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A REIATION BETWEEN CRACK SURFACE DISPLACEMENTS
AND THE STRAIN ENERGY RELEASE RATE

P. L. Key
Inorganic Materials Research Division, Lawrence Radiation Laboratory,

and the Department of Mineral Technology, College of Engineefing,
University of California, Berkeley, California

ABSTRACT

The'relatiohship ﬁetWeen the strain energy release rate, G, and
the displacements of the surfaces of an extending crack in an elastic,
- tengile member is examineda It is shoﬁn that G can be expressed in
terms of the volume of the deformed crack provided that any stresses
applied to crack surfaces are uniforms This form 1ls especially useful
for superposition applications as it depends linéarly on displacements.

The strain energy release faté'is calculated fiom crack volumes
for a crack in an infinite sgheet and_for two caseg of & crack in an
infinite solid:t (a) a penny-shaped crack subjected to imternal press-
ure as well as axial’stresé, and (b) an elliptical crack loaded by axial
stress. The importance of the ghape of the propagating crack is demon-
strated by th§ elliptical crack by considering various shapes for the
propagating crack such ag preferentisl propagation along a diameter or
propagation as aﬁ ellipse‘bf invafiant shape, |

A discussion of the distinction betweén & fracture criterion based
on the straih.energy release rate and ohe bgﬂed on the st;esa inteﬁsity

factor ig presented.
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INTRODUCTION

Most recent theoretical fracture mechanics work and the.ﬁajority of
fracture toughness data inQolve the stress intensity factor K instead of
the strain energy release rate G. This emphasis on K is due primarily to
the development of techniques for its theoretical predict{on from the
stress distribgtion around the crackvand is not due to any particular
physiqal significance of this parameter. The strain energy reléése rate,
G, has physical sigqificance either in t;fms of an energy rate or a crack
extension force and can be directly measured by the compliance technique.1
Howéver, the direct calculation of G qsually involves complicated volume

.or surface integrals'involving stresses an& diSpl;cements. Thus, the

theoretical values of G are usually obtained from the values of K related

by the equations of the formz_

(for a plané streés, modé.I crack).

it is desirablé, wheré possible, to cast the fracture mechanics para- 
meters in terms of the local environment of the'crack. For example, frac-—
ture criteria have been given in terms of local stresses by Irwin,3 local
strains by Ktaffta and by Irwin and McClintock5 and most recently, local
displacément of the crack faces by Wells6 apd Cottrell.7 The object of»
this ﬁaper is to formulate the strain energy rélease rate in terms of the
diSpiacements of the crack sﬁrfgées and to apply this formulation to two
cases of a crack in an infinite solid loaded in tension: the elastic crack

with internal pressure and the flat, elliptical crack.8 The classical
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elastic crack in an infinite sheet is also treated.

ANALYSTS

Consider a right, cylindrical tensile member of uniform cross section-
al area, Ag, containing a planar flaw lying in a plane perpendicular to the
tensile axis. The member is loaded by tensile stfesses distributed across
the ends of the member and by stresses distributed over the flaw surface.
The strain energy release rate, G, will be obtained by considering an energy
balance on the tensile member f&r a small crack extension under the condi-
ﬁion of constant axial load and crack surface stresses. As discussed by

- several authors,9 the assuﬁption of conséant loads does not restrict the
generality of the result. Reférring té Fig. 1, a crack extension ofAAc is

accompanied by the following energy changes:

' A
work done by F F‘(BAC) AAc
3w
work done by p = 2 fp (ﬁ—) AAch
v ‘e
A
- c

. 4 = -[3U
strain energy released (322) AAc

total energy available for crack extension = GAAc

Thus,
T 2w Y, o AU
G F(aA ) + 2 /p(aA )dA o 1) -
[o4 A [od [ o4
(o4
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where: CAr axial displacement between the ends of the tensile

member :

w3 :axial displacement'of the crack surface under the

*action of F and p

- U: strain energy of the solid under the action of F

and p -
A erea;of.the flaw inithe X,y plane
A: area measured in the m,y plane
p: normal stress applied to the flaw surface
F: total axial load on the member. |

The'stfainfenergy‘can be expreSSed-in'terms'of'the surface stresses,

and surface displacements, uiﬁlo

Tyy

f'rudo»: o 2)
where § is the total surface of the body. Thus, for ¥ aud Py

wednea(dfea) o
, e - SR

RN f (3% )dA w S @
L R ‘ . c v czvu :
The extension A can be expressed in terms of the displacements of the crack'f g

'surface by an appllcation of the teciprocal theorem of elasticity in a man-’

ner 81mila:‘to Greenspen.ll Specifically,vconsiderfthe‘two stress and
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displacement fields shown in Fig. 2. The first state (a) consists of the
actual stresses and displacements being considered while the second state
(b) is a uniform stréss field equal to the average axial stress actually
applied to the member, Neglecting'body forces, the reciprocal theorem (10)

states that for these two stress states the mixed energies are equal:

/'Taiubido = f Tbiua-ido (5)

S S

Assuming the ends of the member remain plane and that the flaw deforms in
the axial direction only, application of Eq. (5) to the stresses and dis-

placements shown in Fig. 2 yields:

2 2 .
A = A(o) + A /wdA— FA pz(o)dA (6)
c c
where: A(o) = %%—
g
A : total area of tensile member

E: Young's modulus

z(o): 1initial unloaded axial position of the flaw surface (a non-

planar flaw).

Introducing Eq. (6) into Eq. (4) for a planar flaw (z(0) = 0) and letting
. F ’ ‘
o = g ? :
— T - ' dw_ ,
G = =& /(q pwdA + 2 /p(aAc)dA (?)
. c A . A
c ~ c

Eq. (7) expresses the strain energy release rate in terms of the local
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environment of the crack: the crack surface displacements and stresses.
The principle of superpositibn can be conveniently used with Eq. (7) by
. considering the displacements associated with the two loadings (F and p)

separately. Henée,
w o= w, +w ) (8)

where w, is the displacement of the flaw surface obtained with F alone

and w, is that for p alone. Several alternate forms of Eq. (7) are useful.

For o, p constant,

G = (0 + p);sf— ‘/rﬁdA
i [

But this integral represents one-half the volume, V, of the deformed flaw

G 2 o, T 2 WA VitV (9)

For a plate containiﬁg.a flaw of length 2a, Eqs. (7) and (9) become (10)
and (11) respectively: - ‘

a

o = 2 f - ' W gy '
> / (6 = plwdx + 2 / P. 3a dx _ 4(10)
o o letp s | (gwp) b | an

¢ 4 da 4 sa |51+ 52 o ‘;1)

where S, Sl' 82 are the areas of the loaded flaw in the plane of the sheet.

The above relations are applicable to both infinite bodies and finite
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bodies with no modification. The effect of specimen size is introduced
through its effect on the crack surface displacements.

ELASTIC CRACK

For an elastic crack in an infinite plate with a uniform stress, o,
at infinity, Irwin2 showed that the displacement along the crack borders

for the case of plane stress is:!

W = 2 (a2 - x2)1/2 (12)

The crack thus deforms into an elliptical shape whose area is:
§ = wa'(z%§>
Hence, using Eq. (11)
= Sd2 _ IC3
¢ = 3 ‘ (13)

which is the well-known result.

ELLIPTICAL CRACK

Green and Sneddon8 showed that a flat, elliptical crack in an infinite
body subjected to a uniaxial stress, o, normal to the crack deformed into

an ellipsoidal cavity:

Cc

wix,y) = wtb;O) [1 - (f)z - (1)2] 1/2‘ (14a)
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. where
v 2(1.— Qﬁlb ag
w(0,0) = Ty (14b)
and
/2 ) 1/2
EFk) = f [cosztb +(%) sinzq)] dé

where k = [l - (a/c)z]ll2 and E(k) is the complete élliptic integral of the
~ second kind. - |

InvEé.:(lh), a, c are the mipor and major axes of the elliptical cfack,
respectively. Note that as ¢ becomes very large, this equation reduces to
Eq. (12) for a one-dimensional crack except for the factor (1 - v2), Be-
lcause Eq.. (14) represents a plaﬁe strain condition rathér than the plane
stress of Eq. (12). |

The volume of the deformed crack is given by:

8w(l --vz]o a2c

V = i-‘v'rracw(O,'O) =

3 3E E(k)
Using Eq. (9):
bm (22 B (ke
G = 3 (l -V _>°2 oA <E(k)> | (15)

To calculate the derivative in Eq.‘(15), an assumption must be made' con-
cerning the shape of the growing crack, i.e., the relationship between a
and c.

Case 1 - Constant shape crack - a/c = a, constant., The area of the
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elliptical crack is given by>
A = r7ac é‘ Tac
Therefore,

. 1.8
A 2moc dc

(-5

Hence, noting that E(k) is a constant for (a/c) constant, Eq. (15) reduces

* to
G 2(1i= v2)o? - a .
, E E(K)
or
& . n_Ll_ . B
e " 2Fw@ . . ue
where ‘1_
o 452 (1 - v2]a -
Ge o

the value for a penny shaped crack - as obtained by Sackﬁlz

For the case of a penny shaped crack a/c = 1.0 and E(k) = ﬂ/2
G - Lo
as expected.
Case II - Constantvqajor diameter - c = constant. As Irwin13 showéd,

the local stress intensity factor varies around the crack border for an
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elliptical crack with the maximum value at the minor diameter. Thus,

crack extension in this direction is probable.

For this case

Equation (15) becomes

;: 4(i - v2)g2 a(a ')

¢ 3E 2a\E(K)
or
& .= 2{E(k) £ K@) + B Kl } an
3(E(X)) - R
where
%
K(k) = 4 ,

i/
(1 - ¥* sin)
the complete elliptic integral of the first kind and

4{1 - v2)o2a
TE

Ge =
For an initially penny shaped crack, a/c = 1.0;
= 1.0

&
Ge.

as before.
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Case III - Constant minor diameter - a = constant. For this case

9. _ 13
JA Ta 9¢
c

Eq. (15) becomes

which reduces to

G T 1 - k2
—_— = e——— k o [ (k) = k 1
e TSP N T T K )H (18)
where
Ce = 4{1 —kvz)oza

7E
Equations (16), (17) and (18) are plotted in Fig. 3.

CRACK WITH INTERNAL PRESSURE

Consider a penﬁy shaped crack in an infinite solid stressed with an
internal pressure p and axial stress o. Green and Sneddon8 showed that
the penny shaped crack stressed with an axial stress ¢ deformed into an

ellipsoidal cavity:
A 2 2
wl(x,y) = wl(0,0) [l - (f) - (l) ] (19a)

and
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4 1 - v2)ag

wl(0,0) TE

(19b)

\
KN

The volume V, is given by

- & ©16(1 - vz]a3c
vy 3 ma‘w, (0,0) 3E

14 A
Sneddon™ showed that the penny shaped crack stressed with ‘an internal pres-

sure p also deformed into an ellipsoidai cavity

3 2.
W, (6,y) = w,(0,0) [1 - (%) - (%) ] (20a)
w,(0,0) = éil—iiﬁflfﬂlv | (20b)

Thus, the volume V2 is

V. o= 16(1 - v?]adp
2. - 3E

The area of the crack is given by

A = ga
c .
Hence; - _ -
TR X
oA 2 9
e

Using the above exprgssioné for Vl-and Vo in Eq. ), the strain energy

release rate becomes

411 - v2 2 ‘ ,
¢ = E : (° * p) 21

A similar result wag obtalned by Murrell15 but 8 different one has been reported

by Swealowl§ in which an error may have resulted from the greater algebraic com=-

"plexlty of the method used by Swedlowa

T . == SRR R
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DISCUSSION

General - As shown by the above example of a crack loaded by both .
internal presgsure and axial stress, the felation between G and the volume
of the deformed flaw is especially ?seful for applications of the super=- >
position principle since it has a 1ineaf dependence on displacements.
For example, Swedlow16 has reexamined -the case of fracture of a crack iﬁ
a biaxial tension field. Griffith17 originally concluded that fracture
was independent of biaxiality but Swedlow derived a relation indicating
that G was dependent upoe bilaxialitys The above theory can be used to
examine this conflicts A transverse stress would not change the volume
of the deformed crack and thus would not affect the terme of Ega (9).
In additibn, the work done by the transverse stress is independent of
the crack size end thus no additional terms must be added to Eqe (9).
Hence, G should not depend upon blaxiality as has also been concluded by
Rice.lg R

Fracture Criteria - The distinction between a local criterion of

fracture in terms of the stress intensity factor, K, and an average cri-
terion defined by the strain energy release rate, G, is not usually made
clears In fact, these criteria are frequently considered equivalent and

related by the_expressiqnx3 , ,
_ o, |
G = (:—L—ﬁ—l’——) & (22) *

However, Eqe (22) applies only for a straight crack boundary with con-

stant XK and thus can apply only locally to a flaw with a curved boundary
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which‘is the usual case of a natural flaw. In general, one would not
expect equivalence of average and locsl criteria agcept for cases where
taz lozal pavameter does not vary spatiallys. The value of K obtained
from Eq. (22) is only an average value and thus the maximum local value
may be substantially larger. If critical values of K or G are determined
with a specimen in which-K is constant (most fracture specimens approxi-
mate this condition) and these valuesg are then applied to a design pro-
blem involving a crack with varying X, the local criterion will be satis~
fied . " at gome point on the crack boundary before the criticael G level
of the specimen is reacheds To interpret the effect of this distinction
between K and G on design, oﬁe must decide which criterion is physically
correct and, to the aﬁthor's knowledge, this has not yet been done. The

magnitude of this effect is iilustrated below for the elliptical crack.

Elliptical Crack - The stress intensity factor for elliptical cracks

has been discussed by I::'win.]“5 Consgidering only the case of crack pro-
pagation in the constant shape mode, Irwin showed that the maximum stress

intehéiﬁy factor occurred at the end of the minor diameter with s value of:

1/2

In order to compare this value with the values of G for the entire

specimen, it is converted to a local G value using Eq. (22)2

(&) () o
e /7 \eEEY S

which is plotted in Fige 3. This local criterion lies above the average

values for all three modes of crack propagation consideré& but should
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only be compared with fhe values.for congtant shape propagation. There
is an obvious gignificant difference between local and average criterion .
for this mode of crack propagation. It ig expected that simiiar differ«
encesvwould occur for the other modes of crack propagation if the local
values were available. Since the strain energy release rate is greatest
for the cage of crack propagation along the minor diameter, this mode ié
preferred from either an average or a local criterion. Therefore, the
ellipfical crack ls expected to be unstable and to grow into a circular
crack. Even though the mode of crack propagation éan be determined, the
critical stress for initiation of propagation depends on knowledge of the
correct physical fracture criterion and thus cammot pregently be predicted.
Although the local values of G defined by Eq. (22) have little phys~-
ical significance, they can bé-used to obtain an average G value for the
' entire body by integration. Thus, considering an element of crack

length dli,
. 2
¢ = --E.—-l"’ f Kd. | (25)
. C :

O for K

wheré ¢ is the béundéry of the crack."Using Irwin's expreséion
for an elliptical flaw propagating in a congtant shape mode in Eq. (25),

the relation for G previously derived (Eq. (16)) im obtained as expected.

The greater ease of the approaéh used here is obvious. in addition, the'

74

method developed above allows different modes of creck propagation

(constant shape, constant.diameter) to be readily investigated.
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CONCLUSIONS

1. 'The strain energy release rate of an elastic body containing a pro-
pagating flaw can be related to the displacements of the flaw surfaces

and the stresses on the flaw surfaces.

2. The strain energy release rate for an elliptical crack in an in-
finite so0lid depends on the shape of the proPagaﬁing crack; the greatest

value occurs for an elliptical crack propagating along its minor diameter.

%, In general, fracture criteria based on locai quantities such as K
are not equivaleﬁt to a criterion based on the strain energy release
rate, G, The G criterion prevails for cases where the Griffith criterion
ofAfracture_is applicables A G criterion requires a higher load for

fracture than thé local eriterion,

R
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Fig. 1 (a) Right cylindrical 'bensile member containing
. & planar flaw. oo o :
(b) Detail of flaw
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a b.
XBL 683-365

Fig. 2 Application'of reciprocal theorgm

(a) Actual stresses and digplacements

(¥) Uniform stress field
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24 T

| o, .
2.2 Ge= 2 a(l-v2)
TE

20—

gl
Local crn‘erna( max

s N\ Eq.(24)  Ce
. c=constant”’
Eq. (IT)
[.6—
1.4
S =constant
Eq. (I6)
.2+

a=constant

1.0 1 l J. 1 —
o) 0.2 0.4 - 0.6 0.8 1.0

XBL 682-181-A

Fige 3 Strain energy release rate for an elliptical
- erack
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