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Abstract

Suppose that the equity premium is forecasted by dividend yields. Even if

such a relationship does exist, there is so much noise in the equity premium

that estimation, inference and forecasting cannot be carried out using the

faint signal coming from the dividend yields. For analyzing equity/dividend

data, it is useful to quantify the signal in a given sample. We de�ne an index

of signal strength or information accumulation, by renormalizing the signal

to noise ratio. The novelty in our parameterization is that the index of

information accumulation explicitly in�uences rates of convergence and can

even lead to inconsistent estimation, inconsistent testing, unreliable R20s;

and no out of sample forecasting power. Indeed, we prove that if the signal

to noise ratio is close to zero, forecasts from the existing model will not

do better than the simple unconditional mean. Thus, it is not surprising

that dividend yield forecasts of the equity premium cannot outperform its

mean. The analytic framework is general enough to capture most previous

econometric �ndings related to the equity/dividend relationship.



1 Introduction

Empirical �nance is full of puzzles. Take a plausible theory, bring it to the

data, and you have yourself a puzzle. A case in point are the empirical tests

of expected returns. The possibility that returns of risky assets could be

forecasted, be it only partially, by other observable variables seemed to have

been unthinkable until the early 1980�s. It was commonly maintained that

the e¢cient markets hypothesis implied unforecastable returns. In a series

of articles, the most prominent of which are Fama and French (1988) and

Campbell and Shiller (1988), it is argued that dividend yields should and

do forecast expected returns with some success. It is fair to say that the

pendulum has swung in the opposite direction, and it is now taken almost as

a feature of the data that dividend yields have some power to predict stock

returns. For a review of the literature, see Campbell, Lo and MacKinlay

(1997). However, recent work by Nelson and Kim (1993) and Goetzmann

and Jorion (1993) has put the empirical �ndings of these latest studies into

question.

In the present paper, we argue that even if there exists a forecasting

relationship between the equity premium and dividend yield, in cannot be

exploited using simple regression techniques. Intuitively, even if the theo-

retical model leads the dividend yields to predict the equity premium, fore-

casting a very noisy variable (the equity premium) with a variable that,

although persistent, has a very small variance (the dividend yield) will pro-

duce insigni�cant results. For concreteness, let�s assume that we have the



relationship

Yt+1 = ¹y + ¯Xt+ "t+1 (1)

where Yt+1 is the equity premium (risky return-Treasury bill return) and Xt

is the dividend yield. Previous papers have tested this relationship under

the null hypothesis of no relationship between the two variables. We ask the

following question: If there is a relationship between the equity premium

and dividend yields ( ¯ 6= 0 ), what estimates would we obtain, given the

noisy data? The main goal of this paper is to explore the small sample

properties of the OLS estimator of ¯, the resulting in-sample �t and out-of-

sample forecasts, when the signal coming for Xt is very weak compared to

the noise from "t; and Xt is a persistent process: The question above was

partially motivated by �gure 1 and table 1 below.

It is well-known that the equity premium has the time series properties

of a very volatile, but stationary process. It is also known that the dividend

yield is a persistent process, in the sense that its highest autoregressive root

is close to, or at unity. However, as we can see from �gure 1 above, the ratio
V (X t)
V ("t)

; known as the �signal to noise ratio�, is close to zero throughout the

sample period. This empirical fact can be found in virtually any paper on

the topic (for example, Fama and French (1988), Goyal and Welch (1999),

Stambaugh (1999)) and is discussed further in the following sections.

We argue that if the signal to noise ratio (S/N) is very close to zero,

asymptotic approximations can help up understand the small sample prop-

erties of ^̄. In asymptotic exercises, a small S/N is not considered to be a

problem, because, given a su¢ciently large dataset, we will eventually gather

enough signal to get the OLS estimator ^̄ to be arbitrarily close to the true

value of the parameter. In other words, the OLS estimator is consistent.
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Figure 1: Equity Premium and Divident Yield, 1926-1998, annual data. The

Equity Premium is many times more volatile than the Dividend Yield.

Also, no matter how dispersed the distribution is, it should be centered

around the true value of the parameter, and after appropriate rescaling, in-

ference will not be a¤ected, asymptotically. However, we show, �rst through

Monte Carlo simulations and then analytically, that in small samples, a S/N

close to zero will a¤ect estimation, inference, and forecasting. To understand

the results, recall that for a precise estimate, we need not only a big number

of observations, T , but also a large S/N. We can easily think of cases when

T increases without a corresponding increase in signal. For example, going

from yearly to monthly or from monthly to daily frequency, for a �xed time

span, can conceivably add more noise than signal, and will not contribute to

a more precise estimate. Indeed, going from yearly to monthly CRSP data
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does not seem to add much signal in the forecasting equation (1). A similar

argument was made by Perron (1989), although in a di¤erent context and

with a univariate model.

In practice, we have a �xed S/N and a �xed T: Therefore, we can think

of a sequence of models de�ned by their S/N ratios: for each magnitude of

S/N, we have a di¤erent model, given T . The higher is the S/N, the more

information there is in the sample. We want to have a similar sequence of

models, as T increases, in order to use asymptotic approximations to analyze

the small sample properties of ^̄. Therefore, we create a rescaled sequence of

models, where S/N is de�ned for di¤erent powers (not necessarily integers)

of T: The focus will then shift from the magnitude of S/N to the scaling

power of T; call it ®:

Intuitively, ® can be viewed as an index of the signal strength coming

from Xt in the sample. For ® = 0; the signal is very powerful. This is the case

when Xt is I(1). For ® 2 (0; 1=2); the signal is still stronger than the noise

and ^̄ converges at rates higher than T1=2: In the borderline case ® = 1=2;

the signal to noise ratio is a constant, and this corresponds to the �usual�,

stationary case, where ^̄ converges at rate T 1=2. For ® > 1=2; ^̄ will converge

at a rate slower than 1=2: For ® > 1; the estimator and the customary t-

statistic will not be consistent. Interestingly, in the case ® > 1=2, the

coe¢cient of determination R2 will converge to zero in probability, even

when there is a relationship between the equity premium and the dividend

yields. Moreover, forecasts produced with the correctly speci�ed model will

not do better (in a mean square error sense) than, say, the unconditional

mean. This last implication is borne out by the data, as demonstrated by

Goyal and Welch (1999), who �nd that forecasts using the dividend yield

model cannot outperform those from the unconditional mean.
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Here is a brief summary of the main contributions of this article. For

the case of equity/dividend equations, where a persistent variable with very

small variance is thought to forecast a very noisy variable, it is useful to

quantify the S/N in a given sample. We renormalize the S/N ratio by a

power of the sample size, allowing us to �nd an index of the signal to noise

ratio, that will not change asymptotically, and that will provide a measure

of the signal in the sample. The novelty in our parameterization is that the

rate of information accumulation explicitly in�uences the rate of convergence

and can even lead to inconsistent estimation, inconsistent testing, unreliable

R
20s; and no out of sample forecasting power.

The paper is structured as follows. Section 2 presents the model and

provides a series of Monte-Carlo simulations, demonstrating that if the signal

to noise ratio is close to zero, as is the case in the equity premium/dividend

yield equation, estimation, inference and forecasting will be problematic,

even for samples of fairly large size. The analytic results introducing the

index ® and deriving the asymptotic distributions of ^̄ and its t-statistic

are presented in section 3. In section 4, we provide a brief overview of the

econometric literature on this topic to help clarify the contribution of the

paper. Section 5 contains results on the in-sample �t and out-of-sample

forecasting with small signal to noise ratio. Section 6 concludes.

2 Model

Here is the essence of my point. Suppose we have

Yt+1 = ¹y + ¯Xt+ "t+1 (2)

Xt+1 = ¹x + ÁXt+ ut+1 (3)
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where Á = 1, ¹x = 0; and "t and ut are random variables with mean zero,

and variances ¾" and ¾u; respectively. We are interested in the case when

the ratio ¾u=¾" is close to zero. If we rescale ut as24 "t

ut

35 =

24 1 0

0 ¿

3524 "t

vt

35 (4)

= ¨wt

where wt is a martingale di¤erence sequence with E(wtw
0
tjwt¡ 1; wt¡ 2; :::) =

[¾"¾";v; ¾";v ¾v] = § and �nite fourth moments, then a small ¾u=¾" ratio

implies a small ¿2: The above setup, where Xt is the dividend yield and

Yt the equity premium (or the expected risky return), has been analyzed

by Mankiw and Shapiro (1986), Stambaugh (1986, 1999), Nelson and Kim

(1993), Goetzmann and Jorion (1993), Cavanagh et al. (1994), and Goyal

and Welch (1999), among others. The �rst four papers focus on the small

sample biases in ^̄, coming from the predetermined and persistent regressor.

Cavanagh et al. (1994) look at the same problem with di¤erent tools, to

reach similar conclusions. However, the small signal to noise ratio problem

has not been treated by any papers related to this literature.

Model (2-4) was chosen as most closely describing the characteristics

of the US stock market data. Table 1 presents summary statistics from

CRSP annual and monthly time-series for the period 1926-1998, and several

sub-periods. Two points are worth making. First, the dividend yield is a

persistent process with a highest autoregressive root very close to unity. An

Augmented Dickey Fuller test mostly cannot reject the null of a unit root

in yearly and monthly data. Second, the variance of the equity premium is

orders of magnitude greater than the variance of the dividend yield. The

entry V (DP )=V (EP ) shows the signal to noise ratio, and ¿2 is an estimate of
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the parameter de�ned in (4). Both measures convey the same message: the

signal coming from the dividend yield is many orders of magnitude weaker

than the noise in the equity premium regression, despite the fact that the

dividend yield is a more persistent variable. More interestingly, increasing

the number of observations (from yearly to monthly data) seems to decrease,

and not increase, the signal coming from the data. These are precisely the

features of the data we want to capture with the above system. Figure 1

provides a picture of the same facts.

We assume that ¯ = ¯0 6= 0, or that the equity premium is forecastable

by the dividend yield, with cointegrating parameter ¯0: For simplicity, we

also assume that Á = 1 and known. If Á is unknown and close to, but not

exactly at unity, we might model it as local to unity, or Á = 1 + c
T as in

Cavanagh, et al (1994). Introducing this further generality into (2 ¡ 3) will

not a¤ect our main point. The only di¤erence will be that the distributions

of interest will depend on an additional nuisance parameter, c. We relegate

this issue to future papers.

2.1 Monte Carlo Results

2.1.1 No correlation between "t and vt

To motivate the new results, we start o¤ by performing the following Monte

Carlo experiment. System (2 ¡ 3) is simulated for various values of T and

¿ , namely T = 75; 200; 500 and ¿ = 1; 0:1; 0:01; :::; 1¤ 10¡ 5: The case T = 75

corresponds to a sample with annual data, T = 200 is for quarterly data, and

T = 500 is for a typical sample of monthly data. We set ¯ = 1; ¾2" = ¾2v = 1;

where "t and ºt are iid normal variates and ¾";v = 0. The system for each

speci�cation of (¿; T ) is simulated 10; 000 times. At every simulation, we
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regress Yt+1 on Xt, Xt on Xt¡ 1; and Yt on Yt¡ 1; producing estimates ^̄; Á̂;

and Á̂2; respectively. The estimated means and variances of the three OLS

estimates are shown in table 2 below. The results from these simulations

are quite interesting, and it is worth discussing them.

Looking at table 2a, the entries in the �rst row, ¿ = 1; (i.e ¾2u = ¾2" = 1)

show that the distribution of the estimate is centered exactly on the true

value of ¯. However, as ¿ decreases, the estimates worsen considerably, even

for samples as large as T = 500: Note that we have restricted "t and ut to

be independent. Therefore, we cannot have a small sample bias from pre-

determined lagged endogenous variable, as discussed in Stambaugh (1986,

1999).

But if this is not small sample bias, how can we account for such a

poor performance of the estimator even in reasonably large samples? Recall

that the asymptotic theory predicts that the distribution will be centered

around the true parameter ¯ = 1; but this is not clear from the table. The

simulations suggest that as ¿ decreases, the estimates diverge farther and

farther from the true value. In fact, we observe a simulation error, magni�ed

by the small signal to noise ratio, 1=¿: Hence, should we be satis�ed with the

asymptotic approximations above when the signal to noise ratio is small?

More importantly, can we trust the estimates from the returns/dividend

equations? Can we conduct inference in the usual way? What about out of

sample forecasts? Those are all questions that will be addressed below.

The table 2b shows the estimates of the autoregressive root in Xt: As

expected, the parameter Á is estimated with its usual downward bias, but as

T increases, the bias disappears. The estimate of Á is una¤ected by the small

signal to noise ratio, since its distribution is invariant to ¿2: Since Xt has a

unit root, and the relationship (2) holds, then Ytmust also have a unit root.
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Table 2c shows the estimates of the autoregressive root of Yt: Surprisingly,

for small ¿ �s, the estimates are not anywhere close to 1: To understand this

table, notice that if ¿ is small, we can write (1 ¡ L)Yt+1 = (1 + µL) rt+1

with µ very close to ¡1: In other words, Yt+1 is very close to being white

noise. It is known that the battery of unit root tests will have a size close

to 1 under such circumstances (Perron (1988), Schwert (1989), and Pantula

(1991)). Hence, it is not surprising that the null of unit root in Yt is rejected

when ¾2u is small.

As shown in table 2d, inference is also problematic when ¿ is small, given

the sample sizes of interest. The entries in the table show the mean of the

distribution of the t-statistic for Ho : ¯ = 1 versus Ha : ¯ = 0: For ¿ small,

the distributions under the null and under the alternative are both centered

at zero, implying that the test has almost no power even for samples of

reasonable size (power equal to size). When the signal to noise ratio is

small in a given sample, the R2 must also be small, by de�nition, but as T

increases, R2 must converge to 1 since we assume a relationship between Yt

and Xt: The R20s obtained in the simulations are shown in table 2e. Lastly,

the out-of-sample forecast using the correct model is compared to a forecast,

from the unconditional mean in table 2f. For ¿ big, the forecast from the

model outperforms the mean in the MSE sense. As ¿ decreases, the two

forecasts produce similar results, even for reasonably large sample sizes.

2.1.2 Correlation between "t and vt

If "t and vt are contemporaneously correlated, the OLS estimator of the

slope coe¢cient will be to biased, as discussed in Stambaugh (1986, 1999)

and Cavanagh et al (1994). The bias will depend on the magnitude of the

9



fraction cov("t;ut)
cov(ut)

= ";v

v

1
¿ : Recall that ¾v = 1 and now we let ¾";v = 0:5:

A decrease in ¿ leads to an increase of the bias. To illustrate this case, we

have run the same simulations as before, except for ¾";v = 0:5: The results

can be seen in table 3. The bias magni�ed by the small signal to noise ratio

produces highly inaccurate estimates, in table 3a. Moreover, the t-statistic

seems to be centered at around ¡1:45 under the null, and its distribution

under the null and under the alternative are very similar. The rest of the

results are similar to the case ¾";v = 0:

3 Asymptotic approximations when ¿ is close to

zero

3.1 No correlation in residuals

For clarity of exposition, we �rst let ¾";v = 0 as was done in the Monte

Carlo simulations. In this instance, "t is uncorrelated with Xt; and §1=2 is

diagonal. This assumption is not realistic in the equity-dividend case, but we

are imposing it for now to emphasize that the conclusions do not depend on

it. It is later relaxed to show that our results are even more dramatic. Under

the above speci�cation, 1=
p

T
P[sT ]

j=1 wj ) ¨§1=2W (s); 1=
p

T
P[sT ]

j=1(wj ¡
w) ) ¨§1=2W„(s), where W (s) = [W1(s) W2(s)]0 is bivariate standard

Weiner process on D [0; 1] £ D [0; 1] ; W„(s) = W (s) ¡ R 1
0 W (s)ds; t = [sT ] ;

and ) denotes convergence in distribution. To capture the small variance

of ut (relative to "t) we can write

¿ =
1

T fi
(5)
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where, ® ¸ 0. We will use this parameterization to explain the results in

the simulations above. For T �xed, and ¿ small, one can always �nd an ®

that satis�es the relationship. The interpretation of (5) is that, although Xt

has a unit root, its variance is still much smaller than the variance of "t; or

V (Xt)

V ("t)
=

¾2ut

¾2"
=

t

T 2fi
=

t

T
T (1¡ 2fi)

= sT (1¡ 2fi)

where s = t=T:

The parameter ® can be interpreted as an index of the signal strength

coming from Xt relative to the noise "t: For ® = 0; ¿ = 1; or ¾2" = ¾2u: For

® < 1=2; V (X t)
V ("t)

diverges for T ! 1, as expected. However, if ® > 1=2;

the signal to noise ratio vanishes, V (X t)
V ("t)

! 0, as T ! 1: If ® = 1=2; then
V (X t)
V ("t)

= s. This is the borderline case in which the variance of the increments

of Xt is so small that it o¤sets the signal coming from the higher stochastic

order.

Given the parameterization above, we can show the following result

Proposition 1 Under the assumptions above, if ¾";v = 0 and ¿ = 1
T ® ;

the OLS estimator ^̄ converges at rate T ¡ (1¡ fi) to a functional of di¤usion

processes, or as T ! 1

T (1¡ fi)
³
^̄ ¡ ¯

´
)

R 1
0 W „

2 (s)dW1(s)R 1
0 (W

¹

2 (s))2 ds
(6)

In a more informal way, we can say

^̄ a» ¯ + ZT (fi¡ 1)

where Z is a mean zero random variable with a mixed-normal distribution.

If ® < 1; the variance of ^̄ will decrease as T ! 1, and we have consistency.
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Otherwise, the estimator is inconsistent. However, note that E
³
^̄
´

= ¯;

since we assumed ¾";v = 0: The fact that we have observed a big simulation

error in table 2a when computing E
³
^̄
´

underscores the importance of

proposition 1.

The above result is unusual, but not surprising. Unusual, because ^̄

does not converge to ¯ at rates T 1=2 or T: In fact, the rate changes with

®: However, this is not surprising, because we parameterized the model so

that ® controls the rate at which the signal, coming from Xt; accumulates.

As ® increases, the signal from Xt is decreasing compared to the noise

"t; in the given sample. Therefore, the parameter ¯ cannot be estimated

precisely. The novelty in our parameterization is that the rate of information

accumulation explicitly in�uences the rate of convergence and can even lead

to inconsistent estimates:

The usual t test converges in distribution to the standard normal distri-

bution, as before:

Proposition 2 Under the assumptions above, if ¾";v = 0 and ¿ = 1
T® ; the

t-statistic has the following distribution under the null, as T ! 1

tfl̂ =
^̄ ¡ ¯

se(^̄)
)

R 1
0 W„

2 (s)dW1(s)³R 1
0 (W

¹

2 (s))2 ds
´1=2 (7)

However, the t-test is not consistent for ® ¸ 1: To see that, let Ha :

¯ = 0. Then

tfl̂ =
^̄ ¡ 0

se(^̄)
=

^̄ ¡ ¯

se(^̄)
+

¯ ¡ 0

se(^̄)
=

=
T 1¡ fi

³
^̄ ¡ ¯

´
1

T 1¡®

³PT
t=1 X2

t

´1=2
¡
¾̂2e

¢1=2 +

¡
T 1¡ fi¯

¢
1

T 1¡®

³PT
t=1X2

t

´1=2
¡
¾̂2e

¢1=2 (8)
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The �rst term converges in distribution to
³R 1
0 (W„

2 (s))
2
ds

´¡ 1=2 ³R 1
0 W„

2 (s)dW1(s)
´

as in (7) : The second term explodes for ® < 1 (as needed for a consistent

test), but converges in probability to 0 for ® ¸ 1: Hence, for ® ¸ 1; the dis-

tribution of the t-test is the same under the null and under the alternative,

yielding power equal to size.

To see why parameterization (5) is useful, notice that in practice we have

a �xed T; and a �xed ¿ . Given those values, ® = ¡ log ¿
log T : When ¿ is small,

the above expressions will provide a better explanation for the small sample

behavior of ^̄ and its t-statistic than the usual approximations. Using the

above parameterization, we can understand the puzzling results from the

�rst set of simulations. Given a sample size T and ¿; we can solve for ®:

This can be interpreted as how much information there is in the signal,

coming from Xt. As shown, the new parameterization is useful to account

for these results. Note that ^̄ is unbiased for all ®; since ¾";u = 0: However,

it is inconsistent, for a ¸ 1:

In �gure 2, we translate the signal to noise ratio from the CRSP monthly

and yearly series into the index ®: The �rst �gure displays the results from

the monthly data, with 864 observations. The value of ® is computed for

periods of 3, 5 and 10 years, as well as for the entire sample. The second

�gure displays the results from yearly data, with 72 observations. Similarly,

the value of ® is computed for the entire sample and for periods of 10 and 20

years. In both �gures, increasing the span of the data results in a decrease

of ® (addition of more signal). However, it is important to notice that

increasing the sample size twelve-fold by sampling data more frequently

produces a relatively small decrease in ®: This �nding is consistent with

the results from table 1 and implies that even with 864 observations in the

13



sample size, the signal to noise ratio is very small. In other words, using

monthly instead of yearly data will provide some useful information, but

also a lot more noise.

One might be tempted to rescale the regressors in order to increase the

signal in Xt. Suppose we rescale Xtby T fi in an attempt to make it �behave�

as an I(1) process, or

Yt+1 = ¹y + ~̄ ~Xt+ "t+1

where ~̄ = fl
T a and ~Xt= XtT

a. Note that in order to preserve the relation-

ship, we also have to rescale the coe¢cient. The rescaled coe¢cient ~̄ is in a

T fi neighborhood of 0: This scheme will lead to exactly the same problems.

Namely, the OLS estimator of ~̄ will converge at di¤erent rates depending on

®, and will be inconsistent for ® > 1: Similarly, the corresponding t-statistic

will be inconsistent for ® > 1: Rescaling does not work, because we are not

adding any additional information.

3.2 Correlation in residuals

If the assumption ¾";v = 0 is relaxed, the conclusions from above are only

reinforced. Using results in Cavanagh et al. (1994), we can show that

Proposition 3 Under the assumptions above, if ¿ = 1
T® , as T ! 1

T (1¡ fi)
³
^̄ ¡ ¯

´
) ¡

1 ¡ !2
¢1=2 R 1

0 W„
2 (s)dW? (s)R 1

0 (W
¹

2 (s))2 ds
+ !

R 1
0 W„

2 (s)dW2(s)R 1
0 (W

¹

2 (s))2 ds
(9)

tfl̂ ) ¡
1 ¡ !2

¢1=2 R 1
0 W2(s)dW? (s)³R 1
0 (W

¹

2 (s))2 ds
´1=2 + !

R 1
0 W2(s)dW2(s)³R 1
0 (W

¹

2 (s))2 ds
´1=2(10)

where corr("t; vt) = ! and W? (s) is a Wiener process obtained by projecting

W1(s) on W2(s); with E
¡
W 2

? (s)
¢

=
¡
1 ¡ !2

¢
:
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The above proposition can be generalized to accommodate error terms

with more general autocorrelation and heteroskedasticity (Hansen (1992),

Stock and Watson (1993)). By construction, W? (s) and W2(s) are sta-

tistically independent. To help the intuition a bit further, we can write

heuristically

^̄ a» ¯ +
¡
1 ¡ !2

¢1=2
ZT (fi¡ 1) + !RT (fi¡ 1)

where Z is a mean zero random variable with a mixed-normal distribution,

and R is a stochastic process with a de�ned density and a negative mean.

Note that, if ! = 0; the last term disappears in all of the above expressions.

The higher the correlation between the errors is, the more dominant is the

last term. Since we know (from simulation) that the density of R has most of

its mass on negative values, this generates a negative bias in �nite samples,

which is a result also obtained by Stambaugh(1986, 1999) with di¤erent

methods. Moreover, the smaller the signal to noise ratio is, the bigger the

bias. For ® > 1; the bias does not disappear asymptotically and the variance

of ^̄ increases, as discussed above.

Returning to our equity premium/ dividend yield equations, we can un-

derstand why we might have a situation when the coe¢cient seems to be

signi�cant (correct inference), but ¯ is so poorly estimated that it produces

forecasts no better than, say the mean of Yt:The issues of in-sample �t and

out of sample forecasting will be addressed in section 5.

3.3 Monte Carlo Again

The results in tables 2 and 3 were obtained by arbitrarily decreasing the

value of ¿ . Tables 4 and 5 present the outcomes of the same set of simu-
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lations, but for ¿ = 1
T ® ; and ® = 0; 0:20; 0:5; 0:67; 1; and 2: Table 4 is for

¾";v = 0, whereas ¾";v = 0:5 is in table 5. As expected from the previous

propositions, ^̄ is consistent for ® < 1, but is inconsistent for ® > 1 (tables

4a and 4b). The t-statistic for the null ¯ = 1 is shown to be inconsistent

against the alternative ¯ = 0 (tables 4d and 5d). The inconsistency of the

t-statistic does not depend on the choice of alternative, as can be seen from

(8). The other results in the tables will be discussed below.

4 Relation to existent literature

4.1 Results with �xed signal to noise ratio

If ¾";u = 0 and ¿ is �xed, we can show that

T
³
^̄ ¡ ¯

´
) 1

¿

R 1
0 W„

2 (s)dW1(s)R 1
0 (W„

2 (s))2 ds
(11)

and

tfl̂ =
^̄ ¡ ¯0

se(^̄)
)

R 1
0 W „

2 (s)dW1(s)³R 1
0 (W „

2 (s))2 ds
´1=2

As discussed above, we are interested in the case when the variance of ut

is orders of magnitude smaller than the variance of "t; which is captured by

the constant ¿; whose value is potentially very close to zero. The distribution

of ^̄ will have a very big variance around its center, ¯; even for large sample

sizes, but the estimator will be consistent. It is well known (Stock (1994))

that the asymptotic representations above approximate the �nite sample
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distributions very closely. This is one of the reasons for their fast acceptance

in time series econometrics. If ¾";u 6= 0 and Á = 1 + c=T; similar results can

be obtained, but the limiting distributions will depend on the correlation

¾";u and on the parameter c: (Cavanagh et al. (1994)).

The system (2) has been studied by Stambaugh (1986,1999), Mankiw

and Shapiro (1986), Nelson and Kim (1993), and Goetzmann and Jorion

(1993). Those authors have investigated the small sample properties of ^̄;

when ¾";u 6= 0 and Á is close to one. Stambaugh (1986, 1999) shows that the

downward bias in Á̂, magni�ed by ¾";u=¾2u results in a biased estimate of ¯:

The magnitude and the direction of the bias depend on Á and ¾";u=¾2u: More

precisely, E
³
^̄ ¡ ¯

´
= u;"

2
u

E
³
Á̂ ¡ Á

´
: Using Kendall�s (1954) result that

E
³
Á̂ ¡ Á

´
= ¡ (1 + 3Á) =T + O(T ¡ 2); and keeping in mind that the ratio

¾";u=¾2u can be estimated consistently, one can compute the magnitude of the

bias (up to O(T ¡ 2)): Interestingly, Cavanagh et al. (1994) use asymptotic

tools to derive essentially the same result.

Our point can directly be related to the simulations and bootstrap work

of Nelson and Kim (1993) and Goetzmann and Jorion (1993). By conducting

the simulations or the bootstrap, the authors implicitly take into account

the small signal to noise ratio. However, if the reality is that ¯ is not zero,

we showed that the usual t test has very little power to reject the null in their

case. Note that in our set-up, the null is of an existing relationship. However,

since the power is equal to size, the distribution under null and alternative

are the same. The authors fail to reject their null (our alternative) of no

prediction and control perfectly for the size of the test. However, since the

signal to noise ratio is small, they also have virtually zero power to test

against close alternatives, namely the alternatives of interest.
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4.2 Small signal to noise or decreasing interval length with

a �xed data span.

Perron (1987) shows that increasing the number of observations (frequency),

while keeping the sample span �xed, will not necessarily lead to an increase

of power in unit-root tests. The author achieves this result by drawing the

innovations of the process from a distribution with an increasing variance.

The higher the frequency, the higher the variance of the innovations. The

increase in the variance and the increase in observations is done at the same

rate T: In e¤ect, increasing the length of the sample increases only the noise,

without adding any signal.

Our setup has a di¤erent motivation, since we are considering a bivari-

ate, cointegrated system. However, modeling the signal to noise ratio as a

decreasing function of T is similar in spirit to Perron�s work. Indeed, for

® = 1, noise will accumulate at the same rate as information does, and we

will retrieve similar results in the present setup. In both studies, increasing

the number of observations will not lead to more precise estimates of the

parameter of interest. However, we are not interested in �xing the rate of

noise accumulation. Our goal is precisely to investigate the impact of dif-

ferent signal to noise ratios on the statistics of interest. Therefore, we place

the emphasis on ®.

4.3 Alternative local to zero parameterization

Instead of the parameterization (5), we could have chosen ¿ = ‚
T ; as in

Stock and Watson (1998). Here is a quick digression to their (simpli�ed)

model: yt = ¯t+ ut; ¯t = ¯t¡ 1 + vt and vt = ¿ºt, where ¿ = ¸=T: If we
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take ¸ = 1 then yt = ¯t+ ut; which is our set-up, assuming our ¯ = 1

(except for timing). In that case, similar calculations yield
³
^̄ ¡ ¯

´
)

1
‚

R 1
0 W„

2 (s)dW1(s)
³R 1
0 (W„

2 (s))
2
ds

´¡ 1
and tfl̂ ) R 1

0 W„
2 (s)dW1(s)

³R 1
0 (W „

2 (s))
2
ds

´¡ 1=2
:

However, the time-varying parameter (TVP) model in Stock and Watson

(1998) is di¤erent in interpretation from the equity premium/dividend yield

equations. The TVP ¯t is not observable, and hence ¿ cannot be estimated

with a simple regression. A Kalman �lter approach can yield an estimator

of ¿; but it is known that this ML estimator has a large pile-up probability

at zero. In our model, the series Xt are readily observable and we are not

looking to model the fact that a parameter is so close to the boundary of

its parameter space that it cannot be estimated reliably. We have a �xed

parameter model, where the regressor has a small variance, but this variance

can be estimated from a simple regression. The main interest here is to

capture the e¤ect of small ¿ on the small sample properties of ^̄, given a

sample size. We are building a sequence of models; one for each ®; given T .

In that sense, our modelling is more akin to the one used by Pantula (1991).

5 In-Sample Fit and Long-Term Forecasting

5.1 In Sample Fit

When estimating and testing with equation (2), the t-statistic is usually only

marginally signi�cant and the coe¢cient of determination R2 is very low.

This is not surprising, given �gure 1. However, using normal asymptotics,

one would expect the R2 to increase to 1 with the sample size, given that we

postulated the existence of a relationship between Yt and Xt: In the simple

regression above, we can show that
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Proposition 4 Under the assumptions above, if ¿ = 1
T® ; as T ! 1

R2 !p

8<: 1

0

® < 1=2

® > 1=2

For the borderline case ® = 1=2; R2 = Op(1):

For a small signal to noise ratio, an increase in the number of observations

will not result in an increase in R2; even if there is a relationship between

the two variables. Table 6 illustrates that this result is consistent with the

data. Increasing the number of observations (going from yearly to monthly

frequency) might not result in higher R2: In fact, we see that the R2 in

the monthly regressions is considerably lower than the ones in yearly data.

However, since the yearly samples are very small and we don�t know whether

there truly is a relationship between the equity premium and dividend yields

in the data1, we can only argue that our setup is consistent with the evidence.

To show explicitly the impact of the previous proposition, we turn to

the simulations in tables 2e, 3e, 4e, and 5e. The �rst two tables present

the results of the simulations of R2 for the case of ¿ �xed, ¾";v = 0 and

¾";v = 0:5, respectively. No matter what the correlation of the errors is, for

a big ¿; the R2 increases to 1 as the sample size rises. However, for very small

values of ¿; the R2 seems to converge to zero. This fact cannot be explained

by usual, �xed ¿ results, but is in exact accord with the above proposition.

Tables 4e and 5e present results for various ®0s, ¾";v = 0 and ¾";v = 0:5,

respectively. We can clearly see that, for a < 1=2; the R2 increases with the

sample size. For ® > 1=2; R2 converges to 0, as T ! 1:

1Note that if X is stationary; a similar result can be obtained for the

system. Then, R2 !p fl2 ¾x
¾"

fl2 ¾x
¾"
+1

; where E(X2
t) = ¾x: If ¾x is much smaller

than ¾", the ratio is not close to 1:
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5.2 Long-Term Forecasting

Given that ¯ is not estimated precisely, one has to wonder how good are the

out of sample forecasts produced by (2-4). In the equity premium literature,

the outcome of an out of sample forecasting exercise is often seen as the most

relevant measure for a successful model. In light of the discussion above,

we do not expect to be able to forecast with great accuracy, despite the

postulated relationship between equity return and dividend yields. Goyal

and Welch (1999) point out that the equity forecast produced from histori-

cal annual data does not perform any better than the unconditional mean.

However, the authors attribute this lack of forecasting power to parameter

instability rather than to small signal to noise ratio.

We will prove that, if the signal to noise ratio is small, forecasting using

the estimated model will not do better than the simple unconditional mean.

First, we show that asymptotics with �xed ¿ cannot give us insights into

the problem. Then, we use the local to zero parameterization to derive the

analytic results that would help explain the outcomes from the simulations.

We will compare two competing long-run forecasts: Y = 1
T

PT
t=1 Yt and

ŶT+kjT = ¹̂y + ^̄XT ; where k = [·T ] ; and · 2 (0; 1) : Given ¿ small, we can

show that both forecasts are asymptotically unbiased, or

E
³
T ¡ 1=2

¡
YT+k ¡ Y

¢´ ! 0

E
³
T ¡ 1=2

³
YT+k ¡ ŶT+kjT

´´
! 0

More importantly, the asymptotic variances are:
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E
³
T¡ 1

¡
YT+k ¡ Y

¢2´ ! ¿2¯2(· + 1=3)

E

µ
T ¡ 1

³
YT+k ¡ ŶT+kjT

´2¶ ! ¿2¯2·

Therefore, we can conclude that, asymptotically,

MSE(Y ) > MSE(ŶT+kjT )

This result might be expected. However, referring back to our battery of

simulations, tables 2g, 3g, 4g, 5g, we come to the realization that for small

¿; the MSE�s from both forecasts are almost identical, even for relatively

large sample sizes. This fact can well be captured using (5) : Under that

parameterization, ŶT+kjT does not always produce better forecasts than Y :

Proposition 5 Under the assumptions above, suppose ¿ = 1
T ® and k=[·T ]

where · is a �xed number. Let Y be the sample mean of Yt and let ŶT+kjT=b¹y+
^̄XT : Then, as T ! 1

E
¡
T ¡ (1=2¡ fi)

¡
YT+k ¡ Y

¢¢ ! 0 and E
³
T ¡ (1=2¡ fi)

³
YT+k ¡ ŶT+kjT

´´
! 0 ; ® < 1=2

E
¡¡

YT+k ¡ Y
¢¢ ! 0 and E

³³
YT+k ¡ ŶT+kjT

´´
! 0 ; ® ¸ 1=2

or both forecasts are asymptotically unbiased for all ®0s. However,

E
³
T ¡ (1¡ 2fi)

¡
YT+k ¡ Y

¢2´ ! ¯2(· + 1=3) ; ® < 1=2

E
³¡

YT+k ¡ Y
¢2´ ! ¯2(· + 1=3) + 1 ; ® = 1=2

E
³¡

YT+k ¡ Y
¢2´ ! 1 ; ® > 1=2
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and

E

µ
T ¡ (1¡ 2fi)

³
YT+k ¡ ŶT+kjT

´2¶ ! ¯2· ; ® < 1=2

E

µ³
YT+k ¡ ŶT+kjT

´2¶ ! ¯2· + 1 ; ® = 1=2

E

µ³
YT+k ¡ ŶT+kjT

´2¶ ! 1 ; ® > 1=2

Therefore,

MSE(Y ) > MSE(ŶT+kjT ) ; ® < 1=2

MSE(Y ) = MSE(ŶT+kjT ) ; ® ¸ 1=2

In the case ® > 1=2; we have MSE(Y ) = MSE(ŶT+kjT ): In other words,

if the signal to noise ratio is not strong enough in a �nite sample, the MSE�s

from both forecasts will be equal. The simulations in tables 4f and 5f il-

lustrate the analytical results. The entries show the simulated MSE in the

Monte Carlo experiments discussed above. For ® < 1=2; all values are

rescaled by a power of the sample size, following the proposition. Whenever

® < 1=2; the ŶT+kjT is a better predictor for YT+k than Y ; but for ® ¸ 1=2,

the MSE�s from the two forecasts are equal (except for simulation error). In

other words, forecasts from the true model won�t necessarily outperform the

unconditional mean, if the signal to noise ratio is extremely low. Therefore,

the �ndings in Goyal and Welch (1999) could very well be explained by the

small signal to noise ratio.

6 Conclusion

Previous papers have tested the existence of relationship (2) under the null

of ¯ = 0. Here we conduct the opposite exercise. Suppose that the equity

premium is forecasted by dividend yields. Even if such a relationship does
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exist, there is so much noise in the equity premium that estimation, inference

and forecasting cannot be carried out using the faint signal coming from the

dividend yields. It might well be the case that the equity premium is exces-

sively volatile because of its dependence on too many economic variables.

There is certainly evidence that other (macro and micro) factors, apart from

the dividend yield, might be related to the risky return as argued in Fama

(1981), Lamont (1998) and Lee, Myers, and Swaminathan (1999), among

others.

The signal to noise ratio is so small in the equity premium/dividend

yield data that it deserves particular attention. Simulations and analytical

results, showed that even in fairly large samples, the signal to noise ratio is

not large enough to conduct reliable estimation, inference, and forecasting.

We have proposed an index of the signal contained in a sample. This index

has an explicit impact on estimation, inference, in-sample �t and out of

sample forecasting. We argue that adding more (frequent) observations

does not guarantee an increase in this index, and the presented evidence

(simulations and data) supports such a conclusion. Lastly, we demonstrate

that a small signal to noise ratio can, in and of itself, lead to negatively

correlated returns.

In this paper, we have focused on regression (1). However, since most

of the recent empirical work is looking at forecasting long run returns (sum

of short returns), in a companion paper we analyze the econometric issues

that arise from regressing long returns on the dividend yield. Another direc-

tion for future work might be the explicit modelling of the equity/dividend

equations with time-varying parameters, an area that has largely been left

unexplored. Since it is hard to identify one parameter with noisy data, at-

tempting to �t more complicated models might seem a futile exercise. How-
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ever, a successful step in that direction is the paper by Goyal and Welch

(1999) who let the slope and the intercept follow a deterministic function of

time. A more general TVP framework, that explicitly takes into account the

small signal to noise ratio, might in fact improve the performance of both

estimates and forecasts. Such a setup might also cast light onto the reasons

of predictability, if predictability is in fact in the data.
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Appendix

Calculations for equation 11, with ¿ �xed. We have

Yt+1 = ¹y + ¯Xt+ "t+1

Xt+1 = Xt+ ut+1

ut = ¿vt

Then ^̄ =
³PT

t=1 Yt+1
¡
Xt¡ X

¢´³PT
t=1

¡
Xt¡ X

¢2´¡ 1
= ¯ +

³PT
t=1

¡
Xt¡ X

¢
"t+1

´³PT
t=1

¡
Xt¡ X

¢2´¡ 1
= ¯ +

³PT
t=1

³Pt
j=1 uj¡

³
1
T

PT
t=1

Pt
j=1 uj

´´
"t+1

´
£µPT

t=1

³Pt
j=1 uj¡

³
1
T

PT
t=1

Pt
j=1 uj

´´2¶¡ 1

= ¯ +
³
¿

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´
"t+1

´
£µ

¿2
PT

t=1

³Pt
j=1 vj ¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2¶¡ 1

:

Then

T
³
^̄ ¡ ¯

´
=

¿
T

PT
t=1

³Pt
j=1 vj ¡

³
1
T

PT
t=1

Pt
j=1 vj

´´
"t+1

¿2

T 2
PT

t=1

³Pt
j=1 vj ¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2
) 1

¿

R 1
0 W „

2 (s)dW1(s)R 1
0 (W„

2 (s))
2
ds

De�ne the usual t-statistic:

tfl̂ =
^̄ ¡ 0

se(^̄)
=

³
^̄ ¡ 0

´³PT
t=1

¡
Xt¡ X

¢2´1=2µ
1

T ¡ 1

PT
t=1

³
Yt+1 ¡ ^̄Xt́

2
¶1=2 =

A ¤ B

C
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First, under the null that ¯ = ¯0; from above, T
³
^̄ ¡ ¯0

´
) 1

¿

R 1
0
W 2(s)dW 1(s)R 1
0 W 2

2 (s)ds
:

Second 1
T

³PT
t=1 X2

t

´1=2
=

³
1
T 2

PT
t=1X2

t

´1=2 )
³
¿2

R 1
0 W 2

2 (s)ds
´1=2

: Third,

C !p
¡
¾2"

¢1=2
: Putting things together, we have the usual result:

tfl̂ )
R 1
0 W „

2 (s)dW1(s)³R 1
0 (W „

2 (s))
2
ds

´1=2
Proposition 1 Proof: Suppose ¿ = 1=T fi : Then, similarly to the previ-

ous calculations, ^̄ = 1
T ®

³PT
t=1

³Pt
j=1 vj

´
"t+1

´µ
1

T 2®
PT

t=1

³Pt
j=1 vj

´2¶¡ 1

T (1¡ fi)
³
^̄ ¡ ¯

´
= T (1¡ fi)

1
T a

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´
"t+1

1
T 2®

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2
=

1
T ®

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´
"t+1

1
T 2®

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2 1
T (1¡®)
1

T 2(1¡®)

=

1
T

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´
"t+1

1
T 2

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2
T (1¡ fi)

³
^̄ ¡ ¯

´
)

R 1
0 W

„
2 (s)dW1(s)R 1

0 (W „
2 (s))

2
ds

¥
Proposition 2 Proof: Under the null, the t-statistic is:

tfl̂ =

³
^̄ ¡ 0

´³PT
t=1X2

t

´1=2
µ

1
T¡ 1

PT
t=1

³
Yt+1 ¡ ^̄Xt́

2
¶1=2 =

A ¤ B

C

First, from above, T (1¡ fi)
³
^̄ ¡ ¯

´
)

R 1
0 W ¹

2 (s)dW 1(s)R 1
0 (W ¹

2 (s))
2
ds

: Second, 1
T 1¡®

³PT
t=1

¡
Xt¡ X

¢2´1=2
=

1
T 1¡®

µ
1

T 2®
PT

t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2¶1=2
=
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µ
1
T 2

PT
t=1

³Pt
j=1 vj¡

³
1
T

PT
t=1

Pt
j=1 vj

´´2¶1=2 )
³R 1
0 (W„

2 (s))
2
ds

´1=2
;

and C !p

¡
¾2"

¢1=2
: Finally, as above

tfl̂ )
R 1
0 W „

2 (s)dW1(s)³R 1
0 (W „

2 (s))
2
ds

´1=2
¥

Proposition 3 Proof: Let Àt= "t¡Proj("tjut) = "t¡±ut; where Proj()

is the linear projection of "ton utand ± = "up
u "

: Then, 1

(1¡ –2)
1=2

1
T 1=2

Pt
i=0 Àt)

W? (s); where W? (s) is a standard Wiener process, dstributed indepen-

dently of W2(s) by construction. We can also write it as W? (s) = W1(s) ¡
±W2 (s) : Using exactly the same steps as above, it is straight forward to

show that T (1¡ fi)
³
^̄ ¡ ¯

´
)

R 1
0 W ¹

2 (s)dW 1(s)R 1
0 (W ¹

2 (s))
2
ds

=
¡
1 ¡ ±2

¢1=2 R 1
0 W ¹

2 (s)dW ?(s)R 1
0 (W ¹

2 (s))
2
ds

+

±
R 1
0 W ¹

2 (s)dW 2(s)R 1
0 (W ¹

2 (s))
2
ds

: Similarly tfl̂ )
R 1
0 W ¹

2 (s)dW 1(s)³R 1
0 (W ¹

2 (s))
2
dś

1=2 =
¡
1 ¡ ±2

¢1=2 R 1
0 W ¹

2 (s)dW ?(s)³R 1
0 (W ¹

2 (s))
2
dś

1=2+

±
R 1
0
W ¹
2 (s)dW 2(s)³R 1

0 (W ¹
2 (s))

2
ds

´1=2 ; and that completes the proof.¥

Proposition 4 Proof : Recall that R2 =
fl̂
2 PT

t=1(X t¡ X )
2PT

t=1(Yt¡ Y )
2 : The denom-

inator is
PT

t=1

¡
Yt¡ Y

¢2
= ^̄2 PT

t=1

¡
Xt¡ X

¢2
+

PT
t=1 "2t + LOT; where

LOT denotes terms of lower stochastic order for any ®: For ® < 1=2;

the �rst term dominates, for ® > 1=2 the second term dominates, and

for ® = 1=2 the two terms are of the same Op order. Then, for ® <

1=2; R2 =
fl̂
2 1
T2¡2®

PT
t=1(X t¡ X )

2

fl̂
2 1
T 2¡2®

PT
t=1(X t¡ X )2+op(1)

!p 1: In the case ® > 1=2; R2 =

op(1)

op(1)+ 1
T

PT
t=1 "

2
t

!p 0: For the borderline case ® = 1=2; we have R2 =

fl̂
2 1
T

PT
t=1(X t¡ X )

2

fl̂
2 1
T

PT
t=1(X t¡ X )

2
+ 1
T

PT
t=1 "

2
t

) fl2
R 1
0 (W ¹

2 (s))
2
ds

fl2
R 1
0 (W ¹

2 (s))
2
ds+ "

; which completes the proof.

¥
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Proposition 5 Proof: Before proceeding, note that YT+k = ¹y +

¯XT+k¡ 1 + "T+k = ¹y + ¯XT + ¯
Pk¡ 1

i=1 uT+i + "T+k; where ut = 1
T ® vt

and k = [·T ] : Then

T ¡ (1=2¡ fi)YT+k = T ¡ (1=2¡ fi)
³
¹y + ¯XT + ¯

Pk¡ 1
i=1 uT+i+ "T+k

´
) ¯W (1) + ¯R ; ® < 1=2

YT+k ) ¹y + ¯W (1) + ¯R + "T+k ; ® = 1=2

YT+k ) ¹y + "T+k ; ® > 1=2

where R » N
¡
0; ·¾2v

¢
and is independently distributed from "T+k: Similarly,

the mean of Yt

T¡ (1=2¡ fi)Y ) ¯
R 1
0 W (s)ds ; ® < 1=2

Y ) ¹y + ¯
R 1
0 W (s) ds ; ® = 1=2

Y !p ¹y ; ® > 1=2

If we use ŶT+kjT ,

T ¡ (1=2¡ fi)ŶT+k = T ¡ (1=2¡ fi)
³
®̂ + ^̄XT

´
) ¯W (1) ; ® < 1=2

ŶT+k ) ¹y + ¯W (1) ; ® = 1=2

ŶT+k !p ¹y ; ® > 1=2

Then, the asymptotic bias from using ŶT+kjT is E
n
T ¡ (1=2¡ fi)

³
YT+k ¡ ŶT+kjT

´o
!

0 for ® < 1=2 and E
n
T

³
YT+k ¡ ŶT+kjT

´o
! 0 for ® ¸ 1=2: Similarly,

the asymptotic bias from using Y is E
©
T ¡ (1=2¡ fi)

¡
YT+k ¡ Y

¢ª ! 0 for

® < 1=2 and E
©
T

¡
YT+k ¡ Y

¢ª ! 0 for ® ¸ 1=2: Therefore, both forecasts

are asymptotically unbiased, for all a0s:
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The expressions for the asymptotic variances can be computed in the

same fashion, using the fact that E
³

X T

T 1=2
(X 1+:::+X T )

T 3=2

´
= 1

T 2E
¡
X1XT + ::: + X2

T

¢
=

1
T 2E

¡
"21 +

¡
"21 + "22

¢
+ ::: +

¡
"21 + "22 + ::: + "2T

¢
+ cross terms

¢
= 1

T 2

¡
¾2" + 2¾2" + ::: + T¾2"

¢
=

2
"

T 2
1
2T (T + 1) ! 1

2¾
2
": Similarly, E

µ³
X 1+:::+X T

T 3=2

´2¶
= 1

T 3E

µ
X2
1 + ::: + X2

T + 2
P

i>
6=
jXiXj

¶
=

1
T 3

©
¾2" + 2¾2" + ::: + T¾2"

ª
+2¾2" (T + 2(T ¡ 1) + 3 (T ¡ 2) + ::: + (T ¡ 1)) =

2
"

T 3

nPT
i=1 i + 2

PT
i=1 (T ¡ i + 1) i

o
=

2
"

T 3

³
T (T+1)

2 + 1
6T

3 + 1
2T

2 + 1
3T

´
!

1
3¾

2
":¥
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Figure 1

The monthly and annual data is from the CRSP database. All series are in logs and multiplied by 100. EP is the log
of Equity Premium and DY is the log of Dividend Yield. The Dividend Yield is much less volatile than the Equity
Premium.
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Figure 2

The value of ® is obtained from: ® = ¡ log ¿= logT , where ¿2 is obtained in the following way: Regress the
Equity Premium on lagged Dividend Yield and estimate the variance of the residuals, call it ¾". Regress
the Dividend Yield on itself (or several lags), and estimates the variance of the residuals, call it ¾u. Then
¿2 = ¾u=¾". The value of ® is computed for di¤erent intervals, as indicated. Remarkably, it is fairly constant
and sometimes higher than 1. Values higher than 0.5 indicate that the signal to noise ratio is extremely
small. The OLS estimator of ¯ in the forecasting regression will be very inaccurate.



Table 1

Period: 1926-1998

Yearly Summary Statistics Monthly Summary Statistics

Mean Std.Dev V(DY)/V(EP) ¿2 AR Mean Std.Dev V(DY)/V(EP) ¿2 AR

EP 6.32 19.897 0.161 0.68 5.504 0.123
DY 4.49 1.387

0.0049 0.0032
0.964* 0.35 0.219

0.0016 0.0029
0.997

Period: 1926:1-1945:12

Yearly Summary Statistics Monthly Summary Statistics

Mean Std.Dev V(DY)/V(EP) ¿2 AR Mean Std.Dev V(DY)/V(EP) ¿2 AR

EP 5.24 28.475 0.256 0.76 8.059 0.150
DY 5.15 1.178

0.0017 0.0026
0.966 0.42 0.220

0.0007 0.0014
0.997

Period: 1946:1-1978:12

Yearly Summary Statistics Monthly Summary Statistics

Mean Std.Dev V(DY)/V(EP) ¿2 AR Mean Std.Dev V(DY)/V(EP) ¿2 AR

EP 6.22 17.683 0.116 0.57 4.038 0.100
DY 4.41 1.504

0.0072 0.0037
0.973 0.35 0.239

0.0035 0.0067
0.997

Period: 1979:1-1985:12

Yearly Summary Statistics Monthly Summary Statistics

Mean Std.Dev V(DY)/V(EP) ¿2 AR Mean Std.Dev V(DY)/V(EP) ¿2 AR

EP 5.77 14.787 -0.632 0.66 4.484 0.069
DY 5.02 0.824

0.0031 0.0088
0.917* 0.39 0.198

0.0019 0.0047
0.999

Period: 1986:1-1998:12

Yearly Summary Statistics Monthly Summary Statistics

Mean Std.Dev V(DY)/V(EP) ¿2 AR Mean Std.Dev V(DY)/V(EP) ¿2 AR

EP 9.35 12.595 0.123 0.87 4.178 0.050
DY 3.23 0.738

0.0034 0.0037
0.954 0.25 0.092

0.0005 0.0009
0.999

Notes: The monthly and annual data is from the CRSP database. �EP� is the equity premium and �DY� is the
dividend yield. All series are in logs and multiplied by 100. The columm �V(DY)/V(EP)� is variance of the Dividend
Yield over the variance of the Equity Premium. ¿2 is obtained in the following way: Regress the Equity Premium
on lagged Dividend Yield and estimate the variance of the residuals, call it ¾". Regress the Dividend Yield on itself
(or several lags), and estimates the variance of the residuals, call it ¾u. Then ¿2 = ¾u=¾". AR is the largest root
of the corresponding variable. All equations were run with one lag, except for the monthly Divident Yield, which
was run with six lags (chosen by sequential t-tests). For the Dividend Yield, * signi�es that the Augmented Dickey
Fuller test cannot accept the null of the coe¢cient being equal to 1 at the 0.05 level.



Table 2a

The OLS estimator of ¯ in forecasting regression

T= 75 T= 200 T= 500
¿ E(^̄) V ar(^̄) E(^̄) V ar(^̄) E(^̄) V ar(^̄)
1 1.00 2.02e-003 1.00 2.75e-004 1.00 4.19e-005

1.0e-001 1.01 1.92e-001 1.00 2.63e-002 1.00 4.35e-003
1.0e-002 0.98 1.96e+001 0.98 2.68e+000 1.00 4.37e-001
1.0e-003 1.14 1.96e+003 0.91 2.69e+002 1.01 4.34e+001
1.0e-004 4.20 1.93e+005 2.39 2.72e+004 0.78 4.35e+003
1.0e-005 -2.43 2.00e+007 0.63 2.69e+006 6.68 4.51e+005

Table 2b

The OLS estimator of the root in Xt

T= 75 T= 200 T= 500
¿ E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂)
1 0.98 1.69e-003 0.99 2.51e-004 1.00 4.05e-005

1.0e-005 0.98 1.74e-003 0.99 2.51e-004 1.00 4.05e-005

Table 2c

The OLS estimator of the root in Yt

T= 75 T= 200 T= 500
¿ E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2)
1 0.82 1.43e-002 0.93 2.99e-003 0.97 5.91e-004

1.0e-001 0.08 1.98e-002 0.21 2.19e-002 0.39 3.00e-002
1.0e-002 -0.01 1.35e-002 -0.00 4.98e-003 0.01 2.07e-003
1.0e-003 -0.01 1.33e-002 -0.00 5.03e-003 -0.00 2.01e-003
1.0e-004 -0.01 1.33e-002 -0.01 5.07e-003 -0.00 1.99e-003
1.0e-005 -0.01 1.36e-002 -0.01 4.91e-003 -0.00 2.03e-003

Notes: The system above is simulated, where ¿ is a �xed small number. The correlation between ut and ²t is zero,
so there is no bias. The system is simulated 10000 times, for each speci�cation of (¿ ; T ). The true value of ¯ is 1.



Table 2d

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 500
¿ null alt null alt null alt
1 0.02 28.41 -0.03 75.50 0.00 188.19

1.0e-001 0.01 2.82 0.00 7.56 -0.01 18.84
1.0e-002 0.01 0.28 -0.03 0.74 0.01 1.89
1.0e-003 -0.01 0.02 -0.00 0.07 0.01 0.19
1.0e-004 0.02 0.01 0.01 0.02 -0.01 0.01
1.0e-005 -0.01 -0.00 0.01 0.01 0.03 0.02

Table 2e

Mean of R2

¿ T= 75 T= 200 T= 500
1 1.01 1.06 1.09

1.0e-001 0.13 0.25 0.44
1.0e-002 0.02 0.01 0.01
1.0e-003 0.02 0.01 0.00
1.0e-004 0.02 0.01 0.00
1.0e-005 0.02 0.01 0.00

Table 2f

Comparison of MSE�s from ¹Y and ŶT+kjT

T= 75 T= 200 T= 500
¿ MSE(¹Y ) MSE(ŶT+kjT ) Ratio MSE( ¹Y ) MSE(ŶT+kjT ) Ratio MSE(¹Y ) MSE(ŶT+kjT ) Ratio
1 0.393 0.055 7.156 0.377 0.049 7.622 0.377 0.050 7.591

1.0e-001 0.018 0.015 1.205 0.009 0.006 1.546 0.006 0.002 2.358
1.0e-002 0.013 0.014 0.971 0.005 0.005 0.993 0.002 0.002 1.011
1.0e-003 0.013 0.014 0.972 0.005 0.005 0.992 0.002 0.002 0.997
1.0e-004 0.013 0.014 0.972 0.005 0.005 0.988 0.002 0.002 0.993
1.0e-005 0.014 0.014 0.970 0.005 0.005 0.988 0.002 0.002 0.995

Notes: The system above is simulated, where ¿ is a �xed small number. The correlation between ut and ²t is zero,
so there is no bias. The system is simulated 10000 times, for each speci�cation of (¿ ; T ). The true value of ¯ is 1.



Table 3a

The OLS estimator of ¯ in forecasting regression

T= 75 T= 200 T= 500
¿ E(^̄) V ar(^̄) E(^̄) V ar(^̄) E(^̄) V ar(^̄)
1 0.97 2.22e-003 0.99 3.17e-004 0.99 5.36e-005

1.0e-001 0.65 2.28e-001 0.87 3.35e-002 0.95 5.12e-003
1.0e-002 -2.58 2.40e+001 -0.34 3.28e+000 0.46 5.37e-001
1.0e-003 -34.00 2.37e+003 -12.33 3.32e+002 -4.41 5.33e+001
1.0e-004 -346.55 2.28e+005 -132.20 3.18e+004 -53.32 5.44e+003
1.0e-005 -3415.52 2.25e+007 -1299.23 3.16e+006 -531.64 5.23e+005

Table 3b

The OLS estimator of the root in Xt

T= 75 T= 200 T= 500
¿ E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂)
1 0.98 1.57e-003 0.99 2.38e-004 1.00 4.16e-005

1.0e-005 0.98 1.54e-003 0.99 2.39e-004 1.00 3.96e-005

Table 3c

The OLS estimator of the root in Yt

T= 75 T= 200 T= 500
¿ E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2)
1 0.87 8.60e-003 0.95 1.50e-003 0.98 2.81e-004

1.0e-001 0.09 2.03e-002 0.22 2.30e-002 0.40 2.99e-002
1.0e-002 -0.01 1.33e-002 -0.00 5.04e-003 0.01 2.11e-003
1.0e-003 -0.01 1.33e-002 -0.00 4.92e-003 -0.00 2.07e-003
1.0e-004 -0.01 1.33e-002 -0.01 4.93e-003 -0.00 1.99e-003
1.0e-005 -0.01 1.31e-002 -0.01 5.08e-003 -0.00 1.97e-003

Notes: The system above is simulated, where ¿ is a �xed small number. The correlation between vt and ²t is 0.50,
so there is bias. The system is simulated 10000 times, for each speci�cation of (¿ ; T ). The true value of ¯ is 1.



Table 3d

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 500
¿ null alt null alt null alt
1 -1.45 27.59 -1.46 75.39 -1.44 187.85

1.0e-001 -1.47 2.07 -1.40 6.80 -1.44 18.12
1.0e-002 -1.48 -0.49 -1.45 -0.01 -1.41 1.13
1.0e-003 -1.46 -0.73 -1.43 -0.68 -1.44 -0.58
1.0e-004 -1.48 -0.76 -1.42 -0.76 -1.44 -0.75
1.0e-005 -1.46 -0.75 -1.40 -0.74 -1.47 -0.77

Table 3e

Mean of R2

¿ T= 75 T= 200 T= 500
1 1.00 1.06 1.09

1.0e-001 0.09 0.22 0.42
1.0e-002 0.02 0.01 0.01
1.0e-003 0.02 0.01 0.00
1.0e-004 0.02 0.01 0.00
1.0e-005 0.02 0.01 0.00

Table 3f

Comparison of MSE�s from ¹Y and ŶT+kjT

T= 75 T= 200 T= 500
¿ MSE(¹Y ) MSE(ŶT+kjT ) Ratio MSE( ¹Y ) MSE(ŶT+kjT ) Ratio MSE(¹Y ) MSE(ŶT+kjT ) Ratio
1 0.379 0.054 7.052 0.387 0.049 7.853 0.380 0.050 7.574

1.0e-001 0.016 0.014 1.170 0.009 0.006 1.529 0.006 0.003 2.277
1.0e-002 0.013 0.014 0.976 0.005 0.005 0.995 0.002 0.002 1.010
1.0e-003 0.013 0.014 0.966 0.005 0.005 0.989 0.002 0.002 0.996
1.0e-004 0.013 0.014 0.969 0.005 0.005 0.986 0.002 0.002 0.996
1.0e-005 0.013 0.014 0.975 0.005 0.005 0.993 0.002 0.002 0.996

Notes: The system above is simulated, where ¿ is a �xed small number. The correlation between vt and ²t is 0.50,
so there is bias. The system is simulated 10000 times, for each speci�cation of (¿ ; T ). The true value of ¯ is 1.



Table 4a

The OLS estimator of ¯ in forecasting regression

T= 75 T= 200 T= 500
® E(^̄) V ar(^̄) E(^̄) V ar(^̄) E(^̄) V ar(^̄)

0.00 1.00 2.02e-003 1.00 2.69e-004 1.00 4.39e-005
0.20 1.00 1.11e-002 1.00 2.28e-003 1.00 5.10e-004
0.50 1.00 1.52e-001 1.00 5.40e-002 1.00 2.20e-002
0.67 1.00 6.50e-001 0.99 3.19e-001 0.99 1.74e-001
1.00 0.97 1.15e+001 1.01 1.08e+001 0.94 1.05e+001
2.00 2.79 6.61e+004 -2.18 4.51e+005 18.79 2.67e+006

Table 4b

The OLS estimator of the root in Xt

T= 75 T= 200 T= 500
® E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂)

0.00 0.98 1.61e-003 0.99 2.45e-004 1.00 4.18e-005
2.00 0.98 1.64e-003 0.99 2.62e-004 1.00 4.03e-005

Table 4c

The OLS estimator of the root in Yt

T= 75 T= 200 T= 500
® E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2)

0.00 0.82 1.44e-002 0.93 2.92e-003 0.97 5.80e-004
0.20 0.56 3.92e-002 0.70 2.35e-002 0.80 1.30e-002
0.50 0.11 2.21e-002 0.12 1.33e-002 0.13 1.02e-002
0.67 0.02 1.49e-002 0.02 5.64e-003 0.02 2.28e-003
1.00 -0.01 1.32e-002 -0.00 5.00e-003 -0.00 2.00e-003
2.00 -0.01 1.32e-002 -0.01 5.08e-003 -0.00 1.95e-003

Notes: The system above is simulated, where ® is �xed. The correlation between ut and ²t is zero, so there is no
bias. The system is simulated 10000 times, for each speci�cation of (®; T ). The true value of ¯ is 1.



Table 4d

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 500
® null alt null alt null alt

0.00 -0.01 27.98 -0.01 75.81 -0.01 188.97
0.20 0.01 12.01 0.01 26.03 -0.03 54.61
0.50 -0.02 3.28 0.05 5.35 0.02 8.43
0.67 0.02 1.58 -0.01 2.16 -0.01 2.94
1.00 -0.02 0.37 0.01 0.38 -0.02 0.36
2.00 0.01 0.01 -0.02 -0.01 0.03 0.01

Table 4e

Mean of R2

® T= 75 T= 200 T= 500
0.00 1.01 1.07 1.09
0.20 0.70 0.81 0.90
0.50 0.16 0.15 0.15
0.67 0.06 0.03 0.02
1.00 0.02 0.01 0.00
2.00 0.02 0.01 0.00

Table 4f

Comparison of MSE�s from ¹Y and ŶT+kjT

T= 75 T= 200 T= 500
® MSE( ¹Y ) MSE(ŶT+kjT ) Ratio MSE(¹Y ) MSE(ŶT+kjT ) Ratio MSE(¹Y ) MSE(ŶT+kjT ) Ratio

0.00 0.382 0.054 7.055 0.389 0.050 7.743 0.381 0.050 7.604
0.20 0.460 0.122 3.768 0.416 0.087 4.775 0.401 0.070 5.719
0.50 1.405 1.089 1.290 1.362 1.056 1.289 1.410 1.063 1.327
0.67 1.108 1.042 1.063 1.081 1.033 1.047 1.033 0.994 1.039
1.00 1.029 1.048 0.982 1.030 1.044 0.987 1.022 1.026 0.996
2.00 1.008 1.040 0.969 1.016 1.025 0.991 0.980 0.981 0.998

Notes: The system above is simulated, where ® is �xed. The correlation between ut and ²t is zero, so there is no
bias. The system is simulated 10000 times, for each speci�cation of (®; T ). The true value of ¯ is 1.



Table 5a

The OLS estimator of ¯ in forecasting regression

T= 75 T= 200 T= 500
® E(^̄) V ar(^̄) E(^̄) V ar(^̄) E(^̄) V ar(^̄)

0.00 0.97 2.22e-003 0.99 3.17e-004 0.99 5.36e-005
0.20 0.92 1.28e-002 0.96 2.79e-003 0.98 6.14e-004
0.50 0.69 1.80e-001 0.81 6.56e-002 0.88 2.68e-002
0.67 0.37 7.71e-001 0.54 4.03e-001 0.65 2.21e-001
1.00 -1.61 1.28e+001 -1.66 1.27e+001 -1.72 1.36e+001
2.00 -191.18 7.13e+004 -519.09 5.06e+005 -1330.59 3.27e+006

Table 5b

The OLS estimator of the root in Xt

T= 75 T= 200 T= 500
® E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂) E(Á̂) V ar(Á̂)

0.00 0.98 1.57e-003 0.99 2.38e-004 1.00 4.16e-005
2.00 0.98 1.54e-003 0.99 2.39e-004 1.00 3.96e-005

Table 5c

The OLS estimator of the root in Yt

T= 75 T= 200 T= 500
® E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2) E(Á̂2) V ar(Á̂2)

0.00 0.87 8.60e-003 0.95 1.50e-003 0.98 2.81e-004
0.20 0.61 3.64e-002 0.74 2.07e-002 0.82 1.10e-002
0.50 0.11 2.30e-002 0.13 1.38e-002 0.13 1.05e-002
0.67 0.02 1.46e-002 0.02 5.56e-003 0.02 2.41e-003
1.00 -0.01 1.34e-002 -0.00 4.94e-003 -0.00 1.99e-003
2.00 -0.01 1.31e-002 -0.01 5.08e-003 -0.00 1.97e-003

Notes: The system above is simulated, where ® is �xed. The correlation between vt and ²t is 0.50, so there is bias.
The system is simulated 10000 times, for each speci�cation of (®; T ). The true value of ¯ is 1.



Table 5d

Mean of t-stat under Null and Alternative

T= 75 T= 200 T= 500
® null alt null alt null alt

0.00 -1.45 27.59 -1.46 75.39 -1.44 187.85
0.20 -1.47 11.16 -1.40 25.43 -1.44 53.74
0.50 -1.48 2.47 -1.45 4.59 -1.41 7.68
0.67 -1.46 0.81 -1.43 1.41 -1.44 2.16
1.00 -1.48 -0.38 -1.42 -0.39 -1.44 -0.40
2.00 -1.46 -0.74 -1.40 -0.74 -1.47 -0.77

Table 5e

Mean of R2

® T= 75 T= 200 T= 500
0.00 1.00 1.06 1.09
0.20 0.66 0.79 0.90
0.50 0.12 0.12 0.13
0.67 0.03 0.02 0.02
1.00 0.02 0.01 0.00
2.00 0.02 0.01 0.00

Table 5f

Comparison of MSE�s from ¹Y and ŶT+kjT

T= 75 T= 200 T= 500
® MSE( ¹Y ) MSE(ŶT+kjT ) Ratio MSE(¹Y ) MSE(ŶT+kjT ) Ratio MSE(¹Y ) MSE(ŶT+kjT ) Ratio

0.00 0.379 0.054 7.052 0.387 0.049 7.853 0.380 0.050 7.574
0.20 0.439 0.119 3.692 0.409 0.087 4.690 0.403 0.072 5.590
0.50 1.297 1.064 1.220 1.357 1.060 1.280 1.348 1.043 1.293
0.67 1.071 1.056 1.014 1.049 1.020 1.029 1.047 1.020 1.027
1.00 1.007 1.040 0.968 1.002 1.015 0.986 0.995 0.999 0.996
2.00 1.005 1.031 0.975 1.008 1.015 0.993 1.003 1.007 0.996

Notes: The system above is simulated, where ® is �xed. The correlation between vt and ²t is 0.50, so there is bias.
The system is simulated 10000 times, for each speci�cation of (®; T ). The true value of ¯ is 1.




