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A RELATION BETWEEN CRACK SURFACE DISPLACEMENTS 
AND THE STRAIN ENERGY RELEASE RATE 

P. L. Key 

UCRL-18065 

Inorganic Materials Research Division, Lawrence Radiation Laboratory, 
and the 'Department of Mineral Technology, College of Engineering, 

University of California, Berkeley, California 

ABSTRACT 

The relationship between the strain energy release rate, G, and 

the displacements of the surfaces of an extending crack in an elastic, 

tensile member is examined. It is shown that G can be expressed in 

terms of the volume of the deformed crack provided that any stresses 

applied to crack surfaces are uniform. This form is especially useful 

for superposition applications as it depends linearly on displacements. 

The strain energy release rate is calculated from crack volumes 

for a crack in an infinite sheet and for two cases of a crack in an 

infinite solidt (a) a penny-shaped crack subjected to internal press­

ure as well as axialstress~ and (b) an elliptical crack loaded by axial 

stress. The importance of the shape of the propagating crack is demon-
~. , 

strated by the elliptical crack by considering'various shapes for the 

propagating crack such as preferential propagation along a diameter or 

propagation as an e llipseof invariant shape .. 

A discussion of the distinction between a fracture criterion based 
" 

on the strain energy release rat~ and one based on the stress intensity 

factor is presented. 
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INTRODUCTION 

Most recent theoretical fracture mechanics work and the majority of 

fracture toughness data involve the stress intensity factor K instead of 

the strain energy release rate G. This emphasis on K is due primarily to 

the development of techniques for its theoretical prediction from the 

stress distribution around the crack and is not due to any particular 

physical significance of this parameter. The strain energy release rate, 

G, has physical significance either in terms of an energy rate or a crack 

extension force and can be directly measured by the compliance technique. l 

However, the direct calculation of G usually involves complicated volume 

or surface integrals'involving stresses and displacements. Thus, the 

theoretical values of G are usually obtained from the values of K related 

by the equations of the form~ 

'G 

(for a plane stress, mode I crack). 

It is desirable, where possible, to cast the fracture mechanics para-

meters in terms of the local environment of the crack. For example, frac-

3 ture criteria have been given in terms of local stresses by Irwin, local 

4 5 strains by Krafft and by Irwin and McClintock and most recently, local 

6 7 displacement of the crack faces by Wells and Cottrell. The object of 

this paper is to formulate the strain energy release rate in terms of the 

displacements of the crack surfaces and to apply this formulation to two 

cases of a crack in an infinite solid loaded in tension: the elastic crack 

8 with internal pressure and the flat, elliptical crack. The classical 

". ~ . 
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elastic crack in an infinite sheet is also treated. 

·ANALYSIS 

Consider a right, cylindrical tensile member of uniform cross section-

al area, Ag, containing a planar flaw lying in a plane perpendicular to the 

tensile axis. The member is loaded by tensile stresses distributed across 

the ends of the member and by stresses distributed over the flaw surface. 

The strain energy release rate, G, will be obtained by considering an energy 

balance on the tensile member for a small crack extension under the condi-

tion of constant axial load and crack surface stresses. As discussed by 

9 . several authors, the assumption of const~nt loads does not restrict the 

generality of the result. Referring to Fig~ 1, a crack extension of 6.A is c 

accompanied by the following energy changes: 

Thus, 

work done by F. = F (lL) b.A aA c 
c 

work done by p = 2 J p (~~ ) b.AcdA 
A . c 

c 

strain energy released ... -(l.'!L) b.A aA c c 

total energy available' tor crack extension ... GM c 

G F ((}b. ) + 2 
aA . 

c 

.a.!!.­
aA c 

." 

(1) 

.. 
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where: ~: axial displacement between the ends of the tensile 

member 

w: ,axial displacement' of the crack surface under the 

'action of F and p 

U: strain energy of the solid under the action of F 

and p 

A :,' area of the flaw in the x,y plane c 

A: area measured in the x,y plane 

p: normal stress applied to the flaw surface 

F: total axial load on the member. 

The strain energy can be expressed in terms of the surface stresses, Ti , 

and surface displacements, ui :10 

U - ,i f Tiuida 
S 

where S is the total surface of the body. Thu8,for F and p, 

Introducing Eq. (3) . into (1) 

G-

(2) 

(3) 

(4) 

The extension ~ cal) be expressed in terms of the displacements of the crack 

surface by an application of the reCiprocal theorem of elasticity in a man-' 

,11 ner similar to Greenspan. Specifically, consider the two stress and 

''':''-' 
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displacement fields shown in Fig. 2. The first state (a) consists of the 

actual stresses and displacements being considered while the second state 

(b) is a uniform stress field equal to the average axial stress actually 

applied to the member. Neglecting body forces~ the,reciprocal theorem (10) 

states that for these two stress states the mixed energies are equal: 

j'TaiubidO 
S 

= (5) 

Assuming the ends of the member remain plane and that the flaw deforms in 

the axial direction only, application of Eq. (5) to the stresses and dis-

placements shown in Fig. 2 yields: 

where: 6(0) 

= 

= .th.­
EA 

g 

6(0) + 2 
A 

g 
jWdA 

A c 

A: total area of tensile member 
g 

E: YoUng's modulus 

2 
EA 
. g 

jPZ(O)dA 

A c 

z(o): initial unloaded axial position of the flaw surface (a non­

planar flaw). 

- , 

(6) 

Introducing Eq. (6) intoEq. (4) for a planar flaw (z(O) =' 0) and letting 

" ,F 
cr=Ag I 

G = --L 
aA 

c 
j (0 - p)wdA + 2 

A c 

(7) 

Eq~ (7) expresses the strain energy release rate in terms of the local 

• 

• 

• 
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environment of the crack: the crack surface displacements and stresses. 

The principle of superposition can be conveniently used with Eq. (7) by 

" considering the displacements associated with the two loadings (F and p) 

separately. Hence, 

(8) 

where WI is the displacement of the flaw surface obtained with F alone 

and w
2 

is that for p alon.e. Several alternate forms of Eq. (7) are useful. 

For 0, p constant, 

o ... ( 0 + p) a1 f wdA 
c A 

c 

But this integral represents one-half the volume, V, of the deformed flaw 

G = (0 + p) 1.Y... = 
2 aA 

(cr + p) --L r V + v
2
1 

2 aA 1 
(9) 

c c 

For a plate containing a flaw of length 2a, Eqs.. (7) and (9) become (10) 

and (11) respectively: 

G' ... 

a 

a: f (0 - p)wdx + 2 

o 

G = (0+ p) l§. 
. 4 aa = 

i aw 
p aa dx (10) 

o 

(11) 

where S, S ,S are the areas of the loaded flaw in the plane of the sheet. 
12. 

The above relations are applicable to both infinite bodies and finite 
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bodies with no modification. The effect of specimen size is introduced 

through its effect on the crack surface displacements. 

ELASTIC CRACK 

For an elastic crack in an infinite plate with a uniform stress, a, 

at infinity, Irwin2 showed that the displacement along the crack borders 

for the case of plane stress is: 

The crack thus deforms into an elliptical shape whose area is: 

Hence, using Eq. (11) 

S = Tra (2~a ) 

a as 
G = -- = 4 aa 

Tr0'2a 
E 

which is the well-known result. 

ELLIPTICAL CRACK 

(12) 

(13) 

8 Green and Sneddon showed that a flat, elliptical crack in an infinite 

body subjected to a uniaxial stress, 0', normal to the crack deformed into 

an ellipsoidal cavity: 

w(x,y). a w(O,O) [ 1 _ (:t _ w2 11/2 

(14a) 

• 

• 

• 

, 
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where 

w(O,O) = 2(1- v 2 ) ~ 
E E(k) (14b) 

and 

E(k) = 
1'112 

f [COS2~ 
o 

where k = [1 (a / c)2] 112 and E(k) is the complete elliptic integral of the 

... secon"d kind. 

In Eq. (14), a, c are the minor and major axes of the elliptical crack, 

respectively. Note that as c becomes very large, this equation reduces to 

Eq. (12) for a one-dimensional crack except for the factor (1 - v2 ), be-

cause Eq •. (14) represents a plane strain condition rather than the plane 

stress of Eq. (12)r 

The volume of the deformed crack is given by: 

Using Eq. (9): 

v = jrracw(O,O) = 
81'1 (1 -. v 2 ) cr a2 c 

3E E(k) 

41'1 ( . 2) 2 a ( a2 c ) 
G = 3E 1 - v cr aA E (k) 

c 
(15) 

To calculate the derivative in Eq. (15), an assumption must be made' con-

cerning the shape of the growing crack, i.e., the relationship between a 

and c. 

Case I - Constant shape crack - a/c= a, constant. The area of the 
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elliptical crack is given by 

= 1Tac = 

Therefore, . 

Hence, noting that E(k) is a constant for (a/c) constant, Eq. (15) reduces 

" to 

or 

where 

G = 

Ge = 

1T 1 
'2 E(k) 

402 (1 _,,2) a 
''TI'E . 

the value for a penny shaped crack ., as obtained by Sack'~ 12 

For the case of a penny .shaped crack; alc = 1.0 and E(k) = Tr/2; 

as expected. 

'G 
- = 1.0 
Ge , . 

(16) 

Case II - Constant m.ajor diameter - c = constant. As Irwinl3 showed, 

the local stress intensity factor varies around the crack border for an 

.. ; 
,'. 

.. 

• 

I' 

• 

• 
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elliptical crack with the maximum value at the minor diameter. Thus, 

crack extension in this direction is probable. 

For this case 

Equation (15) becomes 

or 

G. _. = 
Ge 

where 

2... = ..l....l. 
aA 1l"C aa c 

G = 4 (1 - \)2) 0
2 .1...(..A-) 

3E aa E(k) 

1l" 2{E(k) + K(k) + E(k) - K(k) } 
3 [:It (t) ) k 2 

K(k) = 

1l"/2 

I o 

1/2 
lt2 sin2 <jl) 

the complete elliptic integral of the first kind and 

Ge= 

For an initially penny shaped crack, alc = 1.0; 

G 
- I:: 1.0 
Ge. 

as before. 

(17) 
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Case III - Constant minor diameter - a = constant. For this case 

Eq. (15) becomes 

which reduces to 

where 

G 
Ge 

a 
aA 

c 

1 a = --
lTa ac 

=. IT lE(k) + 
3[E(lC)]2 

lK(k) - E(k) 1 ! 

Ge = 4 (1 - \;2) 02a 
lTE 

Equations (16), (17) and (18) are plotted in Fig. 3. 

CRACK WITH INTERNAL PRESSURE 

(18) 

Consider a penny sh~ped crack in an infinite solid stressed with an 

internal pressure p and axial stress 0. 
8 Green and Sneddon showed that 

the penny shaped crack stressed with an axial stress 0 deformed into an 

ellipsoidal cavity: 

w1(x,y) = w1(0,0) [

. ] 1/2 
1 - (ax)2 _ (:L

a
)2 (19a) 

and 

• 

• 
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WI (0,0) = 

The volume VI is given by 

4 ' = - 'Il'a2w (0 0) 31' = 16 (1 - \)2) a3cr 
3E 

UCRL-18065 

(19b) 

14 
Sneddon showed that the penny shaped crack stressed with an internal pres-

sure p also deformed into an ellipsoidal cavity 

w2 (x,y) = w2(0,0) 

wz(O,O) = 

Thus, the volume Vz is 

The area of the crack is given by 

Hence, 

A = 'Il'a2 
c 

d 
aA 

c 

1 d = --
2'1l'a da 

lIz 
(20a) 

(20b) 

Using the above expressions for V1 and V2 in Eq. (9), the strain energy 

release rate becomes 

" G = 4 (1 ~E \)2) a (a + p y (21) 

A similar result was obtained by Murrell15 but a different one has been reported 
, i6 ,',' : .' " . . ',:' " 

by Swedlow ~n which an error may have resulted from the greater algebraic com-

plexity of the method 'used by Swedlow. 
- '".\ -. .... .., 

';" :.,r . -.. ,-:.,.- ' ... 
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DISCUSSION 

General - As shown by the above example of a crack loaded by both 

internal pressure and axial stress, the relation between G and the volume 

of the deformed flaw is especially useful for applications of the super-

position principle since it has a linear dependence on displacements. 

For example, Swedlow16 has reexamined the case of fracture of a crack in 

a biaxial tension field. Griffithl7 originally concluded that fracture 

was independent· of biaxiality but Swed10w derived a relation indicating 

that G was dependent upon biaxiality. The above theory can be used to 

examine this conflict. A transverse stress would not change the volume 

Qf the deformed crack and thus would not affect the terms of Eq. (9). 

In addition, the work done by the transverse stress is independent of 

the crack size and thus no additional terms must be added to Eq. (9). 

Hence, G should not depend upon biaxiality as has also been concluded by 

Ri 
18 ce. 

Fracture Criteria - The distinction between a local criterion of 

fracture in terms of the stress intensity factor, K, and an average cri-

terion defined by the strain energy release rate, G, is not usually made 

clear. In fact, these criteria are frequently considered equivalent and 

related by the expression~ 

(22) 

However, Eq. (22) applies only for a st~aight crack boundary with con-

stant K and thus can apply only locally to a flaw with a curved boundary 

• 

• .J 
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which is the usual case of a natural flaw. In general, one would not 

expect equivalence of average and local criteria except for cases where 
o 

'~":1:! l.)~.q,l ps.l"a.me'!;er (loea not vary spatially.. The value of K obtained 

from Eq. (22) is only an average value and thus the maximum local value 

may be substantially larger.. If critical values of K or G are determined 

with a specimen in which K is constant (most fracture specimens approxi­

mate this condition) and these values are then applied to a design pro-

blem involving a crack with va~ing K, the, local criterion will be satis-

fied ,,' ~ at some point on the crack boundary before the crit ical G level 

of the specimen is reached. To interpret the effect of this distinction 

between K and G on design, one must decide which criterion is physically 

correct and, to the authorts knowledge, this has not yet been done. The 

magnitude of this effect is illustrated below for the elliptical crack. 

ElliEtical Crack - The stress intensity factor for elliptical cracks 

has been discussed by Irwin.13 Consid~ring only the case of crack proN 

pagation in the constant shape mode, Irwin showed that the maximum stress 

intensity factor occurred at the end of the minor diameter with a value of: 

In order to compare this value with the values of G for the entire 

specimen, it is converted to a local G value using Eq. (22): 

(24) 

which is plotted in Fig. 3. This local criterion lies above the average 

values for all three modes of crack propagation considered but should 
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only be compared with the values for constant shape propagation. There 

is an obvious significant difference between local and average criterion 

for this mode of crack propagation. It is expected that similar differ-

ences would occur for the other modes of crack propagation if the local 

values were available. Since the strain energy release rate is greatest 

for the case of crack propagation along the minor diameter, this mode is 

preferred from either,an average or a local criterion~ Therefore, the 

elliptical crack is expected'to be unstable and to grow into a circular 

crack. Even ~hough the mode of crack propagation can be determined, the 

critical stress for initiation of propagation depends on knowledge of the 

correct physical fracture criterion and thus cannot presently be predicted. ' 

Although the local values of G defined by Eq. (22) have little phys-

ical significance, they can be used to obtain an average G value for the 

entire body by integration. Th:us, considering an element of crack 

length dl, 

G = 
2 

1 - v f ~dl E 
c 

where c is the boundary of the crack. 'Using Irwin's expression13 for K 

for an elliptical flaw propagating in a constant shape mode in Eq. (25), 

the relation for G previously derived (Eq. (16)) is obtained as expected. 

The greater ease of the approach used here is obvious. In addition, the 

method developed above allows different modes of crack propagation 

(constailt shape, constant diameter) to be readily invest iga ted. 

• 

.' ...I 



'lJ 

r, 

" 

-15-
UCRL-18065 

CONCLUSIONS 

1. 'The strain energy release rate of an elastic body containing a pro­

pagating flaw can be related to the displacements of the flaw surfaces 

and the stresses on the flaw surfaceS. 

2. The strain energy release rate fpr an elliptical crack in an in­

finite solid dependa on the shape of the propagating crack; the greatest 

value occurs 'for an elliptical crack propagating along its minor diameter. 

30 In general, fractUre criteria based on local quantities such as K 

are not equivalent to a criterion based on the strain energy release 

rate, Go The G criterion prevails for cases where the Griffith criterion 

of fracture is applicable. A G criterion requires a higher load for 

fracture than the local criterion. 
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Fig. 2 Application of' reciprocal theor~m 

(a) Actual stresses and displacements 

(~i) Uniform stress field 
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Fig. 3 Strain energy release rate for an elliptical 
crack 
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