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ABSTRACT 

 

A Novel Multi-Class State Detection Algorithm 

by 

Gaetano Antonellis 

Master of Science in Mechanical and Aerospace Engineering 

University of California, Irvine, 2021 

Tryphon Georgiou, Chair 

 

One popular example of state detection and correction is the Zero Velocity Update (ZUPT), which is 

often used in pedestrian navigation to limit error due to sensor noise and biases. Existing methods, 

while they have become both efficient and effective, are often either computationally heavy or are 

not designed to handle the detection of a variety of states. 

This study proposes an expression to be used in a state detection algorithm, produced in part by the 

information provided by machine learning models. The intent for the state detection algorithm is 

the classification of inertial sensor data into various important trajectory states. In this study, the 

goal was to distinguish zero-velocity states and left- and right-handed orbital trajectories out of sets 

of IMU data using the simplest effective methods. 

First, some existing methods are evaluated in their utility as candidates as a singular data feature of 

a classifier for the expected navigational trajectories. None of the methods examined were suitable 
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candidates for implementing a piecewise classifier for the trajectory states. In turn, machine 

learning techniques are employed to identify important data features for the proposed classifier.  

To assist in the implementation of a method using these key data features, a novel test statistic for a 

likelihood test similar to the Stance Hypothesis Optimal Detection method is proposed.  Finally, the 

proposed classifier is tested using collected IMU data, and the potential of incorporating such a 

state detector is explored. 

The results show that the novel state detector is able to classify the expected trajectory states with 

over 95% accuracy. In the data used to test the sensor, it did not experience any false classifications 

or missed detections. While there is still work to be done to improve the robustness and 

applicability of the algorithm, this study acts as a proof of concept, providing a starting point for 

future work. 
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INTRODUCTION 

Most general consumer devices employ inexpensive, compact Micro Electro-Mechanical Systems 

(MEMS) as sensors. The state estimate of an Inertial Navigation System (INS) using these sensors is 

subject to noise, bias, and other errors that are inherent to the sensors due to vibration, 

manufacturing tolerances, and resolution [1]. In navigation systems, these errors propagate over 

time, resulting in the divergence of position and velocity estimates. Rather than spending resources 

to implement a more accurate (expensive, in size, weight, and power) Inertial Measurement Unit 

(IMU), one option is to offer software solutions to assist the navigational estimate. When an IMU 

enters a trajectory containing expected data profiles, a state detection algorithm can be 

implemented to make corrections to an INS solution, mitigating future error propagation [2]. The 

corrections to these inherent errors in the IMU due to noise, drift, and biases in the sensor depend 

on reliable state detection and correction algorithms. 

The Zero Velocity Update (ZUPT) is one such software technique used to limit the accumulation of 

error in an INS [2]. When an IMU referencing a local coordinate system is stationary on Earth, it 

experiences only the local gravity vector and the rotation of the Earth. Because the IMU enters this 

known state, ZUPT can be used to correct the velocity and angular rate estimates of the INS. ZUPT is 

often employed in pedestrian navigation - parts of the human foot periodically stop their motion 

relative to the navigational coordinate frame - and is comparable to robotic odometry if the step 

size can accurately be estimated. This can be critical in environments where GPS-aided navigation 

is not available. 

Studies have evaluated the parameterization of the expressions used in ZUPT to increase the state 

detection performance [3]. Another strategy to improve the detection of these zero-velocity states 

is to employ data fusion with additional sensors that are often used in inertial navigation systems 

such as magnetometers to aid the heading estimate [4], heel-mounted pressure sensors to help aid 
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the state detection [3], and other similar sensors. Some of these studies have proven to increase the 

accuracy of the position estimate of the INS, though they add complexity to the system with the 

additional sensor(s). Because of this added complexity to the system, the option is not considered in 

this study. 

Finally, machine learning techniques have been implemented in a number of studies to classify a 

variety of human movements, such as stance phases as in [5] and swim strokes as in [6] from IMU 

data. Each of these comes with its own utility and can be used for applications such as direct 

improvements to the ZUPT for GPS-denied navigation, health monitoring, and athletic training. This 

study draws from their insights on picking data features to form an expression for a more simple 

classifier. 

Limitations of Existing Methods; Objectives 

Although ZUPT and similar techniques have become powerful tools for pedestrian navigation, there 

are still many limitations to the development and implementation of this family of state detection 

algorithms: 

1. ZUPT has utility in determining when an IMU is stationary, though for a system that might not 

stop moving for a long period of time, the velocity and position estimates for an INS that relies 

solely on MEMS IMUs will quickly diverge. 

2. For a system that moves with constant velocity, some ZUPT detection algorithms experience false 

detections - the IMU data will have small values of magnitude and variance. An example of this is 

when a pedestrian is stationary on a moving escalator, where a false positive state detection may 

cause divergence in the state estimate.  For these conditions, ZUPT is limited in its utility. 
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3. Although Machine Learning algorithms can be powerful tools for the classification of data 

instances such as the ZUPT detector in [7], they often rely on a computationally heavy framework. 

While this may not be a problem for some systems, other systems do not have the processing 

bandwidth to train or predict classes using a machine learning algorithm, especially if an INS 

requires timely decision-making. 

This study attempts to address some of these limitations by building on a family of common ZUPT 

detection algorithms to systems that undergo other expected trajectories - orbits of relatively 

constant radius and velocity, about an axis parallel to the IMU’s Z-axis. Though pedestrian and 

automobile navigation sequences do not often exactly match these trajectories, the detection and 

classification of these trajectories has its own utility - the localization of these turn events. Vehicles 

navigating a known road network can be localized based on the distances between turns and 

whether the turn made is left or right in direction. Similar concepts were explored in [9] using a 

particle filter to track pedestrian motion using smartphone sensors and in [10] using Kalman 

filtering and a probabilistic state detection algorithm with a separate detector for each motion 

class. This study attempts to improve upon this last technique by using a piecewise multi-class 

classifier to detect similar motion classes. For vehicles that don’t navigate a road network, 

implementation of a simple algorithm to handle the detection of dynamic trajectories lays down a 

framework for creating detection algorithms for motion sequences of greater complexity. 

In section 1, existing detection algorithms for ZUPT are evaluated for their utility in detecting the 

zero-velocity states and the orbital trajectories. The magnitude and variance of the detection 

methods’ test statistic features are examined. It is determined that each of the existing test statistics 

are unfit to be used as a standalone data feature of a multi-class classifier, though they offer insight 

about data features that might support such a classifier. It is concluded that a new test statistic or a 
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different framework must be generated to construct a classifier for the expected trajectories in 

consideration. 

In section 2, machine learning techniques are used to identify important data features that support 

classification models built to act as interim state detectors. IMU data was collected and then 

processed using Principal Component Analysis to determine an appropriate number of data 

features to consider for the test statistic expression. Then, machine learning models of various 

classes are trained and tested to validate the feasibility of using a reduced feature space and to 

determine feature importance. 

In section 3, the important features from the machine learning models are used to design a few test 

statistics. Through evaluation and iterative design, the study begins to converge on an effective 

expression. The intention is to use such a test statistic as the data feature for a simple multi-class 

classifier. Each of them is evaluated against IMU data sets containing zero-velocity and orbital 

trajectory states.  

In section 4, a simulated INS is built in order to explore the potential benefits of the novel state 

detection algorithm. The detector correctly distinguishes the expected trajectory states from other 

motion sequences. While further effort is required to make any practical use of a state correction 

algorithm using the proposed expression, the framework has been set in anticipation of its 

implementation. 
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SECTION 1: Existing ZUPT State Detectors 

In this section, IMU data is collected and the likelihood test statistic values for detecting the zero-

velocity states and the orbital trajectories in this data are evaluated. It is determined that the existing 

test statistics are unfit to be the data feature for a multi-class classifier and it is concluded that a new 

test statistic or a different framework  must be generated to construct such a classifier. 

Many studies have been performed to improve the performance of zero-velocity state detection 

algorithms through parameterization [11]. By examining different data parameters, such as the 

magnitudes and variances of the IMU data, algorithms can be effective to meter-accuracy for an 

unfiltered INS over navigational sequences spanning hundreds of meters. Among the most effective 

of these ZUPT detection methods is the Stance Hypothesis Optimal dEtector (SHOE), which 

evaluates the accelerometer and gyro data. Instantaneous accelerometer readings, 𝑦𝑘
𝑎 ∈ 𝑅3, and 

gyroscope readings, 𝑦𝑘
ω ∈ 𝑅3, for time instance 𝑘 are used in these calculations, though because of 

sensor noise, sometimes 𝑧𝑛
𝑎   and  𝒛𝑛

𝜔,  the measurements over a time epoch 𝑊 from time 𝑘 = 𝑛 to 

time 𝑘 = 𝑛 + 𝑊 − 1, are considered. Alternatives to the SHOE method include the Acceleration 

Moving Variance (MV) detector, which examines the variance of the acceleration data, the 

Acceleration Magnitude (MAG) detector, and the Angular Rate Energy (ARE) detector [3].  

Each of these state detectors uses a different expression based on data provided by the IMU, 

typically to be used in a binary hypothesis test. Given a predetermined threshold 𝛾 and the test 

statistic 𝐿, the hypothesis that the system is experiencing a zero-velocity condition, 𝐻1, is assumed 

to be true if:   𝐿(𝑧𝑛)  =  
𝑝(𝑧𝑛| 𝐻1)

𝑝(𝑧𝑛| 𝐻0)
 ≻  γ  [12]. This is the exact functionality of a linear classifier in 

Machine Learning terminology, where the linear model is of constant value 𝛾, determining if the 

test statistic representing a Maximum Likelihood indicator is sufficiently low to assume the zero 

velocity condition. This study attempts to use the test statistic 𝑇(𝑧𝑛) as a data feature for a multi-



6 

 

class classifier. The proposed linear model has two values, 𝛾𝑍𝑈𝑃𝑇 and 𝛾𝑂𝑅𝐵𝐼𝑇, where a zero-velocity 

condition is assumed if 𝑇(𝑧𝑛) is less than 𝛾𝑍𝑈𝑃𝑇 , and where an orbital trajectory about an axis 

parallel to the IMU’s Z-axis is assumed if 𝑇(𝑧𝑛)  is greater than 𝛾𝑂𝑅𝐵𝐼𝑇. 

In practice, 𝛾𝑍𝑈𝑃𝑇 and 𝛾𝑂𝑅𝐵𝐼𝑇  may need to be adjusted depending on the body mechanics of the 

subject, the tempo of their gait, and the mounting of the sensor, among other things. An adaptive 

threshold is explored in [13], which aids the detection algorithm in making the correct classification 

on a wider range of step tempos. This was done by fitting a logarithmic function to the step tempo 

to determine the appropriate threshold, a means of employing the empirical data to inform future 

regression or classification. 

The dataset used in this section is three separate data collections from a TDK InvenSense Smartbug 

IMU strung together - a sequence where the IMU is carried by a human and transported in an orbit 

by robot arm, a sequence where a human carries the IMU and rotates it in an arm-extended orbit, 

and a sequence where the IMU is mounted to the boot of a subject walking at a pace of 

approximately 80 paces per minute. The robot arm is a UR5 from Universal Robots, used to create 

‘ideal’ orbital trajectories of constant velocity and constant angular rate about the arm’s main axis. 

In the plots, the sections of the data that contain the pedestrian motion and the orbital trajectories 

(for both the robot arm and the hand-carry case) are color-coded.  In these calculations of the test 

statistic, sliding windows of .05 seconds were used in calculating mean and variance values.  

The Smartbug IMU uses an ICM-42688-P, which has accelerometer noise levels of 65 microgravities 

per sample rate Hz for its X-axis and Y-axis measurements, and a noise level of 75 microgravities 

per sample rate Hz for its Z-axis measurements [14]. For data collections in this study, a sample 

rate of 100 Hz was used, with the sensor’s standard ranges of ±16g and ±2000 degrees per second. 

SHOE Detector 
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The Stance Hypothesis Optimal dEtector is among the top performing zero-velocity state detectors. 

It uses a weighted average over a time epoch of the accelerometer data (with a term accounting for 

the gravity vector) and the gyroscope data, based on the sensors’ respective variance values: 

SHOE Test Statistic: 𝑇(𝑧𝑛
𝑎, 𝑧𝑛

ω)  =  
1

𝑊
∑

1

𝜎𝑎
2 ||𝑦𝑘

𝑎 − 𝑔
𝑦̅𝑛

𝑎

||𝑦̅𝑛
𝑎||

||

2

+
1

𝜎ω
2 ||𝑦𝑘

ω||
2𝑛+𝑊−1

𝑘=𝑛   

SHOE detector test statistic values for the orbital trajectories were not significantly distinguishable 

from values for the movement phase of the pedestrian motion sequence. This can be seen in Figure 

1 - the data points that correspond to 

the zero-velocity states in the 

pedestrian motion sequence are 

periodic local minima. Some of these 

secondary peaks have the same 

magnitude as the orbital trajectory 

data. Because of this, creating a 

piecewise classifier based on the SHOE 

test statistic alone is not a viable 

option for creating a state detector for 

these trajectories. The SHOE detector 

does present some merit for classifying the orbital trajectories - the amount of variance in the test 

statistic for the orbital trajectory IMU data is much smaller than when using the MV or MAG 

detectors. In the robot-transport case, the variance of the test statistic on a log scale across 0.5 

seconds is .01, and in the hand-carry case this variance is 0.007. For comparison, the typical 

variance of a sliding window of test statistic of data from non-classified motion across a half second 

window is 2.25. 

Figure 1 SHOE Test Statistic Values during IMU Navigation Sequences 
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 MV and MAG Detectors 

The MV and MAG test statistics are calculated using only the accelerometer data- the gyroscope 

data is not used in these calculations. This allows simple implementation of the detector since only 

one sensor is required (and a MEMS accelerometer also typically is less subject to noise and drift 

than a MEMS gyroscope). As seen in the equation below, the MV detector’s test statistic uses the 

variance of the accelerometer data: the mean of the squared difference between each data point 

within the time epoch 𝑊, and the mean of all data points in the time epoch. Then, this value is 

scaled by the precision of the sensor, 𝜎𝑎
2. Similarly, the MAG detector uses the magnitude of the 

accelerometer while accounting for the gravity vector. 

MV Test statistic:    MAG Test Statistic: 

𝑇(𝑧𝑛
𝑎) =  

1

𝜎𝑎
2𝑊

∑ ||𝑦𝑘
𝑎 − 𝑦̅𝑛

𝑎||
2𝑛+𝑊−1

𝑘=𝑛    𝑇(𝑧𝑛
𝑎) =  

1

𝜎𝑎
2𝑊

∑ (||𝑦𝑘
𝑎|| − 𝑔)

2𝑛+𝑊−1
𝑘=𝑛  

When evaluating the MV test statistic and the MAG test statistic, it was found that there is almost no 

discernible difference between the orbital trajectory data and the non-classified navigation 

sequence data. For this reason, neither of these detection test statistics is feasible to use as a 

standalone feature for multi-class classification of the navigational trajectories in question.  
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Figure 2 MAG and MV Test Statistic Values during IMU Navigation Sequences 

One expectation that was held for the MV detector was an increase in the test statistic while in an 

orbital trajectory because such a trajectory has relatively constant values in each of the 

accelerometer axes. However, it seems that the noise seen by the IMU due to the vibration of the 

Universal Robots arm and the imperfections in the orbital trajectory when the IMU was transported 

by a human were enough to have a significant effect on the MV test statistic. 

ARE Detector 

The Angular Rate Energy detector uses just the second term of the SHOE detector: 

ARE Test Statistic:  𝑇(𝑧𝑛
ω)  =  

1

𝜎ω
2 𝑊

∑ ||𝑦𝑘
ω||

2𝑛+𝑊−1
𝑘=𝑛   

The ARE detector has shown to be nearly as effective in detecting the zero-velocity state as the 

SHOE detector while only requiring the gyroscopic sensor.  The ARE detector test statistic for this 

set of data has qualities similar to the SHOE test statistic. When the IMU is transported by the robot 

arm, the variance in the test statistic decreases significantly. Though not as drastically, this occurs 

when the IMU enters a stable orbital trajectory in the hand of a human subject. The ARE detector 

test statistic has more overall variance than the SHOE detector, though it does not appear to have a 

great difference when attempting to use it as a piecewise classifier.  



10 

 

 

Figure 3 ARE Test Statistic Values during IMU Navigation Sequences 

The existing ZUPT detectors were not designed with the intention of being used as the standalone 

data feature for a multi-class classifier; they were chosen with the intent to be used for a singular 

binary classifier with just one threshold. Although, for this study they do offer some insight on what 

might make a good data feature for such a model. It is apparent from the results of the MV and MAG 

detectors that a gyro data term will be necessary in such a test statistic, and it may also be 

important to retain an accelerometer magnitude term so that false positives are not detected when 

the system is traveling in a linear path with no rotation.  

 

  



11 

 

SECTION 2: Feature Extraction through Data Science 

In this section, Machine learning algorithms were used to extract the important data features for 

classifying the IMU data. Some key parts in using machine learning tools include collecting data and 

preprocessing that data, engineering the feature space of the model, partitioning the data and using 

a subset of it to train a model(s), and using the model features and prediction results to draw 

inferences about the data. In this particular study, the information gained from the machine 

learning techniques is used to reduce the feature space. These reductions were then validated by 

training similar models with the new feature space, and using the models to perform predictions on 

IMU data in a supervised learning setting. The feature space is reduced to three key features which 

the models can use to classify expected trajectories with 95% accuracy.  

Description of the Data Set 

The data set is a compilation of accelerometer and gyroscope data collected using the Smartbug 

sensor, sampled at 100Hz. The data includes foot-mounted pedestrian motion, sequences where the 

IMU was carried by hand, and sequences where the IMU was transported by the Universal Robots 

UR5. Data was taken in a number of locations where the setting was surveyed so that the IMU 

location could be compared against ground truth, and so that the sequences could be recreated if 

necessary. In the pedestrian and hand-carry data sets, the motion was captured with a camera so 

that the data could later be labeled with the correct classes, which is an important step for machine 
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learning. Because there was no high-speed motion capture system available, this is a possible 

source of error in the data set. 

For the pedestrian motion data sets, the IMU was 

mounted to a boot as in Figure 4, where a subject 

walked at tempos between 75 and 90 steps per 

minute. A total number of 28 steps were taken. There 

are also some zero-velocity states that exist in the 

pedestrian motion datasets where the subject is 

standing still before and after walking. There are no 

orbital trajectory states that exist in the pedestrian 

motion datasets. Combined, these data sets offer over 

3600 samples, with over 1000 instances of zero-

velocity conditions. 

For the hand-carry data sets, the IMU was carried 

by hand as in Figure 5, where the subject was 

instructed to slide the IMU across a table, lift it off 

the table, walk a few paces to a designated point, 

turn in a circle with the hand holding the IMU 

extended, walk back to the table, and set the IMU 

down. These data sets provide a large variety of 

IMU motion, which offers value in training the 

machine learning models. Data from the hand-

carry cases offer over 4820 samples, including 

Figure 4 Mounting of the SmartBug IMU for 

Pedestrian Navigation 

Figure 5 The SmartBug IMU was carried by hand in some 

sequences 
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some zero-velocity conditions and over 800 instances of hand-carried orbital trajectories 

For the Universal Robots data sets, the IMU was mounted to the robot arm and the arm was 

commanded to turn about its main axis. The radius of the IMU trajectory while being transported by 

the robot arm was 1 meter, and the arm rotated at a constant rate of 120 degrees per second. These 

data sets include 540 degrees of robot arm rotation in each direction, for a total of 900 samples of 

‘ideal’ orbital trajectory data, with constant velocity and angular rates. They also include some 

hand-carry motion sequences. The robot arm has a small amount of vibration as it moves along its 

path, though this did not seem to have a significant effect on the IMU data. 

 

Figure 6 The Navigation Sequence of the SmartBug IMU 

Data Preprocessing; Engineering the Feature Space 

Prior to using machine learning models for regression or classification, the data must all be in the 

same format. This is not a large problem with multiple sets of IMU data from the same sensor. 

However, when importing the data, the parts from some collection sequences had to be 

transformed so that the IMU’s axes corresponded to the subject’s coordinate frame consistently. 

The convention used in this study is: 

- Axis 1 Positive Direction: Forward 

- Axis 2 Positive Direction: Starboard 

- Axis 3 Positive Direction: Down 

- Axis 1 Positive Rotation: Roll Right 

- Axis 2 Positive Rotation: Pitch Up 

- Axis 3 Positive Rotation: Yaw Right 
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Next, the class labels for the various trajectory states were assigned by hand. During the 

classification of the trajectory states, the class labels were as follows:  

1 - zero-velocity condition 

2 - clockwise turn 

3 - counterclockwise turn 

0 - other motion 

 

Finally, MATLAB’s cvpartition function was used to randomly split the data into training data and 

test data. 70% of the data was used for training the machine learning models, while the other 30% 

was used as test data to enable proper validation of the model’s performance. Splitting the data 

randomly ensures distribution of the data classes between the training data and test data sets, and 

is an important piece in avoiding overfitting when using machine learning tools [15].  

 

Machine learning algorithms can accept raw sensor data as features by which to label the instances, 

and they can also accept features engineered to better represent the problem at hand. 

Preprocessing and engineering the feature space can aid in preventing the model from over-fitting 

to data that is extraneous, and it can also simplify the machine learning model while maintaining 

performance. Engineering the feature space often consists of creating new features from 

combinations of existing ones, determining which features are the most important, and normalizing 

the features. 

A number of options for engineering new data features were considered for this classification 

problem, including some of the following: 

- The Euclidean norm of a subset of data 

- The variance of a subset of the data, over a sliding window 

- The effective radius of an orbital trajectory: 
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𝑎𝑦 =  (ω𝑧)2𝑟 ⇒  𝑟 =
(ω𝑧)2

𝑎𝑦
  

- The angular rate of the orbital trajectory, normalized by the total rotation magnitude: 

𝑦
𝑘
𝜔𝑧

||𝑦𝑘
𝜔||

 

- The acceleration term of the SHOE test statistic  

(normalized acceleration, minus the gravity vector) 

1

𝜎𝑎
2

||𝑦𝑘
𝑎 − 𝑔

𝑦̅𝑛
𝑎

||𝑦̅𝑛
𝑎||

||

2

 

 

The complete list of the data features used in the machine learning models is shown below: 

- X-, Y-, and Z- axis accelerometer readings 

- the norm of the accelerometer readings 

- X-, Y-, and Z- axis gyroscope readings 

- the norm of the gyroscope readings 

- the variance of  each of these parameters 

 

- the sign of the Z-axis gyroscope readings 

- the norm of the accelerometer readings minus the gravity vector 

- the angular z-axis gyroscope readings, normalized by the total rotation magnitude 

- the effective radius of an orbital trajectory 

- the Y-axis accelerometer readings multiplied by the square of the Z-axis gyroscope 

readings 

(small values of these two terms during relatively linear trajectories resulted in data with 

extreme variance for the effective radius feature) 

A few different methods were used to perform the selection of data features for the final model. 

First, Principal Component Analysis (PCA) was performed on the data set with raw IMU data and 
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the addition of the engineered features mentioned above. In order for PCA to be effective, the data 

was first normalized to have zero mean and a variance of 1. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  =  
𝑋 − 𝜇

𝜎
 

It is important to normalize the data prior to PCA since the data features with more variance will be 

weighed more heavily if it is not done. PCA uses a Singular Value Decomposition algorithm on the 

data set, and it returns the coefficients of the PCA along with the eigenvalues of the covariance 

matrix of the data set. The coefficients, or Principal Components, are the eigenvectors of the 

covariance matrix. PCA is a powerful tool that can be used to reduce the feature space of a dataset 

to simplify a model. However, it is easy through PCA to lose sight of which of the original features 

are responsible for large portions of the total variance in the dataset.  

The results from the PCA were very informative 

regarding how many features might be optimal 

to use. Distinguishing the N most important 

eigenvectors can be done by looking at the 

relative magnitudes of the eigenvalues, and 

taking their cumulative sum relative to the total 

number of coefficients. The number of effective 

data features has been reduced to the N most 

important features by multiplying the data set X 

by the first N rows of the coefficient matrix, which represent the Eigen directions of the principal 

components.  
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When this was performed, the first 6 of 20 Eigen directions were chosen since their cumulative 

weight was responsible for 82% of the variance of all of the data. Since many of the terms in the 

feature space have lots of covariance (for example, the individual accelerometer values and the 

norm of the accelerometer measurement), the feature space can be effectively reduced to a few key 

features.   

Data feature selection was completed by using the original feature space to train a decision tree 

model and by gathering the resulting information on feature importance. Decision tree models are 

valuable tools for extracting this kind of data since the trees are built by using a series of 

perceptrons to split the data in order to minimize entropy. By examining a decision tree model, the 

features most effective in reducing the entropy of the data set can be determined. In the figure 

below, the root of the decision tree is isolating most of the ‘other movement’ class based on the 

variance in the X-axis gyroscope data - both the zero-velocity state and the orbital trajectory states 

have low variance in roll rate. 

 

Figure 7 Part of a Decision Tree Model used to Classify the Trajectory States 
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Out of the feature space including the raw data and many engineered feature parameters, six 

features were chosen, based on the results of the PCA and the decision tree information gains. 

Because some of the terms were directly related through common terms, the subset was further 

reduced, resulting in the following feature space: 

- The norm of the gyroscope measurement:  ||𝑦𝑘
𝜔||       

- The variance of the gyroscope measurement:  
1

𝑊
∑ ||𝑦𝑘

𝜔 − 𝑦̅𝑛
𝜔||

2
 𝑛+𝑊−1

𝑘=𝑛     

- The Z-axis angular rate, normalized by the total gyroscope measurement:    
𝑦

𝑘
𝜔𝑧

||𝑦𝑘
𝜔||

 

     

Testing the Proposed Feature Space 

This new simplified data set with just three features was tested using a k-Nearest Neighbors model, 

a Decision Tree model, and a Support Vector Machine (SVM) model. In order to evaluate the 

effectiveness of the feature space the models were also trained and tested in cases with the original 

feature space, and also in cases where the ‘other motion’ class was not included in the data.  

The models, without optimization through hyper-parameterization, performed up to 95% 

classification on the test data set. Below is a confusion chart from the SVM classifying the test data.  
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Figure 8 The Confusion Chart for a Support Vector Machine Classifier 

The reduction to this feature space is intuitive when considering the trajectories that the models 

are to distinguish from one another: A zero-velocity condition will have small gyro measurements 

and accelerometer measurements. An orbit will have gyro measurements mainly composed of the 

z-axis measurement, and relatively small accelerometer measurements. Distinguishing left and 

right turns can be done using the sign of the Z-axis gyro (in practice this should be done in the 

combination with the sign of a velocity estimate).   
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SECTION 3: Test Statistic Design 

In this section, a new test statistic is proposed using the key features identified from the analysis of the 

existing ZUPT detectors in the first section and the key features extracted from the machine learning 

techniques employed in the previous section. The test statistic is intended to distinguish zero velocity 

conditions and orbital trajectory states from other non-distinguished motion.  

Formulation of a test statistic was performed by combining the results of the previous two sections. 

During this part of the study, it was important to maintain the convention of a unit-less test statistic 

(all acceleration squared terms are divided by accelerometer variance squared terms, etc.). This 

ensures that the test statistic scales properly when a different sensor is used. By thinking about the 

data seen by the IMU in the expected trajectories, a table can be formed to help narrow down the 

data features that will be important to include in the test statistic, which has been provided in the 

Appendix. 

The results from Section 1 communicate that a test statistic designed to be a single data feature for 

a multi-class classifier for these expected trajectories using accelerometer data alone would likely 

not be very effective - the orbital trajectory test statistics from the MAG and MV detectors were 

very noisy, and were characteristic of the undistinguished motion. However, the results of the 

machine learning techniques from Section 2 indicated neither the magnitude nor the variance of the 

y-axis accelerometer data was of great importance, regardless of it being a key component in 

defining an orbital trajectory. For this reason, intuition said that maintaining the first term of the 

SHOE test statistic would be of great merit.  

 



21 

 

The results from section 2 offered a few options for the angular rate term of the test statistic. It was 

clear that including a z-axis gyroscope term would be imperative for detecting the orbital 

trajectory, so (3) was considered first. The expression first looked like this: 

 

𝑇(𝑧𝑛
𝑎 , 𝑧𝑛

𝜔)  =  
1

𝑊
∑

1

𝜎𝑎
2 ||𝑦𝑘

𝑎 − 𝑔
𝑦̅𝑛

𝑎

||𝑦̅𝑛
𝑎||

||

2

+
1

𝜎𝜔
2

𝑦
𝑘
𝜔𝑧

||𝑦𝑘
𝜔||

𝑛+𝑊−1

𝑘=𝑛

 

In order to be consistent with remaining unit-less, however, the z-axis gyro measurement would 

have to be cubed. In addition, the absolute value of the z-axis gyro measurements were used, since 

those measurements are negative when making a left-handed turn. The angular rate term of the test 

statistic was updated: 

1

𝜎𝜔
2

𝑦𝑘
𝜔𝑧

||𝑦𝑘
𝜔||

⇒
1

𝜎𝜔
2

|𝑦𝑘
𝜔𝑧|

3

||𝑦𝑘
𝜔||

 

This state detector test statistic was evaluated in the same manner as the existing detectors, as in 

Section 1. The threshold used for the zero-velocity condition was 7𝑥103 and the threshold for the 

orbital trajectory condition was 7𝑥105. The detector successfully classified both the robot arm orbit 

and the hand-carry orbit, and it also successfully classified all of the zero-velocity conditions in the 

pedestrian motion. There is one zero-velocity condition prior to the robot-driven orbit due to the 

moment where the IMU was set into the grasp of the Universal Robots gripper, before the robot 

started moving, and an additional zero-velocity condition at the end of the hand-carry sequence 

when the subject stops sliding the IMU across the table. These are not misclassifications.  



22 

 

 

Figure 9 The Test Statistic values and State Detections using the Proposed Expression 

  

Because of the Z-axis’ contribution to the total angular rate of the IMU, the angular rate term 

distinguished the orbital trajectories from other test statistic data points, without becoming noisy 

as in the MV and MAG detector test statistics. Even though there is a larger difference in the test 

statistic for the orbital trajectory states and the swing phase of the pedestrian motion, the 

magnitude of the individual data points would be near indistinguishable for orbital trajectories of 

slower rotation if not for the variance in the test statistic. This family of detectors requires a 

number of consecutive data points to be greater than the threshold for the state to be detected; 

although the blue data points reading higher than the threshold in the plot below were not 

misclassified, it is reasonable to believe that the detector could falsely classify data as belonging to 

an orbital trajectory. For this detector, the number of consecutive test statistic values required for a 

state detection was set to 20, requiring 0.20 seconds of characteristic data to trigger a state 

detection.  

 



23 

 

 

To increase the margin between the orbital trajectory test statistic values and the non-classified 

test statistic values, the angular rate term was modified once again. In Section 2, all of the data was 

normalized when the machine learning techniques were applied - data features such as 

accelerations, which are typically in the range of -20 to 20𝑚/𝑠2 were normalized to the same scale 

as the Z-axis angular rate, normalized by the total angular rate of the IMU, which by definition is in 

the range of 0 to 1. This enabled the machine learning models to more effectively classify the data. 

In the likelihood ratio test, it helps to have the variance in the data accentuated. To increase the  

variance of the angular rate term of the test statistic, the Z-term was removed from the angular rate 

norm. In this test statistic, the angular rate term scales cubically with the Z-axis angular rate term, 

rather than having a nearly quadratic relationship, and it still gets penalized for large X-axis or Y-

axis gyroscope readings. The angular rate term of the test statistic expression was updated again: 

 

1

𝜎𝜔
2

|𝑦𝑘
𝜔𝑧|

3

||𝑦𝑘
𝜔||

⇒
1

𝜎𝜔
2

|𝑦𝑘
𝜔𝑧|

3

||𝑦𝑘

𝜔𝑥𝑦
||

  

 

The test statistic was once again evaluated as in Section 1. The threshold used for the zero-velocity 

condition remained at 7𝑥103 and the threshold for the orbital trajectory condition was set to 

3𝑥106.  Once again, the detector successfully classified both the robot arm orbit and the hand-carry 

orbit, and it also successfully classified all of the zero-velocity conditions in the pedestrian motion. 
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Figure 10 The Test Statistic values and State Detections using the Proposed Expression 

 

Using this new test statistic, named the Gyroscope Axis Energy (GAE) detector for its utility in 

examining orbits with a specific rotational axis, there was an increased margin between the orbital 

trajectory test statistic values and the undistinguished motion test statistic values. Except for just a 

few outliers, the test statistic values of greatest magnitude belong to the orbital trajectories.  
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SECTION 4: Simulation and Application 

In this section, the proposed expression for detection of zero velocity and orbital trajectory states was 

evaluated and the implications of the capability are explored. A simulated INS was built, and the state 

estimate of a simulated ‘ideal’ INS without noise or bias was used to act as ground truth. Then, for 

comparison, empirical data gathered using a sensor package was fed into the simulated INS 

employing a state correction based on the proposed algorithm. 

A simulation was built in MATLAB to produce INS state estimates [16] [18]. The input of the script 

is a data file of the format used by the Smartbug IMU, along with some initial position details such 

as orientation and heading. The output of the script is the velocity, position, and attitude estimates 

of the INS. In the simulation, the system's navigational coordinates follow the North-East-Down (N-

E-D) conventional reference system, also known as the n-frame, since the range of the navigation 

sequences examined are relatively local.  The simulated INS uses Euler angles to express the initial 

attitude of the unit. It then generates a Directional Cosine Matrix, 𝐶𝑏
𝑛, with a function: 

 

Figure 11 The Function used to Transform Euler Angles to a Directional Cosine Matrix 
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...which is then used to transform any vector 𝑎⃑ from the body frame into the n-frame according to 

the following equation: 

𝑎⃑𝑛 = 𝐶𝑏
𝑛𝑎⃑𝑏 

This transformation is applied to the specific forces and angular rates in the body frame to put them 

in the context of the navigational frame as they are integrated over time to produce attitude and 

position estimates. The directional cosine matrix gets updated via a skew-symmetric matrix made 

from the rotations in the body frame relative to the navigational frame. The Euler angles get 

updated based on these rotations as well. The Euler angles are not used in the INS except for 

providing a user-friendly way to represent the orientation of the IMU in the n-frame. 

IMU Navigation Sequence 

In both the simulation and during the empirical data collection, the IMU's navigation sequence 

includes a few different types of segments: 

- Stationary initialization, where sensor data is evaluated to define threshold values 

- Under-defined trajectories as the IMU is carried by hand 

- Zero-velocity states where ZUPT can be applied if desired 

- Predefined orbital trajectories where the IMU moves in a near perfect orbit about a 

single axis parallel to the IMU’s Z-axis, where a correction can be applied if the 

trajectory is well-defined. 

For the simulation of a state correction using the GAE detector, the physical setup of the lab space 

where the data collection occurred was modeled. It involves two tables along which to slide the 

IMU, two spaces where the IMU is carried by hand, and an area where a robotic arm moves the IMU 

in a predefined orbital trajectory. The ‘ideal’ sensor data that the IMU will likely see as it is slid, 

carried, and transported was similarly modeled so that it could act as noiseless ground truth. The 
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accelerations and angular rates seen by the IMU are characteristically different in each part of the 

navigation sequence.  

Sensor data was once again collected using a TDK InvenSense SmartBug IMU to capture the 

navigation sequence described above. This motion sequence is also captured in Figure 6. 

As the IMU is slid along the table and carried to the robot arm, the unit accumulates some error. 

When the unit is carried by the robotic arm, the simulated INS calibrates the noisy, error-filled data 

coming from the sensor to the known motion of the IMU using an anticipated acceleration and 

angular rate. It does this by taking the difference between the average of what the IMU reports and 

what the IMU should see from the expected orbital trajectory, and giving all future data an 

equivalent, opposite offset. This study assumes that the trajectory dictated by the robot arm only 

has known angular rates, velocities, and accelerations, as if the IMU motion dictated by the robot 

arm was actually induced by a person or vehicle - in reality its precise location is also known.  

When the unit is transported by the Universal Robots robotic arm, it is placed one meter from the 

axis of rotation, which is aligned with the IMU’s Z-axis. The arm rotates at a rate of 120 degrees per 

second for a total of one and a half rotations. From the dynamics equation below, the expected Y-

axis acceleration can be determined: 

𝑦𝑘

𝑎𝑦 =  𝑟(𝑦𝑘
𝜔𝑧)

2
 

This expected acceleration and angular rate were used to inform the state correction upon the GAE 

detection of an orbital trajectory. 

A low pass filter was applied to the raw data to decrease the effects of noise seen by the sensor. Bias 

stability error was mitigated by using the mean of the data when the IMU was at rest to zero the 

data so that it would be more usable for the INS, similar to the effect of ZUPT. This helped to limit 
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the effects of turn-on bias stability. This data was fed into the INS to get estimates of velocity and 

position data by integrating the angular rates and accelerations using the N-E-D mechanization. 

The section from 4.5 seconds to 8.25 seconds is the period of time where the sensor is transported 

by the UR5. Here, the average roll and pitch rates are close to zero, and the accelerations in the 

body X-axis and Z-axis are close to zero. The variance of the Z-axis angular rate and the Y-axis 

acceleration are also small when the UR5 has established a constant, orbital trajectory for the IMU. 

 

Figure 12 Processed IMU data used to validate the proposed detector 

The proposed state detector was used on the IMU data collected during this navigation sequence. 

The detection algorithm picked up the zero-velocity condition that took place when the IMU was 

placed in the grasp of the robot arm, and then the orbital trajectory of the robot arm-defined 

motion. The plots of the test statistic and the states detected by the algorithm are displayed in 

Figure 14.  
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Figure 13 The Test Statistic values and State Detections using the Proposed Expression 

 

Position estimates from the simulated INS using the SmartBug data are displayed in Figure 15. The 

paths of the two inertial navigation systems (with and without using a state correction based on the 

GAE detection) start by matching exactly, until the IMU is transported by the robotic arm. At this 

point, the data sets begin to diverge since one simulated INS is updated with the expected angular 

rates and accelerations when it recognizes the orbital trajectory state. The INS that does not get 

updated uses the angular rate recorded by the IMU, which has some error, causing the trajectory 

estimate to have a larger orbit with less total rotation.  

One factor that was noticed with the Smartbug IMU was an offset in the accelerometer data after 

the sensor experienced a prolonged acceleration in any axis. For this reason, the path of the IMU 

after being transported by the robot arm is a curve, according to the INS, when in reality it was 

removed from the robot arm and moved in a linear path without ever stopping. One way to mitigate 

this may have been to make use of the GAE ZUPT detection just as the IMU was set into the grasp of 

the UR5. 
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Figure 14 The 2D Trajectory Estimate of the INS in the NE Plane 

 The standard INS has a position estimate error of 21.5 meters. The INS data when fed the expected 

trajectory and provided with an update calibration has a position estimate error of 11.72 meters. 

The navigation sequence was split into two distinct legs for error propagation, which reset the rate 

of divergence. The error between the ground truth and the INS solutions in the last leg of the 

navigation sequence. The greatest determining factor of the error in both of these cases is the 

heading estimate - the distance tangent to the orbit of the final location of the simulated system that 

used a correction similar to ZUPT is just 1.4 meters different from that of the starting location, 

where the homologous error in the uncorrected INS is 4.8 meters. 

A state correction using a direct feed of the expected angular rate and acceleration is just one 

possible application of the GAE detector. Depending on how well-defined the dynamics of the 

system employing the detector are, it can be used to eliminate biases and drift accumulated during 

a navigation sequence without the need for a zero-velocity condition. Other possible applications 

and improvements are further discussed in the following section. 
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It is important to note that these results were determined without techniques such as the Kalman 

filter. While the Kalman filter is not computationally heavy for a navigation system, this section’s 

intent was to explore the effects of using the GAE detector to implement a state correction, the 

results of which may have been less clear if such a filter was also employed. 

  

Recommendations for Further Improvements  

The proposed GAE detector algorithm has proven to correctly classify zero-velocity conditions 

orbital trajectories about an axis parallel to a specific IMU axis. There are many steps that should be 

taken to improve the detector before implementing it in a practical application.  

A Robust Detection Method 

Improvements can be made to decrease the GAE detector’s likelihood of false positive detections 

and missed detections. While its performance has not yet been thoroughly tested, it is anticipated 

that sustained accelerations or angular rates of sufficient magnitude could trigger the false 

detection of an orbital trajectory. Here are a couple of suggested modifications to prevent false 

detections: 

- Limit the accelerometer and gyroscope terms’ contributions to the value of the test 

statistic, so that a combination of both is necessary for an orbital trajectory detection to be 

triggered. 

- Require a certain magnitude from the accelerometer data in order for the gyroscope term 

to be enabled. This would prevent a stationary, spinning system from detecting an orbital 

trajectory while maintaining a detector similar to the MAG detector when the gyroscope 

term is not enabled. 

- Similarly, experiment with an axis-specific accelerometer term in the test statistic to 

ensure detection is only triggered by near-orbital trajectories. Specifically, use a sign 
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indicating function on a cross product between the acceleration and the angular rate 

contributing to the orbital trajectory.  

- Perform a regression (which could be linear, polynomial, or inverse in nature) based on 

the acceleration and the angular rate contributing to the orbital trajectory. This could be 

used to draw a feasibility measure from the orbit radius, based on the dynamics of the 

system. 

- Implement an adaptive threshold for the ZUPT detection, and compare the measured 

orbit-axis angular rate to the expected dynamics of the system when determining the 

likelihood of an orbital trajectory 

- Expand the set of host systems for validating the algorithm from foot-mounted, hand-

carried, and robot-transported sequences to include automobiles and other vehicles 

 

Potential Applications and other Improvements 

This study has already mentioned a few potential applications of the GAE detector. Here the 

possible expansions and practical applications of the method are reiterated. Some implications of 

its implementation and other improvements to the algorithm could help develop our capabilities in 

GPS-denied navigation, among other technical challenges: 

- Detection of turns to localize a sensor within a road network 

- Live re-calibration of sensors s based on a known turn rate and radius 

- Similarly, live tuning of control gain based on a desired turn rate and radius 

- Data fusion using additional sensors to aid the system’s state estimates 

- Reduce the need for the axis of rotation to be parallel to an IMU axis by using parallel 

component and perpendicular component projections 

 

Of course, these applications often rely on a thorough understanding of, and rely on an accurate 

model of the system dynamics, especially when considering more complex motion sequences to 
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detect. Combining these methods with an observer-based data filter may be the next step in 

expanding the capability.  

 

Summary 

In this study, a state detection algorithm expression is proposed to serve as the data feature for a 

multi-class classifier for zero-velocity conditions and orbital trajectories about an axis parallel to 

one of the system’s IMU axes. The terms of the expression were extracted from machine learning 

techniques, and although the key terms for the expression developed could have been intuited from 

general knowledge of the trajectories, a framework has been set for developing similar expressions. 

The algorithm proposed has proven to function well in performing state detection for foot-mounted 

pedestrian navigation sequences, as well as for hand-carried IMU sequences. The algorithm should 

be studied further and iterated before being employed for practical use, though the next steps in 

doing so are both apparent and feasible. 
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Appendix 

 

Table of Evaluated Data Feature Values 

 zero-velocity 
condition 

Pedestrian swing 
phase/other motion 

Orbital Trajectory 

gyro magnitude Low High Moderate 

gyro variance Low High Low 

z-axis gyro magnitude Low High Moderate 

z-axis gyro variance Low High Low 

accelerometer magnitude Low High Moderate 

accelerometer variance Low High Low 

y-axis accelerometer 
magnitude 

Low High Moderate 

y-axis accelerometer 
variance 

Low High Low 

 

 




