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RESEARCH ARTICLE Open Access

Glycosylation of anthocyanins enhances
the apoptosis of colon cancer cells by
handicapping energy metabolism
Nan Jing1,2, Jiaxing Song2, Zheng Liu1,2, Luoyang Wang1,2* and Guoqiang Jiang1,2*

Abstract

Background: While anthocyanins are proven to be effective in inhibiting tumour cell proliferation, the underlying
mechanisms remain unclear. This research aims to explore the glycosylation of anthocyanins in the tumour
inhibitory effects and the potential mechanism.

Methods: The tumour inhibitory effect on mouse colon cancer cells (MC38) was examined by MTT and flow
cytometric analyses. The inhibitory pathway of anthocyanin was explored by assessment of tumour cell
mitochondrial membrane potential (MMP), the caspase-3 and caspase-9 activity, as well as the cell energy
metabolism in terms of the glucose uptake, the NAD+/NADH ratio and the ATP level.

Results: We found that 500 μM bilberry anthocyanins extract (BAE) induced 48.1% mitochondrial damage, activated
the downstream caspase cascade to form apoptotic bodies (caspase-3 activity increased by 169%, caspase-9 activity
increased by 186%), and inhibited cell proliferation (survival rate: 55.97%, 24 h). In contrast, the same concentration
of anthocyanidin (cyanidin) led to marginal mitochondrial damage (only 9.85%) and resulted in little inhibition of
MC38 cells (survival rate: 86.84%, 24 h). For cells incubated with 500 μM BAE, reactive oxygen species (ROS)
decreased by 53.8%, but the ratio of NAD+/NADH increased to 3.67, demonstrating that the mitochondrial damage
was induced by blocking energy metabolism. Furthermore, cell energy metabolism is related to glucose uptake
since the presence of 200 μM GLUT1 inhibitor substantially enhanced the inhibitory effects of cyanidin-3-O-
glucoside (Cy-3-Glu) at 500 μM (survival rate: 51.08%, 24 h).

Conclusions: The study suggested that the glycosides of anthocyanins might handicap glucose transport and
inhibit energy metabolism, which, in turn, led to mitochondrial damage and apoptosis of tumour cells.

Keywords: Anthocyanin, Glycosides, Cell apoptosis, Glucose transporter

Background
Anthocyanins are flavonoids found in various fruits and
vegetables as natural plant pigments [1, 2] and are highly
valued for their health-promoting attributes, such as
promoting intestinal barrier function [3], prventing car-
diovascular disease, and alleviating oxidative stress

induced by ages, diabetes and inflammation [4, 5]. Anti-
cancer effects have also been reported for anthocyanin
extracts including bilberry, blueberry, cranberry and
other berries [6–9]. Anthocyanin consist of the antho-
cyanidin aglycone plus one or more glycosides. To date,
studies of the anticancer mechanisms of anthocyanins
have focused on the anthocyanidin aglycone. The re-
ported studies showed that anthocyanidin could affect
signalling pathways related to proliferation and apoptosis
of tumour cells [10], e.g., inhibiting the proinflammatory
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NF-κB pathway [11], targeting the PDK1-PI3K/Akt sig-
nalling pathway [12], enhancing the expression of
p21WAF1 and suppressing the expression of cyclin A/B
simultaneously [13].
However, the impact of the glycosides of anthocyanins

on tumour inhibition has not been well clarified, and
data on the influence on the bioactivity of glycosides
were diverse or even controversial. On the one hand, O-
glycosylation of flavonoids reduces their biological ef-
fects [14]. For example, the O-glycosylation of flavonoids
dramatically diminished the inhibition on producing
NO, expressing iNOS, and activating NF-κB in
RAW264.7 macrophages and mouse microglial BV-2
cells [15]. Furthermore, in vitro experiments showed that
flavonoid aglycones displayed better anticancer potency
than their homologous glycosides [16, 17]. On the other
hand, there are reports showing that glycosylation en-
hances the bioactivity of flavonoids, which may be attrib-
uted to the facilitated transmembrane delivery driven by
glycoside binding to glucose transporters (GLUTs) on
the cell membrane [18]. Zou et al. proved that these two
inhibitors of glucose transporters (phloridzin and phlor-
etin) could inhibit the absorption of cyanidin-3-O-gluco-
side (Cy-3-Glu) [19]. Manzano et al. reported that
peonidin-3-O-glucose inhibits the activities of the glu-
cose transporters which could further affect glucose ab-
sorption and transport by cells [20]. Alzaid et al.
demonstrated that anthocyanin extracts from berries sig-
nificantly reduced SGLT1 and GLUT2 expression by
cells [21]. Despite the aforementioned efforts, the effects
of glycosylation on the functions of anthocyanins, espe-
cially their antitumour function, remain indistinct.
The purpose of this research was to explore the

glycosylation of anthocyanin on tumour cell inhib-
ition and the related mechanism. We compared the
tumour inhibitory efficiency of glycosylated anthocy-
anins on mouse colon cancer cells (MC38) with that
of the anthocyanidin aglycone and found that glyco-
sylation significantly increased the cytotoxicity of an-
thocyanins to tumour cells. Then, we demonstrated
that the inhibitory pathway of anthocyanin was
highly related to the energy metabolism of tumour
cells, in which the glycosides of anthocyanins exerted
a decisive influence. For the first time, to our know-
ledge, we proposed a potential mechanism by which
glycosides of anthocyanins enhance tumour cell in-
hibition through energy metabolism and glucose
transport.

Methods
Chemicals and reagents
The standardised bilberry (Vaccinium myrtillus) extracts
(Mirtoselect®) were purchased from Indena SpA (Milan,
Italy) which manufactured by their specific process to

ensure the constant anthocyanin composition (36% w/
w). The composition of the anthocyanin extracts was de-
tected by HPLC-DAD-MS (Fig. S1, Table S1) with refer-
ences [22]. The anthocyanin content was determined by
comparing chromatographic peak areas with cyanidin-3-
glucoside, an external standard. As shown in Table S1,
99.17% of the anthocyanins in bilberry are glycosylated.
PBS, MTT, RIPA buffer, Hoechst 33258 and all assay
kits except GOD-POD kit were acquired from Beyotime
Institute of Biotechnology, Ltd. (Shanghai, China).
GOD-POD kit was purchased from Beijing leagene bio-
technology, Ltd. (Beijing, China). Dimethyl sulfoxide
(DMSO), cyanidin-3-O-glucoside, cyanidin chloride and
5-fluorouracil (5-FU) were purchased from Sigma-
Aldrich (St. Louis, MO). Chromatographic mobile
phases were obtained from Fisher Scientific (Shanghai,
China). Reagents for cell culture were obtained from
Gibco (Grand Island, NY). WZB117 (glucose transporter
1 (GLUT1) inhibitor) was purchased from APExBIO
(Houston, Texas). Other reagents were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). All the other chemical reagents used in this
study were of analytical grade and used as received.

Cell culture
Dulbecco’s modified Eagle’s medium (DMEM) contain-
ing 10% foetal bovine serum and 1 × Penicillin-Strepto-
mycin solution was used to culture the murine cancer
cell line MC38 and the fibroblast cell line L929 (Cell
Bank of the Type Culture Collection, Chinese Academy
of Sciences). The cell lines were incubated under a
humidified atmosphere (RH 85%) and 5% carbon dioxide
at 37 °C [23, 24].

Cell viability and apoptosis
The cells were seeded into a 96-well plate, and 200 μL of
DMEM was added to each well to give a concentration
of 1 × 105 cells/well at 37 °C for 24 h. Then medium was
removed and fresh DMEM containing four doses (100,
200, 500 and 1000 μM) of anthocyanin (ANC) of bilberry
extract, anthocyanin standards (cyanidin-3-O-glucoside
and cyanidin chloride) or GLUT1 inhibitor was added.
The control groups did not contain ANC. The medium
was removed after the cells incubated for 24, 48 and 72
h. The cell viability was determined by the MTT assay
[25, 26]. The inhibitory effect on MC38 cells was deter-
mined based on the relative cell survival rate.
Apoptotic cells after treatment with ANC were quanti-

fied with an Annexin V-FITC detection kit. MC38 cells
were seeded into a 6-well plate to give a concentration
of approximately 2.5 × 106 cells/well for 24 h of incuba-
tion, after which four doses (100, 200, 500 and 1000 μM)
of ANC were added respectively and incubated at 37 °C
for 48 h. DMEM was collected in an EP tube, and then
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adherent cells were washed with PBS. Afterwards, the
adherent cells were digested with trypsin and resus-
pended in PBS buffer with the concentration of 1 × 106

cell/mL approximately. Staining solution consisting of
195 μL of FITC-conjugated Annexin V binding buffer
and 5 μL of Annexin V-FITC were added after centrifu-
gation (1000 g, 5 min). After slightly vortexing, the mix-
ture was incubated avoiding from light at room
temperature (20–25 °C) for 15 min. The percentages of
early and late apoptotic cells were determined by flow
cytometry (FACS) analysis.
Cell apoptosis was also determined with confocal laser

microscopy. Cells (1.5 × 104) were seeded into a confocal
petri dish and incubated for 24 h, after which DMEM
containing 100, 200, 500, and 1000 μM ANC were added
respectively and incubated for another 24 h. After that,
DMEM containing ANC was removed and adherent
cells were washed twice with PBS. One millilitre of the
fluorescence staining reagent (1 × Hoechst 33258) was
added. After incubation for 30 min, the staining reagent
was removed, and the dish was washed with PBS twice,
followed by observation with a fluorescence microscope
at 450 nm.

Mitochondrial membrane potential assay
Mitochondrial depolarisation in MC38 cells was deter-
mined by a JC-1 mitochondrial membrane potential
(MMP) assay kit. Firstly, cells were incubated with four
doses (100, 200, 500 and 1000 μM) of ANC or anthocya-
nin standards for 24 h in 6-well plates. Next, an EP tube
was used to collect cell culture medium. Afterwards, ad-
herent cells were washed with PBS and digested with
trypsin. Then, approximately 1 × 106 cells were resus-
pended in one milliliter of PBS and one milliliter of JC-1
staining solution (5 μg/mL) was added. Cells were incu-
bated at 37 °C for 20 min and washed twice with PBS.
The MMP was monitored by FACS analysis at 488 nm.
Mitochondrial depolarisation is presented by the ratio of
fluorescence intensity.

The change of caspase activity
Caspase-3 and caspase-9 activity was determined by cas-
pase activity assay kits. Briefly, cells (2.5 × 106) were
seeded into a 6-well plate and incubated for 24 h. Cul-
ture media containing four doses (100, 200, 500 and
1000 μM) of ANC were added separately for 48 h of in-
cubation. Then, an EP tube was used to collect cell cul-
ture medium. Next, adherent cells were washed with
PBS and digested with trypsin, following by a reaction in
an ice bath for 15 min with addition of 100 μL of cold
cell lysis buffer. The lysed cells were transferred to a
tube (cell lysate). Cell lysates were collected for centrifu-
gation (20,000 g, 15 min) at 4 °C, yielding supernatants
subjected to determination of the protein concentration

with a total protein quantification kit. Afterwards,
approximately 20 μg of total protein was taken to deter-
mine caspase activity as operating instruction described.
The caspase activity was exhibited as a percentage of the
enzyme activity compared with the control.

Assay of intracellular reactive oxygen species (ROS)
The intracellular level of ROS was monitored by detect-
ing oxidative conversion of 2′,7′-dichlorofluorescein dia-
cetate (DCFH-DA) into fluorescent dichlorofluorescein
(DCF) with flow cytometry. Cells were washed with PBS,
incubated with DCFH-DA at 37 °C for 20 min and then
detected by FACS analysis, excitation at 488 nm and
emission at 535 nm [27].

Detection of cell energy metabolism
Determination of the NAD+/NADH ratio
Changes in the intracellular NADH and NAD+ concen-
trations were determined with an NAD+/NADH assay
kit. Briefly, after 2 h of anthocyanin treatment in 6-well
plate, 200 μL of NAD+/NADH extract buffer was added
into washed cells. After 3 min, cells were collected by
centrifugation (12,000 g, 10 min), and then, 100 μL of
supernatant was incubated at 60 °C for 30 min to de-
grade the NAD+. With the same operation, 20 μL of in-
cubated sample was transferred into a 96-well plate for
NADH detection. Then, 90 μL of ethanol dehydrogenase
solution was added to every well and incubated in the
dark (37 °C, 10 min) to convert NAD+ to NADH. Finally,
the samples were incubated in the dark (37 °C, 30 min)
with addition of 10 μL of colour reagent before absorb-
ance measurement at 450 nm.

ATP levels in cells
An ATP bioluminescence assay kit was used to deter-
mine ATP levels in the cells. Briefly, after 2 h of treat-
ment with anthocyanin in 6-well plate, 200 μL lysis
buffer was added into the washed cells, followed by cen-
trifugation (10,000 g, 2 min) at 4 °C. Finally, 50 μL of
luciferase reagent was mixed with the 50 μL of the
supernatant to detect ATP level by a microplate illumin-
ometer (Thermo, USA).

Glucose uptake by MC38 cells
Glucose uptake by MC38 cells was determined by a
GOD-POD kit. The MC38 cells were seeded into a 24-
well plate, and 800 μL of DMEM was added to each well
to give a concentration of 5 × 105 cells/well at 37 °C for
24 h. Then medium was removed and washed twice with
PBS. After that, 400 μL of sugar-free culture medium
was added to each well at 37 °C for 2 h to get starved
cells. Then, the sugar-free culture medium was removed
and washed twice with PBS. Next, fresh DMEM contain-
ing four doses (100, 200, 500 and 1000 μM) of ANC of
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bilberry extract or anthocyanin standards (cyanidin-3-O-
glucoside and cyanidin chloride) was added. After 4 h of
ANC treatment, 5 μL of culture medium was added into
ELISA plate to measure glucose uptake. Another 5 μL of
double distilled water without glucose and 5 μL of stand-
ard working fluid was added as blank and standard, re-
spectively. Finally, the samples were incubated in the
dark (37 °C, 20 min) with addition of 195 μL of prepared
working solution before absorbance measurement at
550 nm.

Statistical analysis
All data are displayed as mean ± S.D. from triplicate ex-
periments. Significant differences between groups were
analysed using one-way analysis of variance (ANOVA)
with SPSS 25.0 (Chicago, USA). ¨*¨ indicates statistical
significances at p < 0.05; ¨**¨, p < 0.01; ¨***¨, p < 0.001.

Results and discussion
Inhibitory effects of the bilberry anthocyanins extract
(BAE)
To ensure the same molar levels of anthocyanin were
assessed when comparing different groups, we used the
term μM to describe the concentration of anthocyanins.
As cyanidin-3-glucoside (Cy-3-Glu) is one of the most
common anthocyanin enriched in natural plants [28],
Cy-3-Glu was used as a standard to determine the con-
centration of anthocyanin (ANC) of the BAE [29]. The
total ANC concentration was calculated as Cy-3-Glu
equivalents per L as described in Eqs.:

The concentration of ANC μmol=Lð Þ
¼ M�C=MW=V�1000

where M = quality of added BAE (g); C = 0.36, mass
concentration of ANC; MW= 449.2 g/mol for Cy-3-Glu;
V = volume of the medium. Final results were expressed
as μM Cy-3-Glu equivalents. The effect of BAE was eval-
uated on MC38 tumour cells and normal cells. As L929
cells are frequently used as normal control cells to detect
apoptotic effects [30–32], we used L929 cells as the
model of normal cells. According to the data in the lit-
erature [2, 33, 34] and the experimental results of IC50
(Table S2), four doses (100, 200, 500 and 1000 μM) of
ANC were used for the MTT assays. The oncology drug
5-FU (50 μg/mL) was used as a positive control in all ex-
perimental designs.
Figure 1a shows that the inhibitory effect of BAE on

MC38 cells is dose- and time-dependent, and a signifi-
cant inhibitory effect appeared when the ANC concen-
tration was 500 μM. The 24 h ANC treatment decreased
the MC38 cell viability from 500 to 1000 μM, showing a
mean reduction of approximately 55.97 ± 0.26% and
31.09 ± 1.47%, respectively. The extension of treatment

time resulted in a more significant effect, particularly
with low concentrations of ANC (100 μM and 200 μM).
Moreover, high selectivity of ANC towards MC38 cells
(survival rate: 55.97 ± 0.26%, 24 h) and L929 cells (sur-
vival rate: 86.84 ± 3.26%, 24 h) was achieved at a dose of
500 μM. As the concentration goes up to 1000 μM, ANC
showed lower selectivity of inhibitory effect on the
growth of MC38 cells (survival rate: 29.95 ± 1.39%, 24 h)
and L929 cells (survival rate: 40.84 ± 4.26%, 24 h). Cell
apoptosis was determined by observing the apoptotic
bodies with laser confocal microscopy after staining with
Hoechst 33258, in which normal cell nuclei appeared
pale blue and round in shape. When the ANC doses
were increased to 500 μM and 1000 μM, apoptotic bod-
ies were observed after 24 h of treatment (Fig. 1e). The
incomplete nucleus and blue fluorescent fragments indi-
cated that apoptosis of colonic cancer cells occurred.
These results revealed that the BAE induced cell
apoptosis.
The cell apoptosis ratio (Fig. 2, Fig. S2) showed that

the BAE could induce cell apoptosis. The population
of cells in Q3 and Q2 denotes the percentage of cell
apoptosis in the early and late stages, respectively.
The percentage of apoptotic cells was significantly in-
creased with the BAE treatment compared to the
control (untreated: 14.5 ± 0.14%) after 48 h of incuba-
tion (Fig. 2). When the ANC concentration was below
100 μM, the cells showed normal growth. As the con-
tent of ANC rose to 200 μM, 24.1 ± 0.57% of the cells
entered early apoptosis, and 10.6% of the cells entered
late apoptosis. When the ANC concentration was in-
creased to 500 μM, the ratio of early apoptotic cells
grew to 27.8 ± 0.28%, but the ratio of late apoptotic
cells did not increase obviously. Although the inhibi-
tory effect of low concentrations of ANC was not sig-
nificant, these treatments led to an increasement in
the proportion of cells in early apoptosis. This result
was in accordance with the MMP decrease, as shown
in previous experiments. When the concentration of
ANC was 1000 μM, the proportion of cells in late
apoptosis was 40.0 ± 0.42%, and only 33.2 ± 0.05% of
the cells still showed normal growth.

ANCs induce cell apoptosis through mitochondrial
depolarisation
Mitochondrial depolarisation
Mitochondria are responsible for supporting life under
aerobic conditions and are thus considered the source of
signals initiating apoptotic cell death. During apoptosis,
the decrease in MMP serves as a landmark event in early
apoptosis [35]. To further explore the mechanism of
apoptosis, we detected decreases in MMP by FACS.
When the cell membrane potential is reduced, the trans-
formation of JC-1 is easily detected by the change from
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red fluorescence to green fluorescence. Thus, the ratio
of mitochondrial depolarisation was determined by the
relative ratio of red-green fluorescence.
The mitochondrial membrane potential is relatively

higher in control group of MC38 cells stained with JC-1
(Fig. 3a), while the MMP of the positive control group
dropped rapidly (Fig. 3b). The aggregated JC-1 (red
fluorescence) within normal mitochondria was dissoci-
ated into monomeric form (shown with green fluores-
cence) after treatment with BAE of different ANC
concentrations for 24 h, indicating a decrease in MMP
and mitochondrial damage. The decrease in MMP was
correlated with the increase in ANC concentration. Low
concentrations of ANC (e.g., 100 μM, Fig. 3c) resulted in
a distinguishable ratio of cells (35.9 ± 1.00%) with low
mitochondrial membrane potential, although it had little
effect on cell viability.

According to the results shown in Fig. 1, ANC shows
selectivity between tumour cells and normal cells at con-
centrations below 500 μM. Here, we investigated the
mitochondrial membrane potential of L929 cells at an
ANC concentration of 500 μM. As shown in Fig. 3g, only
9.9 ± 0.20% of the cells had a low membrane potential,
which was consistent with the survival rate. The selectiv-
ity between tumour cells and normal cells might be
attributed to the fact that the energy metabolism of
tumour cells is more vigorous than that of normal cells.

Activation of caspases
The reduction in mitochondrial membrane potential
after apoptosis induces changes in membrane permeabil-
ity. With the increase in membrane permeability, some
apoptosis-inducing factors including cytochrome c are
released from the mitochondrial matrix into the

Fig. 1 The inhibitory effect of BAE and positive control after 24 h, 48 h, and 72 h of treatment on MC38 cells (a) and L929 cells (b). Laser confocal
microscopy images of Hoechst 33258 in MC38 cells (c). Data are displayed as the mean ± S.D. of three independent experiments. *p < 0.05,
** p < 0.01, *** p < 0.001 respect to control cells by ANOVA
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cytoplasm. There are key regulators of caspases in mito-
chondria, which are major factors in many apoptotic
processes. The leakage of cytochrome c indicates the
disassembly of the apoptosome, which is based on the
activation of downstream caspases [36]. As activation of
the caspase cascade could lead to a series of events dur-
ing cell apoptosis, it plays a crucial role in a variety of
apoptotic pathways. The caspase protease family consist
of initiative group and executive group during apoptotic
process [37]. The initiation of mitochondria-mediated
apoptotic pathway by caspase-9 resulting in executing

apoptosis by caspase-3 [38]. Hence, we detected the
caspase-3 and caspase-9 activity using Caspase Activity
Assay Kits to further explore the mechanism of apop-
tosis [39, 40].
Figure 4a reveals the changes of caspase-3 activity in

MC38 cells after exposing to BAE with different ANC
concentrations for 48 h. The activity of caspase-3 in-
creased to 132.5 ± 2.3%, 155.1 ± 3.6%, 169.4 ± 2.3% and
764.5 ± 3.0% for ANC doses of 100, 200, 500, and
1000 μM compared with the control, respectively. Irre-
versible morphological changes of cells occurred when

Fig. 2 MC38 cells were treated with BAE at different ANC concentrations: (a) 100 μM; (b) 200 μM; (c) 500 μM; (d) and 1000 μM; (e) and the control
and (f) negative control for 48 h. The fluorescence intensity ratio was used to show the degree of apoptosis measured by FACS analysis. Data are
displayed as the mean ± S.D. of three independent experiments. *p < 0.05, ** p < 0.01, *** p < 0.001 respect to control cells by ANOVA
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the activity of caspase-3 accumulated to a certain thresh-
old. In addition, caspase-3 is the junction between the
mitochondrial pathway and the death receptor pathway
[41]. This fact explains why the activity of caspase-3
changes in accordance with early cell apoptosis (Fig. 2).
Figure 4b presents the changes of caspase-9 activity after
48 h of treatment with ANC concentrations of 100, 200,

500, and 1000 μM. The caspase-9 activity had negligible
changes when the ANC concentration was below
500 μM, but a significant increase was found when the
ANC concentration was 500 μM (186.0 ± 4.7%). As
caspase-9 is an important initiator of apoptosis, its
enzyme activity coincides with late apoptosis (Fig. 2).
The changes in caspase-3/9 activity correlate with early

Fig. 3 Mitochondrial depolarisation of MC38 cells stained with JC-1 is shown by an increased ratio of the green/red fluorescence intensity
measured by FACS analysis after 24 h-treatment with BAE at different ANC concentrations: (a) control; (b) positive; (c) 100 μM ANC; (d)
200 μM ANC; (e) 500 μM ANC; (f) 1000 μM ANC; (g) 500 μM BAE-L929 cells. Data are displayed as the mean ± S.D. of three independent
experiments. *p < 0.05, ** p < 0.01, *** p < 0.001 respect to control cells by ANOVA
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cell apoptosis (Fig. 1a, Fig. 2), indicating that cell apop-
tosis proceeds through the mitochondrial route.

Mitochondrial damage arising from inhibited energy
metabolism
The mitochondrial damage often occurs simultan-
eously with an increase in excessive reactive oxygen
species (ROS) [42] on account of blockade of electron
transport in the oxidation respiratory chain. Here, we
detected the content of intracellular ROS. Figure 5d
showed the ROS level in MC38 cells decreased with
increasing ANC concentration, suggesting the strong
antioxidant capacity of ANC. This result suggests that

electron transport in the oxidation respiratory chain
was not blocked and mitochondrial damage was not
caused by the increase in ROS.
The lack of oxidative phosphorylation substrates could

also cause mitochondrial damage. To further explore the
effects of ANC on mitochondrial, we assessed indicators
of mitochondrial activity, such as the levels of cellular
NADH. NAD (nicotinamide adenine dinucleotide) is a
coenzyme that exists in all cells. It includes NAD+ (the
oxidised form) and NADH (the reduced form). NADH is
obtained by reduction of the glycolate dinucleotide,
which is produced in the cycle of glycofermentation and
cellular respiration. This molecule is also a marker in

Fig. 5 Contents of NADH (a), ATP (c), and intracellular ROS (d) and the ratio of NAD+/NADH (b) in MC38 cells after exposing to BAE at different
ANC contents for 2 h. Data are displayed as the mean ± S.D. of three independent experiments. *p < 0.05, ** p < 0.01, *** p < 0.001 respect to
control cells by ANOVA

Fig. 4 Intracellular enzyme activity changes of MC38 in caspase-3 (A) and caspase-9 (B) after 48 h-treatment with BAE. Data are displayed as the
mean ± S.D. of three independent experiments. *p < 0.05, ** p < 0.01, *** p < 0.001 respect to control cells by ANOVA
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the mitochondrial energy production chain. NADH pro-
duced in the mitochondria can be directly used for ATP
synthesis. After treatment with ANC for 2 h, changes in
the NADH and ATP contents in the cells were detected
(Fig. 5). After the 2 h treatment, there was little differ-
ence in the cell number; thus, the discrepancy in energy
metabolism was caused only by the concentration of
ANC. The results showed significant declines in NADH
after treatment with ANC (Fig. 5a). When the concen-
tration of ANC increased to 1000 μM, NADH was only
18.6 ± 0.1% of that in normal cells. The ratio of NAD+/
NADH increased with increasing concentrations of ANC
(Fig. 5b). NAD+ is mainly distributed in the cytoplasm,
while NADH is mainly located in mitochondria [43].
Thus, the concentration of NAD+ changed little, but the
reduction of NADH would lead to a higher ratio of
NAD+/NADH. The lower ratio of NAD+/NADH could
provide the driving force for the oxidation respiratory
chain. Therefore, the decrease in this ratio may inhibit
cell proliferation.
The ATP content in the cells was determined as a

function of ANC loading. As shown in Fig. 5c, when the
ANC concentration was below 500 μM, few changes
occurred in ATP, which remained 76.7 ± 0.2% of that of
the control group after treatment for 2 h at 500 μM.
When the ANC concentration was up to 1000 μM, a
sharp decline in ATP was observed, with 16.5 ± 0.1% of
the control group. These findings provide direct evi-
dence that ANC could damage mitochondria by redu-
cing oxidative phosphorylation agents.

How glycosides enhance inhibitory activities
To identify the impact of glucosides of ANC on the inhib-
ition of MC38 cell proliferation, we chose cyanidin-3-O-
glucoside (Cy-3-Glu) and its anthocyanidin aglycone, cya-
nidin (Cya), as the model anthocyanin and anthocyanidin.
Cell proliferation was inhibited when the concentration of
cyanidin-3-O-glucoside reached 1000 μM (Fig. 6a). Com-
pared with the results shown in Fig. 1a, ANC showed a
better inhibitory effect on Cy-3-Glu at the same concen-
tration, indicating that there might be a synergistic effect
among anthocyanin extracts. Similar results have been re-
ported for the mixtures of ANC-rich berry extracts in
inhibiting breast cancer cells [44].
As for Cy-3-Glu and Cya, as shown in Fig. 6b, at con-

centrations reaching 2000 μM, only approximately half
of the cells survived after treatment with Cy-3-Glu, while
the survival rate was over 80% after treatment with Cya.
Here, the existence of glucosides led to a dramatic differ-
ence in the inhibitory effect. We then examined the ef-
fects of Cy-3-Glu and Cya on mitochondrial membrane
potential. Figure 6f shows that only 8.5 ± 0.2% of the
MC38 cells treated with 1000 μM Cya for 24 h had

damaged mitochondria, whereas Cy-3-Glu led to a
nearly 3-fold increase in mitochondrial damage at the
same concentration.
Cell energy metabolism is dependent on glucose uptake.

These data suggested that the glycosides of anthocyanin
might regulate energy metabolism by disturbing glucose
transport. It has been demonstrated that anthocyanins ex-
tract could regulate intestinal sugar absorption [45], de-
crease glucose uptake [46, 47] and inhibit cell proliferation
due to interference of glucose uptake [48]. Further, a re-
cent study shows that anthocyanin could not only inhibit
glucose absorption but also affect the function of sodium-
glucose cotransporter 1 (SGLT1) [49]. Johnston K et al.
investigated the effect of dietary polyphenols on intestinal
glucose uptake and found that glucose uptake into cells
under sodium-dependent conditions was inhibited by fla-
vonoid glycosides whereas aglycones and phenolic acids
were without effect [50]. These all points out the import-
ance of glycosylation on glucose uptake.
Our experimental results using MC38 cells also demon-

strated that the glucose transport to MC38 cells was hadi-
capped by anthocyanin. As shown in Fig. 7, ANC and Cy-
3-Glu caused a significant reduction in glucose uptake
and in a dose-dependent manner. Compare the cell sur-
vival test, the glucose transport efficiency is consistent
with the cell survival rate. However, the model aglycones
(Cya) only had slighter inhibitory effect on glucose uptake
at a high concentration level (93.3% reduction at
1500 μM). These observations suggest glycosylation of
anthocyanin significantly enhanced the inhibitory effect of
glucose uptake. A potential mechanism might be that the
glycosides of anthocyanin affect the glucose transporter
GLUT1, which is reported to regulate the glucose uptake
of tumour cells and maintain basal metabolism [51, 52].
Furthermore, we added the WZB117 (GLUT1 inhibitor)

to culture medium containing Cy-3-Glu or Cya at various
doses and determined the cell viability. As an GLUT1 in-
hibitor, WZB117 could downregulate glycolysis, induce
cell-cycle arrest [53, 54], and inhibit cancer cell growth in a
dose-dependent manner (Fig. 6c). The results (Fig. 6d)
showed that the presence of the GLUT1 inhibitor substan-
tially enhanced the inhibitory effects at low concentrations
of Cy-3-Glu. Such an enhancement is marginal at higher
concentrations of Cy-3-Glu, which suggests saturated bind-
ing of GLUT1. Whereas, the addition of the GLUT1 inhibi-
tor couldn’t enhance the inhibitory effects of Cya (Fig. 6e).
With the above findings, we proposed a mechanism

describing the role of glycosides of anthocyanins in inhi-
biting MC38 cells, as shown in Scheme 1. The glycosides
of anthocyanin might affect GLUT1 on the tumour cell
membrane and thus hinder glucose uptake by MC38
cells. Consequently, this phenomenon blocks the energy
metabolism of tumour cells and leads to mitochondrial
damage and subsequent activation of downstream caspases.
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Fig. 7 Glucose uptake in MC38 cells in the presence of BAE (a), Cy-3-Glu (b) or Cya (C) after exposing to anthocyanin at different contents for 4 h.
Data are displayed as the mean ± S.D. of three independent experiments. *p < 0.05, ** p < 0.01, *** p < 0.001 respect to control cells by ANOVA

Fig. 6 The inhibitory effect of Cy-3-Glu (a), Cya (b), GLUT1 inhibitor (c), the combination of Cy-3-Glu and GLUT1 inhibitor (d) and the combination
of Cya and GLUT1 inhibitor (e) after 24 h-treatment on MC38 cells. Mitochondrial depolarisation is shown by FACS analysis after the MC38 cells
were treated with Cy-3-Glu and Cya for 24 h at 1000 μM and cells were stained with JC-1 (f). Data are displayed as the mean ± S.D. of three
independent experiments. *p < 0.05, ** p < 0.01, *** p < 0.001 respect to control cells by ANOVA
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These effects, together with the function of the anthocyani-
din aglycone, which impacts several signalling pathways in
cell growth and function, initiate the apoptosis of tumour
cells. Since tumour cells have a more vigorous energy me-
tabolism than normal cells, the obstruction of energy me-
tabolism produces more serious impacts on cell growth of
tumour cells, which contributes to the selective inhibition
between tumour cells and normal cells.

Conclusions
Anthocyanins inhibited MC38 cells through a process
from early apoptosis to late apoptosis, but the anthocya-
nidin aglycone had little inhibitory effect on MC38 cells.
An experimental study showed that anthocyanins in-
duced the loss of MMP, indicating mitochondrial dam-
age, and activated the downstream caspase cascade to
form apoptotic bodies. However, anthocyanidin could
barely induce mitochondrial damage. Further studies
demonstrated that the inducer of mitochondrial damage
was not the ROS but the inhibition of energy metabol-
ism, as evidenced by the increased ratio of NAD+/
NADH and the decreased ATP level. The comparative
study using Cy-3-Glu and Cya suggested that the glyco-
sides of anthocyanin might inhibit cell energy metabol-
ism of the cell and thus induce cell apoptosis. Based on
the aforementioned findings, we propose that the inhibi-
tory effect of anthocyanin on tumour cell proliferation
might be contributed jointly by anthocyanidin aglycone,
which affects several signalling pathways, and anthocya-
nin glycosides, which inhibit energy metabolism and lead
to mitochondrial damage. These findings are essential
for the design, processing and application of anthocyanin
products with healthy attributes or medical functions.
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