 antennas, N = 35 sensors and the sensor noise is uniformly

distributed over [0.001, 0.01]. The sensor distances di are uniformly distributed in the

interval [3, 20]. Three sets of curves are plotted, one for K = 5 selected sensors, one

for K = 10, and one corresponding to when all the sensor nodes are used (the solid

curve, obtained using the SDP algorithm). After the sensor selection, the proposed

SDP is used to re-optimize the selected sensor nodes’ phase parameters. For small

σ2
n such that σ2

v,i ≫ σ2
n, we see as predicted that the best performance is obtained

by simply selecting the K sensors with the smaller measurement noise. On the other

hand, again in agreement with our analysis, the LP and greedy algorithms achieve

the lowest estimation error for larger values of σ2
n. Interestingly, the greedy algo-

rithm provides performance essentially identical to the LP approach at a significantly

reduced computational cost.
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5.8 Summary

In this chapter, we investigated a distributed network of single antenna sensors em-

ploying a phase-shift and forward strategy for sending their noisy parameter obser-

vations to a multi-antenna FC. We presented two algorithms for finding the sensor

phase shifts that minimize the variance of the estimated parameter, one based on a

relaxed SDP and a closed-form heuristic algorithm based on the ACMA approach.

We analyzed the asymptotic performance of the phase-shift and forward scheme for

both large numbers of sensors and FC antennas, and we derived conditions under

which increasing the number of FC antennas will significantly benefit the estimation

performance. We also analyzed the performance degradation that results when sensor

phase errors of variance σ2
p are present, and we showed that for large N the variance

will approximately increase by a factor of 1 + σ2
p provided that σ2

p ≪ 1 square ra-

dian. The sensor selection problem was studied assuming either low or high sensor

noise with respect to the noise at the FC. For low sensor noise, two algorithms were

proposed, one based on linear programming with a relaxed integer constraint, and

a computationally simpler greedy approach. For high sensor noise, we showed that

choosing the sensors with the smallest noise variances was approximately optimal.

Simulation studies of the proposed algorithms illustrate their advantages and the

validity of the asymptotic analyses.
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Chapter 6

Optimal Power Allocation for

Multi-antenna Fusion Center

6.1 Introduction

The use of WSNs for detection and parameter estimation has been widely studied

(e.g., [1, 8, 13, 23, 57–62]). When a coherent MAC is employed between the sensor

nodes and fusion center [1, 8, 13, 23, 59–62], each sensor takes a noisy measurement

of the signal of interest, amplifies and forwards the measurement to a FC through a

wireless fading channel, and the FC makes a decision about the presence of the signal

and estimates its parameters based on the coherent sum of the signals from all the

sensor nodes. To minimize the detection or estimation errors, the transmit power at

the sensors is optimized under either sum or individual power constraints.

The aforementioned works all assume that the FC is configured with a single antenna.

It is well-known that multiple antennas can effectively increase the throughput of a

wireless link, and recently researchers have investigated the use of arrays with a
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massive number of antennas in wireless communication systems in order to improve

spectral and energy efficiency [4–7]. When the BS has an array with many antennas

and meanwhile the individual mobile stations have a single antenna, the energy effi-

ciency at the mobile stations can be significantly increased. It has been shown that

when perfect CSI is available at the BS, the transmit power of the mobile stations can

be scaled by inverse of the number of antennas to asymptotic achieve constant user

rate in the system [4]; when BS uses an imperfect CSI through LMMSE estimation,

a constant user rate is asymptotically achievable, if the mobile users’ transmit power

is inversely proportional to the square root of the number of antennas[5].

For parameter detection or estimation problems in WSNs, an important question is

how to exploit a multi-antenna FC to improve the probability of detection or esti-

mation error. Several recent papers have studied the benefit provided by multiple

antennas in the WSN context [10, 39, 40, 63–65]. In [64], the sensors use a fixed

transmission gain to forward the measured signal to the multi-antenna FC, and the

probabilities of detection and false alarm are derived under different assumptions for

the CSI. Power allocation problems for signal detection and estimation are formulated

in [39, 40] for a multi-antenna FC under a Rayleigh fading channel, but the perfor-

mance benefit of a multiple- versus single-antenna FC is shown to be bounded by a

constant that is unrelated to the number of antennas. For signal estimation using a

phase-shift and forward WSN with a multi-antenna FC, it is shown in [10] that as the

number of antennas M grows large, in certain cases the estimation error will decrease

by a factor of M . Antenna arrays at the FC are also considered in [63, 65], where

each sensor node first makes a local binary decision about the measured signal, and

then forwards the decisions to the multi-antenna FC using uniform transmit power.

In [63], a number of sub-optimal but low complexity fusion rules at the FC are de-

rived and analyzed, and the results indicate the benefit of using multiple antennas in

terms of detection performance. The results in [65] show that when the number of
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antennas is very large, the FC can asymptotically achieve the detection performance

upper bound even using a linear receiver with imperfect CSI.

While the benefits of massive numbers of antennas have been carefully studied for

communication systems, we see above that relatively little work has analyzed their

impact for WSNs. In this chapter, we investigate the gains in energy efficiency that

can be obtained in a coherent multiple-access WSN when the FC has a large number of

antennas, and we show how to determine optimal values for the sensor gains when the

CSI is either perfectly known or unknown at the FC. In particular, our motivation is

to demonstrate that FC antennas can be traded for sensor power; this is an important

observation for WSNs where the sensors must conserve energy (e.g., due to the use of

batteries or energy harvesting). The specific contributions of this chapter are detailed

in the next section.

In this chapter, we study the detection and estimation performance of a coherent

amplify-and-forward WSN with single antenna sensors and a massive number M of

antennas at the FC. We assume the parameter of interest is a zero-mean circular

complex Gaussian variable and that the wireless channels between the sensor nodes

and FC undergo Rayleigh fading. Under these assumptions, we investigate the per-

formance of the Neyman-Pearson (NP) and energy detectors and the linear minimum

mean-squared error estimator (LMMSE). Our contributions are summarized below.

(1) For the case where CSI for the sensor nodes is available at the FC and the

NP detector can be implemented, we derive the dependence of both probability of

detection (PD) and probability of false alarm (PFA) on the sensor transmit power

and show that as M → ∞, the sensor power can be reduced by 1/M to achieve

a constant PD for the same fixed PFA. This is similar in spirit to the results for

massive MIMO in wireless cellular communications with perfect CSI [5]. However,

unlike [5] which assumes each user transmits with equal power, we derive the optimal
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transmission gains for the sensors that maximize PD for a fixed PFA under a sum

power constraint. We show that this problem is independent of the sensor phase and

convex with respect to the magnitude squared of the sensor gain as M → ∞, and we

formulate a simple closed-form “water-filling” solution to calculate the optimal gains.

In our simulations, we demonstrate that compared with a uniform power allocation,

the optimal gains result in significantly improved PD performance when the sensors

transmit with low power, which is the case of interest for energy efficiency.

(2) For the NP detector, we also derive asymptotic performance bounds for cases

where the available sum transmit power P satisfies either P → ∞ or P → 0. When

P → 0, we show that PD approaches PFA in the single antenna case, but PD is

strictly greater than PFA (and potentially significantly greater than PFA) as long as

P decreases at a rate of O(1/M) or slower as M → ∞. However, when P → ∞,

we show that both the single- and multiple-antenna FC asymptotically achieve the

same detection performance, and hence the use of multiple antennas asymptotically

provides no benefit for the NP detector at very high signal-to-noise ratios.

(3) For the case where the CSI is unknown or a computationally simpler solution is

desired, we study the performance of the energy detector. The deflection of the energy

detector is used as the performance metric, which generally serves as an accurate

indicator of a detector’s performance. Our results show that if the sensor transmit

power decreases as 1/
√
M when M → ∞, a constant deflection can be achieved.

Based on this, we show how to choose the sensor transmission gains to maximize the

deflection under a sum power constraint. In particular, we show that when M → ∞,

the optimal gains can be found in the general case via a quadratically constrained

linear program, and we also show that closed-form solutions are possible for limiting

values of the power constraint P . As in the NP detector case, the optimal solution

is independent of the sensor phase. Simulation results demonstrate that reducing
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transmit power by 1/
√
M to maintain a constant deflection as M grows results in a

constant PD. Note that although this result is superficially similar to a result in [5], the

case we consider is considerably different since it involves the energy detector which

requires no CSI, unlike [5] which assumes a minimum mean-squared error channel

estimate obtained using pilot signals. Also, unlike [5], we do not assume a uniform

power allocation, but as mentioned above we instead derive optimal sensor transmit

gains and illustrate when these optimal gains provide significantly better detection

performance.

(4) For the LMMSE estimator, we prove that a constant MSE can be achieved by

decreasing the transmit power as 1/M as the number of FC antennas M grows. This

result is obtained by generalizing the asymptotic results for the NP detector to the

LMMSE estimator, and showing that the PD of the NP detector and the LMMSE

mean-squared error (MSE) both obey a similar rule as M → ∞. We also derive

bounds on the MSE for the limiting cases P → 0 and P → ∞, and show similar

behavior for these bounds as in the case of PD for the NP detector.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the

signal model and derive basic results for PD and PFA of NP detector. In Section 6.3,

we prove the main results for the NP detector and LMMSE estimator, and we for-

mulate and solve the sensor transmission gain optimization problem to maximize PD

for a given PFA under a sum transmit power constraint. The deflection of the energy

detector is analyzed in Section 6.4, and the problem of calculating the transmission

gains that maximize the deflection is solved. The results of several simulation studies

are provided in Section 6.5 to validate the theoretical derivations, and the conclusions

of this chapter are summarized in Section 6.6.
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6.2 Signal Model and Neyman-Pearson Detector

Based on the signal mode in (2.2), when the NP criterion is used to distinguish

between the hypotheses H0 and H1, the NP detector decides H1 if [66]

L(y) =
p(y;H1)

p(y;H0)
> γ (6.1)

for a given threshold γ, where p(y;H1) and p(y;H0) are the conditional probability

density functions (PDFs) of y under H1 and H0, respectively. Assume the measure-

ment noise at the sensors is independent, so that the covariance of v is given by

V = diag{σ2
v,1 · · · σ2

v,N}. Since y is Gaussian under both H1 and H0, we have [66]

p(y;H1) =
1

πMdet(Cs+Cw)
exp

(

−yH(Cs+Cw)−1y
)

p(y;H0) =
1

πMdet(Cw)
exp

(

−yHC−1
w y
)

, (6.2)

where Cw = HDVDHHH+σ2
nIM is the covariance of y under H0, (·)H is the conjugate

transpose, Cs = σ2
θHaaHHH and Cw + Cs is the covariance of y under H1.

Lemma 1. Based on the signal model in (2.2) and the conditional PDFs in (6.2),

the NP detector in (6.1) is equivalent to deciding H1 if

σ2
θ |aHHHC−1

w y|2 > γ
′

, (6.3)

where

γ
′

= (1 + σ2
θg(a)) ln

[

γ(1 + σ2
θg(a))

]

g(a) = aHHHC−1
w Ha .
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Proof : Substituting p(y;H1) and p(y;H0) from (6.2) into (6.1) and calculating the

logarithm of (6.1), we have

yH(C−1
w − (Cs+Cw)−1)y > ln

(

γ(1+σ2
θg(a))

)

, (6.4)

where g(a) = aHHHC−1
w Ha, and in the derivation we used the following equality

ln(γ) + lndet(Cs + Cw) − lndet(Cw)

= ln(γ) + lndet(CsC
−1
w + IM)

(a)
= ln(γ) + ln

(

1 + λmax(CsC
−1
w )
)

= ln
(

γ(1 + σ2
θg(a))

)

,

where (a) is due to the fact that CsC
−1
w is a rank-one matrix and λmax(·) is the largest

eigenvalue of its matrix argument. Using the matrix inversion lemma, the left hand

side of (6.4) is calculated as

(Cs + Cw)−1 −C−1
w =

σ2
θ

1 + σ2
θg(a)

C−1
w HaaHHHC−1

w , (6.5)

and substituting (6.5) into (6.4) will produce the desired result. �

For the NP detector in (6.3), the probability of detection PD and probability of false

alarm PFA are defined as

PD = Pr
(

σ2
θ |aHHHC−1

w y|2 > γ
′ |H1

)

PFA = Pr
(

σ2
θ |aHHHC−1

w y|2 > γ
′ |H0

)

.

To evaluate PD, we first rewrite it as

PD = Pr
(

σ2
θ ỹ

HWỹ > γ
′|H1

)

, (6.6)
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where ỹ = (Cs + Cw)−
1
2y and

W = (Cs + Cw)
1
2C−1

w HaaHHHC−1
w (Cs + Cw)

1
2 .

Since y ∼ CN (0,Cs +Cw) under H1, ỹ = (Cs +Cw)−
1
2y is distributed as CN (0, IM).

Defining the eigendecomposition of W as

W = UGUH

where G = diag{g(a) + σ2
θg(a)2, 0, · · · , 0} , equation (6.6) becomes

PD = Pr
(

σ2
θ ỹ

HUGUH ỹ > γ
′|H1

)

(b)
= Pr

(

σ2
θ ỹ

HGỹ > γ
′ |H1

)

(c)
= exp

(

− γ
′

σ4
θg(a)2 + σ2

θg(a)

)

, (6.7)

where (b) results since the unitary transformation U does not change the distribution

of ỹ, and (c) holds since ỹHGỹ has a scaled chi-square distribution with two degrees

of freedom. In a similar way, PFA can be derived as

PFA = exp

(

− γ
′

σ2
θg(a)

)

. (6.8)

6.3 Neyman-Pearson Detector Optimization and

Analysis

Both PD and PFA are functions of the sensor transmission gains a, and thus it is

natural to find values for the entries of a that optimize detection performance. Here
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we will show how to find a such that PD is maximized for a given PFA. According to

(6.8), the threshold required to achieve PFA = ǫ is

γ′ = −σ2
θg(a) ln ǫ .

When substituted into (6.7), this threshold yields

PD = exp

(

ln ǫ

σ2
θg(a) + 1

)

. (6.9)

Since ln ǫ < 0, PD is maximized when the signal-to-noise ratio (SNR) g(a) is maxi-

mized. Thus, the problem becomes

max
a

g(a) = aHHH(HDVDHHH+σ2
nIM)−1Ha

s.t. aHa = P , (6.10)

where P denotes the constraint on the sum sensor transmit power. This result was

derived in [40] by examining the behavior of the error exponent as the number of

sensors went to infinity. Here we see the result holds for fixed and finite values of N .

The role of g(a) in determining estimation performance for θ has also been noted in

[10, 39]. In general, finding a solution to (6.10) is difficult due to its nonlinear and

non-convex dependence on a. A simpler solution was found to be possible in [10] if

the sensor gains were restricted to all have the same magnitude and only the phase

was optimized. In this case, the solution was shown to be found via a relaxed SDP.

In this chapter, we show that a closed-form “water-filling” type of solution for (6.10)

is possible under the assumption that M → ∞.

102



6.3.1 Energy Efficiency

For our analysis, we assume the wireless fading channel between the sensor node i

and FC is modeled as

hi =
h̃i
√

dα
i

, (6.11)

where di is the distance between the sensor node and FC, α is the path loss exponent,

and h̃i ∈ CM×1 is a complex Gaussian vector with distribution CN (0, IM). Note

that the assumption here of independent identically distributed channel coefficients

is made primarily to enable the asymptotic analysis of the detection performance at

the FC. The following theorem characterizes the energy efficiency of the NP detector

for large M .

Theorem 4. Assuming Rayleigh fading wireless channels, as the number of FC an-

tennas M tends to infinity, the transmit gain |ai|2 at each sensor can be reduced by

1/M to almost surely achieve the same optimal PD for a given fixed PFA.

Proof : We will show that as M → ∞, the function g(a) in (6.9) and (6.10) remains

constant if the product M |ai|2 is held constant. We first use the matrix inversion

lemma to show that

(

HDVDHHH + σ2
nIM

)−1
=

1

σ2
n

IM − 1

σ4
n

H

(

E−1 +
1

σ2
n

HHH

)−1

HH , (6.12)

where E = DVDH . Note that we have assumed that |ai| > 0 to guarantee the matrix

inverse E−1 exists, but we will see that the final solution allows |ai| → 0. Substituting

(6.12) into g(a) yields

g(a) =
1

σ2
n

aHHHHa− 1

σ4
n

aHHHH

(

E−1+
1

σ2
n

HHH

)−1

HHHa . (6.13)
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For large M , the product HHH converges almost surely to [5]:

lim
M→∞

1

M
HHH = diag

{

1

dα
1

· · · 1

dα
N

}

, (6.14)

and substituting (6.14) into (6.13) yields, after some calculations,

lim
M→∞

g(a) = lim
M→∞

N
∑

i=1

M |ai|2
σ2

nd
α
i + σ2

v,iM |ai|2
. (6.15)

We see that g(a) remains asymptotically unchanged as long as the product M |ai|2

is held constant, and thus asymptotically equivalent detection performance can be

achieved if any decrease in sensor transmit power is balanced by a corresponding

increase in the number of FC antennas. �

6.3.2 Sensor Gain Optimization

Based on (6.15), when M → ∞, the original problem (6.10) can be rewritten as

max
|ai|2

N
∑

i=1

M |ai|2
σ2

nd
α
i + σ2

v,iM |ai|2
(6.16)

s.t.

N
∑

i=1

|ai|2 = P .

We see from this formulation that asM → ∞, only the magnitude of ai is important in

determining the detection performance, and we see that there is no problem if |ai| → 0

for some i. As M grows, eventually we reach the point where σ2
v,iM |ai|2 ≫ σ2

nd
α
i , in

which case the choice of the sensor gains no longer matters. However, we will see

in the simulations that for moderately large values of M , optimizing (6.16) over |ai|

provides a significant benefit, especially when P is relatively small.
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Define a new variable xi = |ai|2, so that problem (6.16) is equivalent to

min
xi

N
∑

i=1

−Mxi

σ2
nd

α
i + σ2

v,iMxi
(6.17)

s.t.

N
∑

i=1

xi = P

0 ≤ xi .

In problem (6.17), the objective function is the sum of N convex functions of xi,

and the constraints are linear with respect to the variable xi, so (6.17) is a convex

problem and we can find a “closed-form” solution using the Karush-Kuhn-Tucker

(KKT) conditions [52]. The Lagrangian of (6.17) is given by:

L(xi, λ, µi) =

N
∑

i=1

−Mxi

σ2
nd

α
i + σ2

v,iMxi
+ λ

(

N
∑

i=1

xi − P

)

−
N
∑

i=1

µixi , (6.18)

and the corresponding KKT conditions are as follows:

−σ2
nd

α
i M

(σ2
nd

α
i + σ2

v,iMxi)2
+ λ− µi = 0

λ

(

N
∑

i=1

xi − P

)

= 0

N
∑

i=1

xi − P = 0

xiµi = 0

xi, µi, λ ≥ 0 .

After some simple manipulations, we arrive at the following optimal solution to (6.16):

|a∗i | =

√

√

√

√

√

(

√

σ2
ndα

i M

λ
− σ2

nd
α
i

)+

σ2
v,iM

, (6.19)
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where λ > 0 is chosen such that
∑N

i=1 |a∗i |2 = P . Lower and upper bounds for λ are

given by

λu =
M

σ2
n mini{dα

i }

λl = min
i

{

σ2
nd

α
i M

(σ2
nd

α
i + σ2

v,iPM)2

}

,

and the unique value of λ can be found via a simple bisection search over [λl, λu].

Note that while implementing the NP detector in (6.3) requires instantaneous CSI,

the large M assumption allows the optimal gains in (6.19) to be computed using

only the channel statistics, determined in this case by the distances of the FC to

the sensors. This is of interest since it means the sensors will not require frequent

feedback from the FC to update their transmit gains.

6.3.3 Single-Antenna FC

It is of interest to consider the single-antenna FC case separately, both for purposes

of comparison and because in this case an exact solution can be obtained. When

M = 1, the signal model reduces to

H0 : y = aHFv + n

H1 : y = aHhθ + aHFv + n , (6.20)

where a = [a1 · · ·aN ]H , h = [h1 · · ·hN ]T , F = diag{h1 · · ·hN} and hi denotes the

scalar channel gain between the ith sensor and the FC. The conditional PDFs of y

106



under H1 and H0 are given by

p(y;H1) =
1

π(σ2
s + σ2

w)
exp

(

− |y|2
σ2

s + σ2
w

)

p(y;H0) =
1

πσ2
w

exp

(

−|y|2
σ2

w

)

,

where σ2
s = σ2

θa
HhhHa and σ2

w = aHFVFHa + σ2
n.

For a given threshold γ̃, the NP detector decides H1 if

L(y) =
p(y;H1)

p(y;H0)
> γ̃ ,

which results in deciding H1 if

|y|2 > ln

(

γ̃

(

1 +
σ2

s

σ2
w

))(

1 +
σ2

w

σ2
s

)

σ2
w . (6.21)

Following an analysis similar to the multi-antenna case, the probability of detection

P s
D and the probability of false alarm P s

FA for the single-antenna FC are given by

P s
D = exp

(

− γ̃
′

σ2
s + σ2

w

)

(6.22)

P s
FA = exp

(

− γ̃
′

σ2
w

)

, (6.23)

where γ̃
′
= ln

(

γ̃
(

1 + σ2
s

σ2
w

))(

σ2
w + σ4

w

σ2
s

)

. To fix P s
FA = ǫ, we set γ̃

′
= −σ2

w ln ǫ, and

maximizing P s
D for a fixed P s

FA is equivalent to

max
a

σ2
s

σ2
w

=
σ2

θa
HhhHa

aHFVFHa + σ2
n

(6.24)

s.t. aHa = P .

Problem (6.24) is essentially identical to problem (3) in [8], and using the same
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solution method derived in [8] leads to

ã∗ =

√

P

hHR−2h
R−1h , (6.25)

where R = FVFH + σ2
n

P
IN , and the maximum value of σ2

s

σ2
w

is

σ2
s

σ2
w

∣

∣

∣

∣

ã∗

= σ2
θh

HR−1h . (6.26)

In the following theorem, we compare the detection performance of single- and multi-

antenna FCs under low and high transmit power scenarios.

Theorem 5. Assume PFA = ǫ and M → ∞. When P = O(1/M) → 0, the NP

detector implemented by an FC with M antennas achieves a PD lower bounded by

PD > ǫ

1

1+
σ2

θ
3
∑N

i=1
1

σ2
v,i , (6.27)

while the P s
D for a single-antenna FC is bounded by

ǫ < P s
D < ǫ

1
1+ζ , (6.28)

where ζ = 1
2M

∑N
i=1

σ2
θ
dα

i

σ2
v,i

hHh → 0 in probability. When P → ∞, both PD and P s
D

converge from below to the same upper bound:

{PD, P
s
D} ↑ ǫ

1

1+σ2
θ

∑N
i=1

1
σ2

v,i . (6.29)

Proof : Beginning with the low transmit power case, assume the following suboptimal
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choice for the transmission gains: |āi| =

√

σ2
ndα

i

2σ2
v,iM

, which results in

P =
N
∑

i=1

|āi|2 =
1

2M

N
∑

i=1

σ2
nd

α
i

σ2
v,i

= O(1/M) , (6.30)

and hence P → 0 as M → ∞. Substituting |āi| into (6.15), we have

g(ā) =
1

3

N
∑

i=1

1

σ2
v,i

,

where ā = [ā1 · · · āN ]T . The value for g(ā) can serve as a lower bound for g(a) when

evaluated at the optimal solution a∗ obtained using (6.19) and using P in (6.30) as

the power constraint:

g(a∗) ≥ 1

3

N
∑

i=1

1

σ2
v,i

. (6.31)

Substituting (6.31) into (6.9), we have the lower bound for the multi-antenna FC:

PD ≥ ǫ

1

1+
σ2

θ
3
∑N

i=1
1

σ2
v,i > ǫ . (6.32)

For the single-antenna FC, according to (6.26) we have the following upper bound

since P
σ2

n
IN � R−1:

σ2
s

σ2
w

(d)

≤ σ2
θP

σ2
n

hHh , (6.33)

where P
σ2

n
IN � R−1 denotes P

σ2
n
IN −R−1 is a positive semidefinite matrix. Using (6.33)

and (6.30) together with (6.23) and (6.22), it is easy to show that

P s
D ≤ ǫ

1
1+ζ , (6.34)

where ζ = 1
2M

∑N
i=1

σ2
θ
dα

i

σ2
v,i

hHh. According to the Rayleigh channel model, hHh is the

sum of weighted chi-squared random variables, and for an arbitrary positive number
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τ we have

lim
M→∞

Pr (ζ >τ) ≤ lim
M→∞

Pr





σ2
θN

4M

maxi
dα

i

σ2
v,i

mini dα
i

χ2
(2N)>τ



 = 0 ,

where χ2
(2N) denotes a chi-square variable with 2N degrees of freedom. Thus, ζ

converges to 0 in probability and hence P s
D converges to ǫ in probability.

From (6.15), it is clear that for very large M , g(a) is upper bounded by

g(a) ≤
N
∑

i=1

1

σ2
v,i

. (6.35)

Note that the lower bound in (6.31) is one third the upper bound in (6.35). When

P → ∞ and hence |ai| is large, the upper bound in (6.35) can be asymptotically

achieved even with an equal power allocation |ai| =
√

P/N . Also, we see that to

maximize the upper bound for g(a) in this case, all the sensors should transmit.

Plugging (6.35) into (6.9), we have the following upper bound for PD:

PD ≤ ǫ

1

1+σ2
θ

∑N
i=1

1
σ2

v,i . (6.36)

For the single-antenna FC, according to (6.26), we have the following bound as P →

∞ since (FVFH)−1 � R−1:

σ2
s

σ2
w

(e)

≤ σ2
θ

N
∑

i=1

1

σ2
v,i

. (6.37)

Using (6.37) together with (6.23) and (6.22) yields

P s
PD ≤ ǫ

1

1+σ2
θ

∑N
i=1

1
σ2

v,i . (6.38)

Note that for both (6.36) and (6.38), the inequality is asymptotically achieved as

P → ∞, and this completes the proof. �
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Theorem 5 shows that when the transmit power P goes to zero, P s
D for a single-

antenna FC converges to P s
FA regardless of the sensor network scenario, while PD for

a multi-antenna FC is strictly greater than PFA, provided that M → ∞ and P → 0

no faster than O(1/M). When σ2
θ is large and the σ2

v,i are small, PD can in fact still

converge to a value near unity. On the other hand, when P is large, both PD and

P s
D converge to the same upper bound, and there is no benefit to having multiple

antennas at the FC.

6.3.4 LMMSE Estimation

While this chapter is focused on detection, we show here that similar results hold

for LMMSE estimation. According to the Gauss-Markov Theorem [25], the LMMSE

estimator of θ is

θ̂ =
aHHH(HDVDHHH +σ2

nIM)−1y

σ−2
θ +aHHH(HDVDHHH +σ2

nIM)−1Ha
, (6.39)

and the mean-squared error is calculated as

MSE(θ̂) = E{|θ − θ̂|2} =
1

σ−2
θ + g(a)

, (6.40)

where g(a) = aHHH(HDVDHHH + σ2
nIM)−1Ha, as defined in (6.10). Thus, the

problem of choosing the gains a to minimize the MSE is identical to the problem

of maximizing PD for a fixed PFA in (6.10), and the same conclusions drawn above

regarding energy efficiency and the optimal sensor gains apply here as well. This is

also true for the single-antenna FC, as it can be easily shown that minimizing MSE

requires maximization of σ2
s/σ

2
w, as with the NP detector.

The following corollary to Theorem 5 can also be established.
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Corollary 1. When M → ∞ and P = O(1/M) → 0, the MSE of the LMMSE

estimator of θ is upper bounded by

MSE(θ̂) <
1

σ−2
θ + 1

3

∑N
i=1

1
σ2

v,i

, (6.41)

while the MSE achieved by the single-antenna FC is bounded by

σ2
θ

1 + ζ
< MSE(θ̂s) < σ2

θ , (6.42)

where ζ = 1
2M

∑N
i=1

σ2
θ
dα

i

σ2
v,i

hHh → 0 in probability. When P → ∞, both MSEs converge

from above to the same lower bound:

MSE(θ̂, θ̂s) ≥
1

σ−2
θ +

∑N
i=1

1
σ2

v,i

. (6.43)

Proof : The proof essentially follows that for Theorem 5 and is thus omitted. �

6.4 Energy Detector Analysis and Sensor Gain Op-

timization

Obtaining the instantaneous CSI required for the NP detector consumes sensor power

and could be difficult in fast fading scenarios. Computing the NP test statistic also

requires the inverse of the M × M channel-dependent matrix Cw, which may be

challenging when M is large. Consequently, it is of interest to study computationally

simpler approaches for detection in sensor networks that can be applied when the

CSI for the sensors is unknown. In this section, we examine the performance of the
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energy detector (ED), which decides H1 if

T =
1

M
yHy > γ̂ , (6.44)

for some predefined threshold γ̂.

Under either H0 or H1, the test statistic T can be expressed as

T =
1

M

M
∑

i=1

λi

2
χ2

i (2) , (6.45)

where λi is the ith eigenvalue of the covariance matrix Cw (under H0) or Cs + Cw

(under H1) and the χ2
i (2) terms represent independent chi-squared random variables

with two degrees of freedom. Thus, while the ED test statistic does not require CSI,

computing the ED probability of detection P e
D and false alarm P e

FA does. When

M is large, one could consider approximating T as a normal random variable using

the Central Limit Theorem. However, because the largest N eigenvalues of λi will

increase with M , Lindeberg’s condition is not satisfied and the normal distribution

can not provide a good approximation for T . Even if the distribution of T could

be computed, it would be a complicated function of the transmit gains a and would

be difficult to optimize. Instead, in the following we will use the so-called deflection

[66–69] of T as the metric of detection performance, which will allow us to obtain an

optimal value for a that does not depend on CSI as M → ∞.

6.4.1 Energy Efficiency

The deflection coefficient for a given test statistic T is defined as [66]

D(T ) =
(E{T |H1} − E{T |H0})2

Var{T |H0}
, (6.46)
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where E{·} and Var{·} denote the expectation and variance of a random variable,

respectively. The deflection metric in (6.46) can be viewed as the normalized distance

between the distributions of T under H0 or H1, and is generally regarded as an

accurate metric for characterizing detection performance [67]. Note that a modified

deflection is proposed in [69], which replaces Var{T |H0} in (6.46) with Var{T |H1}.

As mentioned below, both deflection statistics yield very similar problem formulations

that can be solved via the same approach. As derived in the following theorem, one of

the key properties of the energy detector for our WSN application is that the sensor

transmit power can be reduced by a factor of 1/
√
M to maintain a constant deflection

as M → ∞.

Theorem 6. Assuming Rayleigh fading channels, the deflection of the test statistic

T = 1
M

yHy almost surely remains constant as M → ∞ provided that the sensor

transmit power satisfies |ai|2 = Pi√
M

for arbitrary constant Pi .

Proof : Using the definition in (6.46),

lim
M→∞

D (T ) =
(µe,1 − µe,0)

2

σ2
e,0

=
σ4

θ

(

∑N
i=1

|ai|2
dα

i

)2

∑N
i=1

(

σ2
v,i|ai|2

dα
i

+ σ2
n

M

)2

+ M−N
M2 σ4

n

, (6.47)

where the parameters µe,1, µe,0 and σ2
e,0 are defined and calculated below. For µe,1,

µe,1 = lim
M→∞

E

{

1

M
yHy

∣

∣

∣

∣

H1

}

= lim
M→∞

1

M
E
{

ỹH(Cw + Cs)ỹ
}

= lim
M→∞

1

M
tr (Cw + Cs)

= lim
M→∞

1

M
tr
(

σ2
θH

HHaaH + HHHDVDH
)

+ σ2
n

(i)
=

N
∑

i=1

(

σ2
θ + σ2

v,i

)

|ai|2
dα

i

+ σ2
n ,
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where ỹ has distribution CN (0, IM) and in (i) we used (6.14). Similarly, we have

µe,0 = lim
M→∞

E

{

1

M
yHy

∣

∣

∣

∣

H0

}

=
N
∑

i=1

σ2
v,i|ai|2
d2α

i

+ σ2
n ,

σ2
e,0 = lim

M→∞
Var

{

1

M
yHy

∣

∣

∣

∣

H0

}

= lim
M→∞

1

M2
Var{ỹHCwỹ}

(h)
= lim

M→∞

1

M2
tr(C2

w)

= lim
M→∞

N
∑

i=1

(

σ2
v,i|ai|2
dα

i

+
σ2

n

M

)2

+
(M −N)

M2
σ4

n ,

where in (h) we used the results in Lemma 2.

Introducing new variables xi = |ai|2, (6.47) is equivalent to

lim
M→∞

D (T ) =
σ4

θ

(

∑N
i=1

xi

dα
i

)2

∑N
i=1

(

σ2
v,ixi

dα
i

+ σ2
n

M

)2

+ M−N
M2 σ4

n

=
σ4

θx
TddT x

xTBx + 2σ2
n

M
bTx + σ4

n

M

, (6.48)

where the variables x,d,B,b are defined in (6.52)-(6.55). Substituting xi = Pi√
M

into

(6.48), we obtain

lim
M→∞

D (T ) = lim
M→∞

σ4
θp

T ddTp

pTBp + 2σ2
n√

M
bTp + σ4

n

=
σ4

θp
TddT p

pTBp + σ4
n

, (6.49)

where p = [P1 · · ·PN ], and we see that D(T ) is asymptotically independent of M .

We also observe from (6.48) that an asymptotically non-zero deflection requires that

|ai|2 not decrease faster than 1√
M

. �
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Lemma 2. Given a complex Gaussian random vector z ∈ C
M×1 with distribution

CN (0, IM), and a Hermitian matrix A ∈ CM×M , the variable zHAz has a variance

Var{zHAz} = tr(A2) .

Proof : We first rewrite zHAz as

zHAz =
N
∑

i=1

λi(A)

2
χ2

i (2) ,

where λi(A) are the non-zero eigenvalues of A and χ2
i (2) are independent chi-squared

variables with 2 degrees of freedom, which can be expressed as

χ2
i (2) = z2

i,1 + z2
i,2 ,

where the independent variables zi,1 and zi,2 have normal distribution N (0, 1). Since

zHAz can be viewed as the sum of N independent variables, the variance of zHAz is

calculated as

Var{zHAz} =

N
∑

i=1

λ2
i (A)

4
Var{χ2

i (2)}

=
N
∑

i=1

λ2
i (A)

4

(

Var{z2
i,1} + Var{z2

i,2}
)

(u)
=

N
∑

i=1

λ2
i (A)

(t)
= tr(A2) ,

where (u) follows from

Var{z2
i,k} = E{z4

i,k} −
(

E{z2
i,k}
)2

= 2 ,

and (t) is due to the fact that λ2
i (A) are the non-zero eigenvalues of the matrix A2.�
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6.4.2 Sensor Gain Optimization

As with the NP detector, the proof of Theorem 6 shows that as M → ∞, only

the magnitude |ai| of the sensor transmission gains influences the deflection. In this

section, we address the problem of finding the |ai| that maximize the deflection under

a sum power constraint. The power allocation problem is formulated as

max
|ai|2

D (T ) (6.50)

s.t. aHa = P .

According to (6.48), we can rewrite (6.50) as

max
xi

xTddT x

xTBx + 2σ2
n

M
bT x + σ4

n

M

(6.51)

s.t. eTx = P

0 ≤ xi , i = 1, · · · , N ,

where

x = [|a1|2 · · · |aN |2]T (6.52)

d =

[

1

dα
1

· · · 1

dα
N

]T

(6.53)

B = diag

{

σ4
v,1

d2α
1

· · · σ
4
v,N

d2α
N

}

(6.54)

b =

[

σ2
v,1

dα
1

· · · σ
2
v,N

dα
N

]T

(6.55)

e = [1 · · · 1]T .

117



We note here that if the modified deflection of [69] is used instead, then the resulting

problem is identical to (6.51), except for the definitions of B and b, which become

B′ = diag

{

σ4
v,1 + σ2

v,1σ
2
θ

d2α
1

· · · σ
4
v,N + σ2

v,Nσ
2
θ

d2α
N

}

b′ =

[

σ2
v,1 + σ2

θ

dα
1

· · · σ
2
v,N + σ2

θ

dα
N

]T

.

Thus, the solution to (6.51) described below can be applied directly to the modified

deflection as well.

Problem (6.51) is the maximization of the ratio of two quadratic functions under

quadratic constraints, which is referred to as a QCRQ problem. In [26], a solution to

the QCRQ problem is found by converting it to a SDP via rank relaxation, followed by

an eigendecomposition to find a rank-one result. However, in general, the optimality

of the rank-one solution to the original problem can not be guaranteed. Consequently,

here we take a different approach and find an asymptotically optimal solution by

maximizing an upper bound for (6.51) that is tight when M → ∞. In particular, we

consider

max
xi

xTddTx

xTBx + σ4
n

M

(6.56)

s.t. eTx = P

0 ≤ xi , i = 1, · · · , N .

It is easy to verify that (6.56) provides an upper bound for (6.51) and that the bound

is asymptotically achieved when M → ∞. Since M → ∞, we could eliminate the

second term in the denominator of (6.56) as well, but we will see in the simulations

that it is advantageous to keep it, especially in situations where P is small. The

simplification that arises when this term is dropped will be discussed later, when
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asymptotic solutions for large P are investigated. In the following, we will show

that (6.56) can be converted to a quadratically constrained linear program (QCLP)

[70] and solved via standard convex optimization methods.

First, we rewrite (6.56) as

max
xi

xTddT x

xT B̃x
(6.57)

s.t. eTx = P (6.58)

0 ≤ xi , i = 1, · · · , N ,

where B̃ = B + σ4
n

MP 2ee
T . Since the objective function in (6.57) is unchanged by a

simple scaling of x, we do not need to explicitly consider the constraint in (6.58) in

maximizing (6.57), and the optimal solution can be found via the following two steps:

1. Solve

max
xi

xTddT x

xT B̃x
(6.59)

s.t. 0 ≤ xi , i = 1, · · · , N .

2. Denote the result of (6.59) as x̃∗, then the optimal solution to (6.57) is given by

x∗ =
1

eT x̃∗ x̃
∗ . (6.60)

To solve problem (6.59), we first rewrite it in the equivalent form

max
xi

xTddT x (6.61)

s.t. xT B̃x = 1 (6.62)

0 ≤ xi , i = 1, · · · , N .
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To convert (6.61) to a QCLP, we make the following two observations: (1) since the

elements of x and d are non-negative, maximizing xTddTx is equivalent to maxi-

mizing xT d, and (2) we can relax the equality constraint in (6.62) to an inequality

xT B̃x ≤ 1, since we can always increase the objective function in (6.61) by scaling x

up to meet the constraint with equality. Thus, solving (6.59) is equivalent to solving

the QCLP

min
xi

−xTd (6.63)

s.t. xT B̃x ≤ 1

0 ≤ xi , i = 1, · · · , N ,

for which straightforward convex optimization methods exist. The final result for the

original problem in (6.56) is found by scaling the optimal solution to (6.63) according

to (6.60) to satisfy the power constraint.

Our simulation results in Section 6.5 validate the use of the deflection to optimize

detection performance. In particular, we will see that performance improves as the

deflection is increased and that with the ai chosen to maximize the deflection, detec-

tion performance remains asymptotically constant as M → ∞ if the power constraint

P is scaled by 1/
√
M .

6.4.3 Single-Antenna FC

For comparison purposes, we derive the deflection for the case of a single-antenna FC.

Based on the signal model in equation (6.20), the single-antenna deflection is given
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by

D(Ts) =
(E{Ts|H1} − E{Ts|H0})2

Var{Ts|H0}

=

(

σ2
θa

HhhHa

aHFVFHa + σ2
n

)2

, (6.64)

where Ts = |y|2 and y, a, h and F are as defined in equation (6.20). Unlike the

deflection in (6.51) when M → ∞, it is easy to verify that D(Ts) in (6.64) decreases

monotonically as the norm of the transmission gain a decreases. If channel state

information is available at the FC, then the optimal gains that maximize D(Ts) are

given by (6.25). A different approach is required in the single-antenna case with-

out CSI; for example, in the simulations later we assume the sensor nodes transmit

with equal power. We will also observe in the simulation results that when the sum

transmission power decreases, the probability of detection for the single-antenna FC

will decrease accordingly, while the performance of the multi-antenna FC remains

constant as long as the number of antennas increases proportionally to the square of

the power decrease.

6.4.4 Asymptotic Closed-form Solutions

While convergence to a globally optimal solution is guaranteed for the QCLP problem

described above, we show here that direct closed-form solutions can be found for low

and high SNR scenarios P ≫ σ2
n and P ≪ σ2

n. When P ≫ σ2
n, the size of xTBx in

the denominator of the objective function (6.51) will dominate the terms involving

M , which are already small for large M . Thus, for P ≫ σ2
n, another upper bound

for (6.51) is given by

xTddT x

xT Bx + 2σ2
n

M
bTx + σ4

n

M

<
σ4

θx
TddT x

xTBx
.
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We can formulate the problem of maximizing this upper bound as

max
xi

xTddT x

xTBx

s.t. eTx = P

0 ≤ xi , i = 1, · · · , N ,

which has a closed-form solution since B and d have non-negative elements:

x∗ =
P

eTB−1d
B−1d ,

and the corresponding ai are

|ai| =

√

√

√

√

P
∑N

i=1
dα

i

σ4
v,i

d
α
2
i

σ2
v,i

. (6.65)

Thus, for high SNR, after normalizing for distance, the sensors with the lowest mea-

surement noise are allocated higher power.

When P ≪ σ2
n, the terms involving x in the denominator of (6.51) will decrease faster

than 1/M , and thus the term σ2
n

M
will eventually dominate. This leads to the simpler

optimization problem

max
xi

xTddT x (6.66)

s.t. eTx = P

0 ≤ xi , i = 1, · · · , N .

This is equivalent to maximizing the weighted sum xTd with constraint eTx = P ,

and the optimal solution is to simply allocate all of the power to the sensor that is
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closest to the FC:

|ai| =











√
P i = arg mini di

0 otherwise .
(6.67)

Later in the simulation results, we will show that the solutions in (6.65) and (6.67)

provide good approximations to the optimal solution of problem (6.63) for very large

and very small values of the available sum power P , respectively.

6.4.5 Detection Threshold Calculation

Once the transmission gains ai of the sensor nodes are optimized, we need to find

the threshold γ̂ to achieve the desired PFA. In the following, we will show that

asymptotically as M → ∞, the value of γ̂ can be calculated according to (6.45)

without requiring CSI. Under H0, the eigenvalues of Cw are given by

lim
M→∞

λi{Cw} =











Mηi + σ2
n 1 ≤ i ≤ N

σ2
n N < i ≤M ,

(6.68)

where ηi =
|ai|2σ2

v,i

dα
i

. Substituting (6.68) into (6.45), we have

lim
M→∞

T =

N
∑

i=1

1

2

(

ηi +
σ2

n

M

)

χ2
i (2) +

σ2
n

2M

M
∑

i=N+1

χ2
i (2) . (6.69)

According to the Strong Law of Large Numbers,

lim
M→∞

σ2
n

2M

M
∑

i=N+1

χ2
i (2) =

M −N

M
σ2

n ,

and this equation holds almost surely. Then the right hand side of equation (6.69)

can be viewed as the sum of weighted chi-square variables plus a constant, and for a
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specific γ̂, the PFA is calculated as

PFA =Pr
(

lim
M→∞

T > γ̂|H0

)

=Pr

(

N
∑

i=1

1

2

(

ηi +
σ2

n

M

)

χ2
i (2) > γ̂ − M −N

M
σ2

n

)

(k)
=

N
∑

i=1

(

ηi + σ2
n

M

)N−1

∏

l 6=i(ηi − ηl)
e
− 1

ηi+
σ2

n
M

(γ̂−M−N
M

σ2
n)
, (6.70)

where in (k) we used a result from [30], and we assume that the values of ηi are

distinct. In the limit the PFA expression is independent of the CSI, and the value of

the threshold γ̂ that achieves the desired PFA can be found numerically using (6.70).

6.5 Simulation Results

In the simulation examples that follow, we assume σ2
θ = 1, σ2

n = 0.3, α = 2 and

N = 10 sensor nodes. The distances di were uniformly distributed over [2, 10], and the

measurement noise powers σ2
v,i were uniformly distributed in the interval [0.25, 0.5].

Once generated, di and σ2
v,i were held fixed for all simulations. Each point in the

following plots is the result of averaging over 10000 trials for each of 300 scenarios;

each trial involved a new random parameter θ, as well as new noise realizations

and each scenario has a new channel. Plots showing probability of detection were

computed assuming a false alarm probability of ǫ = 0.05. For the energy detector,

both the deflection and modified deflection gave essentially the same performance, so

only the results for the deflection are included.

Figs. 6.1 and 6.2 show the NP detection and LMMSE estimation performance for

a single-antenna FC and a multi-antenna FC with M = 50 as the available power

P ranges from 0.1 to 400. As predicted, as P grows, the performance benefit of
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Figure 6.1: Probability of detection for NP detector vs. the value of P , with antenna
number M = 50. In the plot, for NP detector with Multi- or single-antenna FC, the
optimal transmission gains are defined in equations (6.19) and (6.25) respectively,
and the upper bound is calculated using equation (6.29).

having multiple antennas at the FC is eventually lost, with both curves in Fig. 6.1

approaching the upper bound in (6.29) and both curves in Fig. 6.2 approaching the

lower bound in (6.43). However, in both cases the bound is reached with a much

smaller value of P in the multi-antenna case. Note also that for the multi-antenna FC,

use of the optimal sensor transmit gains can achieve significantly better performance

than equal power allocation when the sum transmit power is low.

Figs. 6.3 and 6.4 respectively present the detection and estimation performance of

single- and multi-antenna FCs for increasing M , with the sum power decreasing as

O(1/M) according to the formula P =
∑N

i=1
σ2

ndα
i

2σ2
v,iM

. The energy efficiency of the multi-

antenna NP detector is evident, as the MSE and PD are unchanged asM increases and

P decreases; however, the performance of the multi-antenna ED detector degrades

with M as the sum power is decreasing at a rate faster than 1/
√
M . The lower bound
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Figure 6.2: Mean-squared error vs. the value of P , with number of antennas M = 50.
In the plot, for LMMSE estimator with Multi- or single-antenna FC, the optimal
transmission gains are defined in equations (6.19) and (6.25) respectively, and the
lower bound is given by equation (6.43).

in (6.27) and the upper bound in (6.41) provide tight estimates of the multi-antenna

NP probability of detection and LMMSE estimation error, respectively. The value of

choosing the optimal sensor gains is evident in comparing the two detection curves for

the single-antenna FC, which show a large gap in performance between that achieved

with the optimal gains and simply assigning equal gains to all sensors. The latter

approach provides a P s
D that is barely greater than P s

FA, while the optimal sensor

gains have much better performance, although P s
D is decreasing due to the reduction

in power. The single-antenna upper bound in (6.28) grows tight as M increases, and

is decreasing towards the lower bound ǫ, albeit very slowly.

Fig. 6.5 illustrates the detection performance of the ED approach with P varying from

0.1 to 400. The optimal QCLP approach is plotted along with the low and high SNR

approximations in (6.65) and (6.67), the ED implemented with equal power allocation
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to all sensors, and the single-antenna FC. The low SNR approximation matches the

QCLP approach for P ≤ 1, while the high SNR solution is optimal for P ≥ 20; in

between these values, the QCLP algorithm provides significantly better performance,

although the equal power allocation is close for some values of P . Unlike the NP

detector, the single- and multiple-antenna ED solutions do not converge to the same

performance for large P ; we see in this example that there is a large performance

benefit in having a multi-antenna FC, even for large P . In Fig. 6.6, we compare NP

and energy detection performance as a function of M assuming that P = 15/
√
M .

Consistent with our analytical predictions, the ED with sensor gains chosen via the

QCLP to maximize deflection has constant PD, while the multi-antenna NP detector

slowly improves and the single-antenna FC solutions degrade as M increases.

40 60 80 100 120 140 160 180 200 220 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Antennas M 

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 

Multi−antenna FC, NP detector
Multi−antenna FC, energy detector (QCLP)
Single−antenna FC, NP detector
Single−antenna FC, energy detector, equal power allocation

Lower bound 

Upper bound 

Figure 6.3: Probability of detection vs. number of antennas M . In the above re-
sults, the lower and upper bounds are calculated using equations (6.27) and (6.28)
respectively.
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Figure 6.4: Mean-squared error vs. number of antennas M . In the plot, the upper
and lower bounds are given by equations (6.41) and (6.42).
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Figure 6.5: Probability of detection for energy detector vs. the value of P , with
number of antennas M = 50. The high and lower transmit power solutions are given
by equations (6.65) and (6.67).
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Figure 6.6: Probability of detection vs. number of antennas M .

6.6 Summary

We have studied the detection and estimation performance of a sensor network com-

municating over a coherent multiple access channel with a fusion center possessing a

large number of antennas. We studied Neyman-Pearson and energy detection, derived

optimal sensor transmission gains for each case, and showed that the optimal gains

are phase-independent as the number of antennas grows large. Similar to properties

of massive MIMO wireless communications, one can trade antennas at the fusion

center for energy efficiency at the sensors. For the case of Neyman-Pearson detection

and LMMSE estimation, which require channel state information, constant levels of

performance can be achieved if the transmit power at the sensors is reduced propor-

tional to the gain in the number of antennas. For energy detection, which does not

require channel state information, a constant deflection coefficient can be maintained

if power is reduced proportional to the inverse square root of the number of antennas.

While bounds derived for Neyman-Pearson detection and LMMSE estimation show
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performance gains for a multiple-antenna fusion center in low sensor transmit power

scenarios, the benefit is shown to disappear when the transmit power is high. How-

ever, for the energy detector, having multiple antennas at the fusion center provides

a significant advantage even when the sensors have high power.
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Chapter 7

Connectivity Optimization for

Mobile Network with UAV Relay

7.1 Introduction

There is increasing interest in the use of relatively small, flexible UAVs that fly at

lower altitudes to provide relay services for mobile ad hoc networks (i.e., networks

without a centralized basestation or other infrastructure) composed of ground-based

communication nodes [71–78]. A number of different approaches have been proposed

in the literature to address the performance of UAV-assisted communication networks.

For example, in [71], a throughput maximization protocol for non-real time applica-

tions was proposed for a network with UAV relays in which the UAV first loads data

from the source node and then flies to the destination node to deliver it. The authors

in [72] investigated different metrics for ad hoc network connectivity and propose

several approaches for improving the connectivity through deployment of a UAV. In

[73], the authors considered a scenario in which multiple UAVs are deployed to relay
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data from isolated ground sensors to a base station, and an algorithm was proposed

to maintain the connectivity of the links between the sensors and base station.

The work described above assumes that the ground nodes are static and that the UAV

is configured with only a single antenna. Given the well-known benefits of employing

multiple antennas for communications, it is natural to consider the advantages they

offer for UAV-based platforms[79]. The measurement results of [80] showed that

using multiple receivers at the UAV can significantly increase the packet delivery rate

of the ground-to-air link. A swarm of single antenna UAVs were used as a virtual

antenna array to relay data from a fixed ad hoc network on the ground in [74],

and the performance of distributed orthogonal space-time block codes (OSTBC) and

beamforming were evaluated. A relay system with multi-antenna UAVs and multi-

antenna mobile ground terminals was investigated in [75]. The users employ OSTBC

to transmit data and the data transmissions are assumed to be interference free.

Based on estimates of the user terminals’ future position, a headingf optimization

approach was proposed that maximizes the uplink sum rate of the network (the sum

of the theoretically achievable throughputs of all users) under the constraint that each

user’s rate is above a given threshold. The restriction of [75] to the interference-free

case is a significant drawback, which we address in this chapter. An earlier version

of our work [81] discussed the use of an antenna array to improve the throughput of

the ground-to-air uplink when the users share the same channel and interfere with

one another.

In this chapter, we consider a model similar to [75], with several ground-based users

communicating simultaneously with a multi-antenna UAV. The main difference with

[75] is that we assume there exists co-channel interference between the different users’

data streams. The users are assumed to transmit data with a single antenna and the

UAV uses beamforming to separate the co-channel data streams. We assume a corre-
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lated Rician fading channel model between each ground node and the UAV, where the

channel is represented as the sum of a deterministic LOS component and a correlated

Gaussian term to represent Rayleigh fading due to multipath. We then quantify the

uplink performance of the relay network by deriving an approximation to the ergodic

achievable rate (the achievable throughput of the users averaged over the distribu-

tion of the channels), assuming that the UAV uses a maximum SINR beamformer

for interference mitigation. The strength of the mutual interference depends on the

correlation between the users’ channel vectors, which in a channel with a strong LOS

component is a function of the signals’ AoA. The AoAs depend in turn on the UAV’s

heading and the relative positions of the UAV and the ground nodes. Consequently,

we propose an adaptive algorithm for adjusting the heading of the UAV to minimize

the users’ mutual interference and improve the uplink communications performance.

In particular, the UAV is assumed to fly with a constant velocity, and it adjusts its

heading in discrete time steps (assuming a constraint on the maximum turning ra-

dius) in order to optimize the approximate achievable rate. At time step n, the UAV

uses a Kalman filter driven by feedback from the ground terminals to predict their

positions at time n+ 1, and then the UAV computes its heading in order to optimize

the approximate sum rate based on these future position estimates.

The main results of this chapter are summarized as follows:

1. We analyze the trajectory optimization problem for a special case involving two

static ground nodes. We use a rectangular-path model to characterize the UAV’s

trajectory, which reduces the problem to one of optimizing only the heading.

This problem can be solved using a simple line search, and the results indicate

how increasing the size of the UAV array can reduce the system’s sensitivity to

the heading direction.

2. For the case of a general network of mobile ground-based nodes, we derive an
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approximation to the average achievable sum rate to measure the system per-

formance. Based on this approximation, we formulate a heading optimization

problem and propose a line-search algorithm to adjust the UAV’s heading di-

rection at time step n such that the system performance at time step n + 1

is optimized. We study the performance of both time-division multiple access

(TDMA, where each user accesses the channel at different times) and space-

division multiple access (SDMA, where all users access the channel at the same

time, but are separated based on the spatial component of their signals, such

as AoA), and illustrate via simulation the dramatic improvement offered by

SDMA.

3. We derive asymptotic analytical results for the heading optimization problem

under the assumption of a Rician channel with a strong LOS component be-

tween the ground nodes and UAV. The asymptotic results provide simplified

methods for solving the heading optimization problem. A separate approxima-

tion method is used for low and high SNR cases, and we show that using the

asymptotic expressions for heading optimization results in performance nearly

identical to that of the optimal algorithm.

The organization of this chapter is as follows. We present our assumed signal and

channel model in Section 7.2, and in Section 7.3 we focus on the UAV heading opti-

mization problem for the special case of two static ground users. In Section 7.4, we

first describe the mobility model for the UAV and ground nodes, as well as a stan-

dard Kalman filter for predicting the future positions of the ground nodes. Then we

formulate the UAV heading optimization problem and propose an adaptive heading

adjustment algorithm. We then derive asymptotic expressions for the general head-

ing optimization problem in Section 7.5, assuming a Rician channel with a strong

LOS component between the UAV and ground nodes. Simulation results are pro-
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vided in Section 7.6 to illustrate the performance of the heading control algorithm,

the advantage of SDMA over TDMA, and the validity of the asymptotic results.

7.2 System Model

According to equation (2.3), when the channels from the ground user nodes hi,n ∈

C
M×1, i = 1, . . . , N are known to the UAV (e.g., via training data from the ground

nodes), the vector wi,n that maximizes the SINRi,n is given by [82]

wi,n = Q−1
i,nhi,n ,

where Qi,n =
∑N

j=1,j 6=i Pthj,nh
H
j,n + σ2IM . The corresponding SINRi,n can be calcu-

lated as

SINRi,n = Pth
H
i,nQ

−1
i,nhi,n. (7.1)

For the channel between the ground nodes and UAV, we assume a correlated Rician

fading channel with consideration of large-scale path loss:

hi,n =
h

′

i,n

dα
i,n

,

where h
′

i,n is the normalized channel vector, di,n is the distance between node i and

the UAV during the nth time step, and α is the path loss exponent. Define the three

dimensional coordinates of the UAV and node i as (xu,n, yu,n, hu) and (xi,n, yi,n, 0), so

that di,n is given by

di,n =
√

(xu,n − xi,n)2 + (yu,n − yi,n)2 + h2
u.
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For node i, we write the Rician fading channel vector h
′

i,n with two components [83],

a LOS component h̄i,n and a Rayleigh fading component h̃i,n:

h
′

i,n = h̄i,n + h̃i,n.

The LOS response will depend on the AoA of the signal, which in turn depends on

orientation of the array (and hence the heading of the UAV) and the positions of

the UAV and user nodes. For example, assume a uniform linear array (ULA) with

antennas separated by one-half wavelength, and that at time step n the phase delay

between adjacent antenna elements for the signal from the i-th node is pi,n, then the

LOS component could be modeled as

h̄i,n = β(φi,n)

√

K

1 +K

[

1, ejpi,n · · · ej(M−1)pi,n
]T
, (7.2)

where K is the Rician K-factor and β(φi,n) is used to account for variations in the

antenna gain as a function of the elevation angle φi,n to the i-th node. The phase

delay pi,n is calculated by [84, chap. 4]

pi,n = π cos(φi,n) sin(θi,n),

where θi,n represents the azimuth angle to the i-th ground node. In terms of the UAV

and user node positions, these quantities can be calculated as

cos(φi,n) =

√

(xu,n − xi,n)2 + (yu,n − yi,n)2

(xu,n − xi,n)2 + (yu,n − yi,n)2 + h2
u

,

sin(θi,n) = cos(δn − ǫi,n), (7.3)

where δn is the heading angle of the UAV, δn − ǫi,n denotes the angle between the
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UAV heading and the LOS to user i, and

ǫi,n =























ζi,n, yi,n − yu,n ≥ 0 and xi,n − xu,n ≥ 0,

ζi,n + π, xi,n − xu,n ≤ 0,

ζi,n + 2π, otherwise.

ζi,n = arctan

(

yi,n − yu,n

xi,n − xu,n

)

.

Since there is little multipath scattering near the UAV, any Rayleigh fading compo-

nents will experience high spatial correlation at the receive end of the link. Thus, we

model the spatially correlated Rayleigh component as

h̃i,n = β(φi,n)

√

1

1 +K
(Rr)

1
2 gi,n,

where gi,n ∈ CM×1 has i.i.d. zero-mean, unit-variance complex Gaussian entries

(which we denote by CN (0, 1)), and Rr is the spatial correlation matrix of the chan-

nel on the receiver side of the link. In [85], a model for Rr is proposed under the

assumption that the multipah rays are distributed normally in two dimensions around

the angle from the source with standard deviation σr, assuming a ULA receiver. We

can easily extend this model to take into account the third dimension corresponding

to the elevation angle, and the resulting Rr is given by

Rr =

(

1 +
1

K

)

h̄i,nh̄
H
i,n ⊙B(θi,n, σr), (7.4)

where B(θi,n, σφ) is calculated as

B(θi,n, σφ)k,l = e−
1
4
(π(k−l))2σ2

r cos2(θi,n)(1+cos(2φi,n)− 1
2
σ4

r sin2(2φi,n)(π(k−l))2 cos2(θi,n)). (7.5)
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The resulting distribution for h
′

i,n is thus

h
′

i,n ∼ CN
(

h̄i,n,
1

K + 1
Rr

)

. (7.6)

The goal of this chapter is to derive an algorithm for adjusting the heading angle

δn of the UAV in order to optimize the achievable uplink throughput of the network

(defined in the next section). For simplicity we consider only UAV heading adjust-

ments, but the same type of approach could be used if UAV speed and altitude were

assumed to be adaptive as well. We assume a UAV equipped with a ULA oriented

along either the fuselage or wings, the only difference being a 90◦ change in how we

define the heading angle. Extensions of the algorithm and analysis to different array

geometries would require one to use a different expression for (7.2) and to derive a

different spatial correlation matrix Rr. We will consider both SDMA and TDMA ap-

proaches in the following sections. In practice, SDMA would not be used as the only

method of providing wireless access to all users on the ground, since the number of

antennas is limited and the presence of a (near-)LOS channel would make it difficult

to separate users on the ground that are close together. As in the design of terrestrial

cellular basestations, SDMA would be a tool to augment the capacity of the network

beyond what TDMA and FDMA schemes already provide. The approach described

below can be thought of as solving the SDMA problem only for those users that have

been scheduled for the same time/frequency slot. Finally, we note that in practice,

considerations other than communications performance would likely need to be con-

sidered in choosing the heading of the UAV, and these would need to be included as

additional constraints to the optimization presented below.

138



7.3 Results for the Static Two-User Case

To demonstrate the significant impact of the UAV trajectory on the performance

of the ground-to-air uplink, we first consider a simple two user scenario. The gross

behavior of the UAV would be governed by the distance D between the two users,

with three possibilities:

1. D ≫ hu - This is not a particularly useful scenario for a simultaneous uplink

from both users since, if the UAV flies near their midpoint, both users would

experience low SINR at the UAV due to path loss, and the sum data rate

would be quite low. In this case, a better approach would likely involve the

UAV serving each ground node separately, circling directly above each user and

alternately flying between them.

2. D ≪ hu - This case is also less interesting since the UAV should obviously

fly directly above the two users in as tight a pattern as possible to minimize

path loss. The effect of the UAV heading would be minimal, since the AoAs

to the two users would be nearly identical. If the K-factor of the channel was

high (as one would expect when the UAV is essentially directly overhead), then

the channels would be highly correlated and a TDMA solution would likely be

preferred over SDMA.

3. D = O(hu) - Since the users transmit with the same power and their channels

have the same statistical properties, equalizing the average uplink rates for the

two users would require the UAV to fly a symmetric trajectory centered around

the midpoint of the two users. If it was desired to minimize the variation in

each user’s average uplink rate, the bounds of this trajectory would be small

relative to the distance to the users. This is the case we consider in this section.
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Figure 7.1: Simplified UAV trajectory for the two-user case. Ca and Cb represent the
edges of the rectangular trajectory. The angles θ1 and θ2 denote the azimuth angles
of arrival of the users’ signals at the ULA when the UAV is flying over the midpoint
of the two users with heading direction δ.

To make the analysis tractable, we focus on a rectangular trajectory as depicted

in Fig. 7.1, defined by the side lengths Ca and Cb and the orientation δ. The an-

gle δ is defined to be with respect to the side of the rectangle with greater length.

Given the assumptions for scenario (3) above, the side lengths are assumed to satisfy

max{Ca, Cb} ≤ Cmax ≪ di, so the figure is not to scale. Under this assumption, the

performance of a rectangular trajectory is expected to be similar to that for other

trajectories with similar size and orientation (e.g., an ellipse or figure-8 pattern). We

also assume that min{Ca, Cb} ≥ Cmin, which effectively accounts for the turning ra-

dius of the UAV. Since the UAV flies near the midpoint between the two users, we

assume that the antenna gain factor due to elevation angle is the same for both users,

and for simplicity we set it as β(φi,n) = 1 for i = 1, 2.

The sum data rate at the UAV averaged along the trajectory is given by

R̄ = E {log2(1 + SINR1) + log2(1 + SINR2)}

=
1

2(Ca + Cb)

∫

C

(

log2(1 + SINR1(p)) + log2(1 + SINR2(p))
)

dp, (7.7)
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where C denotes the rectangular path followed by the UAV, variable p denotes dif-

ferent positions along the trajectory and dp represents the length of the elementary

subintervals along the trajectory. The optimization problem we wish to solve is for-

mulated as

max
δ,Ca,Cb

R̄ (7.8)

s.t. 0 ≤ δ ≤ π

2

Cmin ≤ Cb ≤ Ca ≤ Cmax,

where the symmetry of the problem allows us to restrict attention to 0 ≤ δ ≤ π/2

and assume Cb ≤ Ca without loss of generality. This non-linear optimization problem

is difficult to solve directly. In the following, we will derive an approximate problem

to (7.8) for high SNR ( Pt

dα
i σ2 ≫ 1) and assuming channels with a large K-factor. To

begin with, we observe that, due to the symmetric trajectory centered at the midpoint

between the two ground nodes, the expected data rate averaged over the trajectory

will be the same for both users:

∫

C
log2(1 + SINR1(p))dp =

∫

C
log2(1 + SINR2(p))dp .

Thus, we can focus on evaluating the SINR for just one of the users. For large K,

we can ignore the Rayleigh component of the channel, and assume that h
′

i ≈ h̄i. We

replace the explicit dependence of the channel on n with an implicit dependence on a

point p along the trajectory defined in Fig. 7.1. At point p, the SINR for user 1 can

be expressed as

SINR1 =
Pt

dα
1

h̄H
1

(

σ2IM +
Pt

dα
2

h̄2h̄
H
2

)−1

h̄1

=
MPt

dα
1σ

2
− P 2

t

dα
1d

α
2σ

4

∣

∣h̄H
1 h̄2

∣

∣

2

1 + MPt

dα
2 σ2

, (7.9)
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where, assuming that β(φ1) = β(φ2) = 1,

∣

∣h̄H
1 h̄2

∣

∣ =

∣

∣

∣

∣

∣

∣

sin
(

Mπ
2

(

cos(φ1) sin(θ1) − cos(φ2) sin(θ2)
)

)

sin
(

π
2

(

cos(φ1) sin(θ1) − cos(φ2) sin(θ2)
)

)

∣

∣

∣

∣

∣

∣

,

and cos(φi) and sin(θi) are defined in (7.3). Note that in addition to h̄1, the param-

eters di, φi and θi all implicitly depend on p.

Using Jensen’s inequality, the following upper bound for R̄ can be found:

R̄ ≤ log2(1 + E{SINR1}) + log2(1 + E{SINR2)}. (7.10)

We will proceed assuming that an operating point that maximizes the upper bound

will also approximately optimize R̄. Based on (7.9) and assuming we have a high

SNR scenario where Pt

dα
i σ2 ≫ 1,

E{SINR1}
(d)≈ Pt

σ2
E

{

M

dα
1

− |hH
1 h2|2
dα

1M

}

(e)≈ Pt

dα
1σ

2

(

M − E{|hH
1 h2|2}
M

)

, (7.11)

where (d) is due to the high SNR assumption and (e) follows from the assumption that

Cmax ≪ d1. The dependence of SINR1 on d2 is thus eliminated, and in what follows

we drop the subscript on d1 and write it simply as d. Substituting equation (7.11) in

(7.10), and replacing the objective function in problem (7.8) with the upper bound

of (7.10), our optimization problem is approximately given by

max
δ,Ca,Cb

log2

(

1 +
MPt

dασ2
− PtE{|hH

1 h2|2}
Mdασ2

)

(7.12)

s.t. 0 ≤ δ ≤ π

2

Cmin ≤ Cb ≤ Ca ≤ Cmax.
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Since the objective function in (7.12) is monotonically decreasing with E{|hH
1 h2|2},

an equivalent problem is formulated as

min
δ,Ca,Cb

E{|hH
1 h2|2} (7.13)

s.t. 0 ≤ δ ≤ π

2

Cmin ≤ Cb ≤ Ca ≤ Cmax.

The interpretation of (7.13) is that the optimal trajectory minimizes the average

correlation between the two users’ channels. The calculation of E{|hH
1 h2|2} includes

the integral of the function

sin2
(

Mπ
2

(

cos(φ1) sin(θ1) − cos(φ2) sin(θ2)
)

)

sin2
(

π
2

(

cos(φ1) sin(θ1) − cos(φ2) sin(θ2)
)

)

with respect to p, which is difficult to evaluate. To simplify (7.8), we assume that,

compared with the distance to the users on the ground, the UAV moves over a small

region, and for purposes of analyzing the mathematics, one can assume that the UAV

essentially remains fixed at the midpoint between the two users. Only the heading of

the UAV changes the uplink rate in this case. Under this assumption, the elevation

angles φ1, φ2 are constant and equal φ1 = φ2 = φ
′
, and the azimuth angles θ1, θ2 are

piecewise constant. When UAV flies along Ca, they are equal to θ1 and θ2; when the

UAV flies along Cb, they are equal to θ1 + π
2
, θ2 + π

2
. Note that since θ2 = θ1 + π

always holds, then sin(θ2) = − sin(θ1) and we have

|hH
1 h2|2 =

sin2(Mπ cos(φ
′
) sin(θ1))

sin2(π cos(φ′) sin(θ1))
.

Note also that θ1 + δ = π
2
, and hence sin(θ1) = cos(δ). Thus

|hH
1 h2|2 =

sin2(Mπ cos(φ
′
) cos(δ))

sin2(π cos(φ′) cos(δ))
.
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Along Ca, the UAV flies with heading δ and along Cb, the UAV flies with heading

δ + π
2
, so that cos(δ + π

2
) = − sin(δ). Thus, we have

E{|hH
1 h2|2} =

Ca

Ca + Cb

sin2(Mπ cos(φ
′

i) cos(δ))

sin2(π cos(φ
′

i) cos(δ))

+
Cb

Ca + Cb

sin2(Mπ cos(φ
′

i) sin(δ))

sin2(π cos(φ
′

i) sin(δ))
. (7.14)

Substituting (7.14) into the objective function of problem (7.13) yields

min
δ,Ca,Cb

Ca

Ca + Cb

sin2(Mπ cos(φ
′

i) cos(δ))

sin2(π cos(φ
′

i) cos(δ))

+
Cb

Ca + Cb

sin2(Mπ cos(φ
′

i) sin(δ))

sin2(π cos(φ
′

i) sin(δ))
(7.15)

s.t. 0 ≤ δ ≤ π

2

Cmin ≤ Cb ≤ Ca ≤ Cmax.

We now show that problem (7.15) is equivalent to an optimization problem over the

single variable δ. First define

s1 =
sin2(Mπ cos(φ

′

i) cos(δ))

sin2(π cos(φ
′

i) cos(δ))
, s2 =

sin2(Mπ cos(φ
′

i) sin(δ))

sin2(π cos(φ
′

i) sin(δ))
,

Rc =
Cmax

Cmin
, R =

Ca

Cb
,

so that 1 ≤ R ≤ Rc. Then the objective function of (7.15) can be rewritten as

R

1 +R
s1 +

1

1 +R
s2 = s1 +

s2 − s1

1 +R
.

Given a heading direction δ ∈ [0, π
2
], if s2 ≥ s1, then the objective function is mini-

mized when R = Rc. Otherwise, if s2 < s1, R = 1 minimizes the objective function.

The domain [0, π
2
] can be divided into two sets S1 and S2, such that for δ ∈ S1 we

have s2 < s1, and for δ ∈ S2 we have s2 ≥ s1. Then problem (7.15) can be divided
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into two subproblems

min
δ

Rc

1 +Rc
s1 +

1

1 +Rc
s2 (7.16)

s.t. δ ∈ S2 .

min
δ

1

2
s2 +

1

2
s1 (7.17)

s.t. δ ∈ S1 .

Since s1(
π
2
− δ) = s2(δ), for each δ ∈ S2 and s2(δ) > s1(δ), we have π

2
− δ ∈ S1 and

vice versa. Thus the following equation holds

Rc

1 +Rc
s1(δ) +

1

1 +Rc
s2(δ) ≤

1

2
s1(δ) +

1

2
s2(δ),

1

2
s2

(π

2
− δ
)

+
1

2
s1

(π

2
− δ
)

=
1

2
s1(δ) +

1

2
s2(δ).

Then the minimum value of (7.16) must be smaller than or equal to the minimum

value of (7.17) and problem (7.15) is equivalent to problem (7.16). For each δ ∈ S2,

the following equation holds

Rcs1(δ) + s2(δ) ≤ Rcs2(δ) + s1(δ)

Rcs1

(π

2
− δ
)

+ s2

(π

2
− δ
)

= Rcs2(δ) + s1(δ),

and problem (7.16) is thus equivalent to

min
δ

Rc

1 +Rc
s1 +

1

1 +Rc
s2 (7.18)

s.t. 0 ≤ δ ≤ π

2
.
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Figure 7.2: Orientation of the rectangular trajectory provided by the line search
method in (7.19). For the exhaustive search method, the solid curve and the dashed
curve denote the optimal sum rate that can be achieved for different orientations δ.
When M = 4, the optimal δ are: 0.66 (exhaustive search), 0.69 (line search); when
M = 2, the optimal δ are: 0.98 (exhaustive search), 1.00 (line search).

Based on (7.18), the solution to (7.8) is approximately given by Ca = Cmax, Cb = Cmin

and

δ=arg min
0≤δ≤π/2

{

Rc

1+Rc

sin2(Mπ cos(φ
′
) cos(δ))

sin2(π cos(φ′) cos(δ))
+

1

1+Rc

sin2(Mπ cos(φ
′
) sin(δ))

sin2(π cos(φ′) sin(δ))

}

,

(7.19)

where Rc = Cmax

Cmin
and φ

′
is the elevation angle to the two users at the center of the

rectangle in Fig. 7.1, and satisfies

cos(φ
′

) =
di

√

d2
i + h2

u

.

Minimizing (7.19) can be achieved by a simple line search over the interval [0, π/2].
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To illustrate the validity of the approximate solution, we compare the average system

sum rate achieved by maximizing (7.8) using an exhaustive search over {Ca, Cb} for

each value of δ evaluated in the approximate line search of (7.19). The simulation

parameters were d1 = d2 = 1500m, hu = 350m, Cmin = 200m, Cmax = 800m, and

Pt

σ2 = 65dB. The results of the simulation are plotted in Fig. 7.2, which shows the

best rate obtained by (7.8) for each value of δ, and the optimal value obtained from

minimizing (7.19) for M = 2 and M = 4. In both cases, the approximate approach

of (7.19) finds a trajectory orientation that yields a near-optimal uplink rate. Fig. 7.2

also illustrates the benefit of increasing the number of antennas at the UAV, and that

proper choice of the UAV heading can have a very large impact on communications

performance.

7.4 Heading Optimization for a Mobile Ground

Network

In this section we consider a more general scenario in which several mobile ground

nodes are present and the UAV tracks their movement. We will consider both SDMA

and TDMA approaches. In the SDMA scheme, all of the ground nodes are transmit-

ting simultaneously and the UAV uses beamforming for source separation. For the

TDMA method, each user is allocated an equal time slot for data transmission. It

is assumed that at time step n− 1 all of the users feedback their current position to

the UAV, and these data are used to predict the positions at time n. An adaptive

algorithm is proposed that calculates the UAV heading at time step n−1 so that the

network’s performance at time step n will be optimized.
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7.4.1 Mobility Model and Position Prediction

We adopt a first-order auto-regressive (AR) model for the dynamics of the ground-

based nodes [86], and we assume the nodes provide their location to the UAVs at

each time step. The UAV in turn uses a Kalman filter to predict the positions of the

nodes at the next time step. We define the dynamic state of user i at time step n− 1

as:

si,n−1 = [xi,n−1, yi,n−1, v
x
i,n−1, v

y
i,n−1]

T ,

where vx
i,n−1, v

y
i,n−1 denote the velocities in the x direction and y direction respectively.

According to the AR model, the state of node i at time step n is given by

si,n = Tsi,n−1 + w
′

i,n

T =



















1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1



















,

where w
′

i,n ∼ N (0, σ2
wI4) represents a process noise term. Due to the effects of delay,

quantization and possible decoding errors, the UAV’s knowledge of the ground nodes’

position is imprecise. This effect is described by the measurement model for user i’s

position:

zi,n = Fsi,n + ui,n

F =







1 0 0 0

0 1 0 0






,
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where ui,n ∼ N (0, σ2
uI2) represents the observation noise. We assume a standard

implementation of the Kalman filter, as follows:

Initialization

xi,0 = Fsi,0, Pi,0 =







0 0

0 0






.

Prediction

ŝi,n|n−1 = Tŝi,n−1|n−1,

Pi,n|n−1 = TPi,n−1|n−1T + σ2
wI4.

Kalman gain

Ki,n = Pi,n|n−1F
T (FPi,n|n−1F

T + σ2
uI2)

−1.

Measurement update

ŝi,n|n = ŝi,n|n−1 + Ki,n(zi,n − Fŝi,n|n−1),

Pi,n|n = (I4 − Ki,nF)Pi,n|n−1.

7.4.2 SDMA Scenario

The average sum rate of the uplink network can be approximated as follows:

Cn =

N
∑

i=1

E {log2(1 + SINRi,n)}

≃
N
∑

i=1

log2

(

1 + E{SINRi,n}
)

. (7.20)
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The UAV heading δn will impact Cn in two ways. First, it will change the distance

between the user nodes and the UAV during time step n, which will impact the

received power. Second, and often most importantly, changes in the heading will

modify the AoA of the LOS components, which impacts the ability of the beamformer

to spatially separate the users. At time step n − 1, based on the noisy observation

zi,n−1, the UAV uses the Kalman filter to predict (x̂i,n, ŷi,n) and hence E{SINRi,n}.

The heading optimization problem can thus be formulated as

max
δn

N
∑

i=1

log2

(

1 + E{SINRi,n}
)

(7.21)

s.t. |δn − δn−1| ≤ ∆δ ,

where ∆δ represents that maximum change in UAV heading possible for the given

time step.

The mean value of SINRi,n is calculated by

E{SINRi,n} = E
{

Pth
H
i,nE{Q−1

i,n}hi,n

}

=
Pt

d2α
i,n

(

K

K + 1
h̄H

i,nE{Q−1
i,n}h̄i,n +

1

K + 1
tr
(

RrE{Q−1
i,n}
)

)

.

Instead of working with the complicated term E{Q−1
i,n}, we use instead the following

approximation based on Jensen’s inequality[87, Lemma 4]:

E{SINRi,n} ≥ Pt

d2α
i,n

(

K

K+1
h̄H

i,nE{Qi,n}−1h̄i,n+
1

K+1
tr
(

RrE{Qi,n}−1
)

)

,(7.22)

where

E{Qi,n}=
N
∑

j=1,j 6=i

Pt

d2α
j,n

(

K

K + 1
h̄j,nh̄

H
j,n +

1

K + 1
Rr

)

+ σ2IM .

We denote the approximation on the right side of equation (7.22) as El{SINRi,n}
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and substitute it into (7.21), leading to a related optimization problem:

max
δn

N
∑

i=1

log2(1 + El{SINRi,n}) (7.23)

s.t. |δn − δn−1| ≤ ∆δ.

Problem (7.23) requires finding the maximum value of a single-variable function over a

fixed interval δn ∈ [δn−1−∆δ, δn−1+∆δ], and thus can be efficiently solved using a one-

dimensional line search. Note that the accuracy of the above sum rate approximations

is less important than their ability to accurately predict the impact of changes to the

UAV heading. The excellent performance achieved by our simulations based on (7.23)

supports its use for this application.

Since problem (7.23) aims at maximizing the sum rate of the system, the algorithm

may lead to a large difference in achievable rates between the users. As an alternative,

we may wish to guarantee fairness among the users via, for example, the proportional

fair method [88]:

max
δn

N
∑

i=1

wi,n log2

(

1 + El{SINRi,n}
)

(7.24)

s.t. |δn − δn−1| ≤ ∆δ,

where wi,n ∝ R̄i,n and R̄i,n is user i’s average data rate:

R̄i,n =
1

n− 1

n−1
∑

k=1

E{log2(1 + SINRi,k)}.

Based on our experience simulating the behavior of the algorithms described in (7.23)

and (7.24), we propose two simple refinements that eliminate undesirable UAV be-

havior. First, to avoid the UAV frequently flying back and forth between the user

nodes in an attempt to promote fairness, the weights wi,n in (7.24) are only updated
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every Nw time steps rather than for every n. Second, we expect that the optimal

position of the UAV should not stray too far from the center of gravity (CoG) of

the ground nodes. This would not be the case if the users were clustered into very

widely separated groups, but such a scenario would likely warrant the UAV serving

the groups individually anyway (similar to the D ≫ hu case discussed in Section 7.3).

To prevent the UAV from straying too far from the CoG, at each time step the UAV

checks to see if the calculated heading would put it outside a certain range dmax from

the CoG. If so, instead of using the calculated value, it chooses a heading that points

towards the CoG (or as close to this heading as possible subject to the turning radius

constraint). Appropriate values for Nw and dmax are found empirically.

The proposed adaptive heading algorithm is summarized in the following steps:

1. Use the Kalman filter to predict the user positions (x̂i,n, ŷi,n) based on the noisy

observations at time step n− 1, and construct the objective function in (7.23)

or (7.24) based on the predicted positions.

2. Use a line search to find the solution of (7.23) or (7.24) for δn ∈ [0, 2π], and

denote the solution as δ̃n. Calculate the heading interval On = [δn−1−∆δ, δn−1+

∆δ]. If δ̃n ∈ On, set δn = δ̃n, else set δn = arg min
δ
|δ − δ̃n|, where δ = δn−1−∆δ

or δn−1+∆δ.

3. Check to see if the calculated heading δn will place the UAV at a distance of

dmax or greater from the predicted CoG of the users. If so, set δn = δg, where

δg is the heading angle corresponding to the CoG, or set δn = arg min
δ
|δ − δg|,

where δ = δn−1−∆δ or δn−1+∆δ.

4. UAV flies with heading δn during time step n.

Note that the line search in step 2 is over [0, 2π] rather than just [δn−1−∆δ, δn−1+
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∆δ], and the boundary point closest to the unconstrained maximum is chosen rather

than the boundary with the maximum predicted rate. Thus, the algorithm may

temporarily choose a lower overall rate in pursuit of the global optimum, although

this scenario is uncommon.

7.4.3 TDMA Scenario

In the TDMA scenario, each node is assigned one time slot for data transmission.

Since there is no interference from other users with TDMA, the beamformer in this

case becomes simply the maximum ratio combiner wi,n = hi,n. Thus, the signal-to-

noise ratio (SNR) of user i is given by

SNRi,n =
Pt

σ2
‖hi,n‖2,

whose mean can be calculated as

E{SNRi,n} =
PtM

d2α
i,nσ

2
.

For the TDMA scenario, the optimization problem is formulated as

max
δn

1

N

N
∑

i=1

wi,n log2

(

1 +
PtM

d2α
i,nσ

2

)

(7.25)

subject to |δn − δn−1| ≤ ∆δ .

where

wi,n =











1, max sum rate,

∝ R̄i, proportional fair.

The objective function in (7.25) can be substituted in step 2 of the adaptive heading

algorithm described above to implement the TDMA approach.
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7.5 Approximate Heading Algorithms

Under certain conditions, we can eliminate the need for the approximation in (7.22)

when defining our adaptive heading control algorithm and thus simplify the algorithm

implementation. In this section, we explore the asymptotic form of SINRi,n under

both low and high SNR conditions. We show that in the low-SNR case, the optimal

heading can be found in closed-form, without the need for a line search. In the high-

SNR case, we show that maximizing the sum rate is equivalent to minimizing the sum

of the users channel correlations, which can be achieved by checking a finite set of

candidate headings. In Section 7.6, we show that the simpler asymptotic algorithms

derived here provide performance essentially identical to the line-search algorithm of

the previous section. Our discussion here will focus on the max-sum-rate case for

SDMA; extensions to the proportional fair and TDMA cases are straightforward. To

simplify the analysis, we have assumed β(φi,n) = 1.

7.5.1 Asymptotic Analysis for Low SNR Case

For low SNR Pt

d2α
i,nσ2 ≪ 1, the average sum rate in (7.20) is approximated by

Cn ≈
N
∑

i

E{SINRi,n}

and problem (7.23) can be rewritten as follows

max
δn

N
∑

i

E{SINRi,n} (7.26)

s.t. |δn − δn−1| ≤ ∆δ .
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In this case we can approximate Q−1
i,n with the first order Neumann series [89, Theorem

4.20]:

Q−1
i,n ≈ 1

σ2

(

IM −
N
∑

j=1,j 6=i

Pt

σ2
hj,nh

H
j,n

)

. (7.27)

Substituting (7.27) into (7.1), the SINRi,n for low SNR can be further expressed as

SINRi,n =
Pt

σ2
hH

i,n

(

IM −
N
∑

j=1,j 6=i

Pt

σ2
hj,nh

H
j,n

)

hi,n,

and we obtain an approximation of E {SINRi,n} as

E {SINRi,n}

= E

{

Pt

σ2
hH

i,n

(

IM −
N
∑

j=1,j 6=i

Pt

σ2
hj,nh

H
j,n

)

hi,n

}

=
Pt

d2α
i,nσ

2

(

K

K + 1
h̄H

i,n

(

IM −
N
∑

j=1,j 6=i

Pt

d2α
j,nσ

2

( K

K + 1
h̄j,nh̄

H
j,n +

1

K + 1
Rr

)

)

h̄i,n

+
1

K + 1
tr

(

Rr −
N
∑

j=1,j 6=i

Pt

d2α
j,nσ

2

(

K

K + 1
Rrh̄j,nh̄

H
j,n +

1

K + 1
R2

r

)

))

(a)≈ Pt

d2α
i,nσ

2

(

M −
N
∑

j=1,j 6=i

Pt

d2α
j,nσ

2
|h̄H

i,nh̄j,n|2
)

, (7.28)

where in (7.28), (a) is based on the assumption of a large Rician factor K for the

ground-to-air channel. When scaled by Pt

d2α
i,nσ2 ≪ 1, the term involving |h̄H

i,nh̄j,n|2

in the above equation plays a minor role in determining the value of E {SINRi,n}.
Assuming ∆δ and the ratio v

di,n
are small enough, we treat |h̄H

i,nh̄j,n| as a constant

when δn varies in [δn−1 − ∆δ, δn−1 + ∆δ]. We then approximate |h̄H
i,nh̄j,n| as

|h̄H
i,nh̄j,n|≈|h̄′H

i,nh̄
′

j,n|=

∣

∣

∣

∣

∣

∣

sin
(

Mπ
2

(

cos(φ
′

i,n) cos(δn−1−ǫ
′

i,n)−cos(φ
′

j,n) cos(δn−1−ǫ
′

j,n)
)

)

sin
(

π
2

(

cos(φ
′

i,n) cos(δn−1−ǫ
′

i,n)−cos(φ
′

j,n) cos(δn−1−ǫ
′

j,n)
)

)

∣

∣

∣

∣

∣

∣

,

(7.29)
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where φ
′

i,n and ǫ
′

i,n are calculated assuming the user nodes are located at (x̂i,n, ŷi,n)

and the UAV is at (xu,n−1, yu,n−1, hu) with heading δn−1. The idea here is to use

the UAV’s position at time step n − 1 to calculate the users’ AoA at time step n.

Moreover, 1
d2α

i,n

can be approximated in the following way

1

d2α
i,n

=
(

(xu,n−1 + v cos δn − xi,n)2 + (yu,n−1 + v sin δn − yi,n)
2 + h2

r

)−α

=
(

(xu,n−1 − xi,n)2 + (yu,n−1 − yi,n)
2 + v2 + hr2 + 2(xu,n−1 − xi,n)v cos(δn)

+2(yu,n−1 − yi,n)v sin(δn)
)−α

≈ ai,n − bi,n cos(δn) − ci,n sin(δn), (7.30)

where ai,n, bi,n and ci,n are defined as follows

ai,n =
(

(xu,n−1 − xi,n)2 + (yu,n−1 − yi,n)
2 + v2 + hr2

)−α

bi,n = 2αv(xu,n−1 − xi,n)
(

(xu,n−1 − xi,n)2 + (yu,n−1 − yi,n)
2 + v2 + hr2

)−(α+1)

ci,n = 2αv(yu,n−1 − yi,n)
(

(xu,n−1 − xi,n)2 + (yu,n−1 − yi,n)
2 + v2 + hr2

)−(α+1)

.

Substituting (7.29) and (7.30) into (7.28), Cn can be approximated as

Cn ≈ Pt

σ2

N
∑

i=1

M(ai,n−bi,n cos(δn)−ci,n sin(δn))−
(

Pt

σ2

)2 N
∑

i=1

N
∑

j=1,j 6=i

|h̄′H
i,nh̄

′

j,n|2
(

ai,naj,n

−(ai,nbj,n+bi,naj,n) cos(δn)−(ai,ncj,n+ci,naj,n) sin(δn)
)

=
MPt

σ2

N
∑

i=1

ai,n−
(

Pt

σ2

)2 N
∑

i=1

N
∑

j=1,j 6=i

|h̄′H
i,nh̄

′

j,n|2ai,naj,n−
(

MPt

σ2

N
∑

i=1

bi,n

−
(

Pt

σ2

)2 N
∑

i=1

N
∑

j=1,j 6=i

|h̄′H
i,nh̄

′

j,n|2(ai,nbj,n + bi,naj,n)

)

cos(δn)−
(

MPt

σ2

N
∑

i=1

ci,n

−
(

Pt

σ2

)2 N
∑

i=1

N
∑

j=1,j 6=i

|h̄′H
i,nh̄

′

j,n|2(ai,ncj,n + ci,naj,n)

)

sin(δn). (7.31)
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Define the first two terms in (7.31) as An, and the term multiplying cos(δn) and

sin(δn) as Bn and Dn, respectively. Then (7.31) can be further expressed as

Cn = An −
√

B2
n +D2

n cos(δn − ψn),

where

ψn =

{ arctan

(

Dn

Bn

)

if Bn ≥ 0,

arctan

(

Dn

Bn

)

+ π otherwise.

From this expression, we see that the average sum rate Cn can be written as a

sinusoidal function of δn, and the maximizing heading δn is given by

δ∗n = mod2π(ψn + π).

So for low-SNR, the approximate closed-form solution to problem (7.26) is given by:

δn =























δ∗n δl < δ∗n < δu

δn−1 − ∆δ modπ|δl − δ∗n| < modπ|δu − δ∗n|

δn−1 + ∆δ modπ|δl − δ∗n| ≥ modπ|δu − δ∗n|

where δl = δn−1 − ∆δ and δu = δn−1 + ∆δ.

7.5.2 Asymptotic Analysis for High SNR Case

In the high SNR case where Pt

d2α
i,nσ2 ≫ 1, the average sum rate maximization problem

can be approximated as

max
δn

N
∏

i=1

E{SINRi,n}

s.t. |δn − δn−1| ≤ ∆δ .
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Here, when Pt

d2α
i,nσ2 ≫ 1, we approximate Q−1

i,n as follows:

Q−1
i,n =

1

σ2

(

IM +
Pt

σ2
Hi,nDi,nH

H
i,n

)−1

(b)
=

1

σ2

(

IM − Pt

σ2
Hi,nDi,n

(

IM +
Pt

σ2
HH

i,nHi,nDi,n

)−1

HH
i,n

)

(c)≈ 1

σ2

(

IM −Hi,n

(

HH
i,nHi,n

)−1
HH

i,n

)

, (7.32)

where (b) is due to the matrix inversion lemma, (c) is due to the approximation
(

IM + Pt

σ2 H
H
i,nHi,nDi,n

)−1 ≈
(

Pt

σ2 H
H
i,nHi,nDi,n

)−1
, and

Di,n = diag

{

1

d2α
1,n

· · · 1

d2α
i−1,n

1

d2α
i+1,n

· · · 1

d2α
N,n

}

Hi,n = [h1,n · · · hi−1,n hi+1,n · · · hN,n]

are formed by eliminating the terms for user i. Plugging (7.32) into (7.1), we obtain

SINRi,n ≈ Pt

σ2d2α
i,n

(

hH
i,nhi,n −

∥

∥hH
i,nHi,n

(

HH
i,nHi,n

)−1
HH

i,n

∥

∥

2
)

.

For large K-factor channels we ignore the contribution of the Rayleigh term, so that

E{SINRi,n} ≈ Pt

σ2d2α
i,n

(

M −
∥

∥h̄H
i,nH̄i,n

(

H̄H
i,nH̄i,n

)−1
H̄H

i,n

∥

∥

2
)

,

where H̄i,n is defined similarly to Hi,n. Thus, the heading optimization problem can

be written as

max
δn

N
∏

i=1

Pt

dα
i,nσ

2

N
∏

i=1

(

M −
∥

∥h̄H
i,nH̄i,n

(

H̄H
i,nH̄i,n

)−1
H̄H

i,n

∥

∥

2
)

(7.33)

s.t. |δn − δn−1| ≤ ∆δ.

At this point we make two further approximations. First, we will ignore the terms

158



0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

 

 

Exact value
Second order approximation

Figure 7.3: Plot of |h̄H
i h̄j| as a function of the AoA between the two users, along with

a set of piecewise quadratic approximations.

in the product involving 1/di,n, since di,n will not change appreciably over one time

step compared with the terms involving products of h̄i,n, which are angle-dependent.

Second, we will make the assumption that the matrix H̄H
i,nH̄i,n is approximately

diagonal, which implies that the UAV attempts to orient itself so that the correlation

between the mean channel vectors for different users is minimized. If we then apply

these two assumptions to (7.33), we find that the heading problem reduces to

min
δn

N
∑

i=1

N
∑

j=i+1

|h̄H
i,nh̄j,n| (7.34)

s.t. |δn − δn−1| ≤ ∆δ ,

which is consistent with the assumption of minimizing inter-user channel correlation.

In Fig. 7.3, we show a plot of |h̄H
i,nh̄j,n| for M = 4 as a function of the difference

in AoA between the two users (variable x in the plot). It is clear that |h̄H
i,nh̄j,n| is

a piecewise concave function. Since a sum of concave functions is also concave, the
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criterion in (7.34) is piecewise concave as well. Since the minimum of a concave

function must be located at the boundary of its domain, to find the solution to (7.34)

it is enough to evaluate the criterion at the boundary points {δn−1 − ∆δ, δn−1 + ∆δ}

and the zero points of |h̄H
i,nh̄j,n| located within [δn−1 − ∆δ, δn−1 + ∆δ]. To find the

zero locations, we use the fact that a piecewise quadratic approximation to |h̄H
i,nh̄j,n|

is very accurate (as depicted in Fig. 7.2). When ∆δ is not too large, the phase term

pi,n in (7.2) satisfies

pi,n ≈ π cos(φ
′

i,n)
(

cos(ǫ
′

i,n − δn−1) + sin(ǫ
′

i,n − δn−1)(δn − δn−1)
)

= ei,n + fi,nx, (7.35)

where x = δn−δn−1, ei,n = π cos(φ
′

i,n) cos(ǫ
′

i,n−δn−1), fi,n = π cos(φ
′

i,n) sin(ǫ
′

i,n−δn−1),

x ∈ [−∆δ,∆δ] and the calculation of φ
′

i,n and ǫ
′

i,n follows (7.29). Based on (7.35), we

obtain

|h̄H
i,nh̄j,n| ≈

∣

∣

∣

∣

∣

∣

sin
(

M
2

(

(fi,n − fj,n)x+ ei,n − ej,n

)

)

sin
(

1
2

(

(fi,n − fj,n)x+ ei,n − ej,n

)

)

∣

∣

∣

∣

∣

∣

.

Then the zero points of |h̄H
i,nh̄j,n| in terms of x are approximately given by1

zi,j
k =

2kπ/M − ei,n + ej,n

fi,n − fj,n
, k = ±1, . . . ,±2M − 1.

Finally, the asymptotic solution to problem (7.34) can be written as

δn = arg min
δn

N
∑

i=1

N
∑

j=i+1

|h̄H
i,nh̄j,n|, ∀δn ∈ {zi,j

k ∈ [−∆δ,∆δ]} ∪ {δn−1 − ∆δ, δn−1 + ∆δ}.

1Where we assume ∆δ < 1, |(fi,n − fj,n)x + ei,n − ej,n| < 4π and we only consider the zero
points in [−4π, 4π].
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7.6 Simulation Results

A simulation example involving a UAV with a 4-element ULA and four users was

carried out to test the performance of the proposed algorithm. The time between

UAV heading updates was ∆t = 1s, and the simulation was conducted over L = 300

steps. The initial speed of all nodes was 10m/s, and their initial positions in meters

were (0, 25), (240, 20), (610, 30), (1240, 20). To describe the user mobility, we assume

a state-space model with random process noise on the user’s position and velocity, and

we assume the UAV uses a standard Kalman filter to predict future user positions.

The user’s transmit power was set to Pt

σ2 = 45dB. We assume free space propagation

for the large-scale fading, and thus the path loss exponent was chosen as α = 1 [90,

chap. 3]. Halfway through the simulation, at step 150, all the nodes make a sharp

turn and change their velocity according to vy
i,150/v

x
i,150 = −1.8856, where vx

i,150 and

vy
i,150 represent the velocity of the i-th user in the x and y-directions, respectively.

The initial position of the UAV was (xu,0, yu,0) = (50, 100)m and its altitude was

hu = 350m. The speed of the UAV was vu = 50m/s, and the maximum heading angle

change was set to be either ∆δ = π
6

or π
9

depending on the case considered. The

angle spread factor in (7.4) was set to σ2
r = 0.05. For the proportional fair case, Nw

was set to 4 and for the high SNR case, dmax was set to 300m. For simplicity, we set

β(φi,n) = 1.

Figs. 7.4-7.7 show the trajectories of the UAV and mobile nodes for the SDMA and

TDMA scenarios assuming either max-sum or proportional fair objective functions

and ∆δ = π
6
. The decision-making behavior of the UAV is evident from its ability

to appropriately track the nodes as they dynamically change position. Due to the

relatively high speed of the UAV compared with the ground-based nodes, in some

cases the UAV is forced to fly in a tight circular trajectory to maintain an optimal

position for the uplink communications signals. In the proportional-fair approach, the
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Figure 7.4: Trajectories of the UAV and user nodes for SDMA with ∆δ = π
6
, K = 10

and Pt

σ2 = 45dB, maximizing sum rate. The average sum rate is: 1.8185 bps/Hz. The
single user data rates are u1 = 0.5607, u2 = 0.6138, u3 = 0.2406, u4 = 0.4034.
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Figure 7.5: Trajectories of the UAV and user nodes for SDMA with ∆δ = π
6
, K = 10

and Pt

σ2 = 45dB, proportional fair algorithm. The average sum rate is 1.6968 bps/Hz
with u1 = 0.4169, u2 = 0.4084, u3 = 0.4088, u4 = 0.4627.
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Figure 7.6: Trajectories of the UAV and user nodes for TDMA with ∆δ = π
6
, K = 10

and Pt

σ2 = 45dB, maximizing sum rate. The average sum rate is: 0.5294 bps/Hz, with
u1 = 0.1418, u2 = 0.1674, u3 = 0.0895, u4 = 0.1307.
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Figure 7.7: Trajectories of the UAV and user nodes for TDMA with ∆δ = π
6
, K = 10

and Pt

σ2 = 45dB, proportional fair algorithm. The average sum rate is 0.5139 bps/Hz,
with u1 = 0.1222, u2 = 0.1274, u3 = 0.1193, u4 = 0.1450.
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Figure 7.8: Comparison of sum rate performance (bps/Hz) with K = 10 and Pt

σ2 =
45dB, maximizing sum rate. The average sum rates are: 1.802 for SDMA with
∆δ = π

6
, 1.6921 for SDMA with ∆δ = π

9
, and 0.5377 for TDMA with ∆δ = π

6
.

UAV tends to visit the nodes in turn, while the max-sum rate algorithm leads to the

UAV approximately tracking the area where the user node density is highest. Note

that in this example the proportional-fair algorithm only suffers a slight degradation

in overall sum rate compared with the max-sum rate approach.

Figs. 7.8-7.9 show the ergodic sum rate for the different scenarios. For each time

step, the rate is calculated by averaging over 1000 independent channel realizations.

Results for both ∆δ = π
6

and π
9

are plotted. Increasing the maximum turning rate

will clearly provide better performance since it gives the UAV more flexibility in

choosing its heading. The benefit of using SDMA is also apparent from Figs. 7.8-7.9,

where we see that a rate gain of approximately a factor of 3.3 is achieved over the

TDMA scheme. We also note that the obtained sum rate is only about 16% less than

what would be achieved assuming no interference, indicating the effectiveness of the

beamforming algorithm.

164



0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Time step n

E
rg

od
ic

 S
um

 R
at

e 
(b

ps
/H

z)

 

 

SDMA, ∆δ=π/6
SDMA, ∆δ=π/9
TDMA, ∆δ=π/6

Figure 7.9: Comparison of sum rate performance (bps/Hz) with K = 10 and Pt

σ2 =
45dB, proportional fair algorithm. The average sum rates are: 1.6968 for SDMA with
∆δ = π

6
, 1.6042 for SDMA with ∆δ = π

9
, 0.5139 for TDMA with ∆δ = π

6
.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

Receive SNR at 1km

E
rg

od
ic

 S
um

 R
at

e 
(b

ps
/H

z)

 

 

0 2 4 6 8

x 10
−3

0.23

0.24

0.25

0.26

0.27

 

 

Numerical algorithm
Asymptotic algorithm (low SNR)
Asymptotic algorithm (high SNR)
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9
, K = 1000, maximizing sum rate. The x-axis denotes

the SNR that would be observed at the UAV for a user node at a distance of 1km.
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Fig. 7.10 compares the average sum rate of the line-search algorithm in (7.23) with

both the low- and high-SNR approximations derived in the previous section. The

K-factor for this example was 1000 and ∆δ = π/9. The performance is plotted as a

function of the received SNR that would be observed at the UAV from a ground node

located at a distance of 1km. Although the approximate algorithms were derived sep-

arately under different SNR assumptions, both of them yield performance essentially

identical to (7.23) over all SNR values. Each approximate algorithm is slightly better

than the other in its respective SNR regime, but the performance difference is small.

7.7 Summary

We have investigated the problem of positioning a multiple-antenna UAV for en-

hanced uplink communications from multiple ground-based users. We studied the

optimal UAV trajectory for a case involving two static users, and derived an approx-

imate method for finding this trajectory that only requires a simple line search. For

the case of a network of mobile ground users, an adaptive heading algorithm was

proposed that uses predictions of the user terminal positions and beamforming at the

UAV to maximize SINR at each time step. Two kinds of optimization problems were

considered, one that maximizes an approximation to the average uplink sum rate

and one that guarantees fairness among the users using the proportional fair method.

Simulation results indicate the effectiveness of the algorithms in automatically gen-

erating a suitable UAV heading for the uplink network, and demonstrate the benefit

of using SDMA over TDMA in achieving the best throughput performance. We also

derived approximate solutions to the UAV heading problem for low- and high-SNR

scenarios; the approximations allow for a closed-form solution instead of a line search,

but still provide near-optimal performance in their respective domains.
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Chapter 8

Conclusion

This dissertation investigated the physical layer optimization for the wireless sensing

and network connectivity. For the amplify-and-forward wireless sensor network with

a coherent multiple access channel, we studied the problems of how to improve the

estimation or detection performance through optimizing the complex transmission

gain at sensor nodes or configuring fusion center (FC) with multiple antennas. Ad-

ditionally, when the network doesn’t have a fixed infrastructure in which the sensor

nodes are mobile, a multi-antenna unmanned aerial vehicle (UAV) is used as relay to

improve the connectivity between the sensor nodes and the FC. The UAV’s trajectory

is adaptively optimized based on the positions of the sensor nodes.

For the single-antenna FC, we considered the problem of how to allocate the trans-

mit power at sensor nodes when the FC attempts to track a dynamic parameter

based on the measurements from the sensor nodes. We formulated problems with

either constraints on sensor transmit power or constraints on achieved MSE, and for

the power constraint we examined cases involving global sum and individual sensor

power constraints. To minimize MSE under global sum power constraint or minimize
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the sum transmit power under MSE constraint, we have found the optimal closed-

form solutions of sensor transmission gain through maximizing a related Rayleigh

quotient. When the sensor node’s individual power constraint is taken into account,

we have demonstrated that a rank-relaxed semidefinite program (SDP) can be used

to find optimal solutions for minimizing MSE under individual power constraints,

or minimizing peak sensor power under MSE constraints. Furthermore, we derived

asymptotic expressions for the optimal transmission gains for both low and high SNR

at the FC, and when the number of sensors is large, we found an approximate expres-

sion for the required sum transmit power to achieve a certain value of MSE. For the

special case where the sensors transmit with equal power, the exact expression for the

MSE outage probability has also been derived. Several simulation results have been

presented to verify the performance of the optimal solutions and confirm the analysis.

Additionally, we generalized the scalar dynamic model to the vector process, and we

investigated the problem of a Kalman filter with a linearly reconfigurable observation

matrix. Two kinds of problems were formulated: Minimize-Sum-MSE or Minimize-

Maximum-MSE. When the observed signal is a vector, both of the above mentioned

optimization problems are difficult to solve directly, and we proposed a method to

divide the original problem into two simpler sub-problems that are easier to solve.

Simulation results show that when the quadratic constraint has a small value, this

approach can provide performance close to the MSE lower bound. For the scalar ob-

servation model, we transformed the Minimize-Sum-MSE to an equivalent Rayleigh

quotient maximization problem which has an optimal closed-form solution, and to

solve the Minimize-Maximum-MSE, the rank-one constraint on the observation pa-

rameters is relaxed and the resulting problem becomes an SDP feasibility problem.

If the solution to the SDP feasibility problem is not rank-one, a rank-one solution

need to be reconstructed. Simulation results show that the solution to the feasibility

problem is most likely to be rank-one.
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To further improve the detection or estimation performance of WSN, the FC has

been configured with multiple antennas. We first formulate a phase-shift and forward

scheme in which the sensors nodes apply a phase shift to their noisy measurements

before forwarding them to the multi-antenna FC. Two algorithms were proposed for

finding the sensor phase shifts that minimize the estimation error at FC, one based on

a relaxed SDP and a closed-form heuristic algorithm based on the ACMA approach.

When the number of sensors or number of antennas is large, asymptotic estimation

error has been analyzed, and we have derived the conditions under which the multi-

antenna FC can provide more benefit than single-antenna FC. Due to the feedback

channel between the FC and sensor nodes, there may exist errors in the sensor’s

phase shift. The phase error’s impact on the estimation performance was studied

and an upper bound for the performance degradation has been derived. To save the

battery power and extend the life time of the network, sensor selection problem was

formulated and solved, in which only a subset of senor nodes are selected for signal

transmission. For the low SNR scenario, a linear programming was used to find the

subset of the sensor nodes and for the high SNR scenario, we showed that selecting

the sensors with lowest measurement noise for signal transmission was approximately

optimal.

When the FC possesses a massive number of antennas, we have shown that the de-

tection or estimation performance only depends on the transmission gain of sensor

nodes and the phase can be arbitrary. Under the assumptions that the FC has a per-

fect knowledge of the channel state information (CSI) from sensor nodes, we studied

Neyman-Pearson (NP) detector and linear minimum mean-squared error (LMMSE)

estimator, derived optimal sensor transmission gains for each case and showed that for

the case of NP detection and LMMSE estimation, constant levels of performance can

be achieved if the transmit power at the sensors is reduced proportional to the gain in

the number of antennas. If the CSI is unknown to the FC, the energy detector can be
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used for signal detection. Optimal solution has been found to maximize the deflection

coefficient of the energy detector and it has been proved that for energy detector, a

constant deflection coefficient can be maintained if power is reduced proportional to

the inverse square root of the number of antennas. The performance bounds derived

for NP detection and LMMSE estimation showed that the multi-antenna FC can

provide significant benefits over the single-antenna FC in low sensor transmit power

scenario, and the benefit disappears when the transmit power is high. However, for

the energy detector, compared with single-antenna FC, multi-antenna FC can always

provide a better detection performance.

The above mentioned results are based on the assumption that the network has a

fixed infrastructure, in which the FC can optimize the network configuration, and

then feed the solutions back to the sensor nodes. In military or disaster response

scenarios, the network may have a random topology and it’s possible that the dis-

tance between sensor nodes and FC exceeds their communication limits. For such a

scenario, we investigated how to use the multi-antenna UAV as a relay to improve the

connectivity between the sensor nodes and the FC. The UAV utilizes beamforming

to separate difference users’ signal and using the estimation of users’ positions as an

input, the heading direction of the UAV is adaptively optimized to maximize the up-

link sum rate or minimum rate of the user nodes moving on the ground. Several UAV

heading optimization algorithms were proposed and simulation results have verified

the effectiveness of these algorithms in achieving an optimal throughput.
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