
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Incentives, Computation, and Networks: Limitations and Possibilities of Algorithmic
Mechanism Design

Permalink
https://escholarship.org/uc/item/9564w170

Author
Singer, Yaron

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9564w170
https://escholarship.org
http://www.cdlib.org/

Incentives, Computation, and Networks: Limitations and Possibilities of
Algorithmic Mechanism Design

by

Yaron Singer

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Christos Papadimitriou, Chair
Professor Shachar Kariv
Professor Scott Shenker

Spring 2012

Incentives, Computation, and Networks: Limitations and Possibilities of
Algorithmic Mechanism Design

Copyright 2012
by

Yaron Singer

1

Abstract

Incentives, Computation, and Networks: Limitations and Possibilities of Algorithmic
Mechanism Design

by

Yaron Singer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos Papadimitriou, Chair

In the past decade, a theory of manipulation-robust algorithms has been emerging to
address the challenges that frequently occur in strategic environments such as the internet.
The theory, known as algorithmic mechanism design, builds on the foundations of classical
mechanism design from microeconomics and is based on the idea of incentive compatible pro-
tocols. Such protocols achieve system-wide objectives through careful design that ensures
it is in every agent’s best interest to comply with the protocol. As it turns out, however,
implementing incentive compatible protocols as advocated in classical mechanism design the-
ory often necessitates solving intractable problems. To address this, algorithmic mechanism
design focuses on designing computationally-feasible incentive compatible approximation al-
gorithms.

In the first part of this thesis we show the limitations of algorithmic mechanism design.
We introduce a novel class of problems which are approximable in the absence of strate-
gic constraints, and have an optimal incentive compatible solution when no computational
constraints are enforced; we show that, under standard computational assumptions, for this
class of problems there is no algorithm with a reasonable approximation ratio that is both
computationally feasible and incentive compatible. This settles the central open question in
algorithmic mechanism design which, since its inception, has been focused on trying to show
the hardness of polynomial time incentive compatibility.

In the second part of this thesis we show the possibilities of algorithmic mechanism de-
sign. We introduce a novel class of problems where the bottleneck for implementation is the
constraint on payments. We show that for a broad class of these problems, there are incen-
tive compatible mechanisms with desirable approximation guarantees that do not require
overpayments. By resulting to approximations, this result circumvents well known impos-
sibility results from classical mechanism design theory that deem incentive compatibility to
be infeasible under a budget.

i

To my parents.

ii

Contents

Contents ii

1 Introduction 1
1.1 The Internet . 1
1.2 Algorithmic Mechanism Design . 2
1.3 Part I: Limitations of Algorithmic Mechanism Design 3
1.4 Part II: Possibilities of Algorithmic Mechanism Design 4
1.5 Organization of the Thesis . 5

I Limitations of Algorithmic Mechanism Design 7

2 Combinatorial Public Projects I: The Hardness of Being Truthful 8
2.1 Introduction . 8
2.2 The Model . 11
2.3 The Characterization Lemma . 12
2.4 Communication Complexity Lower Bound 18
2.5 Computational Complexity Lower Bound . 20
2.6 Discussion . 22

3 Combinatorial Public Projects II: Adventures in Incentives and Compu-
tation 24
3.1 Introduction . 24
3.2 Unit-Demand Valuations . 26
3.3 Capped Additive Valuations . 29
3.4 Subaddtive Valuations . 31
3.5 General Valuations . 37
3.6 Discussion . 39

iii

II Possibilities of Algorithmic Mechanism Design 40

4 Budget Feasible Mechanisms I: How To Win Friends and Influence Peo-
ple, Truthfully 41
4.1 Introduction . 41
4.2 The Model . 44
4.3 Symmetric Submodular Functions . 45
4.4 General Submodular Functions . 47
4.5 Discussion . 57

5 Budget Feasible Mechanisms II: Adventures in Approximation 60
5.1 Introduction . 60
5.2 Additive Functions . 61
5.3 Multi-Unit Demand Functions . 64
5.4 Coverage Functions . 66
5.5 Cut Functions . 69
5.6 Subadditive Functions . 77

6 Conclusions 83

Bibliography 84

iv

Acknowledgments

I would like to thank Christos for his devoted parenting during my academic adolescence.
Despite my best efforts, I was not able to discover the boundaries of his patience, generosity,
and encouragement, and I am grateful to him for exercising these qualities with me. If I had
to summarize the most important thing I learned from Christos in a single sentence I would
say that I learned that in the limit, there is no point in trying to optimize the constants.
If I had to summarize it in two sentences I would probably add something clever about
truthfulness. I couldn’t have wished for a better mentor.

I thank Scott Shenker for his guidance throughout my time in Berkeley and most impor-
tantly for believing in me. I thank Shachar Kariv for many passionate discussions that made
for invaluable contributions to my Economics education. I wish to also thank the faculty
and students of the theory group and the RAD (AMP) Lab, as well as David Ahn, Shachar,
Chris Shanon, and Adam Szeidl from the Economics department, all of whom made speeding
on interdisciplinary bridges possible.

I would like to thank my fabulous collaborators. In particular, I am greatly thankful for
the friendship and support of Michael Schapira with whom I had the privilege to work on
topics discussed in the first part of this thesis. I thank Moshe Babaioff and Liad Blumrosen
for mentoring me during my summer at the wonderful Microsoft Research lab in Silicon
Valley. I wish to thank Bobby Kleinberg and Èva Tardos for hosting me at Cornell and for
our fruitful discussions directly related to the work in this thesis. I also warmly thank Jake
Abernethy, Ashwinkumar Badanidiyuru, Dave Buchfuhrer, Joan de Marti, Ilias Diakoniko-
las, Shachar Dobzinski, Shaddin Dughmi, Joan Feigenbaum, Eric Friedman, Manas Mittal,
Elchanan Mossel, George Pierrakos, Yuval Shavitt, Christos Stergiou, and Vasilis Syrganis.

I thank Microsoft Research and Facebook for their generous support during my studies.
These votes of confidence came at times when I needed them most, and gave me the freedom
to explore new territories, some of which are beyond the scope of this thesis.

This thesis is a summary of four magical years in Berkeley. If you read the proofs carefully,
you’ll smell the coffee beans of Yali’s, Nefeli’s and PiQ. I wish to thank Ayal, Nasos, and
Rufo, and the talented baristas of these special places for their caffeine and hospitality.

I thank my sister Maya for advocating for me from the day I was born. I thank Yair
for being a mensch and for, together with Maya, making the Bay Area home to us. I thank
Arielli and Karini for melting my heart with their laughter. Every single time.

I remember asking my mother when I was six whether I’ll have to get a PhD when I grow
up. When she laughed and said I don’t, I engraved that moment in my memory, to have an
argument just in case she ever changed her mind. I thank my parents for letting me explore
my own paths, even when they feared for my life or that I’ll become a businessman. I thank
them for their love and for being so proud.

And to Meromit, what I write here is insignificant considering what you have given me.
Thank you for making this thesis; for making my deadlines your own, sharing my anxieties
and small victories; for celebrating with me every time I said I’m basically done writing this
thesis, and for the next time you’ll celebrate with me. For always being that girl I once met.

1

Chapter 1

Introduction

1.1 The Internet

The rapid emergence of the internet and the world wide web have changed the way we think
about markets and computation. From network protocols between Internet Service Providers
(ISPs) to large-scale search engine keyword auctions, the internet is rich with examples where
multiple – often strategic – entities with competing objectives interact in a computational
environment. As a result, in the past decade algorithms have been fortified with concepts
like equilibrium and incentives, and computational thought has been injected into market
design.

Almost by its definition, the internet is an arena of strategic interactions. It is a com-
putational artifact – first of its kind – in which resources are owned by strategic agents,
distributed across an evolving networked system. The actual transmission of data in the in-
ternet is a coordinated effort by multiple ISPs bound via various business relationships that
transfer data packets between them. Each such ISP has its own objectives to optimize, and
may strategically misreport its available resources or relationships with other ISPs to satisfy
its own goals. To achieve system-wide objectives, it is therefore not enough for algorithms to
be computationally feasible; they must also robust to manipulation by entities that provide
their input.

From a market design perspective, as the world wide web becomes the main medium for
consuming and sharing information, markets are moving online where achieving economic
efficiency is conditioned on computational tractability. A useful example is that of adver-
tisement auctions which are currently the leading monetization model for content on the
web. Advertisement space in web pages is allocated via auctions that take bids from agents
who wish to place advertisements that are relevant to the page content. Advertisement plat-
forms allow bidding agents to express complex preferences and typically conduct millions of
auctions in a single minute. Naturally, efficient computation is at the heart of these auc-
tions and requires supplementing traditional economics with optimization machinery under
limited computational resources.

CHAPTER 1. INTRODUCTION 2

In the last several years the internet is going through yet another change. It is becom-
ing social. The recent developments in web technologies and the emergence of online social
networks enable people to easily create and share content across the web. This coming gener-
ation of internet markets aims at creating effective recommendation systems and marketing
platforms by leveraging petabytes of online social interaction data. Incentives, computation,
and network effects all play a major role in the social web and present some of its greatest
problems and opportunities.

The challenges of the internet therefore call for an algorithmic game theory [47]: a fusion of
ideas from mathematical economics, game theory and computer science to develop algorithms
capable of optimizing complex market objectives in strategic environments.

1.2 Algorithmic Mechanism Design

In microeconomics, a theory for protocol design in strategic environments has been devel-
oped for the past fifty years in the field known as mechanism design. The theory is based
on the idea of incentive compatible (or truthful) protocols that guarantee it is in every par-
ticipating agent’s best interest to act according to prescribed rules, which enables achieving
global system objectives. In the past decade, computational considerations and algorithmic
techniques have been incorporated into mechanism design, introducing algorithmic mecha-
nism design [45]. This field builds on the foundations of traditional mechanism design and
incorporates models and concepts from the theory of computation to develop a theory of
algorithms for strategic environments. At a high level, algorithmic mechanism design can be
categorized by two main efforts:

• Limitations. Algorithms that are robust to manipulation are naturally more limited
than algorithms that are not. Since its inception, algorithmic mechanism design has
been focused on identifying an example that shows that there is a substantial gap in
the performance of incentive compatible algorithms and unrestricted algorithms. Once
established, a canonical impossibility result enables exploring alternative (weaker but
feasible) solution concepts that can be implemented instead.

• Possibilities. Designing markets where optimization of market objectives must be
aligned with agents’ incentives requires developing new algorithmic machinery. Al-
gorithmic mechanism design considers computational limitations and develops general
techniques for designing computationally feasible mechanisms. Moreover, even in cases
where computation is not a limitation, the field often introduces machinery from opti-
mization and combinatorics that enable addressing the complexities of online markets.

Naturally, there are strong intersections and overlaps between these directions: Algo-
rithms draw the boundaries of computational and game theoretic limitations and vice versa.
The above categorization of research threads, while somewhat artificial, is useful in narrating
the main results presented in this thesis.

CHAPTER 1. INTRODUCTION 3

In this thesis we introduce two novel models that shed light on the limitations and possi-
bilities of algorithmic mechanism design. Both models feed off the richness and complexity
in reconciling incentives and computation in real-world networks. The first model is the
combinatorial public projects which captures preference aggregation in networks and settles
the decade-long open question on the computational hardness of incentive compatibility.
The budget feasibility model described in the second part of this thesis was developed for
optimizing influence in social networks and provides powerful machinery for designing pro-
curement markets. We briefly summarize of the main points and motivation behind these
models.

1.3 Part I: Limitations of Algorithmic Mechanism

Design

Mechanism design theory has been well established in microeconomics for the past fifty years
and is based on the idea of incentive compatibility: protocols for which it is provably in every
participating agent’s interest to report their information truthfully. The idea is simple and
brilliant: the fact that truthful reporting is the optimal strategy guarantees that the input
that an incentive compatible algorithm receives from rational agents is valid, and the quality
of its solution can be compared against the real optimum. Incentive compatibility often
requires payments, and the term mechanism is used to describe a pair of carefully designed
algorithm and payment rule that dictate an allocation and payment for the participating
agents.

A fundamental result in this field is the celebrated VCG mechanism [60, 16, 30] which
gives a general recipe for designing incentive compatible protocols that yield optimal solutions
and for years has been considered a certificate for the wide-range applicability of incentive
compatibility. In the past decade however, with the emergence of internet-scale markets,
a strong doubt has been cast over the generality of this result: To be applicable, VCG
requires computing the exact optimal solution and is thus restricted to narrow domains
where finding the exact optimal solution is computationally feasible. This naturally led to
an extensive body of work on incentive compatible approximation algorithms for domains
where the optimal solution is computationally infeasible (see [34] for a survey).

There have been numerous successes with designing incentive compatible algorithms in
the era of large scale computation of the commercial internet. Along with the successes,
however, there are still domains where, despite extensive research, no incentive compatible
approximation algorithms with reasonable approximation ratios are known, despite the fact
that the problems are easy to approximate in the absence of the incentive compatibility
requirement. This led to the strong suspicion that there is an inherent impossibility that
prevents the design of computationally feasible and incentive compatible approximation al-
gorithms. This has been the central open problem in algorithmic mechanism design since its
inception more than a decade ago [45].

CHAPTER 1. INTRODUCTION 4

Is incentive compatibility inconsistent in general with computationally feasible approx-
imation?

In the first part of this thesis we settle this long-standing open question. We introduce
the combinatorial public project model which captures markets that aggregate agents’ pref-
erences in networked environments in Chapter 2. From a purely computational perspective,
the problem is benign since it has a computationally feasible approximation algorithm that
obtains a good (constant factor) solution, assuming that agents report their information
truthfully. From a purely strategic perspective the problem is also easy since the VCG
mechanism can obtain the optimal solution, assuming it has unlimited computational re-
sources. However, an algorithm with a reasonable approximation ratio that is both incentive
compatible and computationally feasible does not exist.

Result. There is a class of problems that are algorithmically approximable but have no
reasonable computationally-feasible incentive compatible approximation.

The theorem implies that, despite its wide applicability, incentive compatibility can cre-
ate a severe computational bottleneck for approximation algorithms. In domains where
computing optimal solutions can be infeasible, this result shows that incentive compatibility
can be an unobtainable goal.

The result is actually made up of two complementary results – one in the communication
complexity model and one in the computational complexity model. Both these hardness
results heavily rely on a combinatorial characterization of truthful algorithms for our prob-
lem, showing that all incentive compatible mechanisms in this class of public projects must
be affine maximizers. Beyond its implications, our result reveals deep connections between
mechanism design, combinatorics and complexity theory and provides a useful and general
technique to show computational complexity impossibility results in mechanism design.

Given the impossibility result, in Chapter 3 we investigate the model to identify classes
where computationally feasible incentive compatible mechanisms can be obtained. We show
computational complexity impossibility results for affine maximizers even in very restricted
classes of combinatorial public projects, as well as a computationally feasible mechanism with
a good approximation guarantee in a limited setting. We also show several inapproximabil-
ity result of the computational problem (without incentive constraints) in slightly broader
classes. Together, these results provide a map of the computational feasible regions where
incentive compatibility may be obtainable in combinatorial public projects.

1.4 Part II: Possibilities of Algorithmic Mechanism

Design

Despite the general hardness of incentive compatibility discussed above, it is a powerful so-
lution concept and the golden standard market designers aim for, whenever possible. The

CHAPTER 1. INTRODUCTION 5

bottleneck for incentive compatibility, however, is not necessarily computational. In many
emerging online markets the main barrier to implementation comes from the potential over-
payments associated with incentive compatibility.

The new generation of the web enables users to easily create and share content as well
as receive payments and other forms of incentives in exchange for their online services.
This gives birth to new markets that procure information and services from agents and
aim to optimize complex objectives under a budget. But there is a clash between budget
and incentives: Classical mechanism design theory rules out incentive compatibility under
a budget as it is well known that implementing optimal solutions – even for very simple
objectives – can result in huge overpayments [7].

Can incentive compatible mechanisms have desirable guarantees under a budget?

In Chapter 4 we introduce the model of budget feasibility, where the goal is to provide
desirable approximation guarantees to combinatorial objectives while keeping the incentive
compatible payments under a fixed budget. The model was originally motivated by the
ambition to design incentive compatible mechanisms for the influence maximization problem
in social networks. In this setting, first formalized in [22, 33], the goal is to procure a small
set of individuals to recommend a technology so that the word-of-mouth effect is maximized.
The main result shows that for the rich class of submodular procurement markets near-
optimal approximation guarantees are obtainable.

Result. For submodular procurement markets, there are incentive compatible mechanisms
that guarantee to provide a constant fraction of the optimal utility without overpayments.

The main obstacle in this line of work is not computational, though computational think-
ing helps address the problem in a productive way, through the concept of approximation.
This result uses a novel characterization that draws a connection between incentive compat-
ible payments and the approximability of the underlying objective function.

The budget feasibility model is essentially a framework for optimization under incentive
constraints. In Chapter 5 we introduce several important techniques for developing budget
feasible mechanisms with desirable guarantees in a broad class of problems. In general, the
budget feasibility model allows designing powerful mechanisms that can be implemented in
real systems, operate efficiently on large scale data and do well in theory and in practice.
Beyond the scope of influence maximization and procurement, this framework is useful in
data mining. The emergence of crowdsourcing and user-generated content on the web makes
incentive-based mechanisms an important addition to the arsenal of data mining techniques.

1.5 Organization of the Thesis

The thesis is divided into two parts. The first part presents the impossibility of algorithmic
mechanism design through the combinatorial public projects model. The introduction of

CHAPTER 1. INTRODUCTION 6

the model and the impossibility result are presented in Chapter 2 (based on joint work with
Christos Papadimitirou and Michael Schapira [48]), and the results on the mechanisms and
approximability of various classes in the model are presented in Chapter 3 (based on work
with Michael Schapira [54] and work with Dave Buchfuhrer and Michael Schapira [13]).

The second part of the thesis shows the possibilities of algorithmic mechanism design
through the budget feasibility model. The model and main result are presented in Chapter 4
(based on [56]), and further generalizations of approximation techniques are in Chapter 5
(based on joint work with Shahar Dobzinski and Christos Papadimitriou [20] and the work
in [57]).

7

Part I

Limitations of Algorithmic
Mechanism Design

8

Chapter 2

Combinatorial Public Projects I: The
Hardness of Being Truthful

2.1 Introduction

The challenge of optimally allocating a subset of available resources, that are to be collectively
shared by many agents, arises in various settings. Consider the following example.

Overlay Networks. In communication networks, routing is done by routers that choose
paths other than shortest, and this results in distance matrices that do not satisfy the
triangle inequality. In such a situation, it is often desirable to construct an overlay: A set
of k nodes spread throughout the network and with high-quality routing between them, so
that other nodes can improve the distance between them by routing through the closest
overlay node. An overlay is beneficial to different nodes in different degrees, and we wish
to design the overlay that maximizes total welfare. Beyond the computational challenge
in finding the optimal outcome, this problem raises another challenge: To maximize their
individual benefit, agents may falsely report their preferences over resources. Therefore, in
such settings we are faced with the task of designing a mechanism which not only finds
(or approximates) the optimal allocation of resources, but also incentivizes the participating
agents to be truthful.

Combinatorial Public Projects

This is a typical instance of a general problem we define, called combinatorial public
project problem, or CPP. There are n agents and m resources, and, for each agent i, a
private valuation function vi which specifies i’s value for every subset of size k (a parameter)
of the resources. We assume that all valuations are nondecreasing and submodular (a case
that encompasses among many others the overlay network example above, see definitions in

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 9

Section 4.2). The objective is to find a subset of the resources S, |S| = k, which maximizes
the social welfare, i.e., the sum of agents’ values for the chosen subset Σi vi(S).

• The problem is easy from a (strictly) computational perspective. While
many of its special cases are NP-hard [24]), this problem is a submodular maximization
problem under a cardinality constraint, and it is well known that a greedy algorithm
achieves a constant factor approximation ratio (specifically, e/(e−1)) [43]. But the fact
that valuations are private presents us with a formidable problem: unless otherwise
incentivized, agents are likely to lie, exaggerating the degree to which they prefer one
alternative over another and this misrepresentation makes optimization impossible.

• The problem is easy from a (strictly) strategic perspective. There is a very
general method for providing incentives for the agents to reveal their true valuation,
namely the Vickrey-Clarke-Groves (VCG) mechanism [59, 16, 30]. However, VCG re-
quires that we solve exactly (typically many instances of) the CPP — an NP-hard
problem. We could of course turn to approximation, as we always do when faced
with intractability. The tragedy of this area is that approximation and truthfulness
do not mix: Running VCG with approximate solutions is, in general, not incentive
compatible [46].

In other words, efficient approximability and incentive compatibility seem to be at log-
gerheads. This tension underlies much of the work in algorithmic mechanism design, and is
in fact the central problem in the field:

How hard is polynomial-time truthfulness?

In this chapter, we address this long-standing open question and establish a huge gap between
the quality of the solutions that can be obtained by algorithms for CPP that are both
polynomial and truthful, and by algorithms that satisfy only one of these two desiderata. We
show this by proving that no truthful and computationally-efficient algorithm for CPP can
obtain any reasonable approximation ratio, specifically, a ratio better than

√
m (this holds

even for the case of two agents)1. This settles a long-standing open question in algorithmic
mechanism design, as we exhibit a problem that is easy from a computational perspective
(a constant approximation algorithm exists), and from an economic perspective (an optimal
truthful algorithm exists), but is hard if we care about both.

Main Result

The main result in this chapter is actually made up of two complementary results – one in
the communication-complexity model and one in the computational-complexity model.

1In the next chapter we show a simple truthful polynomial-time algorithm that obtains a
√
m approxi-

mation ratio for CPP thus showing that our result is tight in both models.

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 10

Theorem. No polynomial-time truthful mechanism for the combinatorial public projects with
submodular agents can obtain an approximation ratio of O(m

1
2
−ε), for every ε > 0, un-

less it uses exponential communication in m. In case of succinctly described valuations, no
polynomial-time truthful mechanism can obtain this approximation ratio unless NP ⊆ BPP.

Overview of the Proof

The family of affine-maximizers plays a dominant role in the impossibility results. Infor-
mally, a range of an algorithm is the collection of all the possible subsets it can output
and an algorithm is called an affine-maximizer if it always optimizes over its entire range
(hence, affine maximizers are also known as maximal-in-range mechanisms). The proof of
the impossibility result consists of two main parts:

1. Any truthful algorithm is an affine-maximizer (Section 2.3). We show that
any truthful algorithm for CPP is, in fact, an affine maximizer. This part of the proof
is inspired by various works that deal with the characterization of truthful mechanisms
(see [35, 9, 51, 36, 21]). This line of research was originated in the seminal work of
Roberts [50], who has shown that in general domains with unrestricted agents’ prefer-
ences affine-maximization is necessary for truthfulness. We prove that this is the case
even in our restricted setting (in which the agents have normalized, non-decreasing and
submodular preferences). The proof shows, for any truthful algorithm, the existence
of agent- and outcome-weights as required in the definition of affine maximizers. This
is done by exploiting the strong-monotonicity constraint introduced in [35], ideas from
the proof of Roberts’ Theorem [50], and constructions of non-decreasing submodular
functions inspired by those exhibited in [26].

2. Affine-maximizers cannot achieve good approximations (Sections 2.4 and 2.5).
We show that, despite the fact that a good approximation exists for the computational
problem, no truthful and polynomial-time algorithm can obtain an approximation ratio
(asymptotically) better than

√
m. The proof of this result relies on the characteriza-

tion, and then proving a hardness result for affine-maximizers. We show this in two
different models:

• Communication-complexity model. We show that in order to provide a rea-
sonable approximation, any affine maximizer must communicate exponentially
many bits. We do this by proving a lower bound on the number of solutions
in the range of the mechanism, and then exploiting affine maximization to to
establish the communication-complexity lower bound.

• Computational-complexity model. Informally, for the communication com-
plexity lower bound to hold, the agents are assumed to compute their valuations
based on exponentially large data. Since many interesting valuations depend
on very succinct data, computational-complexity techniques would be needed to

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 11

establish lower bounds for these. To establish this, we first show, very much
as in the proof of our communication-complexity result, an exponential lower
bound on the number of solutions, and then we use a probabilistic version of
the Sauer-Shelah Lemma [52, 55]. This lemma is closely related to the notion
of the Vapnik-Chervonenkis (VC) dimension and has interesting projections on
complexity theory.

Organization of the Chapter

After presenting the model formally in Section 4.2, we first show the characterization lemma
in Section 2.3. The communication complexity lower bound is then proved in Section 2.4,
followed by the computational complexity result in 2.5. We discuss the results and techniques
in Section 2.6.

2.2 The Model

In CPP there is a set of n agents {1, ..., n}, and a set of m resources {1, ...,m}. Each agent
has a private valuation function vi : 2[m] → R+. We denote by Vi the space of possible
valuations of agent i, and by V the domain of valuations V1 × . . . × Vn. We shall assume
that vi(∅) = 0. Throughout this chapter, we assume that every vi is submodular :

Definition 1. A valuation funciton v : 2[m] → R+ is submodular if for every S, T ⊆ [m]
v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T).

Submodularity is known to be equivalent to the following easily verifiable property, called
decreasing marginal utilities : For every S ⊂ T ⊆ [m], and for every j ∈ [m] such that
j /∈ S, T v(S ∪ {j}) − v(S) ≥ v(T ∪ {j}) − v(T). Submodularity arises in many contexts –
both economic and computational (see [37, 17, 25] and references therein). Non-decreasing
submodular functions are known to have particularly good properties; for example, they can
be approximated within a ratio of e/(e− 1).

The objective in the CPP is to find a subset of size k, where k is a parameter of the
problem, of resources which maximizes the social-welfare. That is, we wish to find T ∈
argmaxS⊆[m], |S|=k Σivi(S). We are interested in algorithms (mechanisms) for CPP satisfying
three desiderata:

1. Quality of solution. We want our mechanisms to return a solution (set of resources)
whose social welfare is as close, in terms of ratio, to the optimum as possible.

2. Computational Efficiency. Our algorithms should run in polynomial time. How-
ever, since the valuations can be exponentially expressive, one must be careful when
defining the input to the problem — the input is the data enabling each agent to com-
pute the valuation. In mechanism design one often takes a “black box” approach: We

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 12

assume that valuations are computed by an oracle that can answer a certain type of
queries, and we restrict algorithms to ask a polynomial number (in n and m) of such
queries. There are two common types of queries:

• In a value query the query is a subset of resources S ⊆ [m], and the answer is
simply vi(S); we use this weaker model in our algorithms.

• The general query model is equivalent to Yao’s communication model [61], in
which the agents take turns announcing messages; a message by agent i is any
function (even a computationally intractable one) of the values of vi and of the
previous messages. We use this stronger model for our impossibility results.

A different approach would be to consider cases in which the “input” (valuations) can
be concisely represented, i.e., can be encoded in a natural way that is polynomial in the
natural parameters of the problem – m and n. We follow this approach in Section 2.5.

3. Truthfulness. That is, we want an algorithm (mechanism) A to be such that the
agents are rationally motivated to truthfully answer the algorithm’s queries. This
is achieved by a payment function p which, for every n-tuple of valuation functions
v = (v1, ...vn) ∈ V , demands a payment from each agent. p is such that no agent
can increase his/her utility (the value of the set chosen by the algorithm minus the
payment assigned to her) by misreporting her valuation2. Formally, for every i ∈ [n]
we have that:

vi(A(vi, v−i))− p(vi, v−i) ≥ vi(A(v′i, v−i))− p(v′i, v−i), ∀vi, v′i ∈ Vi,∀v−i ∈ V−i,

where V−i is the cartesian product of all Vj’s such that j 6= i, (vi, v−i) is the valuations
profile in which i has vi and the other agents have v−i, (v′i, v−i) is defined similarly,
and A(v) is the set A outputs for the valuation profile v.

2.3 The Characterization Lemma

Affine Maximizers

In the first step of the proof we restrict our attention to the important family of mechanisms
that are affine-maximizers. Let A be an algorithm. We define A’s range RA to be the
resource-subsets of size k that are outputted by A for some input, i.e., RA = {S| ∃v =
(v1, ..., vn) s.t. A(v) = S}.

Definition 2.3.1 ([50]). An algorithm A is said to be an affine maximizer if there exist non-
negative agent-weights w1, ..., wn (not all equal to 0), and constant outcome-weights {CS}S∈RA
such that

∀v = (v1, ..., vn) A(v) ∈ argmaxS∈RA [(Σiwivi(S)) + CS].

2The notion of truthfulness we consider is the standard notion of truthfulness in dominant strategies.
All our results apply to the weaker notion of truthfulness in ex-post Nash.

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 13

It is well-known (see, e.g., [50, 45, 35, 19]) that affine-maximizers can be made truthful
by enforcing “weighted-VCG” payments [60, 16, 30].

Let A be a truthful algorithm in the combinatorial public projects problem and let RA

be A’s range. We wish to show that A is an affine maximizer. The common approach
to prove that A is an affine maximizer is to study the topological structure of vectors of
valuation differences(see e.g. [50, 36]). Let S 6= T ∈ RA. For any pair of valuation
functions v = (v1, v2), we shall denote by v(S) − v(T) the two-dimensional vector in R2

(v1(S)− v1(T), v2(S)− v2(T)). We also define:

P (S, T) := {α |∃ v s.t. A(v) = S and v(S)− v(T) = α}. (2.1)

If A is an affine maximizer that outputs a set S for the valuation functions v = (v1, v2)
then it must hold that for every T 6= S in RA (for some fixed agent-weights w1, w2 and
outcome-weights {CR}R∈RA)

(
Σiwivi(S)

)
+ CS ≥

(
Σiwivi(T)

)
+ CT , (2.2)

which implies that:

Σiwi

(
vi(S)− vi(T)

)
+ (CS − CT) ≥ 0. (2.3)

Informally, observe that the inequalities above suggest that if A is an affine maximizer,
then there is a line l in R2 of the form w1x + w2y = 0 such that every P (S, T) has l as its
lower boundary (possibly shifted by some constant γ(S, T) = CS−CT from the centre of the
axes). So, to prove that a truthful algorithm A is an affine maximizer, we need to show that
there are weights w1, w2 (and {CR}R) that induce such a line l (the same l for all choices of
S 6= T ∈ RA). This is precisely what we mean to show. The reader is referred to [36] for
an explanation of the geometric intuition behind the proof of Roberts’ Theorem (which also
underlies our proof).

Strong Monotonicity

Strong monotonicity was introduced in [35], and shall be extremely useful to us throughout
this proof.

Definition 2.3.2. An algorithm satisfies strong-monotonicity if for every i ∈ [n], vi, v
′
i ∈ Vi,

and v−i ∈ V−i, if A(vi, v−i) = S and A(v′i, v−i) = T 6= S then it must hold that vi(S)−vi(T) >
v′i(S)− v′i(T).

Not any truthful algorithm is necessarily strongly-monotone (and vice-versa). Yet, we
shall prove the theorem for strongly-monotone algorithms. At the end of the proof (see

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 14

2.3) we shall revisit this assumption and explain why it can be removed. The following
proposition shall play a crucial role in our proofs.

An important element in the proof is the construction of the following function:

∀R v(R) = α|R ∩ {j}|+ β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

Observe that this function has the following properties:

• The function is submodular.

Proposition 2.3.3. Let A be a strongly monotone algorithm, and let v ∈ V be such that
A(v) = S. If v′ ∈ V and v(S) − v(T) ≤ v′(S) − v′(T) (i.e., ≤ in each coordinate) then
A(v′) 6= T .

Proof. Assume, for point of contradiction, that the conditions stated in the theorem hold
and A(v′) = T . Let v = (v1, v2) and v′ = (v′1, v

′
2). Let α1 = v1(S) − v1(T). We shall prove

the proposition for the case that α1 ≥ 0 (the other case requires a very similar construction).
Let j ∈ S \ T (since all sets are of equal size such a j is guaranteed to exist). We define a
valuation function v′′1 ∈ V1 as follows:

∀R v′′1(R) = α1|R ∩ {j}|+ β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

As discussed in the previous section, this is indeed a non-decreasing submodular function.
We shall now show that A(v′′1 , v2) = S. This is because if A(v′′1 , v2) = Q 6= S then, by strong
monotonicity, v1(S)− v1(Q) > v′′1(S)− v′′1(Q). It is easy to show that if Q 6= S, T then this
results in a contradiction (as we can set the value of β to be as high as we like). Observe
that if we set Q = T then this too results in a contradiction. Similarly, we can show that
A(v′′1 , v

′
2) = T . However, in this case by strong monotonicity we have that v2(S) − v2(T) >

v′2(S)− v′2(T). A contradiction.

Main Part of the Characterization Proof

We shall now prove our result for the case that
−→
0 = (0, 0) ∈ P (S, T) for every S 6= T ∈ RA.

This greatly simplifies the exposition and enables us to convey the main idea of the proof.
The technical results we shall present here are sufficient to imply the theorem for the more
general case using the exact same logic as presented in [36] (first proof in that paper).

Claim 2.3.4. Let α ∈ P (S, T) for some S, T ∈ RA. Let ε = (ε1, ε2) ≥ 0. Then, α + ε ∈
P (S, T).

Proof. Since α = (α1, α2) ∈ P (S, T) then, by definition, there are valuation functions v =
(v1, v2) such that A(v) = S and v(S) − v(T) = α. We prove the claim for the case α ≥ 0
(other cases are handled similarly). Let j ∈ S \T . We define valuation functions v′ = (v′1, v

′
2)

as follows:

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 15

∀R v′1(R) = (α1 + ε1)|R ∩ {j}|+ β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

∀R v′2(R) = (α2 + ε2)|R ∩ {j}|+ β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

The use of strong monotonicity (as in the proof of Proposition 2.3.3) and of Proposi-
tion 2.3.3 itself shows that A(v′1, v2) = S. Similarly, we can then show that A(v′1, v

′
2) = S.

Observe that v′(S)− v′(T) = α + ε. Therefore, by definition, α + ε ∈ P (S, T).

Claim 2.3.4 tells us something important about the structure of the different P (S, T)
sets in R2: If a point is in P (S, T) then so are all points “above” it and “to the right” of it.
Hence, each P (S, T) is defined by a lower boundary with a non-increasing slope. However,
we do not yet know that this non-increasing slope is a straight line (and certainly not that it
is the same straight line for all choices of S, T). We shall require the two following technical
proposition regarding the correlations between different P (S, T) sets:

Proposition 2.3.5. For any S 6= T ∈ RA α ∈ P (S, T) iff −α /∈ P (T, S).

Proof. Let α = (α1, α2) ∈ P (S, T). Then, by definition, there exists v = (v1, v2) such that
A(v) = S and v(S) − v(T) = α. Suppose, for point of contradiction, that −α ∈ P (T, S).
Then, by definition, there exists v′ = (v′1, v

′
2) such that A(v) = T and v′(T) − v′(S) = −α

(or, v′(S)−v′(T) = α). However, by Proposition 2.3.3 this is impossible (A(v′) cannot equal
T).

We now prove the other direction, which is equivalent to showing that if α /∈ P (S, T)
then −α ∈ P (T, S). Since S is in RA there must be valuation functions v = (v1, v2) such
that A(v) = S. Let αW = v(S)− v(W). We prove the proposition for the case α ≥ 0 (other
cases are handled similarly). Let j ∈ S \ T . We define valuation functions v′ = (v′1, v

′
2) as

follows (we choose β to be huge, and in particular higher than the values of all coordinates
of all the different αW ’s):

∀R v′1(R) = α1|R ∩ {j}|+ β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

∀R v′2(R) = α2|R ∩ {j}|+ β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

The repeated use of Proposition 2.3.3 for every W ∈ RA such that W 6= S, T shows
that A(v′1, v

′
2) must be in {S, T}. However, since v′(S) − v′(T) = α and α /∈ P (S, T), it

must be that A(v′) = T . Observe that v′(T) − v′(S) = −α. So, by definition of P (T, S),
−α ∈ P (T, S).

Proposition 2.3.6. For any S, T,W ∈ RA, such that no two are equal, if α ∈ P (S, T) and
α′ ∈ P (T,W) then α + α′ ∈ P (S,W).

Proof. Let α = (α1, α2). Let α′ = (α′1, α
′
2). Let Y be an additive valuation function such

that ∀j /∈ S ∪ T ∪W Y ({j}) = 0 and the two following properties hold:

• Σj∈SYj − Σj∈TYj = α1

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 16

• Σj∈TYj − Σj∈WYj = α′1

Observe that because the number of variables is greater than the number of equations
such a function Y exists. Since S, T,W are of equal size we can also assume that Y only
assigns non-negative values (otherwise increase the value of each j ∈ S ∪ T ∪W by some
identical large enough constant).

Similarly, let Z be an additive valuation function such that ∀j /∈ S ∪ T ∪W Z({j}) = 0
and the two following properties hold:

• Σj∈SZj − Σj∈TZj = α2

• Σj∈TZj − Σj∈WZj = α′2

We define (for some huge β to be determined later) the following valuations v′ = (v′1, v
′
2):

∀R v′1(R) = Y (R) + β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

∀R v′2(R) = Z(R) + β|S||T | − β(|S| − |S ∩R|)(|T | − |T ∩R|)

Since α ∈ P (S, T) there must be some valuations v = (v1, v2) such that A(v) = S.
The repeated use of Proposition 2.3.3 (as in the proof of Proposition 2.3.5) shows that
A(v′) ∈ {S,W}. Similarly, by taking advantage of the fact that α′ ∈ P (T,W) one can show
(using similar arguments) that A(v′) ∈ {S, T}. We conclude that A(v′) = S. Observe that
v′(S)− v′(W) = (v′(S)− v′(T)) + (v′(T)− v′(W)) = α+α′. Hence, by definition of P (S,W)
α + α′ ∈ P (S,W).

Corollary 2.3.7. For every S 6= T, U 6= W ∈ RA it holds that P (S, T) = P (U,W).

Proof. Let α ∈ P (S, T). As
−→
0 ∈ P (T,W), we have that α = α +

−→
0 ∈ P (S,W). We also

know that
−→
0 ∈ P (U, S), and so α =

−→
0 + α ∈ P (U,W).

That is, all the P (S, T) sets (for every choice of S, T) are, in fact, the very same set,
that we shall refer to as X. We shall now prove that X is convex, thus showing that the
(lower) boundary of X (which we know is non-increasing) must be a straight line3. Our
proof for the convexity of X relies on the assumption that the domain of valuations V is
open. Unfortunately, it is not true that the domain of nondecreasing submodular valuations
is open. At the end of the Characterization Lemma’s proof we revisit this assumption and
show how it too can be removed.

Definition 2.3.8. A domain of valuations V is open if for each v = (v1, ..., vn) ∈ V , there
is some ε > 0 such that for all v′ = (v′1, ..., v

′
n), if ∀S ⊆ M and ∀i ∈ [n], |v′i(S)− vi(S)| ≤ ε

then v′ ∈ V .

3Observe that if we define −X = {−α| α ∈ X} then the convexity of X implies the convexity of −X. If
X and −X are convex, their union is R2, and their interiors are disjoint (by Proposition 2.3.5), then they
must be separated by a straight line.

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 17

Proposition 2.3.9. X is convex.

Proof. To prove this proposition we first show that if α, α′ ∈ X then α+α′

2
∈ X. Suppose, by

contradiction, that α, α′ ∈ C but α+α′

2
/∈ X. By Proposition 2.3.6 we know that α+α′ ∈ X,

and by Proposition 2.3.5 we know that −α+α′

2
∈ X. However, Proposition 2.3.6 can then be

used to show that α+α′

2
= (α + α′) + (−α+α′

2
) ∈ X. A contradiction.

By repeatedly using this fact, we can, for any α, α′ ∈ X and λ ∈ (0, 1) build a series of
points that approach λα + (1 − λ)α′, such that any point in the series has a ball of small
radius that is fully contained in X. This suffices to prove that λα + (1− λ)α′ ∈ X.

Now we know that X is convex and therefore has a lower boundary in the form of a
straight line l. Moreover, l goes through the origin

−→
0 , as by Proposition 2.3.5 α ∈ C iff

−α /∈ X. So, l can be described by w1x + w2y = 0 for some positive constants w1, w2

(recall that l’s slope is non-increasing). Therefore, we get that A is an affine maximizer (for
agent-weights w1, w2 and by setting all outcome-weights to be 0). This concludes the proof
of the theorem.

Removing the Strong Monotonicity Assumption

The second part of the proof (characterizing truthful algorithms) relied on the assumption
that the algorithms in question were strongly monotone. In general, this assumption is not
justified. However, we can exploit the following machinery to do away with it:

Theorem 2.3.10 ([35]). If a domain of valuations V is open, then for every truthful algo-
rithm A there exists an algorithm A′ that satisfies strong monotonicity such that if A′ is an
affine maximizer then so is A.

Theorem 2.3.10 implies the following modus operandi: We shall focus on an open sub-
domain of the domain of all non-decreasing submodular valuation functions. We shall show
that all our arguments actually apply to that domain. Since in that domain truthfulness is
equivalent to strong monotonicity (in the sense stated by Theorem 2.3.10) this will conclude
the proof. We now provide a way to slightly tweak all constructions of valuation functions
in our proof to ensure that they all belong to an open domain.

We define the strict domain V strict to be the domain of all normalized valuations that
are strictly non-decreasing (i.e., ∀S ⊂ T ⊆ [m] and ∀i ∈ [n] vi(S) < vi(T)) and have strictly
decreasing marginal utilities. (i.e., ∀S ⊂ T ⊆ [m], ∀j /∈ S, T and i ∈ [n] vi(S∪{j})−vi(S) >
vi(T ∪{j})− vi(T)). The strict domain is open: Consider some v = (v1, ..., vn) ∈ V strict. Let
δ be the minimal gap caused by the above strict inequalities (taken over all possible sets of
resources, agents, etc.). It is easy to see that ε = δ

3
meets the requirement in the definition

of an open domain.
We now explain how to ensure that a profile of valuations v ∈ V is in V strict. Let ε′ be some

positive number. Let gε′ be a valuation function such that ∀R ⊆ [m] gε′(R) = |R|ε′− 2|R|

2m+1 ε
′.

The reader can verify that this function is strictly non-decreasing and has strictly decreasing

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 18

marginal utilities. Moreover, for any non-decreasing submodular valuation function and for
any ε′ it holds that vi + gε′ is strictly non-decreasing and has strictly decreasing marginal
utilities. Hence, we can convert all the valuation functions in the proof to valuations that
uphold the required properties using this gadget. The reader may verify that (for sufficiently
small choices ε′) all the arguments in this proof hold for these slightly different constructions
of valuation functions.

2.4 Communication Complexity Lower Bound

The communication complexity lower bound is proved in two steps:

• Informally, we start by showing, via the probabilistic method, that any algorithm (not
necessarily an affine maximizer) that obtains an approximation ratio better than

√
m

must have a “huge” range (exponential in m). (This is, in fact, true even for n = 1.)

• We then show, via a communication complexity reduction, that the fact that affine
maximizers must optimize over the entire exponential-sized range necessitates the
transmission of exponentially many bits by the algorithm. (This is true even for n = 2.)

We set k to be
√
m (throughout the proof). Let A be an algorithm, and let RA be A’s

range. In our proof we will use additive valuations which are a special case of submodular
valuation functions.

Definition 2.4.1. A valuations function v : 2[m] → R+ is called additive if there exist
weights w1, . . . , wm where wi ∈ R+ ∀i ∈ [m] and v(S) =

∑
i∈S wi.

Lemma 1. For any algorithm A that obtains an approximation ratio of m
1
2
−ε to the optimal

social welfare it must hold that RA = Ω(em
ε
). This is true even for n = 1 and even if the

single agent has an additive valuation function.

Proof. Let A be an algorithm as in the theorem statement. We shall prove the theorem for
the case that there is 1 agent with an additive valuation function. We will use a probabilistic
construction to show that obtaining an approximation ratio better than m

1
2 requires the

range of allocations to be exponentially large in m. Let ε > 0. First, we construct a set T
by choosing each resource in M to be in T with probability m−

1
2

+ε (an independent random
experiment for each resource). Let vT be the additive (and thus submodular) valuation
function defined in the following manner:

vT (j) =

{
1 j ∈ T
0 otherwise

(2.4)

Observe that for any S ⊆ [m], vT (S) = |S∩T |. We would like to show that the probability
that the value vT (S) of a set S ∈ RA approximates the optimal social welfare within a ratio
of at least

√
m is exponentially small in m. In our construction this is equivalent to showing

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 19

that the probability of |S ∩ T | being larger than mε and the probability of |T | being smaller

than m
1
2

+ε are exponentially small. We will show these two claims separately using the
Chernoff bound.

Claim 2.4.2. (Chernoff Bound) Let X1, . . . , Xt be a set of t independent random variables
that take values in {0, 1} such that for every i, Pr[Xi = 1] = p. Then, for any δ is in the
range [0, 2e− 1] we have that:

Pr[
t∑
i=1

Xi > (1 + δ)pt] ≤ e
−δ2pt

3 (2.5)

Pr[
t∑
i=1

Xi < (1− δ)pt] ≤ e
−δ2pt

3 (2.6)

Fix some S ∈ RA. For each resource i ∈ S, let Xi be the following random variable:

Xi =
{ 1 i ∈ T

0 otherwise
(2.7)

Due to our construction we have that Pr[Xi = 1] = m−
1
2

+ε for every i ∈ {1, . . . ,
√
m}.

By 2.5 we have:

Pr[|S ∩ T | > (1 + δ)mε] ≤ e
−δ2mε

3

.
Similarly, for the same random variables as above now defined for each resource in [m],

using 2.6 to evaluate the number of elements in T we get:

Pr[|T | < (1− δ)m
1
2

+ε] ≤ e
−δ2m

1
2+ε

3 .

We can thus infer that the probability of T being “small” or S ∩ T being “big” is expo-
nentially small:

Pr[|T | < (1− δ)m
1
2

+ε or |S ∩ T | > (1 + δ)mε] ≤ 2 · e
−δ2mε

3 .

Using the union bound, it is thus evident that if RA must include at least Ω(em
ε
) different

sets, otherwise there is some additive valuation function vT such that A fails to attain an
approximation of m

1
2
−ε for a.

So, any algorithm A (not necessarily an affine maximizer) that obtains an approximation
ratio better than

√
m has a range of size exponential in m. For affine maximizers this fact

leads to an inapproximability result.

Lemma 2.4.3. Any affine maximizer A with range RA requires Ω(|RA|) communication,
even for n = 2.

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 20

Proof. Consider an affine maximizer A with range RA. We shall construct two submodular
valuation functions which require Ω(|RA|) communication in order to achieve optimality in
the range RA.

The proof is by reduction from the Set Disjointness [61]. In this problem there are
2 parties, and each party i holds a string si ∈ {0, 1}d, and the goal is to tell whether there
exists a single index j where s1(j) = s2(j) (where si(j) denotes the bit of string i at index
j). It is known that deciding this problem requires communicating Ω(d) many bits between
the parties.

Recall that A maximizes w1v1(S) + w2v2(S) + CS over all S ∈ RA; it is easy to see that
one can assume w1 = w2 = 1 for all S, w.l.o.g. Now, suppose that each agent i has a private
set Ri

A ⊆ RA, which induces the following valuation function:

vi(T) = β ·
(

ΠS∈RiA|S| − ΠS∈RiA(|S| − |S ∩ T |)
)
∀T ⊆ [m]. (2.8)

Note that since β can be arbitrarily large, w.l.o.g. we can consider the case in which CS =
0 for all S ∈ RA. Observe that if A maximizes over the range RA, it implicitly distinguishes
between the case for which R1

A and R2
A intersect, and the case in which R1

A ∩ R2
A = ∅.

Therefore this is a reduction from the set-disjointness problem, establishing that Ω(|RA|)
communication is required.

2.5 Computational Complexity Lower Bound

We now describe a novel technique for deriving computational-complexity (not communication-
complexity) lower bounds for mechanism design problems. In particular, we show that, even
if agents have succinctly described valuations, CPP is inapproximable in polynomial time by
truthful algorithms, unless NP ⊆ BPP. Specifically, we prove the following theorem:

Theorem 2.5.1. There is a class of succinctly-described submodular valuation functions
for which no truthful and polynomial-time algorithm cannot achieve an approximation ratio
better than m

1
2
−ε unless NP ⊆ BPP (for every ε > 0).

A Lower Bound for Affine Maximizers

We shall start by proving our lower bound for affine maximizers. We shall then show how
this result can be extended to any truthful algorithm. The main part of this proof uses the
class of coverage valuation functions, defined as follows.

Definition 2. A valuation function v : 2[m] → R+ is called coverage if there exists subsets
T1, . . . , Tm of some universe U where v(S) = | ∪i∈S Ti|.

Coverage functions can be succinctly represented in the size of the universe U and it
is easy to verify they are indeed submodular. This is an important class of submodular

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 21

functions, since such functions are both combinatorially rich and succinctly representable at
the same time. Coverage functions will play an important role throughout this thesis. But
first, we take Manhattan.

Lemma 2.5.2. No polynomial-time affine maximizer for CPP with coverage valuations
achieves an approximation ratio better than m

1
2
−ε unless NP ⊆ BPP (for every ε > 0 and

even for n = 1).

Proof. Fix k =
√
m and n = 1. Let A be an affine maximizer as in the statement of the

theorem (w.l.o.g. assume that the agent-weights are 1 and outcome-weights are 0). RA

consists of subsets of [m] of size
√
m that are assigned by A to different inputs. Exactly

as in Lemma 1, it can be shown that RA must contain Ω(em
ε
) sets. We now recall the

Sauer-Shelah Lemma:

Lemma 2.5.3. ([52, 55]) For any family Z of subsets of a universe R, there is a subset Q

of R of size Θ(log |Z|
log |R|) such that for each Q′ ⊆ Q there is a Z ′ ∈ Z such that Q′ = Z ′ ∩R.

Hence, coming back to the affine maximizer, there is a subset M ′ of [m] of size Θ(mε

logm
)

that is “shattered” by RA. The idea is now to embed a small, but still polynomially large,
instance of an NP-complete problem in M ′.

We shall do this for the NP-complete t-Cover problem where we are given a family F of
sets T1, . . . , T` of some universe U and the goal is to decide whether there exists a family of
subsets of size t that covers U . The embedding is as follows: Given an instance to t-Cover
we construct a new universe U ′ of size 2|U|+m−|M ′|. Each item a ∈ U will have two copies
in U ′, and both these copies will be covered by the set Si for all i ∈ {1, . . . , |M ′|} if and only
if they are covered by the set Ti in the t-Cover instance. For the rest of the items in U ′,
each item j will be covered by a single set Sj and aj is the only item that Sj covers. The
coverage valuation over the resources is simply v(S) = | ∪i∈S Si|.

Now observe that the optimal social welfare for v is 2|U|+k−r if and only if there exists a
cover of size r of U . If there exists a cover S ′ of t sets {i ∈ S ′ : Ti}, then these sets contribute
2|U| to the welfare using {i ∈ S ′ : Si, . . . , Sr} with any arbitrary set of k − r resources from
[m]\M ′. Conversely, suppose that the optimal social welfare is at least 2|U|+k−r achieved
by selecting the subset of resources S, but there exists a cover S ′ of U s.t. |S ′| < r. From
our construction this implies that |∪i∈S′ Si| = 2|U| and that there k− r′ additional resources
that can be added from [m] \M ′, each adding value of 1, and thus the optimal welfare is
2|U|+ k − r′ > v(S), which is a contradiction to the optimality of S.

The above suggests a non-uniform reduction from an NP-hard problem to the problem
of calculating the output of the affine maximizer in question. The reason the reduction is
non-uniform (and thus it does not establish NP-completeness) is because we do not know how
to find M ′ (see [49, 53, 40] on the complexity of making Sauer-Shelah Lemma constructive).
However, this non-uniform reduction is sufficient to show that if A obtains an approximation
ratio better than m

1
2
−ε in polynomial time then NP has polynomial-size circuits, i.e., NP ⊆

P/poly.

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 22

By using the probabilistic version of the Sauer-Shelah Lemma presented by Ajtai [3] we
can turn the reduction described above into a probabilistic polynomial-time reduction (thus
concluding the proof of the theorem).

Lemma 2.5.4. ([3]) Let Z be a family of subsets of a universe R that is regular (i.e., all
subsets in Z are of equal size) and Q ≥ 2|R|

α
(for some 0 < α ≤ 1). There are integers

q, l (where |R|, q and l are polynomially related) such that if we randomly choose q pairwise-
disjoint subsets of R, Q1, ..., Qq, each of size l, then, w.h.p., for every function f : [q]→ {0, 1}
there is a subset Z ′ ∈ Z for which |Z ′ ∩Qj| = f(j) for all j ∈ [q].

The probabilistic polynomial-time reduction from our NP-complete problem is very sim-
ilar to the non-uniform reduction shown above. The key idea is finding pairwise-disjoint
subsets of [m] as in the statement of Lemma 2.5.4, and then associating each subset of
the universe in the NP-complete problem with all elements in one of the pairwise-disjoint
subsets.

Extending the Lower Bound to All Truthful Algorithms

We extend our lower bound to all truthful algorithms by relying on the following simple
observation: All the submodular functions that are constructed as part of the proof of
the Characterization Lemma are, in fact, succinctly described. We can therefore define a
class of succinctly described valuation functions C, that contains the families of functions
constructed in the Characterization Lemma and all coverage valuations. Because of the way
we defined C one can show that any truthful algorithm for the CPP with valuations in C is
an affine-maximizer. We can now use Lemma 2.5.2 to conclude the proof of the Theorem.

2.6 Discussion

The results in this chapter show that hardness of incentive compatible computation. Al-
though combinatorial public projects have good approximations from a strictly computa-
tional perspective, no truthful computationally-feasible mechanism can obtain a reasonable
approximation ratio.

An interesting way to view our computational-complexity result is the following: Over
the past four decades, complexity theory has been successful in classifying optimization
problems into various classes, such as P, NP, NP-hard, and APX (those problems that can
be approximated within some constant factor in polynomial time). Mechanism design is
about incentive-compatible optimization, in which the inputs are provided by agents who
have their own objectives. In this new regime, for social-welfare maximization problems
classical VCG theory implies that P, NP, and NP-hardness are preserved under truthfulness.
Our result essentially states that APX is not preserved.

The VC dimension technique can be applied to other domains. In the next chapter we
exploit this technique to show computational complexity lower bounds for stricter valuation

CHAPTER 2. COMBINATORIAL PUBLIC PROJECTS I: THE HARDNESS OF
BEING TRUTHFUL 23

classes. It also has an interesting projection in complexity theory: Call a language L ⊆
{0, 1}∗ exponentially dense if there is some α > 0, and some integer N , such that for any
integer n > N it holds that |L ∩ {0, 1}n| ≥ 2n

α
. For a language L ⊆ {0, 1}∗, define SATL

to be the problem: “Given a CNF, is there a truth assignment in L that satisfies it?” The
proof technique implies that:

Theorem 2.6.1. Let L be any exponentially dense language. If SATL is in P, then NP ⊆
P/poly.

Observe that unlike CPP we do not know how to relax the computational hardness
assumption to NP ⊆ BPP (e.g., via the probabilistic version of the Sauer-Shelah Lemma).
For the problem circuit sat, however, we can prove this stronger result via a different
technique:

Theorem 2.6.2. Let L be any exponentially dense language. If circuit satL is in P, then
NP ⊆ BPP.

Proof. (Sketch) To solve a given CNF φ on n variables, start with a large enough N so that
L contains at least 2n

2
strings of length N . Now hash these N bits (by a circuit computing

a sampled universal hashing function) into n bits. With very high probability, the 2n
2

bitstrings in L of length N will cover, after hashing, all 2n bitstrings of length n. Then feed
these n bits into a verifier circuit for φ. It is not hard to see that, with high probability,
this overall circuit, with N inputs, has a satisfying truth assignment in L if and only if φ is
satisfiable.

24

Chapter 3

Combinatorial Public Projects II:
Adventures in Incentives and
Computation

3.1 Introduction

The hardness of incentive compatibility presented in the previous chapter showed that in
combinatorial public projects with submodular agents, despite being a benign computational
problem, no polynomial-time truthful mechanism can obtain a reasonable approximation
(under standard computational assumptions). The impossibility is due to two fundamental
results: for submodular valuations Maximal-In-Range (MIR) mechanisms (affine maximiz-
ers) provide poor approximations, and all truthful mechanisms are affine maximizers. Are
there cases of combinatorial public projects that can avoid this impossibility result? Specif-
ically, if we consider agents with stricter valuations, could we find truthful polynomial-time
mechanisms? Conversely, if we relax the submodularity assumption does truthfulness con-
tinue to be a computational burden?

Since public projects is a social welfare maximization problem, the VCG mechanism pro-
vides an incentive compatible solution. To apply VCG however, the optimization problem
must be computable in polynomial time. Therefore, to find cases where incentive compat-
ible mechanisms can be obtained, the first step is identifying the cases where the optimal
solution for CPP can be computed in polynomial time. For the classes of submodular val-
uations that are NP-hard but have stricter structures, the first question is whether MIR
mechanisms provide reasonable approximations. The second question for such valuations is
whether it still holds that all truthful mechanisms are necessarily MIR. Since these are the
two elements responsible for the impossibility result for submodular valuations, obtaining a
truthful mechanism with a reasonable approximation ratio requires circumventing at least
one of these barriers.

For classes of valuations that contain submodularity, the impossibility result naturally

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 25

applies. The question is whether incentive compatibility remains a computational burden.
That is, without incentive constraints, does the public projects problem with valuations
broader than submodular remain approximable?

In this chapter we consider cases where agents’ valuation functions are complement-free,
i.e., cases in which agents’ valuations are subadditive set functions. We focus on this class
since there is no hope in approximating the problem without this assumption as we show
in Section 3.5. Hence, due to computational reasons, the class of subadditive valuations
is the only general class where we can hope to find interesting special cases of CPP. This
class includes the submodular class of valuations for which our impossibility result was
shown, and encapsulates a rich family of valuation functions [37, 44]. We will map the
computationally-feasible regions in the combinatorial public projects problem. We will find
the tractable domains of the problem where polynomial-time mechanisms can be obtained
via VCG, as well as the inapproximable ones in which – due to computational limitations
– no reasonable approximation guarantees are obtainable. We will also show lower bounds
on MIR mechanisms, as well as a non-MIR truthful mechanism in an NP-hard case which
obtains a constant factor approximation.

Overview of the Results

We now briefly survey our main results and their implications:

• Tractability. For CPP with n agents, we show that even for the lowest (most re-
stricted) class of valuations in the complement-free hierarchy, finding an optimal out-
come is NP-hard. Specifically, CPP is hard even for unit-demand valuations, in which
every agent is only interested in getting a single resource. Moreover, going up just one
step higher in the hierarchy to capped-additive valuations, CPP becomes hard even
for a constant number of agents.

• Approximability. Our main inapproximability result is for fractionally-subadditive
valuations. We show that, unlike the case of CPP with submodular valuations, for
fractionally-subadditive valuations, no constant approximation ratio is achievable. We
show this both in the communication complexity model and the computational com-
plexity model, where agents have succinct fractionally subadditive valuations. We show
an upper which implies these results are nearly tight. We present many other positive
and negative approximability results: We also show that the e/(e− 1) approximation
ratio for CPP with submodular valuations is tight even for unit-demand valuations. By
contrast, we present improved ratios for other well-studied subclasses of submodular
valuations.

• Truthfulness. We present both truthful mechanisms and hardness results for truth-
ful computation. For the class of subadditive valuations, we show a truthful

√
m-

approximation mechanism, which is an Affine Maximizer. Since submodular valuations
are a strict subset of subadditive, this result implies that our impossibility result from

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 26

the previous chapter is tight. We also present several inapproximability results for the
class of Maximal-In-Range (MIR) truthful mechanisms. In particular, we show that no
constant approximation ratio is achievable for such mechanisms even with unit-demand
valuations. Interestingly, we show a truthful constant-factor approximation for CPP
with unit-demand agents, thus establishing a gap between VCG-based and general
truthful mechanisms. In the previous chapter we showed that when agents valuations
are submodular then MIR are the only truthful mechanisms in combinatorial public
projects. The question is whether this is true for stricter classes of combinatorial pub-
lic projects. We show that for a (very) restricted class we call 2− {0, 1}-unit-demand
valuations, there are truthful mechanisms that are not MIR that obtain a constant-
factor approximation. In addition, we show that no MIR mechanism can obtain an
approximation within a factor better than

√
m.

Organization of the Chapter

Each of the sections focuses on exactly one class in the complement-free tree. In Section 3.2
we present our results for unit-demand valuations. Section 3.3, deals with capped additive
valuations, and Section 5.6 discusses fractionally-subadditive valuations, respectively. We
show impossibility results for general valuations in Section 3.5 and conclude with a brief
discussion in Section 3.6.

3.2 Unit-Demand Valuations

The simple class of unit-demand valuations, in which every agent is only interested in getting
a single resource, constitutes the lowest level of the complement-free tree.

Definition 3. A function v : 2[m] → R+ is called unit-demand if v(S) = maxi∈S v(i), for
every S ⊆ [m]. Such a valuation is represented by a list of the m values v(j), ∀j ∈ [m].

Note that for a constant number of agents the optimization problem is solvable in poly-
nomial time. To see this, let c be the number of agents, and k the number of resources
selected in CPP. If c ≤ k, for each agent we choose the resources she values most. If c > k,
we simply enumerate over all possible subsets in polynomial time. This immediately implies
the following.

Observation 3.2.1. For a constant number of unit-demand agents there is a truthful polynomial-
time mechanism (the VCG mechanism) that obtains the optimal solution.

Although the problem is solvable in polynomial time when we have a constant number of
agents, once we allow for a linear number of agents CPP with unit-demand agents becomes
hard. This is rather surprising given the simple structure of unit-demand valuations. It is,
however, true.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 27

Theorem 3.2.1. CPP with n agents that have unit-demand valuations is NP-hard to solve
optimally. Furthermore, no algorithm for CPP with n unit-demand valuations has an ap-
proximation ratio of e

e−1
− ε unless P=NP (for any constant ε > 0).

Proof. We will show an approximation preserving reduction from Max-t-Cover. Recall
that in Max-t-Cover there is a collection of subsets F of a universe U and an integer t,
and the goal is to find t sets in F which have a union of maximum cardinality. It was shown
in [24] that the problem cannot be approximated to within e/(e − 1) − ε for any constant
ε > 0 unless P = NP .

Consider a Max-t-Cover instance over set U with F = {T1, . . . , T`} and number of sets
to be chosen t. We create a CPP instance with resource set M = F and |U| agents, one
corresponding to each element of U . The agent corresponding to element i values each item
j ∈M as:

vi(j) =

{
1, i ∈ Tj
0, otherwise

So the value for agent i is 1 if i is covered by the chosen set and 0 otherwise. Thus, the
social welfare is the number of covered items, or the cardinality of the union of the chosen
sets. By setting the number of resources allowed to be chosen to k = t, we see that if we
can approximate the social welfare to within any factor α, we get an α-approximation of
Max-t-Cover as well. So by [24], an approximation of e/(e− 1)− ε is not achievable.

Observe that the above hardness of approximation result is tight (a simple greedy algo-
rithm obtains an approximation ratio of exactly e/(e− 1)).

MIR Mechanisms

We next consider the class of maximal-in-range (MIR), or VCG-based mechanisms. For the
rest of this section, our results shall be proven for an even more restrictive class of valuations.

Definition 4. A valuation function v : 2[m] → {0, 1} is called c-{0,1}-unit-demand if it is
unit-demand and there are at most c items j ∈ [m] for which v(j) = 1.

We will show that there are truthful mechanisms that are not MIR that obtain a constant-
factor approximation for the class 2-{0,1}-unit-demand (in fact our claims hold for any c-
{0,1} when c is a constant). In addition, we show that no MIR mechanism can obtain an
approximation within a factor better than

√
m. In Section 5.6, a computationally-efficient

MIR mechanism for CPP with subadditive valuations with an approximation ratio of
√
m

is presented. As we now show, this approximation ratio is tight for MIR mechanisms even
when restricted to 2-{0,1}-unit-demand valuations.

Theorem 3.2.2. No computationally-efficient MIR mechanism can approximate CPP with
n agents that have 2-{0,1}-unit-demand valuations within m−(1

2
−ε) (for any constant ε > 0)

unless NP ⊂ P/poly.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 28

Proof. We begin by noting that in Lemma 1 in the previous chapter, it was shown that any
algorithm for CPP which achieves an approximation ratio of at least m1/2−ε has a range of
size Ω(em

ε
). This proof required that for any T ⊆ [m], it is possible to create a set of agents

such that the social welfare is vT (S) = |T ∩ S|, and was done with a single additive agent.
This is easy to do with n 2-{0,1}-unit-demand agents: For each resource in T we construct
an agent that has value 1 for that resource and 0 for all other items. This gives the following
useful lemma:

Lemma 2. Any maximal-in-range mechanism for CPPP with n 2-{0,1}-unit-demand agents
which achieves an approximation ratio of at least m1/2−ε must have a range of size Ω(em

ε
).

From this, we can use the Sauer-Shelah lemma to see that the range has a VC dimension
at least mα for some constant α > 0. This large range allows us to perform reductions
similar to the ones we use in our NP-hardness proofs to show inapproximability. We begin
with the modified unit-demand reduction.

As shown above, any maximal-in-range mechanism which approximates better than
m1/2−ε must have a range with VC-dimension at least mα. Reorder the items such that
the mα corresponding to this VC-dimension are the set [mα]. We show a reduction from
Vertex Cover. Let mα be the number of vertices in the Vertex Cover instance, ` be
the number of edges and k′ < k be the target size of the vertex cover. We will construct an
instance to CPP with 2`+m−mα agents with 2-{0,1}-unit demand agents, and the number
of resources to be selected will be k > mα.

The set of resource will be composed of two sets M1 and M2, where every resource in M1

corresponds to a vertex from Vertex Cover and M2 is a set of resources of size m−mα.
For each edge ei in Vertex Cover we construct two agents i and i+ ` s.t.:

vi(S) = vi+`(S) =

{
1, ∃j ∈ S ∩ ei
0, otherwise

Since each edge only includes 2 vertices, each such agent in [2`] indeed has a 2-{0,1}-unit-
demand valuation. The other set of agents is of size m−mα, and every agent is associated
with a single resource in M2 s.t.:

vi(S) =

{
1, i ∈ S
0, otherwise

If a single edge is unsatisfied in Vertex Cover, more social welfare can be obtained by
adding a resource from M1, since a resource in M1 adds at least 2 to the social welfare where
a resource from M2 only contributes 1 to the social welfare. So if the minimum vertex cover
has size k′, the maximum social welfare is 2`+(k−k′). Furthermore, the mechanism will find
this maximum, as it’s range includes every subset of M1, padded out with arbitrary elements
from M2 to reach size k. Thus, the mechanism can be used to find the size of the minimum
vertex cover and therefore cannot run in polynomial time unless NP ⊂ P/poly.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 29

A (non-MIR) Truthful Mechanism

Theorem 3.2.2 shows that no constant-approximation MIR mechanisms exist even for CPP
with 2-{0,1}-unit-demand valuations. In contrast, a simple non-addaptive greedy algorithm
achieves a two-approximation for 2-{0,1}-unit-demand valuations that is truthful without
payments, thus establishing a large gap between what is achievable via MIR and general
truthful mechanisms.

Theorem 3.2.3. There exists a computationally-efficient and truthful mechanism for CPP
with 2-{0,1}-unit-demand valuations that has an approximation ratio of two.

Proof. Consider the following mechanism:

A Deterministic Mechanism for 2-{0,1}-Unit-Demand

1. For each resource j let sj = |{i : vi({j}) = 1}|.
2. Sort the m resources in decreasing order by the value of sj, breaking ties

in favor of resources with lower indices.

Output: Choose the set S consisting of the k first resources in the above ordering.

The mechanism allows agents to vote for two resources, then chooses the k with the
most votes. An agent only benefits from adding votes to the two resources that she actually
desires, as adding other items to the top k does not improve her utility. As the two resources
are desired equally, there is no advantage in voting for one of the resources the agent desires
and not the other. So there is never an incentive for an agent to misreport her valuation.

We will now see that this has an approximation ratio of two. Every agent has a value
of either 0 or 1 for the chosen set. If an agent has a value of 1, we call that agent satisfied.
For each resource j, let sj be the number of agents satisfied by j. For any set T ,

∑
j∈T sj is

an upper bound on the social welfare of T . Clearly, S maximizes
∑

j∈S sj for sets of size k,
so
∑

j∈S sj is an upper bound on the maximum social welfare. Furthermore, each agent is
satisfied by at most 2 items in S, so the social welfare of S is at least

∑
j∈S sj/2 = 1/2

∑
j∈S sj,

which is at least 1/2 the maximum social welfare.

3.3 Capped Additive Valuations

Intuitively, a capped additive valuation is a valuation function that is additive but cannot
exceed some threshold. Recall that an additive valuation is a function where the value for
each bundle of resources is the additive sum of the per-resource values.

Definition 5. A valuation v : 2m → R+ is a capped additive valuation if there exists
an additive valuation f , and a real value C > 0, such that, for each S ⊆ [m], v(S) =
min{f(S), C}.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 30

NP-hardness and a FPTAS

Since 2-{0,1}-unit-demand valuations are a subclass of capped additive valuations (where
C = 1), our negative results in Section 3.2 for CPP with n agents extend to capped additive
valuations. What about a constant number of agents? Observe that finding the optimal
outcome for a single agent is trivially in P (simply take the k most valued resources). It
turns out, however, that even with two agents, the problem is hard.

Theorem 3.3.1. CPP with 2 capped additive valuations is NP-hard.

Proof. We reduce from Subset Sum, where we are given a set of positive integers w1, . . . , w`
and a target t, and the goal is to find a subset of {w1, . . . , w`} that sums to t. Given an
instance of Subset Sum, we construct an instance to our problem with m = 2` resources,
k = `, and 2 agents with valuations v1(S) = min{f1(S), C1} and v2(S) = min{f2(S), C2},
where C1 = 2t, C2 = ` ·maxj wj and f1, f2 are the additive functions defined as follows:

f1(j) =

{
2wj, j ≤ `
0, otherwise

f2(j) =

{
C2/k − wj, j ≤ m
C2/k, otherwise

Observe that if there exists a subset S s.t.
∑

j∈S wj = t in Subset Sum, by choosing
the set of resources S ′ = S ∪ {` + 1 . . . 2`− |S|} we have social welfare of v1(S ′) + v2(S ′) =
f1(S ′) + f2(S ′) = C2 + t in CPP.

Conversely, consider a subset S ′ of resources in CPP of size k = ` with social welfare
of at least C2 + t. Let S ⊆ S ′ be the subset of resources with index i ≤ `. We will
show that the

∑
j∈S wj = t in Subset Sum. Assume, for purpose of contradiction that∑

i∈S wj > t. In this case: v2(S) < C2 − t and v1(S) = 2t, thus since S ⊆ S ′ we have that
v1(S ′) + v2(S ′) < C2 + t and we get a contradiction. Assume now, again for purpose of
contradiction, that

∑
i∈S wj < t. Then again v1(S ′) + v2(S ′) < C2 + t and a contradiction.

It therefore follows that
∑

i∈S wj = t as required.

Although the problem is hard for two agents, using dynamic programming we can obtain
a Fully Polynomial Time Approximation Scheme (FPTAS), for any constant number of
agents.

Theorem 3.3.2. There exists a FPTAS for CPP with a constant number of capped additive
valuations.

Proof. We will use a dynamic programming procedure. Let b = maxi∈n{maxS:|S|=k vi(S)}.
We divide the interval [0, b] into n·m

ε
segments, each of length εb

n·m , and denote p(x) =
bx·mn/εbc. We will maintain an n-dimensional table with (n·m

ε
)n entries, denoted A, where in

each entry Aij...k we will store a subset S for which p(vn(S)) = k, p(v2(S)) = j, . . . p(vn(S)) =

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 31

k, if such a subset exists. For convenience, for a given subset S we will denote A(S) to be
its corresponding entry in the table.

Assume some arbitrary ordering {1 . . .m} over the set of resources, and consider the
following procedure. We initialize the table with the empty set in all entries. At stage j, for
each subset S ∈ A, s.t. |S| < k, let T = A(S ∪ {j}). If |S ∪ {j}| ≤ |T | or T = ∅, we set
A(S ∪{j}) = S ∪{j}. After the mth stage we iterate over al entries in the table, and choose
the subset with highest social welfare. The procedure runs in O(m · (mn

ε
)n) steps, which is

polynomial in m and 1/ε as required.
Let S∗ denote the optimal solution, S∗j = {i ≤ j|i ∈ S}. By induction on the stage of the

algorithm, we can show that at stage ` there is a subset S` s.t. S` ∈ A(S∗`), |S| ≤ |S∗` | and
for every agent i we have that vi(S

∗
`)− vi(S`) ≤ ` · εb

m·n . For ` = 1 the claim is trivial. For a
` ≤ m, if ` /∈ S∗` , the claim trivially holds from the inductive hypothesis. Otherwise, there is
a subset S`−1, s.t. |vi(S∗`)− vi(S`−1 ∪ {`})| = |vi(S∗`−1 ∪ {`})− vi(S`−1 ∪ {`})| ≤ (`− 1) · εb

m·n
for every i, and |S`−1| ≤ |S∗`−1|. If another subset S ′ 6= S ∪ {`} is stored in A(S∗`) then
|vi(S ∪ {`})− vi(S ′)| ≤ εb

m·n , |S ′| ≤ |S ∪ {`}|, and the claim holds.

MIR Mechanisms

In a similar fashion to the lower bound shown in the previous section, we can show that
there is no hope in MIR mechanisms for this class of valuations either.

Theorem 3.3.3. No computationally-efficient MIR mechanism can approximate CPP with
2 capped additive valuations within m−(1

2
−ε) (for any constant ε > 0) unless NP ⊂ P/poly.

Proof. In the previous chapter we showed that even for a single agent with an additive
valuation function, an algorithm for CPP which achieves an at least m1/2−ε has a range of
size Ω(em

ε
). Since additive functions are a special case of capped additive, the proof holds

in this case as well. Again, we can use the Sauer-Shelah lemma to see that the range has a
VC dimension at least mα for some constant α > 0.

We now rely on the structure of the reduction of the NP-hardness proof. The number
of items which are valued by agent a1 at 0 and agent a2 at C2/k doesn’t affect the proof
(as long as it is larger than ` and at least k), so we just add m −mα more of these. The
particular value of k also doesn’t matter, as long as it’s at least `, so losing control of how
k relates to mα isn’t an issue. Thus, using the same reduction after this modification, we
see that the MIR mechanism can be used to solve subset sum instances of size mα, and is
therefore does not run in polynomial time unless NP ⊂ P/poly.

3.4 Subaddtive Valuations

From a purely computational perspective, we know that for submodular agents there is a
e/(e − 1)-approximation algorithm which is achievable even in the value-queries model. In
this section we relax the submodularity assumption. We show both communication and

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 32

computational complexity lower bounds on the subclass of subadditive valuations known as
fractionally subadditive. We also show a MIR (and thus truthful) mechanism for subadditive
valuations that is a

√
m approximation. This mechanism makes for a tight upper bound for

many of our results from this chapter, and importantly of the main result from the previous
chapter.

A Communication Complexity Lower Bound

We now prove that if the valuation functions are subadditive then no constant approximation
ratio is possible. Actually, we prove that this holds for a more restricted family of valuation
functions called fractionally-subadditive [25] (defined in [44] and called XOS there). Infor-
mally, a valuation function is fractionally-subadditive if it is the pointwise maximum over a
set of additive valuations.

Definition 6. A valuation function v is said to be fractionally-subadditive if there is a set
of additive valuations {v1, ..., v`} such that for every S ⊆M v(S) = maxr∈[`] vr(S).

Fractionally-subadditive valuations are known to be strictly contained in the class of
subadditive valuations and to strictly contain all submodular valuations [44, 37].

Theorem 3.4.1. Obtaining an approximation ratio of m
1
4
−ε for fractionally-subadditive val-

uation functions requires exponential communication (for every ε > 0).

Proof. Fix a small ε > 0. We prove the theorem for the case n = k =
√
m. The proof

is by reduction from Set Disjointness (see proof of Lemma 2.4.3 in previous chapter for
details). We start by constructing a family of sets F = {S1, ..., St} that has the following

useful property: Each Si ⊆ [m], each Si is of size m
1+ε
2 , and for every two i 6= j ∈ [t] it holds

that |Si ∩ Sj| ≤ 2mε. How big can such an F be? Via the probabilistic method, we show
that it can be of size t that is exponential in m.

Let Q,R be two randomly chosen sets of size m
1+ε
2 . For every resource j ∈ [m] we define

a variable Xj that is a assigned a value of 1 if j ∈ Q ∩ R and of 0 otherwise. Observe, that
the probability that Xj = 1 is m1−ε. By using the Chernoff bounds (see Claim 2.4.2) we can
show that:

Pr[|Q ∩R| > 2mε] = Pr[ΣjXj > 2mε] < e
−4mε

3

Since this must hold for any i 6= j ∈ [t] we get that as long as t2 ≤ e
4mε

3 there is a family

F of such size. So, we can set t = e
2mε

3 .
Now, we show the reduction from the Set Disjointness problem. Let 1, 2, ...,

√
m be

the parties, and set t = e
m2ε

3 . Let Ai be the subset of [t] held by party i. We identify each
element r ∈ [t] with a set Sr in the family F of subsets of [m] described above. Each party i
is now instructed to construct a valuation function vi in the following manner: Let aS denote

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 33

the additive valuation that assigns a value of 1 to every resource in S and a value of 0 to
every resource j /∈ S. Let vi = max{aSr |r ∈ Ai}.

Observe that if
⋂
iAi 6= ∅ then there is a set Sr that has a corresponding additive valuation

in all of the vi’s. Hence, assigning a subset of Sr of size
√
m to the users (simulated by the

Set Disjointness parties) results in a social welfare value of m. What happens if for every
two i 6= j ∈ [t] Si ∩ Sj = ∅? We shall now show that in this case the optimal social welfare

is O(m
3
4

+ε). This would mean that an approximation of O(m
1
4
−ε) to the CPP problem with

fractionally-subadditive valuations enables the distinction between the two extreme cases in
the Set Disjointness problem. Therefore, we will then be able to conclude that Ω(t

n
) bits

are required to do so (a number exponential in both n and m).
So, we are left with showing that if for every two i 6= j ∈ [t] Si ∩ Sj = ∅ then the

optimal social welfare is O(m
3
4

+ε). Assume, for point of contradiction, that there is some
set T of size

√
m such that the social welfare derived from T , SW (T), is greater than

2m
3
4

+ε. Let ai be an additive valuation function of i for which vi is maximized (for T).
Observe that SW (T) = Σi∈[n] ai(T). Assume, w.l.o.g., that T = {1, ...,

√
m}. For every

resource j ∈ T , let xj be the number of the ai’s that assign a value of 1 to j. Observe that
SW (T) = Σi∈[n] ai(T) = Σj∈T xj. Also observe that Σj∈T xj(xj − 1) = Σi 6=i′|Si ∩ Si′ ∩ T |.
We now have that:

2m1+ε = 2n2mε ≥ Σi 6=i′|Si ∩ Si′ ∩ T | = Σj∈T xj(xj − 1) (3.1)

this is due to the fact that the cardinality of the intersection of every two Sis cannot exceed
2mε. Using elementary calculus, it is easy to show that Σj∈T x2

j ≥ m
1
4 Σj∈T xj, due to the

fact that the worst case ratio is achieved when all xj’s are equal. Combining the last two
equations gives us that:

SW (T) = Σj∈Txj ≤ 2m
3
4

+ε. (3.2)

A contradiction.

Computational Complexity Lower Bound

In the previous section we discussed fractionally-subadditive functions in the communica-
tion complexity model, and assumed that a fractionally-suabadditive valuation can be rep-
resented as the maximum of exponentially many additive valuations. In this section we are
interested in understanding the computational complexity limitations of valuations with such
structure that have succinct representation. We will consider the subclass of succinctly de-
scribed fractionally-subadditive valuations: fractionally-subadditive valuations that can be
represented using polynomially (in m) many additive valuations. That is, we will consider
valuations v : 2[m] → R+ that can be represented as the maximum of O(poly(m)) additive
valuations.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 34

We first show that there is a polynomial time algorithm for succinctly described fractionally-
subadditive agents when the number of agents is constant.1

Theorem 3.4.1. CPP with a constant number of succinctly described fractionally-subadditive
valuations can be solved in polynomial time.

Proof. Each fractionally-subadditive valuation is the maximum over polynomially many ad-
ditive valuations. If one of these additive valuations is chosen for each agent, the resulting
public project problem can be trivially solved in polynomial time. This solution gives a
lower bound on the maximum social welfare. If the additive valuations chosen happen to
be the ones that exhibit the maximum in an optimal allocation, the solution found will also
be optimal. Thus, by enumerating over all possible choices, an optimal allocation can be
found. If there are c agents with at most ` additive valuations each, there are O(`c) ⊆ poly(`)
choices to enumerate over. Thus, the solution to the auction can be found in polynomial
time.

We now give a reduction from Label Covermax to CPP with n fractionally-subadditive
valuations which preserves an approximation gap. First, we define Label Covermax and
discuss the complexity of its approximation. A Label Covermax instance consists of a
regular bipartite graph G = (V1, V2, E), a set of n labels N = {1, . . . , n} and for each edge
e ∈ E a partial function Πe : N → N . We say that the edge e = {x, y} for x ∈ V1, y ∈ V2

is satisfied if x is labeled with l1 and y with l2 such that Πe(l1) = l2. The goal of Label
Covermax is to find an assignment of labels to the nodes in V1 and V2 such that each node
has exactly one label and as many edges as possible are satisfied. It was shown in [5] that
Label Covermax is quasi-NP-hard to approximate.

Theorem 3.4.2 ([5]). For any sufficiently small constant γ > 0, it is quasi-NP-hard to
distinguish between the following two cases in Label Covermax: (1) YES case: all edges
are covered, and (2) NO case: at most a 2− log1−γ n fraction of the edges are covered, where n
is the size of the Label Covermax instance.

We make use of Theorem 3.4.2 to show a similar hardness result for CPP with fractionally-
subadditive valuations.

Theorem 3.4.3. Obtaining an approximation ratio of 2
log1−γ b

6 for CPP with fractionally-
subadditive valuations where b is the size of the CPP instance is quasi-NP-hard.

Proof. We prove this using a gap-preserving reduction from Label Covermax: We are
given an instance of Label Covermax consisting of a graph G = (V1, V2, E), a set of labels
N and a set of partial functions Πe for each e ∈ E. We create a CPP instance with |V1|

1Note that the fact that the valuations are succinctly described implies that this class does not include all
submodular functions. In particular, while it is NP-hard to approximate even a single submodular valuation
within a factor better than e/(e− 1), in the case of succinctly described fractionally-subadditive valuations
we can obtain an optimal solution for a constant number of agents in polynomial time.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 35

agents, one corresponding to each node in V1. The resource set is V2 × N . We now define
the fractionally-subadditive valuation vi of each agent i. For every label l ∈ N , we define
the additive valuation function ai,l.

ai,l({(j, l′)}) =

{
1, {i, j} ∈ E and Π{i,j}(l) = l′

0, otherwise
.

So ai,l(S) represents how many edges incident with i are covered if we choose label l for
vertex i ∈ V1 and the best label from the set {l′ : (j, l′) ∈ S} for vertex j ∈ V2.

The fractionally-subadditive valuation of agent i is defined by

vi(S) = max
l∈N
{ai,l(S)}.

So agent i gets the value for the best possible choice of a single label for vertex i given the
label choices for V2 implied by S. We set the size of the set of resources to be chosen in our
CPP instance to be |V2|.

If the Label Covermax instance is a YES case, we can find a set of resources with social
welfare |E|. Simply take any labeling that covers every edge and for every j ∈ V2, choose
the resource (j, l′), where j is labeled by l′ in the labeling. Call this set S. Clearly, vi(S)
equals the degree of node i, as if we choose l such that i is labeled by l, Π{i,j}(l) = l′ for each
(j, l′) ∈ S. So the social welfare given these resources is |E|.

We now show that if the Label Covermax instance is a NO case, then the maximum

social welfare is bounded by 2−
log1−γ n

6 |E| for sufficiently large n. Note that if n′ is the size
of the Label Covermax instance, our construction guarantees n ≤ (n′)2. So our bound is
at least

2−
log1−γ [(n′)2]

6 |E| ≥ 4 · 2−
log1−γ n′

3 |E|

for sufficiently large n′. In order to simplify our expressions in the rest of the proof, let

α = 2−
log1−γ n

6 . Using the above bound, we see

α ≥ 4 · 2−
log1−γ n′

3 . (3.3)

Suppose by way of contradiction that we reduced from a NO case, but the maximum social
welfare is at least α|E|.

Let S be a set of resources in the CPP instance with a social welfare of at least α|E|.
Recall also that each agent i’s fractionally-subadditive valuation vi is defined as the pointwise
maximum over a set of additive valuations. Let ai,l be the additive valuation in the set of
valuations making up vi for which ai,l(S) is maximized (and so vi(S) = ai,l(S)). If we fix a
choice of j, ai,l assigns a value of 1 to at most one of the resources (j, l′) for l′ ∈ N . Moreover,
ai,l can only assign value to a resource (j, l′) if {i, j} ∈ E. We say that an edge between
vertex i ∈ V1 and vertex j ∈ V2 is satisfied by the set S if (j,Π{i,j}(l)) ∈ S. Observe that
the total social welfare value of S equals the number of edges satisfied by S.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 36

Let d be the number of incoming edges of a vertex in V2. Since G is a regular bipartite
graph, d = |E|

|V2| . Let V ′2 denote all vertices v ∈ V2 in which the number of edges incident

on v satisfied by S is at least α
2
d. A counting argument shows that |V ′2 | ≥ α

2
|V2|. If |V ′2 |

were less than α
2
|V2|, the number of satisfied edges incident upon vertices in V ′2 is at most

|V ′2 |d < α
2
|E|, and the number of satisfied edges incident upon vertices outside of V2 would

be less than |V2|α2d = α
2
|E|. So summing these, we would see that the number of satisfied

edges is less than α|E|, a contradiction. So |V ′2 | ≥ α
2
|V2|.

If S contains ` resources of the form (j, l) for a fixed j and ` different values l ∈ N , we
say that j is labeled ` times by S. Since there are |S| = |V2| resources, at most α

4
|V2| of the

nodes j ∈ V2 are labeled more than 4
α

times by S. So letting V ′′2 be the subset of V ′2 which
is labeled at most 4

α
times by S, |V ′′2 | ≥ α

4
|V2|.

Since S labels each j ∈ V ′′2 at most 4
α

times, and S satisfies at least α
2
d edges incident

upon each vertex in V ′′2 , we can find a single sj ∈ S that satisfies at least α/2
4/α
d = α2

8
d of the

edges incident upon j. So if we label each j ∈ V ′′2 according to Sj and label each i ∈ V1 by

the l such that vi(S) = ai,l(S), we have a labeling that satisfies at least |V ′′2 |α
2

8
d = α3

32
|E|

edges, regardless of how the vertices in V2 − V ′′2 are labeled. This contradicts that we had a
NO case, as we can see by (3.3) that α3

32
|E| > 2− log1−γ n′|E|.

Thus, we see that the maximum social welfare of our CPP is at least |E| if we reduced
from a YES case and at most α|E| if we reduced from the NO case. Therefore it is quasi-

NP-hard to achieve an approximation ratio of α = 2−
log1−γ n

6 .

A Truthful
√
m Approximation Algorithm

We show that the impossibility result from the previous chapter is tight by presenting a
simple truthful algorithm which obtains a min{k,

√
m} approximation ratio (for any value of

k and n) and requires at most n ·m value queries. As shown by the characterization lemma
in the previous chapter, any truthful algorithm for CPP with submodular agents must be
an affine maximizer (which is MIR). Indeed, the algorithm presented in this subsection is a
simple MIR mechanism.

A Deterministic Mechanism for Subdditive valuations

1. Arbitrarily partition [m] into r = max{m
k
,
√
m} disjoint subsets

of equal size S1, ..., Sr.
2. Ask each agent to specify her value for each of the different subsets St.

Output: Choose the subset St that maximizes the social welfare Σivi(St)

Since this algorithm is MIR we know that it can be made truthful via VCG payments [60,
16, 30]. Observe that the algorithm indeed requires at most m value queries to be addressed
to each of the n users. Therefore, all that is left to show is that the algorithm provides the

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 37

required approximation-ratio. We show that this is true even if users’ valuation functions
are subadditive.

Proposition 3.4.2. If v1, ..., vn are subadditive then the algorithm provides an approximation
ratio of min{k,

√
m}.

Proof. Let S∗ be a set of size k that maximizes the social welfare. First consider the case
where k ≤

√
m. Then, by (iterative use of) subadditivity, for every i ∈ [n], vi(S

∗) ≤
Σj∈S∗ vi({j}). Hence, Σi∈[n] vi(S

∗) ≤ Σi∈[n]Σj∈S∗ vi({j}) = Σj∈S∗Σi∈[n] vi(j). This implies
that there is an element j ∈ [m] such that the social welfare derived from j is at least 1

|S∗| = 1
k

of the optimal social welfare. This item j appears in one of the St’s, and so, because the
valuations are non-decreasing, the social welfare derived from that St is also at least 1

k
of the

optimal social welfare. Since the algorithm optimizes over all the St’s it is bound to achieve
the desired approximation ratio.

Consider the case where k >
√
m. Because the valuations are non-decreasing, Σivi(S

∗) ≤
Σivi([m]). Let S1, ..., S√m be some arbitrary partition of [m] into

√
m disjoint subsets of size√

m. Exploiting subadditivity in a way similar to that shown above implies that for one of
these sets the social welfare is at least a 1√

m
fraction of the social welfare for the entire set

[m]. This concludes the proof of the proposition.

3.5 General Valuations

In this section we study CPP with general valuations (but still normalized and non-decreasing).
We prove strong inapproximability results with general valuations in both the computational
and the communication-complexity models. In the communication-complexity model our
lower bound is tight (a trivial matching upper bound exists).

Theorem 3.5.1. Obtaining an approximation of O(n
1
2
−ε) to the social welfare in CPP with

general valuations, for any ε > 0, is impossible unless P = NP . Obtaining an approximation
of O(n1−ε) to the social welfare is impossible unless P = ZPP .

Proof. We reduce from the Maximal Welfare Tree (MWT) problem studied in the context of
distributed algorithmic mechanism design [27, 28, 38]. Our reduction preserves the hardness
results for this problem as shown in [38]. In the MWT problem we are given a graph
G = (N,L) with a set of nodes N and links L. A unique destination node d is given and
each node a ∈ N \ {d} has a valuation function va : Pa → R≥0, where Pa is used to denote
the set of all simple paths from a to the destination d. The objective in MWT is to form
a tree rooted in d which maximizes the social welfare, i.e., choose the tree T ∗ such that
T ∗ ∈ argmaxT∈T dL

∑
a∈N\{d} va(T), where T dL is the set of all possible trees in L rooted in d.

We consider the special case of MWT in which for all a ∈ N \ {d} we have va : Pa → {0, 1}.
It is known that for any ε > 0 approximating MWT, even for this special case, within a
factor of O(n

1
2
−ε) is impossible unless P = NP and approximating within a factor of O(n1−ε)

is impossible unless P = ZPP [38].

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 38

The reduction from MWT is as follows: Given an instance of MWT such that the range
of all valuation functions is {0, 1}, for each link ` ∈ L we associate a resource `′ in CPP and
each node a ∈ N \ {d} in MWT will correspond to an agent a′ in CPP. It remains to define
the valuation function of a′. Note that since our interest is in showing a lower bound, we
can adversarially set the number of chosen items to be k = |N | − 1. Now, let P+

a be the set
of paths for which va = 1. For all E ⊆ L, the valuation function for the corresponding agent
a′ in CPP is defined by:

va′(E) =

{
1 ∃P ∈ P+

a : P ⊆ E
0 otherwise

(3.4)

Observe that choosing a tree T in MWT with social welfare value SW (T) = c corre-
sponds to choosing a set of resources that induces the same social welfare value in CPP.
Conversely, choosing a set of resources T ′ in CPP s.t. SW (T ′) = c′ necessarily means that
we can trim T ′ to a set of edges T which forms a routing tree with d as its source, and that
we have exactly c′ nodes which have routes to d in T , and hence SW (T) = c′ in MWT.

Theorem 3.5.2. Obtaining an approximation ratio of (1−ε)n for general valuations requires
exponential communication in m (for any ε > 0 and for any n << 2m).

Proof. For CPP with general valuation functions, n agents, m items and a parameter 1 ≤
k ≤ m we show a lower bound of Ω(

(
m
k

)
·n−1) again by reducing from the Set Disjointness

problem.
We construct an instance of CPP with n agents in which no restrictions (except for being

normalized and non-decreasing) apply to the agents’ valuation functions. Let S1, . . . , St be
the (ordered) sets in the range of all possible allocations of size k. For each party i in
Set Disjointness with the set Ai ⊆ {1, . . . , t}, we associate an agent i in CPP with the
following valuation function:

vi(Sr) =

{
1 r ∈ Ai
0 otherwise

Observe that these valuation functions are indeed normalized and non-decreasing. Let
Sl be the set which maximizes the social welfare, i.e., ` ∈ argmax`∈[d] |{Ai| l ∈ Ai}|. To
approximate the social welfare within a factor of (1 − ε)n for any ε > 0, one must allocate
some set S for which there are at least two agents i and j such that vi(S) = vj(S) = 1. Due
to the above construction of the agents’ valuation functions this necessarily implies deciding
between the two extreme cases of the Set Disjointness problem. Thus, for d =

(
m
k

)
we

get a lower bound of Θ(
(
m
k

)
· n−1) for CPP with general valuation functions.

In the communication model a trivial matching upper bound of n exists: Query each
agent i for her most valued set Si of size k, and assign the agents a set T ∈ argmaxi∈[n]vi(Si).
It is easy to see that this indeed guarantees an n-approximation.

CHAPTER 3. COMBINATORIAL PUBLIC PROJECTS II: ADVENTURES IN
INCENTIVES AND COMPUTATION 39

3.6 Discussion

The results in this chapter highlight the richness and depth of the combinatorial public
projects model. As we saw, the problem becomes NP-hard for very strict valuations classes
(unit demand with n agents, and capped additive with two agents), and there is a broad class
of valuations where the VCG mechanism cannot be applied. We know that MIR mechanisms
are hopeless in these restricted classes, though interestingly, these are not the only truthful
mechanisms we can expect. The natural question is whether there are non-MIR mechanisms
for classes such as capped additive that can obtain reasonable approximation ratios. For cases
of subadditive functions, we saw impossibility results that are strictly due to computational
limitations. This implies that the barrier for implementation in these classes is computation
and not incentive compatibility.

40

Part II

Possibilities of Algorithmic
Mechanism Design

41

Chapter 4

Budget Feasible Mechanisms I: How
To Win Friends and Influence People,
Truthfully

4.1 Introduction

In the previous part we focused on the tension between incentive compatibility and computa-
tional constraints. The bottleneck for executing incentive compatible mechanisms however,
is not always computation. In many emerging online markets the main barrier to implemen-
tation is the potential overpayments associated with incentive compatibility. Consider the
following example.

Influence Maximization in Social Network. In social network marketing the goal is
to incentivize a small set of individuals in a social network to recommend a product, in a way
that maximizes the word-of-mouth effect in the network. The market designer is naturally
limited by the amount of rewards it can offer, and each individual has a different cost for
making a recommendation to her friends in the network. Since individuals may lie about
their cost, the market designer strives to design an incentive compatible mechanism that will
maximize the word-of-mouth effect in the network. The main problem, however, is that the
incentive compatible payments must be under the budget.

Budget Feasible Mechanisms

The social marketing problem above is an example of markets that procure information
and services from agents and aim to optimize complex objectives under a budget. While
incentive compatibility is the golden standard for implementation, there is a clash between
budget and incentives: Classical mechanism design theory rules out incentive compatibility

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 42

under a budget as it is well known that implementing optimal solutions – even for very
simple objectives – can result in huge overpayments [7].

In the following chapters we will develop a theoretical framework that enables designing
incentive compatible mechanisms under a budget. Although the main difficulties are not
computational, we will use a computational approach to deal with the impossibilities of
designing incentive compatible mechanisms under a budget by resorting to approximations.

In the settings we discuss there is a single buyer and many agents. Each agent has a single
item or service they are selling, for which they associate some private cost. The buyer has a
utility function over subsets of items and a budget and wishes to buy items that maximize
her utility function under the budget. Before discussing the model formally we emphasize
two main points.

• Approximation is necessary. Consider the case where the buyer’s goal is to buy as
many items possible under a budget constraint. The standard framework in mechanism
design calls for implementing the optimal solution of the full-information problem and
paying agents in a manner that supports incentive compatibility. In case all items
have small costs ε > 0 and the budget is B, the optimal solution will allocate to all the
agents and, according to Myerson’s characterization of threshold payments, will pay
each agent B − εn. The solution returned by the mechanism is indeed optimal, and
incentive compatible, but the payments exceed the budget by a factor of n. This is
the VCG mechanism. The message here is twofold. First, the VCG mechanism is not
a feasible alternative in this case, not due to computational constraints but due to its
overpayments. Second, this example shows that, in general, implementing the optimal
solution is not feasible.

• Superadditivity implies bad approximations. Consider a slight variation of the
above problem, in which all items have small costs, and identical values as long as a
particular item i is in the solution, and otherwise all have value 0 (for example, think
of i as a corkscrew and the rest of the items as bottles of wine). How well can a budget
feasible mechanism do here? If the mechanism has a bounded approximation ratio it
must always guarantee to include i in its solution. This however implies that as long
as i declares a cost that is less than the mechanism’s budget, the mechanism includes
her in the solution. A truthful mechanism must therefore surrender its entire budget
to i. This of course results in an unbounded approximation ratio.

The above examples help in phrasing the question that will guide the following chapters.
The first example above shows that the optimal solution is infeasible, due to overpayments.
To circumvent this, we must therefore resort to approximations. The important point is that
approximation is used due to the clash between budget and incentive compatible payments,
and not due to computational limitations. The second example shows that there are (even
very simple) classes of buyer objectives, for which no mechanism under a budget can yield
good approximation. We use the term budget feasible to describe a mechanism whose sum
of payments are below a given budget. The question, then, is:

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 43

Which procurement settings have budget feasible mechanisms with desirable guarantees?

In single parameter domains, where each agent’s private information is a single number,
designing truthful mechanisms often reduces to designing monotone allocation rules, since
payments can be computed via binary search [41]. This no longer holds when the payments
are restricted by a budget: Designing a budget feasible allocation rule requires understanding
its payments, which in-turn depend on the allocation rule itself. Not surprisingly, it seems
that budget feasible mechanisms are very tricky to find.

The main result in this chapter shows that budget feasible mechanisms with desirable
guarantees are obtainable in submodular procurement markets.

Theorem. For any procurement where the objective is an increasing submodular utility func-
tion there exists a randomized mechanism which is budget feasible and universally truthful,
and in expectation provides a constant-factor approximation of the optimal solution.

From a computational perspective, this result is somewhat tight as for a slightly more
general class of utility functions there is an information theoretic lower bounds as we discuss
in the next chapter. In the following chapter we also discuss other classes of utility functions,
and present mechanisms that build on the main ideas presented in this chapter.

Related Work

Budgets came under scrutiny in auction theory after observing behavior of bidders in online
automated auctions [2, 18, 14, 29, 12], as well as in spectrum auctions where bidding is
performed by groups of strategic experts [14]. While these works highlight the significance and
challenges that budgets introduce to mechanism design, they relate to an entirely different
concept than the one we study here since they examine a budget on the bidders and not the
mechanism’s payments.

In recent years a theory of frugality has been developed with the goal of providing mech-
anisms for procurement auctions that admit minimal payments [15, 4, 32, 23, 58] . Budget
feasibility and frugality are complementary concepts. Frugality is about buying a feasible
solution at minimum cost — there are no preferences among the solutions, and the goal is to
minimize payment. In our setting we have no preferences among payments — as long as they
are below the budget — but we do care about the value of the solutions. The two approaches
are complementary also in another important sense: in our last section we show that for all
the problems studied in the frugality literature there are no budget feasible mechanisms. We
discuss this point in further detail in Section 4.5.

Organization of the Chapter

We begin with a formal presentation of the model in Section 4.2. As a warm up, we discuss
the class of symmetric submodular functions in Section 4.3; this special case simplifies the
problem enormously and facilitates the introduction of ideas and intuition for the general

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 44

submodular case. Our main result for submodular functions is developed in Section 4.4. We
conclude with a few simple results that develop our understanding of the budget feasibility
model in Section 4.5.

4.2 The Model

In a budget-limited reverse auction we have a set of items N = {1, . . . , n}, and a single
buyer. Each item i ∈ [n] has a cost ci ∈ R+, while the buyer has a budget B ∈ R+ and a
utility function f : 2[n] → R+. In the full information case costs are common knowledge,
and the objective is to maximize the utility function under the budget, i.e. find the subset
S ∈ {T |

∑
i∈T ci ≤ B} for which f(S) is maximal.

We focus on the strategic case, in which each item is held by a unique agent and costs
are private. We use ai to denote the agent that is associated with the item i ∈ N . In cases
where it is clear from the context we will simply use i to denote agent ai. The budget and
utility function of the buyer are common knowledge. A solution is a subset of agents and
a payment vector, and the objective is to maximize the utility function while the payments
(not costs) are within the budget.

More formally, a mechanismM = (A, p) consists of an allocation function A : Rn
+ → 2[n]

and a payment function p : Rn
+ → Rn

+. The allocation function A maps a set of n bids to
a subset S = A(c1, . . . , cn) ⊆ [n]. The payment function p returns a vector p1, . . . , pn of
payments to the agents. We shall often omit the arguments c1, . . . , cn when writing A and p.
We will denote by s1, . . . , sn the characteristic vector of S, that is, si = 1 iff i ∈ S. As usual,
we seek normalized (si = 0 implies pi = 0), individually rational (pi ≥ si · ci) mechanisms
with no positive transfers (pi ≥ 0). As it is common in algorithmic mechanism design, our
goal is manifold. We seek mechanisms that are:

1. Truthful. That is, reporting the true costs is a dominant strategy for sellers. For-
mally, a mechanism M = (A, p) is truthful (incentive compatible) if for every i ∈ N
with cost ci and bid c′i, and every set of bids by N \{ai} we have pi−si ·ci ≥ p′i−s′i ·ci,
where (si, pi) and (s′i, p

′
i) are the allocations and payments when the bidding is ci and

c′i, respectively. A mechanism that is a randomization over truthful mechanisms is
universally truthful.

2. Computationally Efficient. The functions A and p can be computed in polynomial
time. In cases where the utility function requires exponential data to be represented
(as in the general submodular case for example), we take the common “black-box”
approach and assume the buyer has access to an oracle which allows evaluating any
subset S ⊆ [n], with polynomially many queries. Such queries, as discussed in the
previous chapters, are known as value queries. This is a weaker model than ones
allowing demand or general queries (see [11] for a definition) and since our main interest
here is algorithmic, this strengthens our results. In the following chapter we will discuss
mechanisms that use demand oracles.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 45

3. Good. We want the allocated subset to yield the highest possible value for the buyer.
For α ≥ 1 we say that a mechanism is α-approximate if the mechanism allocates to a set
S such that OPT ≤ αf(S), where OPT denotes the value of full information optimal
solution that can be achieved without computational constraints. As usual, when deal-
ing with randomization we seek mechanisms that yield constant factor approximations
in expectation.

4. Budget Feasible. Importantly, we require that a mechanism’s allocation rule and
payments do not exceed the budget:

∑
i pisi ≤ B. We call such mechanisms budget

feasible.

Observe that this is a single parameter mechanism design problem, in that the private
value of each bidder can be represented as a single real number. We shall repeatedly rely on
Myerson’s well-known characterization for truthful mechanisms in these domains.1

Theorem 4.2.1 ([42]). In single parameter domains a normalized mechanism M = (A, p)
is truthful iff:

(i) A is monotone: ∀i ∈ [n], if c′i ≤ ci then i ∈ A(ci, c−i) implies i ∈ A(c′i, c−i) for
every c−i;

(ii) winners are paid threshold payments: payment to each winning bidder is
inf {ci : i /∈ A(ci, c−i)}.

4.3 Symmetric Submodular Functions

We begin by introducing a simple subclass of submodular functions which is devoid of many
of the intricacies of the general case. It will serve as an exposition of the basic ideas, and
help explain the main difficulties.

We say a set function is symmetric if it only depends on the cardinality of the set,
rather than the identity of the items it holds. Symmetric submodular functions (also called
downward sloping), were used by Vickrey in his seminal work on multi-unit auctions [60].
They have a very simple structure:

Definition 7. A function f : 2[n] → R+ is symmetric submodular if there exist r1 ≥ . . . ≥
rn ≥ 0, such that f(S) =

∑|S|
i=1 ri.

Consider the following allocation rule A: Sort the n bids so that c1 ≤ c2 ≤ . . . ≤ cn, and
consider the largest k such that ck ≤ B/k. That is, k is the place where the curve of the

1Note that although there is a budget constraint on the payments, Myerson’s characterization applies
to our setting as well. Due to the characterization, we know that the allocation function determines the
payment function. The budget constraint can therefore be viewed as a property of the allocation function
alone.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 46

increasing costs intersects the hyperbola B/k. The set allocated here is S = {1, 2, . . . , k}.
This is a monotone allocation rule: an agent cannot be excluded when decreasing her bid.
While the natural candidate for the threshold payment for this allocation rule seems to be
B/k for each agent in [k], the example show it is not enough.

Example: The payment rule pi = B/k breaks truthfulness. Consider running the
mechanism shown in section 4.3 with payments B/k on three agents with real costs c1 =
3, c2 = 5 − ε, c3 = 5 and a budget B = 10. If the mechanism were truthful, then it should
result in agents with real costs 3 and 5 − ε being allocated, and paid 5. Note that in this
case it would be in the best interest of agent a3 to report a false cost c′3 = 5 − 2ε since, in
this case, the allocation would go to her and agent a1, leaving a3 with a profit of ε. Paying
the minimum of the fair share and the cost of the agent that is excluded from the solution
solves this.

Proposition 4.3.1. The mechanism with the allocation A as above with payments of θi =
min{B/k, ck+1} to every agent ai in its allocated set is truthful.

Proof. The allocation rule is monotone since declaring a lower cost advances an item in
the sorting. Let S = {1, 2, . . . , k} be the set of agents allocated by the mechanism. To
see that θi is indeed the threshold payment for all ai ∈ S, consider first the case where
ck+1 < B/k. Declaring a cost c′i > ck+1 places i in a position after agent ak+1. Since all
agents in (S \ {ai}) ∪ {ak+1} have costs less than B/k, as the mechanism reaches agent ai’s
bid, there are already (at least) k agents ahead of ai. Since c′i > ck+1 > B/(k + 1) agent ai
will not be allocated. Declaring a cost below ck+1 places ai within the first k items, all with
costs less than B/k, and thus i will be allocated.

In case B/k ≤ ck+1, declaring cost c′i > B/k places at least k− 1 items ahead of ai, since
all items in the winning set have cost less than B/k. Therefore, even if ai will be considered
by the mechanism it will not be allocated as it does not meet the mechanism’s allocation
condition. Declaring a lower cost ensures that ai is placed within the first k items and it will
be allocated. The payment rule therefore respects the threshold property and we conclude
that the mechanism is indeed truthful.

Observe that this allocation rule has the property we seek: summing over the payments
that support truthfulness satisfies the budget constraint. Hence this gives us a budget feasible
mechanism. Importantly, this is also a good approximation of the optimal solution:

Theorem 4.3.1. The above mechanism has approximation ratio of two.

Proof. Observe that the optimal solution is obtained by greedily choosing the lowest-priced
items until the budget is exhausted. By the downward sloping property, to prove the result
it suffices to show that the mechanism returns at least half of the items in the greedy
solution. Assume for purpose of contradiction that the optimal solution has ` items, and the
mechanism returns less than `/2 items. It follows that cd`/2e > 2B/`. Note however, that

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 47

this is impossible since we assume that cd`/2e ≤ . . . ≤ c`, and
∑`

i=d`/2e ci ≤ B which implies

that cd`/2e ≤ 2B/`, a contradiction.

We now show that no better approximation ratio is possible. This illustrates the intrica-
cies of budget feasibility and is rather surprising, given the simplicity of the full-information
problem.

Proposition 4.3.2. For f(S) = |S|, no budget feasible mechanism can guarantee an ap-
proximation of 2− ε, for any ε > 0.

Proof. Suppose we have n items with costs c1 = c2 = · · · = cn = B/2 + ε, for some positive
ε < B/2. Assume, for purpose of contradiction thatM is a budget feasible mechanism with
approximation ratio better than 2. In particular, M has a finite approximation ratio and
must therefore allocate to at least one agent in this case. W.l.o.g., assume M allocates to
agent a1.

By monotonicity, agent a1 can reduce her cost to c′1 = ε′ < B/2− ε and remain allocated.
For this cost vector, (c′1, c−1), Myerson’s characterization implies that the threshold payment
for agent a1 should be at least B/2 + ε, by individual rationality and budget feasibility, M
cannot allocate to any other agent. Observe however that the optimal full information
solution in this case allocates to two agents which contradicts M’s approximation ratio
guarantee.

In summary, the above propositions together with Theorem 4.3.1 show that for symmetric
submodular utility functions the proportional share mechanism is the optimal budget feasible
mechanism.

Theorem 4.3.2. For symmetric submodular functions, there exists a truthful budget feasible
2-approximation mechanism. Furthermore, no budget feasible mechanism can do better.

4.4 General Submodular Functions

We now turn to the general case of submodular functions. Recall that f : 2[n] → R+ is
submodular if f(S ∪{i})−f(S) ≥ f(T ∪{i})−f(T) ∀S ⊆ T . A function f is increasing if
S ⊆ T implies f(S) ≤ f(T). Throughout this chapter we assume the function is increasing.
In the next chapter we will discuss the case of non-increasing submodular functions. In
general, submodular functions may require exponential data to be represented. We therefore
assume the buyer has access to a value oracle which given a query S ⊆ [n] returns f(S). We
consider a mechanism to be efficient if it runs in polynomial time and makes a polynomial
number of value queries to the oracle. An important concept for our discussion is the marginal
contribution of an agent, as defined below.

Definition 8. The marginal contribution of an agent ai given a subset S, denoted fi|S is
f(S ∪ {ai})− f(S).

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 48

In designing truthful mechanisms for submodular maximization problems, the greedy
approach is a natural fit, since it is monotone when agents are sorted according to their
increasing marginal contributions relative to cost: In the marginal contribution-per-cost
sorting the agent that appears in position i+1 is the agent aj for which fj|Si/cj is maximized
over all agents N where Si = {1, 2 . . . , i}, and S0 = ∅. To simplify notation, when we
consider this sorting and it will be clear from the context we will write fi instead of fi|Si−1

.
This sorting, in the presence of submodularity, implies:

f1

c1

≥ f2

c2

≥ . . . ≥ fn
cn

(4.1)

Notice that f(Sk) =
∑

i≤k fi for all k.

The Proportional Share Allocation Rule

The mechanism from the previous section for the limited symmetric case can be generalized
appropriately to work for various classes in the submodular family of functions.

Definition 9. For a budget B and set of agents N , the generalized proportional share alloca-
tion rule, denoted A(N , B) sorts agents in N according to (4.1) with budget B and allocates
to agents i ∈ {1, . . . , k} that respect ci ≤ B · fi/f(Si).

For concreteness consider the case of additive functions: each agent ai is associated
with a fixed value vi and f(S) =

∑
i∈S vi. Here the marginal contribution of each agent is

independent of their place in the sorting, and we simply have that fi = vi for all agents ai ∈
N . In this case A produces a budget-feasible mechanism. The reason is, it assures us that for
each agent ai, the threshold payments of A, denoted θi do not exceed the agent’s proportional
share. The threshold payments are a generalization of the payments we presented in the
symmetric submodular case:

θi = min
{ vi ·B∑

i∈S vi
,
vi · ck+1

vk+1

}
.

This allows budget feasibility since
∑

i θi ≤ B, as well as individually rationality since
θi ≥ ci. This seems to make the proportional share allocation rule an ideal candidate to ob-
tain budget feasible mechanisms. Indeed, with some minor adjustments, for many problems
with functions in the submodular class (e.g. symmetric, additive, and multi-unit demand
functions) this general approach works well and produces budget feasible mechanisms with
good approximation guarantees (see the following chapter for more details). Furthermore, as
we discussed above, the proportional share mechanism is optimal in some cases, and in some
restricted environments our characterizations show that this is essentially the only budget
feasible mechanism (see Section 4.5). The problem however is that this natural approach
completely fails as soon as we encounter more involved submodular functions.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 49

The Difficulties

Coverage functions capture many of the difficulties that are associated with designing budget
feasible mechanisms for the general submodular case. Recall that a function f : 2[n] → R+ is
a coverage function, if there exist some sets T1, . . . , Tn of some universe of elements U , and
f(S) = | ∪i∈S Ti|. In coverage functions the marginal contribution of an agent is not fixed,
but depends on the subset allocated by the algorithm in the previous stages. An agent’s
marginal contribution therefore depends on its position in the sorting, which introduces
several difficulties.

Marginal Contributions are Affected by Costs. When applying the proportional
share mechanism in coverage functions, paying agents θi as above will be under the budget,
as we desire. However, observe that for each agent ai the payment depends on the marginal
contribution fi, which is determined by ai’s position in the sorting. Thus, in such a case the
payments will depend on the agent’s declared cost, and therefore cannot induce truthfulness,
making the proportional share mechanism hopeless here.

Simple allocation and payment schemes that are independent of the agent’s position in
the sorting also fail. An approach that may seem natural is to replace marginal contributions
with Shapley values [31] since they make the proportional contribution of an allocated agent
independent of her position in the sorting. Unfortunately, such an approach cannot approx-
imate better than a factor of

√
n, as we show in the example below. While it is tempting to

get rid of the marginal contribution sorting, it is the only known means for obtaining good
approximation guarantees for the general submodular case.

Example: Shapley Mechanisms Provide Poor Guarantees. For coverage functions,
the proportional share allocation rule can be generalized via Shapley values which are of-
ten used in cost sharing (see [31]). Consider a coverage function with subsets (agents)
{T1, . . . , Tn} of a universe U , let Uj = ∪i∈[j]Tj and γj(u) denote the number of agents in [j]
that cover an element u ∈ Uj. In our context, for a set Uj and agent i, the Shapley values
are:

ξi,j =
∑

u∈Uj∩Ti

1

γj(u)

Note that by definition |Uj| =
∑

i≤j ξi,j. The attractive property of Shapley values is that
they make the proportional contribution of an agent independent of the stage in which she
was selected by the mechanism. While it seems natural to replace the marginal contributions
with Shapley values in the proportional share allocation rule presented above, this results
in a poor approximation ratio. Under Shapley values, at every stage, as an item is added
to the solution, the proportional share of the rest of the agents can decrease. Individual
rationality requires that the mechanism stops at stage k if there is an agent in {1 . . . k − 1}
whose Shapley value decreases below her cost. To see this can result in a poor approximation

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 50

ratio consider the following instance. The set T1 = {u0, u1} has cost 1 − ε1, and the rest
of the sets, all with cost 1 − εi, are of the form Ti = {um(i), ui}, where m(i) ≡ i mod 2,
and ε1 > . . . > εn > 0 are small. We set the budget to be B = n. For this instance, the
mechanism picks T1 first, and after every odd stage j the value of the solution is j + 1, and
the elements in T1 are covered by j/2 sets. Therefore at stage j the Shapley value of agent

a1 associated with T1 is n/(j2 + j), and thus after the
√
n
th

stage no longer exceeds her cost.
This gives total value of

√
n, while the optimal solution {1 . . . n} has value of n+ 1.

Non-monotonicity of the Maximum Operator. Bounded approximation ratios for
submodular maximization under a budget constraint depend crucially on the ability to take
the maximum between a greedy solution and the item with highest value. In the general case,
as well in the case of coverage functions, taking this maximum does not preserve monotonic-
ity: simple examples show that for allocation rules that depend on marginal contribution
sorting, by decreasing her cost an agent can decrease the value of the allocation.2

Example: Applying the MAX Operator Breaks Truthfulness. While a greedy
allocation rule that allocates to all items that respect ci ≤ fiB/f(Si) is monotone, allocating
based on taking the maximum value of this allocated set and another solution is not monotone
in the case of general submodular problems. To see this, consider an instance of a coverage
function with a universe of elements, partitioned to the following disjoint subsets W,X, Y, Z,
with cardinalities |W | = 7, |X| = 2, |Y | = 2, |Z| = 4. Let {a0, a1, a2} be the set of agents,
with T0 = W,T1 = X ∪ Y, T2 = X ∪ Z. Set the budget B = 1, and costs c0 = ε, c1 = 7/24
(a fraction between 1/3 and 1/4) and c2 = 1/2. In this case agent a1 appears before a2 in
the sorting, both agents are allocated as both satisfy the algorithm’s allocation condition
ci ≤ fi(Si−1)/f(Si−1 ∪ {i}) and |X ∪ W ∪ Z| > |W |. If a2 declares a lower value, which
puts her ahead of a1, she will no longer be allocated: the marginal contribution of a1 will
be |Y | = 2, and since c1 > 2/|X ∪ Y ∪ Z| = 1/4, only agent a2 satisfied the condition of the
algorithm, and the set covered by the proportional share allocation is therefore X ∪Z. Since
|X ∪ Z| = 6 ≤ |W |, agent 2 is no longer allocated.

Overview of Our Approach

Our approach is based in three ideas:

• First, we derive an alternative characterization of the threshold payments of the pro-
portional share allocation rule. Since we know that this rule does not work, this may
seem futile. We’ll show that this characterization plays a significant role in our design.

2It is important to emphasize that such examples are not unique to our specific mechanism and not even
to coverage functions. This type of problem arises when applying greedy and approximation procedures in
other domains as we show in the next chapter.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 51

• Using the above characterization, we show that for any (increasing) submodular func-
tion, we can slightly modify the proportional share allocation rule so that its threshold
payments are “not too far” from the agents’ proportional contributions. This enables
us to guarantee that when running the modified version of the proportional share al-
location rule with a constant fraction of the budget, the threshold payments will be
budget feasible.

• Finally, to obtain the approximation guarantee we partition the agents in a manner
that allows us to include the variation of the proportional share rule over a subset of
agents and obtain good approximation guarantees.

Characterizing Threshold Payments

The following definition is key in our characterization.

Definition 10. The marginal contribution of agent ai at point j denoted fi(j) is f(Tj−1 ∪
{ai})−f(Tj−1) where Tj denotes the subset of the first j agents in the marginal-contribution-
per-cost sorting (as in (4.1)) over the subset N \ {ai}.

The intuition behind the payments characterization can be described as follows. Consider
running the proportional share mechanism without agent ai. For the first j agents in the
marginal contribution sorting, using the marginal contribution of ai at point j we can find
the maximal cost that agent ai can declare in order to be allocated instead of the agent in
the jth place in the sorting. While these costs may have arbitrary behavior as a function of
j, we will show that taking the maximum of these values guarantees payments that support
truthfulness. To avoid confusion we use Tj to denote the first j agents according to this
sorting, f ′j to denote the marginal contribution of the jth agent in this case, and k′ to denote
the index of the last agent j ∈ N \ {ai} that respects:

cj ≤ B ·
f ′j

f(Tj)
.

For brevity we will write ci(j) := fi(j) · cj/f ′j and ρi(j) := B · fi(j)/f(Tj−1 ∪ {i}).

Lemma 3 (Payments Characterization). For any submodular function, the threshold pay-
ment of the proportional allocation rule is:

θi = max
j∈[k′+1]

{
min{ci(j), ρi(j)}

}
∀i ∈ [n].

Proof. To characterize the thereshold payment for agent ai, relabel the agents according
to the marginal-contribution-per-cost sorting over the subset N \ {ai}. Consider A as a
sequential allocation rule: at each stage j, the mechanism resorts the remaining agents
that have not yet been allocated according to marginal contribution-per-cost sorting, and
allocates to the first agent in the sorting if she meets the condition cj ≤ f ′j ·B/f(Tj).

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 52

For a given stage j in this sequential allocation, we can find the maximal cost agent ai
would have been able declare and be allocated, if she had been considered by the mechanism
at this stage: The value ci(j) = fi(j)·cj/f ′j is the maximal cost ai can declare which would place
her ahead of j in the sorting, and if this cost does not exceed ρi(j) = B · f ′i(j)/f(Tj−1 ∪ {ai}),
the mechanism would have allocated to agent ai. Therefore, had ai appeared at stage j,
the minimum between these values is the maximal cost she can declare and be allocated at
this stage. Since fi(j) monotonically decreases with j while cj/f

′
j increases, ci(j) may have

arbitrary behavior as a function of j. However, as we now show, taking the maximum of
these values result in threshold payments.

Let r be the index in [k′+1] for which min{ci(j), ρi(j)} is maximal. Declaring a cost below
θi ≤ ci(r) guarantees ai to be within the first r ≤ k′ + 1 elements in the sorting stage of the
mechanism, with r − 1 items allocated. Since θi ≤ ρi(r), ai will be allocated.

To see that declaring a higher cost prevents ai from being allocated, consider first the
case where ci(r) ≤ ρi(r). A higher cost places ai after r in the sorting stage of the mechanism.
If the maximum of ci(j) over all j ∈ [k′ + 1] is ci(r), reporting a higher cost places ai after an
element which is not allocated and therefore it will not be allocated. Otherwise, if ci(r) < ci(j),
for some j ≤ k′ + 1, by the maximality of r it must be the case that:

B · fi(j)
f(Tj−1 ∪ {ai})

= ρi(j) ≤ ci(r) < ci(j)

and ai will not be allocated as a cost above ρi(j) will not meet the allocation condition.
In the second case when ci(r) > ρi(r), if r is the index which maximizes ρi(j) over all indices

in [k′+1], reporting a higher cost will not meet the mechanism’s allocation condition at each
index in [k′+ 1]. Otherwise, if there is some other index j ∈ [k′+ 1] for which this maximum
is achieved, then:

fi(j) · cj
f ′j

= ci(j) ≤ ρi(r) < ρi(j)

and thus declaring a higher cost in this case places ai after aj in the sorting, and the
mechanism will not consider ai.

Lemma 4 (Individual Rationality). The mechanism that uses the proportional share alloca-
tion rule A and threshold payments θi as above is individually rational, i.e., ci ≤ θi.

Proof. Observe that:

(a) fi(j) ≥ fi(j+1) ∀j ∈ N ;

(b) Tj = Sj ∀j < i;

(c) fi|Ti−1
= fi.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 53

Since the threshold payment is the maximum over all min{ci(j), ρi(j)} in [k′ + 1], it is
enough to show that ci ≤ min{ci(j), ρi(j)} for a certain j ≤ k′ + 1. Since (b) implies that
i ≤ k′+1 we can consider ai’s replacement aj which appears in the ith place in the marginal-
contribution-per-cost sorting over N \ {ai}. Since i ∈ [k], and due to (b) and (c) above, we
have that:

ci ≤
fi ·B

f(Si−1 ∪ {ai})
=

fi|Ti−1
·B

f(Ti−1 ∪ {ai})
= ci(j).

In the original sorting, ai appears ahead of aj (as implied from (b)), and therefore its
relative marginal contribution is greater. Thus:

ci ≤
fi|Si−1

· cj
fj|Si−1

=
fi|Ti−1

· cj
f ′j|Tj−1

= ρi(j).

It therefore follows that ci ≤ min{ci(j), ρi(j)} ≤ θi.

Payment Bounds

The characterization above allows us to include a slightly modified version of the proportional
share allocation rule in our mechanism, with threshold payments that are guaranteed to be
no more than a constant factor away from agents’ proportional contribution. This is a key
property which guides the design of our mechanism.

We will run the modified proportional share allocation rule over a subset of the agents
Ns = {ai ∈ N : ci ≤ B

2
}, with a constant fraction of the budget, denoted B′. We discuss the

choice of Ns and B′ in the following sections, but for the purpose of showing the payment
bounds, we can think of these as any subset of agents and any budget. In this modified version
of the proportional share allocation rule, for a∗s := argmaxa∈Nsf(a), we sort the agents of
Ns\{a∗s} according to the marginal-contirbution-per-cost order, and allocate to S = Sk∪{a∗s},
where Sk are all k agents in Ns that respect the condition ci ≤ fi · B/f(Si ∪ {a∗s}). The
characterization from above easily extends to this case using ρi(j) = fi(j) ·B/f(Tj−1∪{ai, a∗s}).
Under this modification we can show a desirable bound on the threshold payments:

Lemma 5 (Payment Bounds). For each agent ai ∈ S \ {a∗s}, θi ≤
(

4e
e−1

)
fi·B′
f(S)

.

Proof. For Tk′ as above, let S ′ = Tk′∪{a∗s} and let r be the index for which θi = min{ci(r), ρi(r)}.
If r ≤ k′, observe that the sorting implies cr/f

′
r ≤ ck′/f

′
k′ and therefore:

θi ≤
fi(r) · cr
f ′r

≤
fi(r) · ck′
fk′

≤
fi(r) ·B′

f(S ′)
≤ fi ·B′

f(S ′)

where the last inequality relies on the observation that fi(j) ≤ fi for every j ∈ Ns \ {a∗s},
which is due to the fact that Tj = Sj for j ≤ i and the decreasing marginal utility property
of f . In the case where r = k′ + 1:

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 54

θi ≤ ρi(r) =
fi(k′+1) ·B′

f(S ′ ∪ {i})
≤ fi ·B′

f(S ′)
.

We therefore see that in both cases θi ≤ fi ·B′/f(S ′). To complete our proof, we will show

that f(S) ≤
(

(4e)/(e− 1)
)
f(S ′).

Let the agents in Ns \ {ai, a∗s} be sorted as describes above, and let `′ be the maximal

index s.t.
∑`′

i=1 ci ≤ B. For sake of the analysis, consider adding a new agent, a′, declares

cost B −
∑`′

i=1 ci and

f(a′) =
(B −∑`′

i=1 ci
c`′+1

)
·
(
f(T`′+1)− f(S`′)

)
Observe that the weighted marginal contribution of this agent is identical to that of

agent a`′+1 and that the solution f(S`′ ∪ {a′}) is feasible. Obviously, the optimal solution
over all agents in Ns ∪ {a′} is an upper bound on the optimal solution over all agents in
Ns. Due to the decreasing marginal utilities property, we are guaranteed that the first `′

agents selected in both Ns and Ns ∪ {a′} are identical. For notational convenience in the
following analysis we will denote agent a′ as a`′+1. For any submodular function f we have
that f(T`′+1) ≥ (1− 1

e
)OPT (Ns \{a∗s}, B′), where we use OPT (X,B′) to denote the optimal

solution over agents in X ⊂ N with budget B′ ≤ B. We will use f(T`′+1) as a benchmark.
Since T`′+1 is feasible:

`′+1∑
j=k+1

(cj
f(Tj)− f(Tj−1)

)(
f(Tj)− f(Tj−1)

)

≤
`′+1∑
j=1

(cj
f(Tj)− f(Tj−1)

)(
f(Tj)− f(Tj−1)

)

=
`′+1∑
j=1

cj = B.

Since agents are sorted according to their weighted marginal contributions, for every
j ∈ {k′ + 1, . . . , `′ + 1} we have that:

f(Tj)− f(Tj−1)

cj
≤ f(Tk′+1)− f(Tk′)

ck′+1

. (4.2)

Putting the above inequalities together we get:

ck′+1

f(Tk′+1)− f(Tk′)

(`′+1∑
j=k′+1

f(Tj)− f(Tj−1)
)

=
(ck′+1

f(Tk′+1)− f(Tk′)

)
·
(
f(T`′+1)− f(Tk′+1)

)
≤ B′.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 55

Note that this implies that f(Tk′+1) > f(T`′+1)−f(Tk′) as otherwise ck′+1 ≤ B′
(

(f(Tk′+1)−f(Tk′)

f(Tk′+1)

)
which contradicts the maximality of k′. Thus, together with submodularity this implies that:

f(T`′+1) = f(T`′+1)− f(Tk′) + f(Tk′) < f(Tk′+1) + f(Tk′) ≤ 2f(Tk′) + f(ak′+1) ≤ 3f(S ′).

where the last inequality is due to the fact that a∗s is included in S ′. In conclusion, we get:

f(S) ≤ OPT (Ns, B′)
≤ OPT (Ns \ {ai}, B′) + f(ai)

≤
(e

e− 1

)
f(T`′+1) + f(ai)

≤
(3e

e− 1

)
f(S ′) + f(ai)

≤
(4e

e− 1

)
f(S ′).

Since, as we argued above, θi ≤ fi·B′
f(S′)

this concludes our proof.

Approximation Guarantee

Now that we’ve seen that the threshold payments of the modified proportional share allo-
cation rule are bounded, the third step requires arguing about its approximation guarantee.
Let Ns := {ai : ci ≤ B/2}. We now show the modified proportional share allocation rule is
a constant factor approximation over Ns.

Lemma 6. Let S be the result of the modified proportional share mechanism as described

above computed on Ns \ {a∗s} using budget B/2α, for some α ≥ 1. Then:
(

(4α+2)e
e−1

)
f(S) ≥

OPT (Ns, B).

Proof. Let the agents in Ns \ {a∗s} be sorted according to the marginal-contribution-per-
cost ordering, let k be the largest i s.t. ci ≤ B

2α
· fi
f(Si)

, and ` be the maximal index s.t.∑`
i=1 ci ≤ B. As in the proof of Lemma 5, for sake of analysis we will compare against the

solution produced by S`+1, and without loss of generality assume it is feasible, and a (e
e−1

)
approximation of OPT (Ns \ {a∗}, B).

Similarly to what we have shown in lemma 5, one can show that when applying the
proportional share allocation rule with budget B/2α (i.e. S = A(c, B/2α,Ns \ {a∗s})), then:

2αf(Sk+1) > f(S`+1)− f(Sk)

and since a∗s ∈ S we have that: f(S`+1) < (4α + 1)f(S). Therefore:

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 56

OPT (Ns, B) ≤ OPT (Ns \ {a∗}, B) + f(a∗) (4.3)

≤
(e

e− 1

)
f(S`+1) + f(a∗) (4.4)

≤
(e

e− 1

)(
4α + 1

)
f(S) + f(a∗) (4.5)

≤
(e

e− 1

)(
4α + 2

)
f(S) (4.6)

which implies our desired bound.

Main Result

Given all the above, we can now prove our main theorem.

Theorem 4.4.1. For any submodular utility function there exists a constant factor ap-
proximation randomized mechanism in the value query model which is budget feasible and
universally truthful. Furthermore, no budget feasible mechanism can do better than 2− ε, for
any fixed ε > 0.

In our discussion we will use α = 4e
e−1

. Our analysis shows our mechanism guarantees an

approximation ratio of
(

(16α+8)e
e−1

)
≈ 173.6 in expectation. It is possible that tighter analysis

can show the mechanism does better.

Proof. Consider the following mechanism:

A Randomized Mechanism for Nondecreasing Submodular Functions

1. Set Ns = {ai ∈ N : ci ≤ B
2
}, a∗s ∈ argmaxa∈Nsf(a), S = {a∗s}, ai ∈ argmaxa∈Ns\{a∗}

f(a)
ci

2. While ci ≤ B
2α
·
(
f(S∪{ai})−f(S)

f(S∪{ai})

)
:

a. Add ai to S

b. Set ai ∈ argmaxa∈Ns\{a∗}
f(S∪{a})−f(S)

cj

Output: Choose u.a.r between S and argmaxa∈N\Nsf(a)

If S is chosen then the payment is B/2 to a∗s and θ̂i = min{θi, B/2} for ai 6= a∗s, where θi
is the threshold payment described in Lemma 3, when the modified proportional share rule
is used: A(Ns \ {a∗s}, B/2α). Observe the budget used here is exactly half of the constant
from the bound in Lemma 5.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 57

First, observe that the mechanism is monotone. For agents in N \ Ns, the allocation is
oblivious to their cost. For agents in Ns, a∗s will be in S for any cost she declares that is below
B/2, and it is easy to verify that each other agent in S can reduce her cost and continue to
be allocated by the modified proportinal share allocation. Therefore in each realization of
the random coin, the mechanism is monotone.

Regarding threshold payments, in case a ∈ argmaxa∈N\Nsf(a) is chosen, then clearly, B
is her threshold payment, and the solution is budget feasible. If S is allocated, from the
characterization lemma and the fact that Ns consists only of agents with cost less than B/2,
we know that θ̂ as described above are clearly the threshold payments. Since the modified
proportional share allocation rule uses B′ = B/2α as its budget, from Lemma 5, we can
conclude that: ∑

ai∈S

θ̂i ≤
B

2
+ α

∑
ai∈S\{a∗s}

fi ·B′

f(S)
≤ B

and the mechanism is therefore truthful and budget feasible. Individual rationality and
monotonicity were discussed above, and the lower bound as described in the following section
applies here as well.

Finally, let β =
(

(4α+2)e
e−1

)
and let a∗ = argmaxNNsf(a). Observe that due to the budget

constraint, the optimal solution cannot include more than one item from N \ Ns, and its
value is no greater than that of a∗. This, together with Lemma 6 implies:

OPT (B,N) ≤ OPT (B,Ns) + f(a∗)

≤ βf(S) + f(a∗)

≤ 2 max{βf(S), f(a∗)}
(4.7)

and therefore gives us our desired approximation ratio.

4.5 Discussion

The space of budget feasible mechanisms appears quite rich and invites further investiga-
tion. The richness of the submodular class implies there are many problems for which better
approximation ratios are achievable. In the following chapter we present several impor-
tant subclass of submodular functions and show improved approximation guarantees. We
conclude this chapter with a brief discussion about the model.

First, we ask whether problems studied in the frugality framework can have good budget
feasible approximations. We show a simple lower bound which implies that budget feasibil-
ity and frugality are complementary models: for superadditive objectives where we aim to
optimize the payments as long as the outcome meets some threshold, the frugality model is

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 58

most appropriate. In cases where we care about the quality of the outcome, as long as the
payments meet some threshold, budget feasibility is the right model.

The second question we address is concerned with the type of mechanisms we can expect
in the budget feasibility framework. We give a simple characterization under restrictive
conditions, that gives some intuition for the structure of budget feasible mechanisms.

The Yin of Budget Feasibility and the Yang of Frugality

Since procurement has been studied in the model of frugality in mechanism design, it is
perhaps most natural to see whether the “hiring a team of agents” problems studied in the
frugality framework [4, 58, 32, 15] have good budget feasible mechanisms. In these problems
there is a set of feasible outcomes (e.g. all possible spanning trees or all source-destination
paths in a graph) and the goal is to design a mechanism that yields a feasible solution. In
the literature these problems have been studied with the goal of designing mechanisms which
yield minimal payments (frugal), according to various benchmarks.

In our notation, such problems can be written as having a function f(S) = 1 if S ∈ F ,
and 0 otherwise, where F is the set of all feasible outcomes. Call such a problem nontrivial
if all solutions in F contain more than one element.

Theorem 4.5.1. There is no budget feasible mechanism with a bounded approximation ratio
for any nontrivial “hiring a team of agents” problem.

Proof. Assume for purpose of contradiction, there exists a a bounded approximation ratio
mechanism A which is truthful and budget feasible. Let S be a feasible solution, and
consider the bid profile in which all agents in S declare positive cost ε < B/|S|, and all
other agents declare B. Since the problem is nontrivial, the minimal cost of a feasible
solution different than S (if it exists) exceeds the budget. Since A guarantees a bounded
approximation ratio, it must allocate to S. For agent ai ∈ S, consider the cost vector (c′i, c−i)
with c′i = B−ε(|S|−1). Observe that S remains a cost-feasible solution, and the only one in
F , and therefore f(c′i, c−i) = S, which implies the threshold payment of agent ai is at least
c′i. Since this holds for all agents in S, it contradicts budget feasibility.

Characterizing Budget Feasible Mechanisms in Restricted Settings

The characterization of budget feasible mechanisms with good approximation ratios naturally
depends on the environment in which the mechanisms are implemented, or more concretely,
the function we aim to optimize. In characterizations, we often introduce additional restric-
tions on our mechanisms (e.g. maximal-in-range) which we then use as guidelines in their
design or for complete characterization.

We now consider mechanisms that respect the two additional conditions of anonymity [6]
and weak stability (similar to [21]). Informally, a mechanism is weakly stable if an agent
doesn’t hurt the rest when reducing her cost, and anonymous if its allocation rule does not
depend on the agents’ identities.

CHAPTER 4. BUDGET FEASIBLE MECHANISMS I: HOW TO WIN FRIENDS AND
INFLUENCE PEOPLE, TRUTHFULLY 59

Definition 11. An allocation rule A satisfies weak stability if for every ai, aj ∈ A(ci, c−i),
c′i ≤ ci implies aj ∈ A(c′i, c−i).

Definition 12. An allocation rule A satisfies anonymity if ai ∈ A(ci, cj, c−ij) implies aj ∈
A(c′i, c

′
j, c−ij) when c′i = cj, c

′
j = ci.

Note that for the class of symmetric submodular functions, the proportional share mech-
anism respects these conditions. Furthermore, it seems quite reasonable that mechanisms
with good approximation properties satisfy these conditions. The theorem below tells us
that for allocation functions that carry these properties, the proportional share mechanism
is essentially the only mechanism we can expect.

Theorem 4.5.2. Let A be a budget feasible mechanism that is anonymous and weakly stable,
and let S = A(c) for some bid profile c. Then, for all ai ∈ S it must be that ci ≤ B/|S|.

Proof. Assume for purpose of contradiction that there is a bid profile c = (c1, . . . , cn), s.t.
f(c) = S and there is some ai ∈ S for which ci > B/|S|. Let c′ be the bid profile in which
all agents in S \ {ai} bid cmin = minj∈S cj, and the rest bid as in c. Since A is weakly stable,
we have that S ⊆ A(c′). Let c′′ the bid profile where ai bids cmin as well, and the rest of the
agents bid as in c′. From monotonicity we have that ai is allocated, and again S ⊆ A(c′′).
We now claim that under the profile c′′, the threshold price for each agent in S is at least
ci > B/|S|. To see this, observe that ai’s threshold price must be at least ci, since ai ∈ A(c′).
Since A is anonymous, and all agents in S declare the same price, the threshold price for
each agent in S must also be at least ci. Thus, payments to agents in S exceed the budget,
contradicting budget feasibility.

60

Chapter 5

Budget Feasible Mechanisms II:
Adventures in Approximation

5.1 Introduction

In the previous chapter we introduced the budget feasibility model, and showed that for any
increasing submodular function there exists a randomized budget feasible mechanism, which
in expectation obtains a constant factor approximation. In this chapter we discuss other
important classes of objective functions in the budget feasibility model. When introducing
the model we showed that even for very simple superadditive objectives (that is, objectives in
which f(S∪T) > f(S)+f(T) for some sets S, T) budget feasible mechanisms with bounded
approximation ratios do not exist. In view of this, in this chapter we consider objectives
that are complement-free, or subadditive, valuations obeying f(S ∪ T) ≤ f(S) + f(T). We
seek approximation guarantees in three different categories:

• Subclasses of submodular functions. The main result from the previous chapter
holds for the general class of increasing submodular functions. For stricter classes (e.g.
additive functions) many of the problems of submodular functions can be avoided and
allow for deterministic mechanisms as well as better approximation ratios.

• Non-increasing functions. For cases in which S ⊆ T does not necessarily imply
f(S) ≤ f(T) we say that f is non-increasing. The previous chapter discusses increasing
functions, and we wish to understand whether budget feasible mechanisms exist for the
non-increasing case as well.

• General Subadditive functions. The class of subadditive functions is a substantial
generalization of submodular functions. Since simple superadditive objectives require
huge overpayments in order to be approximated within a reasonable factor, subadditive
functions are the most general class in which budget feasibility may exist. Thus,
understanding whether budget feasible mechanisms are obtainable in this class is a
fundamental open question.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 61

The Results in the Chapter

We discuss five different classes of utility functions in this chapter. We first show that for
additive, multi-unit demand, and coverage – all of which are subclasses of increasing submod-
ular functions – there are deterministic mechanisms with better approximation guarantees
than that of the general result presented in the previous chapter. We then discuss the class
of cut functions, which are a nontrivial case of utility functions that can decrease in value
as items are added. The results from the previous chapter do not apply to this class of
utilities since cut functions are non-increasing. Still, for such functions we give a determin-
istic constant factor approximation mechanism. Finally, for complement-free (subadditive)
objectives we first give a randomized O(log2 n) approximation mechanism that is universally
truthful and budget feasible. We derandomize this mechanism and present a deterministic
mechanism for this domain with an O(log3 n) approximation guarantee.1

The deterministic mechanisms in this chapter are based on their randomized analogues.
In all cases, preserving truthfulness in the derandomization is nontrivial and requires con-
structing “monotone estimators” that are crucial for obtaining bounded approximation guar-
antees. Each construction uses a different technique, though their underlying principle is
similar. We discuss these issues in the appropriate sections.

5.2 Additive Functions

Recall that an additive function is simply the sum of individual contributions of items.
Formally, a function f : 2[n] → R+ is additive if for all S ⊆ [n] we have that f(S) =

∑
i∈S f(i).

To simplify notation, we will use vi to denote the value of each item in ai ∈ N , i.e.
vi = f(ai). Observe that without strategic considerations, the additive case is the well-
known knapsack problem: Given a budget B and a set of items N , each with nonnegative
cost ci and value vi, find a subset S ∈ argmaxT :

∑
i∈T ci≤B

∑
i∈T vi. For the knapsack opti-

mization problem, there is a Fully Polynomial-Time Approximation Scheme (FPTAS).From
Proposition 4.3.2 we know we cannot get an approximation better than 2, even in simpler
cases where all vi = 1,∀i ∈ [n]. In this section we show a variation of the proportional
share mechanism which was the basis for the mechanism for submodular functions from the
previous chapter, to obtain a deterministic budget feasible mechanism for additive functions
which is a 4-approximation.

A Budget Feasible Mechanism for Additive Functions

The mechanism is based on the proportional share rule presented in the previous chapter.
We use a∗ to denote the agent with the largest value, i.e. a∗ ∈ argmaxa∈Nf(a).

1Since subadditive functions may require representation that is exponential in the number of agents, we
assume we are given access to a demand oracle. The weaker value query oracles result in inapproximability, a
stronger oracle model such as the one used here is required. We discuss this point at detail in the appropriate
section.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 62

A Deterministic Budget Feasible Mechanism for Additive Functions

1. Reorder agents in N \ {a∗} s.t. v1
c1
≥ . . . ≥ vn−1

cn−1

2. Let S be the set of all agents in N \ {a∗} that respect ci ≤ B
(

vi∑
j≤i vj

)
Output: If

∑
i∈S vi ≥ f(a∗) then output S, otherwise output agent a∗.

Let k be the maximal index i that respects ci ≤ B
(

vi∑
j≤i vj

)
. If a∗ is allocated her

payment is B and if S = [k] is allocated the payment is to each ai ∈ S is:

θi = min
{vi · ck+1

vk+1

,
vi ·B∑
j≤k vj

}
The main insight here is that unlike the general submodular case from the previous

chapter, the agents’ marginal contributions are fixed values that are independent of the
order in which they are considered by the mechanism.

Lemma 7. The mechanism is truthful.

Proof. This is a single parameter setting, and thus according to Myerson’s characterization it
is enough to show that the allocation rule is monotone and that the payments are threshold
payments.

To see the allocation is monotone, let the agents bids be c = (c1, . . . , cn−1) and c∗ for a∗,
and let S = [k] be the set that is chosen by the greedy procedure. In case f(a∗) >

∑k
i=1 vi,

to see that the allocation is monotone consider the bid profile where a∗ declares her cost to
be c′ < c∗. The greedy allocation over [n − 1] remains the same, thus S remains the same,
and since v∗ >

∑
i∈[k] vi we have that a∗ will be allocated under this bid profile as well, which

implies monotonicity. This argument holds for any bid below B, and thus B is the threshold
payment for a∗.

In case S = [k] is allocated, consider an agent ai ∈ S. First, note that the allocation is
monotone: declaring a cost c′i < ci will place ai in position i′ ≤ i, and since

c′i < ci ≤ B · vi∑
j≤i vj

≤ B · vi∑
j≤i′ vj

ai will be selected in the proportional share step. Since the rest of the agents values do
not change, all other agents in S \ {ai} will be selected in the proportional share rule as well
and the sum of their values will be greater than f(a∗), and they will be allocated. Thus,
the mechanism is monotone. To see that θi is the threshold payment, note that due to the
sorting of the agents we have that:

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 63

ci ≤ vi ·
(ck+1

vk+1

)
(5.1)

and due to the proportional share allocation condition we have that:

ci ≤ B ·
(vi∑

j≤i vj

)
≤ B ·

(vi∑
j≤k vj

)
(5.2)

Thus declaring a cost below θi is an upper bound on the threshold price. Observe
that declaring a value above this value will deny the agent from being allocated. When
θi = vi · ck+1/vk+1 declaring any cost c′i > θi places i after agent k+ 1 and since ck+1/vk+1 >
B/
∑

j≤k+1 vj, it will not be allocated. When θi = vi · B/
∑

j≤k vj declaring a higher cost
will place at least k − 1 items before i, and it will not be allocated.

Lemma 8. The mechanism is individually rational and budget feasible.

Proof. If a∗ is allocated, she is paid B which is trivially individually rational and budget
feasible. Otherwise, S = [k] is allocated, to see that the mechanism is individually rational
and budget feasible, observe that:

c1

v1

≤ . . . ≤ ck
vk
≤ min

{ck+1

vk+1

,
B · vk∑
i≤k vi

}
≤ vk ·B∑

i≤k vi
.

The second inequality from the right implies individual rationality and the rightmost
inequality implies budget feasibility.

Lemma 9. The mechanism is a 4-approximation.

Proof. Recall that we use k to denote the maximal index i for which ci ≤ B · vi∑
j≤i vj

and we

will use ` to denote the maximal index for which
∑

i≤` ci ≤ B. Similar to the proofs from
the previous chapter, observe that the optimal integral solution over N \ {a∗} is bounded
from above by the optimal fractional solution. Therefore:

OPT (N \ {a∗}, B) ≤
∑̀
i=1

vi +
(B −∑`

i=1 ci
c`+1

)
· v`+1.

For sake of the analysis we will assume v`+1 =
(
B−

∑`
i=1 ci

c`+1

)
· v`+1 and c`+1 = B−

∑`
i=1 ci.

First, we will show that
∑k

i=1 vi >
∑`+1

i=k+2 vi. Note that:

`+1∑
i=k+1

vi =
`+1∑
i=k+1

(ci
vi
· vi
)
≤ ck+1

vk+1

`+1∑
i=k+1

vi

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 64

and we can therefore conclude that ck+1 ≤ B · vk+1∑`+1
k+1 vi

. Due to the maximality of k this

necessarily implies:

k+1∑
i=1

vi >

`+1∑
k+1

vi

and we therefore get that:
∑k

i=1 vi >
∑`+1

i=k+2 vi. In conclusion, we get:

OPT ≤ OPT (N \ {a∗}, B) + f(a∗)

≤
`+1∑
i=1

vi + f(a∗)

=
k∑
i=1

vi + vk+1 +
`+1∑
i=k+2

vi + f(a∗)

< 2
k∑
i=1

vi + 2f(a∗) (5.3)

≤ 4 max
{ k∑

i=1

vi, f(a∗)
}

Thus choosing the maximum between
∑k

i=1 vi and f(a∗) is a 4-approximation.

Together, the above lemmas give us the following theorem.

Theorem 5.2.1. For additive functions there is a deterministic truthful 4-approximation
mechanism which is budget feasible.

5.3 Multi-Unit Demand Functions

In this section we discuss Multi-unit demand (called OXS in [37]) functions which can be
defined as a sum of unit demand functions. Recall that a function f : 2[m] → R is called
unit-demand if for all T ⊆ [m] there exist weights w1, . . . , wm s.t. f(T) = maxi∈T wi.

Definition 13. A function f : 2[n] → R+ is called multi-unit demand if there exists some
unit-demand functions f1, . . . , fm s.t. f(S) =

∑m
i=1 fi(S).

The multi-unit demand class of functions and is known to be submodular [37] and can
be thought of in terms of a one-sided matching on a weighted graph.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 65

Definition 14. Let G = (V ∪ U,E) be a bipartite graph. A one sided matching is a set of
edges in E where each edge has only one end point in U (but may have many end points
in V). Given an edge-weighted graph, the weight of a one-sided matching is the sum of the
weights of the edges in the matching, and the optimal one-sided matching is the one-sided
matching with the highest weight.

For multi-unit demand functions, the optimization problem can be stated as a matching
problem: Given a budget B, bipartite graph G = (V ∪ U,E), where each edge e ∈ E has
nonnegative cost ce and weight we, find a one-sided matching S in the set of all one-sided
matchings F s.t. S ∈ argmaxT∈F :

∑
e∈T ce≤B

∑
i∈T we.

The Mechanism for Multi-Unit Demand

We will use the same mechanism as in the additive case, with a minor adjustment. We
will use the broader definition of density sorting, and sort agents according to their marginal
contribution (rather than simply the values as in the additive case). More specifically, at each
stage i we select the agent (edge) ej = (uj, vj) for which cj/wj(i) is minimal, where wj(i) = wj
if the set of previously selected agents e1, . . . , ei−1 do not include uj and 0 otherwise.

Observe that unlike the additive case, the marginal contribution of an agent is affected by
the order in which it is considered in the mechanism. Fortunately, the structure of multi-unit
demand functions is simple, and we can make a minor adjustment to the proportional share
mechanism from the additive case.

Let a∗ = argmaxa∈Nwa and consider the agents in N \ {a∗} sorted according to the
density rule where:

c1

w1

≤ c2

w2(1)

≤ . . . ≤ cn
wn(n−1)

and let k be the maximal index i that respects the proportional share rule:

ci ≤ B ·
(wi(i−1)∑

j≤iwj(j−1)

)
.

This gives us a modified proportional share allocation rule, similar to the additive case.
To define the threshold payments, for each edge e, let ē be the edge that minimizes ci/wi
over all edges i that share a vertex with e, and let ce(k+1) be the minimum of cē/wē and
ck+1/w(k+1)(k). The threshold payment for the modified proportional share allocation rule
would be:

θe = min
{ we ·B∑

j≤k wj(j−1)

, ce(k+1)·we

}
.

The same reasoning as in additive case can be applied here to show these are indeed the
threshold payments, and that taking the maximum between the greedy allocation and a∗

does not break truthfulness. The approximation guarantee can also be derived using similar

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 66

ideas as in the additive case. Since multi-unit demand are a special case of submodular
functions, using similar arguments to those in the previous chapter we can show that:

3max{
∑
i≤k

wi + wk+1, f(a∗)}2
∑
i≤k

wi + wk+1 ≥
(

1− 1

e

)
OPTn−1

where OPTn−1 denotes the value of the optimal solution over N \ {a∗}. This implies:

OPT ≤ OPT (N\{a∗}, B)+f(a∗) ≤
(3e

e− 1

)
max

{ k∑
i=1

wi, wk+1

}
+f(a∗) ≤

(4e

e− 1

)
max

{ k∑
i=1

wi, f(a∗)
}

The maximum between a∗ and S gives a (4e
e−1

)-approximation guarantee.

Theorem 5.3.1. For multi-unit demand functions there is a deterministic truthful
(

4e−1
e−1

)
-

approximation mechanism which is budget feasible.

5.4 Coverage Functions

Coverage functions are an important class of submodular functions. They often capture the
main intricacies of submoudlar functions, yet they can be succinctly described. Recall that
a function f : 2[n] → R+ is a coverage function, if there exist some sets T1, . . . , Tn of some
universe of elements U , and f(S) = | ∪i∈S Ti|.

For coverage functions, the optimization problem is the budgeted Max-t-Cover prob-
lem: Given a budget B and family of sets T1, . . . , Tn over some universe U , where each set
has some cost ci ∈ R+, find a family S ∈ argmaxT :

∑
i∈T ci≤B| ∪i∈T Ti|.

Mechanism for Coverage Functions

In the previous chapter we presented a randomized mechanism for general submodular func-
tions. In this section we introduce a derandomization technique which is applicable to
coverage functions, as well as other functions as we shall see in the following sections.

Recall that the mechanism for the general submodular case randomizes between a∗ and
the set that is selected by the modified proportional share allocation rule, S. If it were not for
incentive constraints, one could simply compare f(S) and f(a∗) and by selecting the solution
that yields the higher value, guarantee a constant-factor approximation. In our case however,
as shown in example 4.4 this process would violate incentive compatibility. This happens
since there are cases where by declaring a lower cost, an agent changes the allocation of the
mechanism which may reduce the value of the proportional share solution. That is, letting A
denote the proportional share allocation, there may be cases where f(A(ci, ci−1)) > f(a∗) but
f(A(c′i, ci−1)) < f(a∗) when c′i < ci. To address this, we develop the following methodology
inspired by [8]. We will compare between a∗ and a solution to a nonlinear relaxation program

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 67

that doesn’t suffer from this property while the value of its solution is provably “close” to
that of the proportional share mechanism. The main idea is simple. Comparing a∗ to the
solution of the relaxation doesn’t break incentive compatibility, and since the solution of the
relaxation is close to that of f(S), the approximation ratio doesn’t suffer by much. First,
observe that the optimization problem can be reformulated as the following integer program:

max
∑m

j=1 zj j ∈ U (5.4)∑
i∈Cj xi ≥ zj, j ∈ U, (5.5)∑n
i=1 cixi ≤ B, (5.6)

0 ≤ xi, zj ≤ 1 i ∈ N , j ∈ U , (5.7)

xi ∈ {0, 1} i ∈ N (5.8)

where zj are variables representing the agents we wish to cover, xi are the variables repre-
senting the agents we can select, and Cj denotes the subset of agents that cover an agent
aj ∈ N . For a relaxation we will use:

max
∑m

j=1 min
{

1,
∑

i∈Cj xi

}
j ∈ U (5.9)∑

i∈Cj xi ≥ zj, j ∈ U, (5.10)∑n
i=1 cixi ≤ B, (5.11)

0 ≤ xi, zj ≤ 1 i ∈ N , j ∈ U , (5.12)

xi ∈ [0, 1] i ∈ N (5.13)

The optimal solution to this relaxation, denoted x∗ is computable in polynomial time and
is a relaxation of the integer program in the sense that for all x ∈ {0, 1} it is equivalent to
the integer program. In our mechanism we will compare a∗ and this relaxation to circumvent
the problem with incentive compatibility. We denote this relaxation as L, and use L(x) to
denote a solution that respects the constraints above where x ∈ [0, 1]n. We will show that the
solution of L(x) is “close” to f(S), which guarantees that comparing a∗ to L(x) rather than
f(S) does not hurt the solution by more than a constant factor. We will use L(x∗) to denote
the value of the optimal solution to the relaxation over the subsetNs = {ai ∈ N | ci ≤ B/2N
(i.e., we replace N with Ns in conditions (5.12) and (5.13) above).

The mechanism for coverage is a derandomized version of the mechanism for general
submodular functions from the previous chapter. First, the mechanism uses the modified
proportional allocation rule A from the previous chapter over the subset Ns and finds a
set of agents S (recall that a∗s ∈ argmaxa∈Nsf(a) is always included in S). Rather than
randomizing between a∗ ∈ argmaxa∈N\Nsf(s) and S, the mechanism compares f(a∗) with
L(x∗). If L(x∗) is greater it allocates to S, and otherwise allocates to a∗. First, we show
that such a comparison preserves monotonicity.

Lemma 10. The mechanism described above is monotone.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 68

Proof. To see that the mechanism is indeed monotone assume for purpose of contradiction
that for a given cost profile c there is an agent ai ∈ S with declared cost ci, that is not
allocated when declaring c′i ≤ ci while the rest of the agents declare the same cost as in
c. If ai 6= a∗ then it has been selected by the modified proportional share allocation rule
(denoted A) and L(x∗) > f(a∗). All agents in S will also be selected by A when declaring
a lower cost. If ai = argmaxa∈{ai:ci≤B/2}f(a) it is always selected by A. Otherwise, by
decreasing her cost the agent will move ahead in the sorting to place j ≤ i, and due to
the decreasing marginal contribution property her marginal contribution will only increase.
Thus, f(Sj−1∪{ai})−f(Sj−1) ≥ f(Si−1∪{ai})−f(Si−1) and since f is an increasing function
f(Sj−1 ∪ {ai}) ≤ f(Si). This implies:

c′i < ci ≤
B

2α

(f(Si)− f(Si−1)

f(Si)

)
≤ B

2α

(f(Sj−1 ∪ {ai})− f(Sj−1)

f(Sj−1) ∪ {ai}

)
and thus ai will meet the proportional share allocation rule2. Since L(x∗) is the value of the
optimal fractional solution, it can only increase when the costs are reduced, and therefore its
value will be larger than that of a∗ in this case as well. In case ai = a∗, it is allocated only
if L(x∗) < f(a∗). Note that her cost does not change the value of f(a∗), nor that of L(x∗)
which computes its solution over N \ {a∗}. Thus, f(a∗) remains larger and a∗ is allocated.
In summary, in all cases we get a contradiction.

The argument for showing that the mechanism has a constant factor guarantee depends
on showing that L(x∗) and the value of the proportional share solution f(S) are close.
Consider the nonlinear program relaxation:

max
∑m

j=1(1− Πi∈Cj(1− xi)) j ∈ U (5.14)∑
i∈Cj xi ≥ zj, j ∈ U, (5.15)∑n
i=1 cixi ≤

B
2
, (5.16)

0 ≤ xi, zj ≤ 1 i ∈ N , j ∈ U , (5.17)

xi ∈ [0, 1] i ∈ N (5.18)

Let F denote the above relaxation. Note that both F (x) and L(x) identify with our
integer program over integral solutions. The following lemma can be shown directly using
the pipage rounding technique in [1].

Lemma 11 ([1]). Let x∗ be the optimal solution for L. Then, there exists an integral solution
x̄ s.t. L(x∗) ≤ (2e

e−1
)F (x̄).

2Recall that α in the above inequality is the constant we use to “shrink” the budget in the general
submodular case to achieve budget feasibility.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 69

Using the above lemma, we can now conclude show that the mechanism which uses the
comparison discussed above is a constant factor approximation of the optimal soltion. Recall
that the optimal fractional solution L(x∗) is computed over Ns. First, in Lemma 6 from the

previous chapter we showed that there is a constant β =
(

(4α+2)e
e−1

)
s.t. OPT (Ns, B) < βf(S).

Since F is equivalent to our integer program over integral solutions, then OPT (Ns, B) is an
upper bound on any of its integral solutions. Together with Lemma 11 these two bounds
imply:

L(x∗) ≤
(2e

e− 1

)
OPT (Ns, B) < β

(2e

e− 1

)
f(S)

If L(x∗) ≥ f(a∗), from the above inequality we get:

OPT ≤ OPT (Ns, B) + f(a∗) ≤ OPT (Ns, B) + L(x∗) ≤ β
(2e

e− 1
+ 1
)
· f(S)

and we indeed have a constant factor approximation. Otherwise, if L(x∗) < f(a∗), then
since L(x∗) is an optimal fractional solution over Ns it is an upper bound on OPT (Ns, B).
Thus in this case since OPT ≤ OPT (Ns, B) + f(a∗) ≤ 2f(a∗) the solution is a constant
factor approximation as well.

Theorem 5.4.1. For coverage functions there is a deterministic truthful budget feasible
mechanism that obtains a constant factor approximation.

5.5 Cut Functions

The utility functions we discussed in this chapter were increasing: functions for which S ⊂ T
implies f(S) ≤ f(T). However, there are utility functions where this condition does not
necessarily apply. In cases where S ⊆ T does not necessarily imply f(S) ≤ f(T), we refer to
the utility function as non-increasing3. In this section we investigate a class of non-increasing
utility functions in the budget feasibility framework. We will examine a class we call cut
functions : functions where the value of a subset of agents can be represented as a cut on
a graph. This class of functions is a representative of the class of non-increasing utility
functions, which, as we now show, has constant factor approximation mechanisms that are
budget feasible. The results in this section lead us to conjecture that there are broader
classes of non-increasing functions with desirable guarantees in the budget feasibility model.

Definition 15. A cut function f : 2[n] → R≥0 is a function for which there exists a graph
G = (N , E) s.t. f(S) = |C(S)|, where C is the cut induced by S, i.e. C(S) = {(u, v) ∈ E :
u ∈ S, v ∈ N \ S}.

3In optimization literature this property is referred to as nonmonotnicity. To avoid confusion in discussion
of monotonicity of the allocation function, we use the use the term non-increasing.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 70

We note that maximizing this function is a variant of the classic Max Cut problem. We
denote the degree of a vertex ai ∈ N by di (when it will be clear from the context we will
use i instead of ai) and for any T ⊆ N , we use E(T) to denote the set of edges that have at
least one vertex in T , i.e. E(T) = {(u, v) ∈ E : u ∈ T}. In our setting each vertex is held by
a single strategic agent with a private cost and our objective is to maximize f(S) = |C(S)|
under the budget constraint.

Mechanisms for Cut Functions

We first show a randomized mechanism that is budget feasible and obtains a constant factor
approximation. We will then discuss its derandomization which also guarantees a constant
factor approximation.

A Randomized Mechanism

Consider the following mechanism:

A Randomized Mechanism for Cut Functions

1. Set Ns = {ai ∈ N : ci ≤ B/2}, a∗s ∈ argmaxai∈Nsdi, S = {a∗s} and i ∈ argmaxi∈Ns\{a∗s}
di
ci

2. While ci ≤ B
24
·
(
|C(S∪{ai})|−|C(S)|

C(S∪{ai})|

)
:

a. Add i to S
b. Set N̄ to be all j ∈ Ns \ {a∗s} for which |C(S ∪ {j})| − |C(S)| ≥ 2

3
dj

c. Set i ∈ argmaxj∈N̄
|C(S∪{aj})|−|C(S)|

cj

Output: Choose u.a.r between S and argmaxi∈N\Nsdi

It is easy to verify that the above mechanism is monotone in the agents’ costs and thus
truthful. We first prove its approximation guarantee before showing that it is indeed budget
feasible. In the following proofs we will use Si to denote the subset of agents selected by the
mechanism after the ith stage.

Lemma 12. At each stage j we have |C(Sj)| ≥ 1
3
|E(Sj)|.

Proof. We will show by induction on the stage of the mechanism that |C(Sj)| ≥ 1
3

∑
i∈Sj di

which suffices to prove the lemma since
∑

i∈Sj di is an upper bound on |E(Sj)|.
In the first stage of the mechanism the inequality trivially holds. For a general step j, the

vertex aj that is selected must respect the condition |C(Sj−1∪{aj})|−|C(Sj−1)| ≥ 2
3
dj. This

condition implies that when adding aj there are at most 1
3
dj edges between aj and vertices

in Sj−1 and thus by adding aj to Sj−1 at most 1
3
dj edges will be removed from the cut and

2
3
dj edges will be added. Thus, together with the inductive hypothesis we have that:

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 71

|C(Sj)| ≥
(
|Cj−1| −

1

3
dj

)
+

2

3
dj ≥

(1

3

∑
i∈Sj−1

di −
1

3
dj

)
+

2

3
dj =

1

3

∑
i∈Sj

di

Lemma 13. Let S∗ be the optimal solution over agents in Ns with budget B′ = B
24

, then

|C(S)| ≥ |C(S∗)|
6

.

Proof. Partition the set of edges in C(S∗) to the following disjoint subsets of edges: S∗1 =
{(u, v) ∈ C(S∗) : u, v ∈ S}, S∗2 = {(u, v) ∈ C(S∗) : u ∈ S, v /∈ S}, S∗3 = {(u, v) ∈ C(S∗) :
u, v /∈ S}. First, as implied by Lemma 12, we have that |E(S) \ C(S)| ≤ 2|C(S)| and thus:

|C(S∗1)| ≤ |E(S) \ C(S)| ≤ 2|C(S)| (5.19)

In the case of S∗2 , since each vertex has an endpoint in S, it must be that |C(S∗2)| ≤ |C(S)|,
and thus:

|C(S∗2)| ≤ |C(S)| (5.20)

In the case where S∗3 = ∅ the above inequalities suffice to prove our lemma. Otherwise, to
bound the ratio between |C(S∗3)| and |C(S)|, assume S∗3 6= ∅ and w.l.o.g assume its vertices
are labeled s.t. vertex ai has the greatest ratio between marginal contribution to the cut and
cost, given the cut induced by vertices a1, . . . , ai−1. In such an ordering, for all i < r = |S∗3 |
we get:

|C(Ti)| − |C(Ti−1)|
ci

≥ |C(Ti+1)| − |C(Ti)|
ci+1

where Ti is the subset that includes the first i vertices taken according to the ordering and
T0 = ∅. Let ak be the first vertex not selected by our mechanism to be in S. In this case we
have that:

ck > B′ ·
(|C(S ∪ {ak})| − |C(S)|

|C(S ∪ {ak})|

)
(5.21)

Since we assume S∗3 6= ∅ and S∩S∗3 = ∅, all vertices in S∗3 respect the condition of having
at least 2/3 of their edges not connected to vertices in S, and thus such a vertex must exist.
Also, since S∗3∩S = ∅, it follows that ak is either in S∗3 , or that every vertex in S∗3 has smaller
marginal contribution ratio to cost than that of ak. Thus, in either case for any i ∈ [r] we
have that:

ck
(|C(S ∪ {ak})| − |C(S)|)

≤ ci
di
≤ ci

(|C(Ti)| − |C(Ti−1)|)
(5.22)

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 72

where the first inequality is due to the fact that the vertices in S∗3 do not have endpoints in
S and thus their marginal contribution equals their degree, and the second inequality is due
to the decreasing marginal utilities property of the cut function.

Since S∗3 is feasible we have that
∑r

i=1 ci ≤ B′, which we can write as:

r∑
i=1

(ci
|C(Ti)| − |C(Ti−1)|

)
·
(
|C(Ti)| − |C(Ti−1)|

)
≤ B′

Since S∗3 = Tr we have that |C(S∗3)| =
∑r

i=1

(
|C(Ti)| − |C(Ti−1)|

)
and therefore together

with (5.22) above we have:

ck ·
(|C(S∗3)|
|C(S ∪ {ak})| − |C(S)|

)
≤ B′

The above inequality, together with (5.21) implies that |C(S ∪{ak})| > |C(S∗3)|. Since S
includes the vertex with largest degree it follows that |C(S)| ≥ di, for any i ∈ Ns, and thus:

2|C(S)| ≥ |C(S)|+ dk ≥ |C(S) ∪ {ak}| ≥ C(S∗3) (5.23)

To conclude, let αi =
|C(S∗i)|
|C(S∗)| for i ∈ {1, 2, 3}. Since the sets are disjoint α1 +α2 +α3 = 1.

Since there must exist an αi ≥ 1/3, from (5.19),(5.20),and (5.23) it follows that |C(S)| ≥
|C(S∗)|

6
.

Lemma 14. The mechanism obtains a constant factor approximation ratio in expectation.

Proof. First, observe that since f is subadditive, for any integer α > 1 when the agent a∗s
with largest value is in OPT (Ns, B/α), then we have that:

α ·OPT (N , B/α) + (α− 1)f(a∗s) ≥ OPT (N , B) (5.24)

and therefore (2α− 1)OPT (N , B/α) ≥ OPT (N , B).
Since the vertex with largest degree inNs is included in S, we have that 47·OPT (c,Ns, B/24) ≥

OPT (c,Ns, B) and thus by Lemma 13 we have that 282|C(S)| ≥ OPT (Ns, B). Since we se-
lected the optimal solution in N \Ns with probability 1/2 and OPT (N , B) ≤ OPT (Ns, B)+
OPT (N \Ns, B) the mechanism is a 564-approximation.

We will complete the proof of our theorem by showing the mechanism is indeed budget
feasible. Unlike the approach taken in the previous where a characterization of payments was
shown, we will prove budget feasibility by directly showing a bound on threshold payments.

Lemma 15. The mechanism is budget feasible.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 73

Proof. It’s easy to see that the threshold payment for a∗s with largest degree in Ns is B
2

, as it
is always selected by the mechanism. To bound the threshold payment of the other agents in
S by the remaining budget B

2
, for a given bidding profile c = (c1 . . . cn), let aj be a selected

vertex with bid cj, and let c′j > cj be the maximum bid that aj can declare and remain
selected when all other agents declare the same cost, and let c′ = (c1, . . . , cj−1, c

′
j, cj+1 . . . , cn).

Let S ′ and S ′i denote the set of selected agents by the mechanism and agents selected at stage
i, respectively, when the bid profile is c′.

Let OPT (c,N , B) denote the value of the optimal solution over the set of agents N with
bid profile c and budget B. First, observe that:

|C(S)| ≤ OPT (c,Ns, B′) ≤ OPT (c,Ns \ {j}, B′) + dj ≤ 2
(
OPT (c′,Ns, B′)

)
Together with Lemma 13, the above inequality implies:

|C(S)| ≤ 2
(
OPT (c′,Ns, B′)

)
≤ 12|C(S ′)| . (5.25)

W.l.o.g. assume that when the bid profile is c agent aj is selected at stage j. Notice that
when running the mechanism with bid profile c′, the same first j − 1 agents are selected as
when running the mechanism with the profile c, and we have that:

|C(S ′r−1) ∪ {aj}| − |C(S ′r−1)| ≤ |C(Sj−1) ∪ {aj}| − |C(Sj−1)|
where r is the stage in which aj is selected when bidding c′j. This implies:

c′j
(|C(Sj)| − C(Sj−1)|)

≤
c′j

(|C(Sr ∪ {aj})| − C(Sr)|)
≤ B′

|C(S ′)|
(5.26)

where the second inequality is due to the fact that every agent ai ∈ S ′ respects the condition

ci ≤ B′ ·
(
|C(S ′i)| − |C(S ′i−1)|

)
/|C(S ′)|. Together, (5.25) and (5.26) imply:

c′j ≤ B′
(|C(Sj−1 ∪ {aj})| − |C(Sj−1)|

|C(S ′)|

)
≤ 12B′

(|C(Sj−1 ∪ {aj})| − |C(Sj−1)|
|C(S)|

)
Since c′j is the maximum bid an agent can declare, it follows that θj (the threshold

payments for any agent j) are bounded from above by a constant factor of their marginal
contribution:

θj ≤ 12 ·B′
(|C(Sj| − |C(Sj−1)|

|C(S)|

)
.

Since |C(S)| =
∑

j∈S′(|C(Sj| − |C(Sj−1)|) and B′ = B/24, the total payments to agents
in S \ {a∗s} are bounded by B/2 which implies budget feasibility.

Theorem 5.5.1. For cut functions there is a randomized O(1)-approximation mechanism
that is universally truthful and budget feasible.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 74

A Deterministic Mechanism for Cut Functions

The approximation guarantee provided by our mechanism depends on randomizing between
the subset S selected in steps (1) and (2) of the above mechanism and the vertex with
largest degree in N \ Ns. In order to derandomize the mechanism and provide a bounded
approximation guarantee we need to select between the two solutions, based on the value of
the cuts they produce. The problem with using a direct comparison between the values of
two solutions is the same as in the case of coverage functions from the previous section. We
give a concrete example of such a case for cut functions below.

Example: A direct comparison breaks monotonicity. Consider a graph with the
disjoint sets of vertices: {a1, a2, a3, a4},N1,N2,N3,N4, where |N1| = n+ 2, |N2| = n, |N3| =
n− 1, |N4| = 3n, for some integer n > 100. For every i = 1 . . . 4 each vertex a ∈ Ni is only
connected to ai, and a2 is connected a3. We will show that there is a cost profile s.t. the
mechanism allocates to {a1, a2, a3}, but as a2 slightly decreases her cost declaration, a3 is no
longer allocated and since d4 = 3n ≥ |C({a1, a2})| = 2n+ 2, a direct comparison will result
in a2 not being selected, and thus breaking monotonicity. For a budget B = 2 and costs
c1 = ε, c2 = (n

n+1
)c3 + ε, c3 = n−1

3n+2
+ ε, c4 = B, using a small ε (say ε = 2−n) serves as such

an example. In this instance, the mechanism runs the procedure only on {a1, a2, a3} and
compares its solution with d4. Under these costs one can verify that the procedure selects
{a1, a2, a3} which produce a cut with 3n+ 1 > d4. If a2 reduces her cost to ε however, then
a1, a2 are selected, a3 is not selected as her marginal contribution now dropped, and since
C({a1, a2}) = 2n+ 2 < d4, a4 will be allocated instead.

Derandomization via Relaxation

To derandomize the mechanism in a manner that preserves monotonicity and provides a
constant factor approximation guarantee we use the same approach as in the previous section
for coverage functions: rather than a direct comparison between the two solutions, we will
compute a linear programming relaxation over Ns, compare between the value returned by
this solution and the largest degree in N \ Ns, and select S if and only if the solution
returned by the relaxation is greater. As in the coverage case, since the solution returned by
the relaxation will be an optimal fractional solution, such a scheme guarantees monotonicity:
an agent in Ns that reduces her cost can only increase the value of the optimal fractional
solution, thus avoiding the problem discussed in the above example. As long as we can
guarantee that the fractional solution returned by the relaxation is a constant factor away
from the optimal integral solution over Ns, implementing such a scheme will guarantee a
constant factor approximation.

More concretely, the optimization problem can be reformulated as the following integer
program:

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 75

max
∑
i<j

zij (5.27)

s.t. zij ≤ xi + xj, i < j, (5.28)

zij ≤ 2− xi − xj i < j, (5.29)∑
i∈N

xici ≤ B, (5.30)

xi, zij ∈ {0, 1}, i ∈ N , i < j (5.31)

where xi, ci are variables representing the vertices and their costs, respectively, and zij
represent the edges. As discussed above, we would like to compute a fractional solution in
polynomial time that will be a constant factor away from the optimal integral solution of
the above program. We will do this by showing that the linear program relaxation has a
constant integrality gap. To bound the integrality gap of the LP relaxation of the problem,
we assume that ci ≤ B

2
, for every i.

Theorem 5.5.2. The LP has a constant integrality gap.

Proof. To prove the theorem we consider the following randomized rounding algorithm:

Randomized Rounding for Cut Functions
1. Add each vertex ai to the cut S with probability xi

4

2. If
∑

i∈S xi · ci > B then set S ′ = ∅ else S ′ = S

Output: S ′

We will show that Pr[(i, j) ∈ S ′] ≥ 7
64
zij. Thus, if we let 1ij be the indicator variable that

gets a value of 1 when (i, j) ∈ S ′ and 0 otherwise, we have that E[1ij] ≥ 7
64
zij. By linearity

of expectation, E[|C(S ′)|] =
∑

(i,j)∈E E[1ij] ≥ 7
64

∑
(i,j)∈E zij. Therefore there must always

be an integral solution that has a value of at least 7
64

of the value of the optimal fractional
solution. We first calculate the probability that (i, j) ∈ S:

Pr[(i, j) ∈ S] =
(

1− xi
4

)xj
4

+ (1− xj
4

)
xi
4

=
xi
4

+
xj
4
− 2 · xi

4
· xj

4

≥ zij
4
− xi · xj

8

≥ zij
4
−

(
zij
2

)2

8

≥ 7

32
zij

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 76

where the first equality is by the properties of the randomized rounding, the first inequality
is by the LP constraints, and the second inequality by basic analysis and using zij ≤ xi +xj.
The last inequality uses the fact that zij ∈ [0, 1] and thus zij > z2

ij.
Next we calculate Pr[S ′ = ∅|(i, j) ∈ S]. If (i, j) ∈ S this implies that exactly one of the

vertices i and j is in S. Assume without loss of generality that i ∈ S. Now S ′ = ∅ only if the
total budget exceeds B. Observe that E[

∑
i′∈S,i′ 6=j,i′ 6=i ci′|i ∈ S, j /∈ S] ≤ B

2
since each i′ is

selected into S with probability exactly
xi′
4

and that
∑

i∈N xici ≤ B by the LP constraints.
By Markov’s inequality:

Pr
[∑
i′∈S,i′ 6=j,i′ 6=i

ci′ ≥
B

2

∣∣∣ i ∈ S, j /∈ S] ≤ 1

2

Taking into account that ci ≤ B
2

, by our assumption, we can now bound the probability
that the budget used by S does not exceed B:

Pr
[
S ′ 6= ∅

∣∣∣ i ∈ S, j /∈ S] ≥ Pr
[∑
i′∈S,i′ 6=j,i′ 6=i

ci′ ≤
B

2

∣∣∣ i ∈ S, j /∈ S] ≥ 1

2

To conclude, Pr[(i, j) ∈ S] ≥ 7zij
32

and also Pr[(i, j) ∈ S ′|(i, j) ∈ S] ≥ 1
2
. Thus Pr[(i, j) ∈

S ′] ≥ 7zij
64

, for every (i, j) ∈ E, as needed by the discussion above.

We can now formally state the deterministic mechanism. We use A to denote the alloca-
tion rule in steps (1) and (2) of the randomized mechanism, LP to be the optimal fractional
solution, and LP (x) to be the value of the LP evaluated on x.

A Deterministic Mechanism for Cut Functions

1. Let Ns = {i :∈ N : ci ≤ B/2}, a∗ = argmaxi∈N\Nsdi
2. Compute S = A(Ns, B) and x∗ = LP (Ns, B)

Output: if LP (x∗) ≥ f(a∗) return S o.w. return {a∗}

Theorem 5.5.3. There is a O(1)-approximation polynomial time mechanism for cut func-
tions which is truthful and budget feasible.

Proof. Truthfulness and budget feasibility follow from the arguments in the case of the
randomized mechanism. For the approximation guarantee, note that OPT (c,N , B) ≤
OPT (c,Ns, B) + OPT (c,N \ Ns, B). Since a∗ is the optimal solution in N \ Ns if its
value is larger than LP (x∗) it must be larger than the optimal integral solution as well, and
thus choosing a∗ guarantees a 2-approximation in this case. Otherwise we have:

|C(S)| ≥ OPT (c,Ns, B)

282
≥ 7 · L(x∗)

64 · 282
≥ |C({a})|

2579

Therefore in this case, we are guaranteed that |C(S)| ≥ OPT (c,N ,B)
5158

.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 77

5.6 Subadditive Functions

A function f : 2[n] → R is subadditive if f(S ∪ T) ≤ f(S) + f(T). A näıve representation
of subadditive functions requires exponential space in n, and thus, as in other such cases we
discussed throughout this thesis, we assume our mechanisms are given access to an oracle
which enables evaluating the function f . Throughout this thesis, whenever a function had
exponential representation, we assumed our algorithm has access to a value oracle which
receives a subset S and returns f(S). In this section we will use a stronger oracle model,
since, as we now show, reasonable approximation ratios cannot be obtained using value
oracles.

A Lower Bound in the Value Query Model

Recall that a function f : 2[n] → R is called fractionally subadditive if there exists a finite
set of additive valuations {f1, . . . , ft} s.t. f(S) = maxi∈[t] fi(S). Every submodular function
can be represented as a fractionally subadditive function, and all fractionally subadditive
functions are subadditive [37]. We will use a straightforward reduction from a lower bound
from [39] to show that even in the case of fractionally subadditive functions, it is infeasi-
ble to obtain reasonable approximations using value query oracles (regardless of incentive
considerations).

Let ε > 0, v(S) =
(

1+ ε
2

n
1
2

)
|S| and for any T ⊆ [n] let vT (S) = |S ∩ T |. Observe

that both functions are additive. Let v∗(S) = maxT :|T |≤(1+ε/2)nε vT (S)}, and let f(S) =
max{v∗(S), v(S)}.

Lemma 16 ([39]). There exists a set T , |T | =
√
n, for which distinguishing between the

functions f and max{f, vT} requires using exponentially many value queries in nε.

If we let c1 = c2, . . . , cn = 1 and B =
√
n, for T as in the lemma, we have that

∑
i∈T ci =

B, and f ′(T) =
√
n while f(T) = (1 + ε/2)nε. Thus, an algorithm that approximates

better than the desired approximation ratio must be able to distinguish between these two
functions, which requires exponentially many value queries.

A Mechanism for Subadditive Functions

Since value oracles cannot obtain a reasonable approximation, we will consider use stronger
oracle model in this section. A demand oracle receives a vector of prices p1, . . . , pn and
returns a subset S s.t. S ∈ argmaxT∈[n]f(T) −

∑
i∈T pi. It is known that demand oracles

are stronger than value oracles: a value query can be simulated by a polynomial number
of demand queries, though there are examples of demand queries that cannot be simulated
with a polynomial number of value queries [10]. Since a value query can be simulated by
a polynomial number of demand queries and we’re assuming we have access to a demand

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 78

oracle, we therefore allow our algorithms in this section to use value queries. We assume,
without loss of generality, that 1 is the smallest non-zero value of f . We note that in this
section we assume that f is increasing.

We start by describing a procedure for finding a bundle of a fixed size t with value
close to the bundle of size t with the highest value. For a subadditive function f , let
V = {1, 2, 4, . . . 2dlog f(N)e}. We show that polynomially many demand queries suffice to
achieve a 4-approximation4.

A Procedure for Finding an Approximate Bundle of Size t

For each v in V :
a. Find the bundle S that maximizes the demand when the price per item is v

2t

b. If f(S)− |S| · t < v
2

then set Sv = ∅ and continue to the next v
c. Else, if |S| > t, let Sv be some bundle of size tsuch that Sv ⊆ S. Else, let Sv = S

Output: (v, Sv) for the maximal v ∈ V such
that Sv is not empty

The procedure clearly uses a polynomial number of demand queries. Before proving some
of its properties and correctness, we make the establish the following claim.

Claim 5.6.1. Let f be a subadditive function and S ∈ argmaxTf(T)−p·|T | for some p ∈ R+.
Then for each S ′ ⊆ S we have that f(S ′) ≥ p · |S ′|.

Proof. From subadditivity we have that:

f(S)− p · |S| ≤ f(S \ S ′)− p · |S \ S ′|+ f(S ′)− p · |S ′| (5.32)

and since S maximizes the demand we have:

f(S \ S ′)− p · |S \ S ′| ≤ f(S)− p · |S| (5.33)

Together, these inequalities imply that f(S ′)− p · |S ′| ≥ 0 as required.

Lemma 17. Let S∗ ∈ argmax|S|=tf(S). The procedure finds a subset Sv such that f(Sv) >
f(S∗)

4
. Furthermore, v is either the maximal value in V such that v ≤ f(S∗) or v is the

minimal value in V such that v > f(S∗).

Proof. First, consider an iteration for which v ≤ f(S∗). Setting a price p = v/2t for all
items, the demand query oracle finds a subset S that maximizes the demand, i.e. S ∈
argmaxTf(T)− p · |T |. In particular:

4In fact, our algorithm can be slightly modified to achieve a (2 + ε)-approximation, but the improved
approximation algorithm does not suffice for constructing truthful budget feasible mechanisms.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 79

f(S)− p · |S| ≥ f(S∗)− p · |S∗| = f(S∗)− v

2t
· t = f(S∗)− v

2
≥ f(S∗)

2

Clearly, f(S)− p · |S| ≥ f(S∗)
2

implies f(S) ≥ f(S∗)
2

.
If |S| ≤ t then Sv = S and we are already done. If |S| > t, by Claim 5.6.1: f(Sv) ≥

p · t = t · v
2t

= v
2
. Notice that for the maximal v ∈ V where v ≤ f(S∗), we have that v ≥ f(S∗)

2
,

thus f(Sv) >
f(S∗)

4
.

To finish the proof, consider v > 2f(S∗). Observe that f(S) − |S| · v
2t

, thus any bundle
of size less than t will have a negative profit in Step (b) and the iteration will fail. Thus,
assume towards contradiction that the iteration passes Step (b). By our discussion, we
have that |S| > t. In this case, Claim 5.6.1 gives us that f(Sv) ≥ t · v

2t
= v

2
> f(S∗). A

contradiction.

A Randomized Mechanism

We first use the above procedure to construct a randomized mechanism. In the next sub-
section we will derandomize this construction to obtain a deterministic mechanism. For this
section, let α = 2 · dlog ne and a∗ ∈ argmaxa∈Nf(a).

A Randomized Mechanism for Subadditive Functions

For each t in T = {1, 2 . . . 2dlogne} in decreasing order:
a. Let Ns be the set of items with cost at most B/(α · t) in N \ {a∗}
b. Using the procedure, find (vt, St) among items in Ns

Output: Choose u.a.r between ∪tSt and agent a∗

Lemma 18. The mechanism provides an approximation ratio of O(log2 n).

Proof. Denote by S∗ the set of agents participating in the optimal solution. Let S∗1 = {ai ∈
S∗ : ci >

B
α
}, and S∗2 = S∗ \ S∗1 .

Suppose that f(S∗1) ≥ f(S∗)
2

. Since the payment for each of the agents in S∗1 is at least
B
α

, |S∗1 | ≤ α. By subadditivity there must be one bidder a ∈ S∗1 such that f(a) ≥ f(S∗1)

α
.

In particular we have that f({a∗}) ≥ f(a). Thus, if a∗ is chosen this gives us an O(log n)
approximation. Since a∗ is chosen with probability 1

2
the expected approximation guarantee

is O(log n) in this case.

Assume now that f(S∗2) ≥ f(S∗)
2

(this is the only other case since by subadditivity f(S∗1)+

f(S∗2) ≥ f(S∗)). If f(a∗) ≥ f(S∗2)

2
, then similarly to before we have a constant approximation

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 80

if a∗ is chosen (which happens with probability 1
2
). Otherwise, let S ′2 = S∗2 \ {a∗}. We

have that f(S ′2) ≥ f(S∗)
4

. Now put agents in S ′2 in bins according to their cost s.t. agent
ai ∈ S ′2 is in bin j if and only if B/(α · 2j+1) ≤ ci < B/(α · 2j) where j ∈ T . Since there are
O(log n) bins, subadditivity implies that there is a single bin k with value that is at least
O(log n)-fraction of f(S ′2). It follows that the optimal solution of size α · 2k over all items
with cost at most B/(α · 2k) has value at least O(f(S ′2)/ log n). Since one of the iterations
of the procedure gives us a set Sk of size 2k that is a 4-approximation to the solution of size
2k, and by subadditivity the solution of size 2k is an O(α)-approximation to the solution of
size O(α · 2k), we have that f(∪tSt) ≥ f(S ′2)/4 log2 n. Therefore, with probability 1

2
we have

an O(log2 n) approximation in this case.

Lemma 19. The mechanism is universally truthful.

Proof. We will show that the mechanism is monotone. Fix the random coin and suppose
that agent a∗ wins. Notice she will remain selected regardless of her cost, and in particular
if she reduces her cost. Assume now that the selected set is ∪tSt, and consider some agent
ai 6= a∗ that wins and reduces her cost from ci to c′i. Let t ∈ T be the maximal such that
ai ∈ St. Notice that ai will be selected to St also if she reduces her cost (since the procedure
is oblivious to the actual cost of the agent and takes into account only that the cost is smaller
than some threshold). Therefore we have that the mechanism is monotone.

Lemma 20. The mechanism is budget feasible.

Proof. Recall that the payment for an agent is the maximal cost that she can declare and
remain allocated5 (the threshold cost). It is not hard to see that if a∗ is chosen then her
payment is B. For each other agent ai that is allocated we claim that the threshold cost is at
most B

αti
where ti is the maximal index such that ai ∈ Sti . This implies that the mechanism

is budget feasible since for each t ∈ T , at most t agents may receive a payment of B/(α · t).
Thus the total payment in that case is

∑
t∈T t ·B/(α · t) ≤ |T |

B
α
≤ B.

We now show that for each other agent ai that is chosen the threshold cost is at most
B
αti

. Suppose agent ai has cost greater than B
αti

. In this case ai will not be selected when the
size of the bundle considered is ti or smaller, because her cost is too high. Also ai will not
be selected in iterations in which the bundle size is larger than ti: in these iterations either
the procedure runs on the exact same set Ns of items (if his cost is still small enough), and
for this set of items we know that i is not selected, or ai has a cost that is too high and thus
is not considered for selection at all.

In conclusion we have the following theorem.

Theorem 5.6.1. The mechanism is universally truthful, budget feasible, and provides an
expected approximation ratio of O(log2 n).

5The mechanism is universally truthful so we fix the random coin and prove the budget feasibility of the
mechanism for every outcome of the random coin.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 81

A Deterministic Mechanism

Our next goal is to construct a deterministic mechanism with a good approximation ratio.
Similar to our previous discussions, selecting the highest-value outcome of the two possi-
ble ones breaks incentive compatibility. In this case an agent that reduces her cost might
decrease f(∪tSt)6. Therefore, as in the previous cases we will use a “monotone estimator”
for the value of the union that has the property that if the cost of an agent decreases the
value of the monotone estimator increases. We make sure that the value of the monotone
estimator is “close” to f(∪tSt). Comparing the value of the monotone estimator to the value
of single agent with the best value gives us a monotone O(log3 n) mechanism. We note
that, ignoring computational constraints, one can use the optimal algorithm as a monotone
estimator an obtain a deterministic O(log2 n) approximation. As before, let α = 2 · dlog ne
and a∗ ∈ argmaxa∈mathcalNf(a).

A Deterministic Mechanism For Subbadditive Functions

For each t in T = {1, 2 . . . 2dlogne} in decreasing order:
a. Let Ns be the set of items with cost at most B/(α · t) in N \ {a∗}
b. Using the procedure, find (v, St), |St| = t,among items in Ns
c. Using the procedure, find (vt, S), |S| = αt, among items in Ns

Output: If
∑

t vt ≥ f(a∗) then output ∪tSt. Else choose only agent a∗

Lemma 21. The mechanism provides an approximation ratio of O(log3 n).

Proof. Denote by S∗ the set of agents participating in the optimal solution. Let S∗1 = {ai ∈
S∗ : ci >

B
α
}, and S∗2 = S∗ \ S∗1 . We start by showing two useful facts. The first one is:

2
∑
t

vt ≥ f(S∗2) (5.34)

This is because for every t, 2 · vt ≥ f(St) and from subadditivity. For each t, let S∗t be
the optimal solution of items of size at most B/(α · t). The second inequality is:

∑
t

vt ≤ 4
∑
t

f(S∗t) ≤ 4(log n) ·
∑
t

f(St) ≤ 4 log2 n · f(∪tSt)

6This may happen since we do not have exact mechanisms to find the best bundle of size t but rather
use an approximation mechanism to do so.

CHAPTER 5. BUDGET FEASIBLE MECHANISMS II: ADVENTURES IN
APPROXIMATION 82

The first inequality follows since vt is a 4 approximation to S∗t . The second one follows
since f is subadditive and since in S∗t there are at most a multiplicative factor of log n more
items than in St. The third inequality is because t can take at most log n values.

We now proceed to the proof itself. Suppose that f(S∗1) ≥ f(S∗)
2

. The payment of each
of the agents in S∗1 is at least B

α
, hence |S∗1 | ≤ α. Therefore, by subadditivity there must be

one bidder a ∈ S∗1 such that f(a) ≥ f(S∗1)

α
. In particular we have that f(a∗) ≥ f(a). Thus, if

a∗ is chosen this gives us an O(log n) approximation. Else, we have that:

4 log2 n · f(∪tSt) ≥ Σtvt ≥ f(a) ≥ f(S∗1)

α
≥ f(S∗)

2 log n

The first inequality follows from (5.35). This proves that in the case that a∗ is not chosen
we have an O(log3 n) approximation.

Assume now that f(S∗2) > f(S∗)
2

(again, subadditivity implies this is the only other case).

If f({a∗}) ≥ fS∗2)

2
, then similarly to the previous case we have a constant approximation

if a∗ is chosen. If ∪tSt is selected then arguments very similar to (5.35) prove that the
approximation ratio is O(log2 n) in this case.

Therefore, let S ′ = S∗2 \ {a∗} and assume that f(S ′) ≥ f(S∗)
4

. Using (5.34) and (5.35)
together we have that 8 log2 n · f(∪tSt) ≥ f(S∗2), i.e., an O(log2 n) approximation. If a∗

is selected then, using (5.34), f(a∗) ≥ Σtvt ≥ f(S∗)
4

, i.e., a constant approximation in this
case.

Lemma 22. The mechanism is truthful.

Proof. We will show the mechanism is monotone. Suppose that a∗ is allocated. If she reduces
her cost she clearly remains allocated, since the expression

∑
t vt is not affected. Therefore,

assume that some agent ai 6= a∗ is allocated and reduces her cost from ci to c′i. We will
show that the expression

∑
t vt does not decrease in this case, and monotonicity will follow.

Furthermore, we will show that for every t the value of vt cannot decrease. To see this, fix
some t. The only case where the output of the procedure might change is when ci >

B
t

but
c′i ≤ B

t
. Notice that the difference is that the procedure considers one more item i. In this

case it might happen that the value of the set f(St) will go down, but we will show that the
value vt cannot decrease. This follows from the observation that the procedure succeeds for a
certain value of v ∈ V if it succeeds in step (b): i.e., if there exists a profit maximizing bundle
with large enough value. However, if such bundle exists, it will still exist when considering
more items.

The arguments for budget feasibility are almost identical to the arguments in the proof
of Lemma 20. Therefore, our theorem follows from all the above lemmas.

Theorem 5.6.2. The mechanism uses a polynomial number of demand queries, is truthful,
individually rational, and budget feasible. Its approximation ratio is O(log3 n).

83

Chapter 6

Conclusions

In this thesis we presented impossibility and possibility results of incentive compatible mech-
anisms. Our investigation was conducted through abstractions of network problems which
capture fundamental challenges at the intersection of incentives and computation.

In the first part of the thesis we proved the limitation of incentive compatible mecha-
nisms. We showed that there is a class of problems (combinatorial public projects) that
are in APX and have an optimal incentive compatible algorithm, and yet no constant
approximation-ratio is achievable by algorithms that are both computationally feasible and
incentive compatible. The impossibility result settles the long-standing open question in
algorithmic mechanism design regarding the hardness of polynomial time truthfulness. The
combinatorial public projects provides a canonical example where there are substantial gaps
between truthful and unrestricted algorithms. The approximation and truthfulness bound-
aries described the second chapter of this part can be the first step towards developing new
solution concepts that may provide provable guarantees in cases where incentive compatibil-
ity fails.

In the second part of this thesis we showed the possibilities in algorithmic mechanism
design. The budget feasibility framework shows that approximation mechanisms can provide
strong guarantees and circumvent impossibility results from classical microeconomics. In
our main result we saw that for procurement with submodular utility functions, there are
budget feasible mechanisms with desirable guarantees. We saw that the only general class
where budget feasibility can be obtained is that of subadditive utility functions. We showed
poly-logarithmic mechanisms for this class, though whether constant factor budget feasible
approximation mechanisms exist for this class is an open question.

Looking forward, the internet now delivers challenges which were in their infancy at
the time the work on this dissertation began. Today, petabytes of social and behavioral
data are being generated as a result of rapid adoption of online services. The tremendous
opportunities and challenges in leveraging this data will require new approaches and will
mark a new era in the theory of manipulation-robust algorithms. Hopefully, the results in
this thesis will contribute to a good start.

84

Bibliography

[1] Alexander A. Ageev and Maxim Sviridenko. “Pipage Rounding: A New Method of
Constructing Algorithms with Proven Performance Guarantee”. In: J. Comb. Optim.
8.3 (2004), pp. 307–328.

[2] Gagan Aggarwal et al. “Theory research at Google”. In: SIGACT News 39.2 (2008),
pp. 10–28.

[3] Miklós Ajtai. “The Shortest Vector Problem in L2 is NP-hard for Randomized Reduc-
tions (Extended Abstract)”. In: STOC. 1998, pp. 10–19.

[4] Aaron Archer and Éva Tardos. “Frugal path mechanisms”. In: ACM Transactions on
Algorithms 3.1 (2007).

[5] Sanjeev Arora and Carsten Lund. “Hardness of approximations”. In: (1997), pp. 399–
446.

[6] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. “An optimal lower bound for anonymous
scheduling mechanisms”. In: ACM Conference on Electronic Commerce. 2009, pp. 169–
176.

[7] Lawrence M. Ausubel and Paul Milgrom. “The Lovely but Lonely Vickrey Auction”.
In: Combinatorial Auctions, chapter 1. MIT Press, 2006.

[8] Yossi Azar and Iftah Gamzu. “Truthful Unification Framework for Packing Integer
Programs with Choices”. In: ICALP (1). 2008, pp. 833–844.

[9] S. Bikhchandani et al. “Weak Monotonicity characterizes deterministic dominant strat-
egy implementation”. In: Econometrica 74(4) (July 2006), pp. 1109–1132.

[10] Liad Blumrosen and Noam Nisan. “Combinatorial Auctions”. In: Algorithmic Game
Theory. Ed. by Noam Nisan et al. Cambridge University Press, 2007.

[11] Liad Blumrosen and Noam Nisan. “On the computational power of iterative auctions”.
In: ACM Conference on Electronic Commerce. 2005, pp. 29–43.

[12] Christian Borgs et al. “Multi-unit auctions with budget-constrained bidders”. In: ACM
Conference on Electronic Commerce. 2005, pp. 44–51.

[13] David Buchfuhrer, Michael Schapira, and Yaron Singer. “Computation and incentives
in combinatorial public projects”. In: ACM Conference on Electronic Commerce. 2010,
pp. 33–42.

BIBLIOGRAPHY 85

[14] Jeremy Bulow, Jonathan Levin, and Paul Milgrom. “Winning Play in Spectrum Auc-
tions”. In: Working Paper ().

[15] Matthew Cary et al. “Auctions for structured procurement”. In: SODA. 2008, pp. 304–
313.

[16] E. H. Clarke. “Multipart pricing of public goods”. In: Public Choice 11 (1971), pp. 17–
33.

[17] S. Dobzinski, N. Nisan, and M. Schapira. “Approximation Algorithms for Combinato-
rial Auctions with Complement-free Bidders”. In: STOC. 2005.

[18] Shahar Dobzinski, Ron Lavi, and Noam Nisan. “Multi-unit Auctions with Budget
Limits”. In: FOCS. 2008, pp. 260–269.

[19] Shahar Dobzinski and Noam Nisan. “Limitations of VCG-Based Mechanisms”. In:
STOC. 2007.

[20] Shahar Dobzinski, Christos H. Papadimitriou, and Yaron Singer. “Mechanisms for
complement-free procurement”. In: ACM Conference on Electronic Commerce. 2011,
pp. 273–282.

[21] Shahar Dobzinski and Mukund Sundararajan. “On characterizations of truthful mech-
anisms for combinatorial auctions and scheduling”. In: ACM Conference on Electronic
Commerce. 2008, pp. 38–47.

[22] Pedro Domingos and Matthew Richardson. “Mining the network value of customers”.
In: KDD. 2001, pp. 57–66.

[23] Edith Elkind, Amit Sahai, and Kenneth Steiglitz. “Frugality in path auctions”. In:
SODA. 2004, pp. 701–709.

[24] Uriel Feige. “A Threshold of ln n for Approximating Set Cover”. In: Journal of the
ACM 45.4 (1998), pp. 634–652.

[25] Uriel Feige. “On Maximizing Welfare when the Utility Functions are Subadditive”. In:
STOC. 2006.

[26] Uriel Feige, Vahab Mirrokni, and Jan Vondrak. “Maximizing non-monotone submod-
ular functions”. In: FOCS. 2007.

[27] Joan Feigenbaum, Rahul Sami, and Scott Shenker. “Mechanism design for policy rout-
ing.” In: PODC. 2004, pp. 11–20.

[28] Joan Feigenbaum et al. “A BGP-based mechanism for lowest-cost routing.” In: Dis-
tributed Computing 18.1 (2005), pp. 61–72.

[29] Jon Feldman et al. “Budget optimization in search-based advertising auctions”. In:
ACM Conference on Electronic Commerce. 2007, pp. 40–49.

[30] T. Groves. “Incentives in teams”. In: Econometrica (1973), pp. 617–631.

[31] Kamal Jain and Mohammad Mahdian. “Cost Sharing”. In: Algorithmic Game Theory.
Ed. by Noam Nisan et al. Cambridge University Press, 2007.

BIBLIOGRAPHY 86

[32] Anna R. Karlin, David Kempe, and Tami Tamir. “Beyond VCG: Frugality of Truthful
Mechanisms”. In: FOCS. 2005, pp. 615–626.

[33] David Kempe, Jon M. Kleinberg, and Éva Tardos. “Maximizing the spread of influence
through a social network”. In: KDD. 2003, pp. 137–146.

[34] Ron Lavi. “Computationally-Efficient Approximation Mechanisms”. In: Algorithmic
Game Theory. Ed. by Noam Nisan et al. Cambridge University Press, 2007.

[35] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. “Towards a Characterization of Truthful
Combinatorial Auctions”. In: FOCS. 2003.

[36] Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Two Simplified Proofs for Roberts’ The-
orem. Submitted. 2004.

[37] Benny Lehmann, Daniel Lehmann, and Noam Nisan. “Combinatorial Auctions With
Decreasing Marginal Utilities”. In: ACM conference on electronic commerce. 2001.

[38] Hagay Levin, Michael Schapira, and Aviv Zohar. “Interdomain routing and games”.
In: STOC. 2008, pp. 57–66.

[39] Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. “Tight information-theoretic
lower bounds for welfare maximization in combinatorial auctions”. In: ACM Conference
on Electronic Commerce. 2008, pp. 70–77.

[40] Elchanan Mossel and Christopher Umans. “On the complexity of approximating the
VC dimension.” In: J. Comput. Syst. Sci. 65.4 (2002), pp. 660–671. url: http://dbl
p.uni-trier.de/db/journals/jcss/jcss65.html#MosselU02.

[41] Ahuva Mu’alem and Noam Nisan. “Truthful Approximation Mechanisms for Restricted
Combinatorial Auctions”. In: Games and Economic Behavior 64.2 (2008), pp. 612–631.

[42] R. Myerson. “Optimal auction design”. In: Mathematics of Operations Research 6.1
(1981).

[43] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. “An analysis of approximations
for maximizing submodular set functions II”. In: Math. Programming Study 8 (1978),
pp. 73–87.

[44] Noam Nisan. “Bidding and Allocation in Combinatorial Auctions”. In: ACM Confer-
ence on Electronic Commerce. 2000.

[45] Noam Nisan and Amir Ronen. “Algorithmic Mechanism Design”. In: Games and Eco-
nomic Behaviour 35 (2001). A preliminary version appeared in STOC 1999, pp. 166
–196.

[46] Noam Nisan and Amir Ronen. “Computationally Feasible VCG-based Mechanisms”.
In: ACM Conference on Electronic Commerce. 2000.

[47] Christos Papadimitriou. “Algorithms Games and the Internet”. In: the Proceedings of
STOC. 2001.

BIBLIOGRAPHY 87

[48] Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. “On the Hardness of
Being Truthful”. In: FOCS. 2008, pp. 250–259.

[49] Christos H. Papadimitriou and Mihalis Yannakakis. “On limited nondeterminism and
the complexity of the V-C dimension”. In: Journal of Computer and System Sciences
(1996).

[50] Kevin Roberts. “The Characterization of Implementable Choice Rules”. In: (1979).
Ed. by Jean-Jacques Laffont, pp. 321–349.

[51] Michael Saks and Lan Yu. “Weak monotonicity suffices for truthfulness on convex
domains”. In: EC. 2005.

[52] Norbert Sauer. “On the Density of Families of Sets”. In: J. Comb. Theory, Ser. A 13.1
(1972), pp. 145–147.

[53] M. Schäfer. “Deciding the Vapnik-Cervonenkis dimension is Σp
3-complete”. In: Journal

of Computer and System Sciences 58 (1999), pp. 177–182.

[54] Michael Schapira and Yaron Singer. “Inapproximability of Combinatorial Public Projects”.
In: WINE. 2008, pp. 351–361.

[55] Saharon Shelah. “A combinatorial problem; stability and order for models and theories
in infinitary languages”. In: Pacific J Math 41 (1972), pp. 247–261.

[56] Yaron Singer. “Budget Feasible Mechanisms”. In: FOCS. 2010, pp. 765–774.

[57] Yaron Singer. “How to Win Friends and Influence People, Truthfully: Influence Maxi-
mization Mechanisms for Social Networks”. In: WSDM. 2012.

[58] Kunal Talwar. “The Price of Truth: Frugality in Truthful Mechanisms”. In: STACS.
2003, pp. 608–619.

[59] W. Vickrey. “Counterspeculation, Auctions and Competitive Sealed Tenders”. In: Jour-
nal of Finance (1961), pp. 8–37.

[60] William Vickrey. “Counterspeculation, Auctions, and Competitive Sealed Tenders”.
In: The Journal of Finance 16.1 (1961), pp. 8–37.

[61] Andrew Chi-Chih Yao. “Some Complexity Questions Related to Distributive Comput-
ing”. In: ACM Symposium on Theory of Computing (STOC). 1979, pp. 209–213.

