
UCLA
Department of Statistics Papers

Title
Dormant Independence

Permalink
https://escholarship.org/uc/item/9519h0vw

Authors
Shpitser, Ilya
Pearl, Judea

Publication Date
2008-04-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9519h0vw
https://escholarship.org
http://www.cdlib.org/

Dormant Independence

Ilya Shpitser and Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
{ilyas, judea}@cs.ucla.edu

Abstract

The construction of causal graphs from non-experimental
data rests on a set of constraints that the graph structure
imposes on all probability distributions compatible with the
graph. These constraints are of two types: conditional inde-
pendencies and algebraic constraints, first noted by Verma.
While conditional independencies are well studied and fre-
quently used in causal induction algorithms, Verma con-
straints are still poorly understood, and rarely applied. In
this paper we examine a special subset of Verma constraints
which are easy to understand, easy to identify and easy to ap-
ply; they arise from “dormant independencies,” namely, con-
ditional independencies that hold in interventional distribu-
tions. We give a complete algorithm for determining if a dor-
mant independence between two sets of variables is entailed
by the causal graph, such that this independence is identifi-
able, in other words if it resides in an interventional distribu-
tion that can be predicted without resorting to interventions.
We further show the usefulness of dormant independencies
in model testing and induction by giving an algorithm that
uses constraints entailed by dormant independencies to prune
extraneous edges from a given causal graph.

Introduction
Graphical causal models [Pearl, 2000] embody both causal
and probabilistic assumptions. The vertices in causal
graphs, the carriers of these assumptions, correspond to vari-
ables, while the absence of an edge between two variables
implies that those two variables are conditionally indepen-
dent given some other set of variables. Probabilistic inde-
pendence between sets of variables in a causal model is im-
plied by the well-known criterion of path blocking called d-
separation [Pearl, 1988]. Conversely, independence implies
corresponding path blocking in the graph in a special class
of models termed faithful [Spirtes, Glymour, & Scheines,
1993] or stable [Pearl & Verma, 1991], [Pearl, 2000].

Graphs constrain observable distributions in two ways,
either by requiring that certain conditional independencies
hold, or imposing other restrictions, termed Verma con-
straints [Verma & Pearl, 1990], [Tian & Pearl, 2002b],
which are more difficult to characterize. The constraints in-
duced on the graph by conditional independencies are al-
ready being utilized by causal induction algorithms such as

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

IC [Verma & Pearl, 1990], [Pearl, 2000], and FCI [Spirtes,
Glymour, & Scheines, 1993]. A better understanding of
Verma constraints may lead to improvements of these algo-
rithms.

In this paper, we examine a special subset of Verma con-
straints with two nice properties. Firstly, these constraints
have a natural interpretation as being due to conditional in-
dependencies in distributions resulting from interventions
[Pearl, 2000] (we call such independencies dormant). Sec-
ondly, these constraints have the potential to imply features
of the causal graph, specifically the absence of certain edges.

Dormant independencies may imply constraints on the
observable distribution, if the interventional distribution in
which they reside is identifiable [Pearl, 2000], in other words
if it can be predicted from observational studies. Our contri-
bution is twofold. We develop a polynomial time algorithm
which, given two arbitrary disjoint sets of observable vari-
ables, returns an identifiable witness for the dormant inde-
pendence, in other words an identifiable interventional dis-
tribution in which these sets are conditionally independent.
Moreover, we show that our algorithm is complete for de-
termining all identifiable dormant independencies entailed
by the causal graph, in a sense that if the algorithm fails,
then any identifiable dormant independence is “coinciden-
tal,” and not due to the structure of the graph. Our algo-
rithm is an improvement over a previous algorithm in [Tian
& Pearl, 2002b], which enumerated only unconditional dor-
mant independence.

We illustrate the applicability of identifiable dormant in-
dependencies for model testing and induction by giving an-
other algorithm which, given a causal graph where every
edge is either correct or extraneous (we call such graphs
valid), uses constraints induced by dormant independencies
to systematically rule out extraneous edges.

Our paper is organized as follows. The next section gives
an example of a Verma constraint, and shows how this con-
straint arises due to conditional independence in identifiable
interventional distributions. Section 3 goes over the math-
ematical preliminaries necessary for causal inference. Sec-
tions 4 and 5 develop the algorithm for finding witnesses
for dormant independence for pairs of singletons, and pairs
of arbitrary sets, respectively. Section 6 introduces the algo-
rithm which uses dormant independencies for testing edges.
For space reasons, some of the longer proofs are given in

In Proceedings of AAAI-08. TECHNICAL REPORT
R-340
April 2008

X Z YW X Z YW

(a) (b)

Figure 1: (a) The “P” graph. (b) The graph of the submodel
Mz derived from the “P” graph.

outline form. Full proofs can be found in the technical re-
port posted on http://bayes.cs.ucla.edu/csl_
papers.html.

Verma Constraints as Dormant
Independencies

Consider the causal graph in Fig. 1 (a). Any model compati-
ble with this graph imposes certain constraints on its observ-
able distribution P (x, w, z, y). Some of these constraints are
in the form of conditional independencies. For instance, in
any such model X is independent of Z given W , which
means P (x|w) = P (x|w, z). However, there is an addi-
tional constraint implied by this graph which cannot be ex-
pressed in terms of conditional independence in the observ-
able distribution. This constraint, noted in [Verma & Pearl,
1990], states that the expression

∑
w P (y|z, w, x)P (w|x) is

a function of y and z only, not of x. The key insight that mo-
tivates this paper is that this constraint does emanate from
conditional independencies, albeit not the original observ-
able distribution, but in a distribution resulting from an in-
tervention.

An intervention, written do(x) [Pearl, 2000], is an opera-
tion which forces variables X to attain values x regardless of
their usual behavior in a causal model. The result of apply-
ing an intervention do(x) on a model M with a set of observ-
able variables V is a submodel Mx, with stochastic behavior
of variables other than X described by an interventional dis-
tribution written as Px(v) or P (v|do(x)). The graph induced
by Mx is almost the same as the graph induced by M , ex-
cept it is missing all arrows incoming to X, to represent the
fact that an intervention sets the values of X independently
of its usual causal influences, represented by such arrows.
We will denote such a graph as Gx. Following [Pearl, 2000],
we call the set of all possible interventional distributions P∗.
In other words, P∗ = {Px(v \ x)|x ⊆ v}.

A key idea in causal inference is that in certain causal
models, some interventional distributions can be predicted
or identified from the observational distribution. What we
will show is that it is ability to identify interventional dis-
tributions from observational distributions that gives rise to
Verma constraints, including the constraint in the P graph.

Consider a model M inducing the graph in Fig. 1 (a). If
we intervene on Z in M , we obtain the submodel Mz induc-
ing the graph in Fig. 1 (b). The distribution of the unfixed ob-
servables in this submodel, Pz(x, w, y), is identifiable from
P (x, w, z, y) and equals to P (y|z, w, x)P (w|x)P (x) [Tian
& Pearl, 2002a]. Moreover, by d-separation [Pearl, 1988],
the graph in Fig. 1 (b) implies that X is independent of

Y in Pz(x, w, y), or Pz(y|x) = Pz(y). But it’s not hard
to show that Pz(y|x) is equal to

∑
w P (y|z, w, x)P (w|x),

which means this expression depends only on z and y. Thus,
the identifiability of Pz(x, w, y) leads to a constraint on ob-
servational distributions in the original, unmutilated model
M .

Enumerating constraints of this type can be used to infer
features of the causal graphs, just as conditional indepen-
dencies are used for this purpose by causal induction algo-
rithms. For example, establishing that X is independent of
Y in Pz(x, w, y) allows us to conclude that the causal graph
lacks an edge between X and Y , assuming that the submodel
Mz is stable [Pearl & Verma, 1991], [Pearl, 2000], or faith-
ful [Spirtes, Glymour, & Scheines, 1993]. Moreover, since
Pz(x, w, y) is identifiable from P (v) in the graph in ques-
tion, we can rule out the edge without relying on interven-
tions.

In the remainder of this paper, we will show how to
achieve a full enumeration of conditional independencies in
identifiable interventional distributions entailed by the struc-
ture of the graph, and how to use these independencies to
infer features of the graph.

Preliminaries
The fundamental object of causal inference is the probabilis-
tic causal model.

Definition 1 A probabilistic causal model (PCM) is a tuple
M = 〈U, V, F, P (u)〉, where

U is a set of background or exogenous variables, which
cannot be observed or experimented on, but which can
influence the rest of the model.
V is a set {V1, ..., Vn} of observable or endogenous vari-
ables. These variables are considered to be functionally
dependent on some subset of U ∪ V.
F is a set of functions {f1, ..., fn} such that each fi is a
mapping from a subset of U ∪ V \ {Vi} to Vi, and such
that

⋃
F is a function from U to V.

P (u) is a joint probability distribution over the variables
in U.

PCMs represent causal relationships between observable
variables in V by means of the functions F: a given variable
Vi is causally determined by fi using the values of the vari-
ables in the domain of fi. Causal relationships entailed by
a given PCM have an intuitive visual representation using a
graph called a causal diagram. As mentioned in the introduc-
tion, causal diagrams contain two kinds of edges. Directed
edges are drawn from a variable X to a variable Vi if X
appears in the domain of fi. Bidirected edges are always
drawn between observable variables, and only when their
corresponding functions both make use of the same back-
ground variable. In this paper, we consider models which
induce acyclic graphs where P (u) =

∏
i P (ui), and each

Ui has at most two observable children. A graph obtained in
this way from a model is said to be induced by said model.

The importance of causal diagrams stems from the fact
that conditional independencies between observable vari-
ables correspond to graphical features in the diagram. Since

the rest of the paper will rely heavily on this correspon-
dence, we introduce probabilistic and graphical notions we
will need to make use of it. The key probabilistic notion we
will use is the standard definition of condition independence.
A set X is independent of Y conditional on Z (written as
X ⊥⊥ Y|Z) if P (x|y, z) = P (x|z). We will use the following
graph-theoretic notation. An(.)G, De(.)G, Pa(.)G stand for
the set of ancestors, descendants and parents of a given vari-
able set in G. The sets An(.)G and De(.)G will be inclusive,
in other words, for every An(X)G, De(X)G, X ∈ An(X)G

and X ∈ De(X)G. A graph Gx stands for the subgraph
of G containing only nodes in X and edges between these
nodes. We denote a maximal set of nodes in G pairwise con-
nected by bidirected paths a C-component [Tian, 2002]. We
denote the C-component containing a given node X in G
by C(X)G. We will drop the graph subscript if the graph is
assumed or obvious.

It’s possible to show that whenever edges in a causal
diagram are drawn according to the above rules, the dis-
tribution P (u, v) induced by P (u) and F factorizes as∏

Xi∈V∪U P (xi|Pa(xi)). This factorization implies that
conditional independencies in P (u, v) are mirrored by a
graphical notion of “path blocking” known as d-separation
[Pearl, 1988].

Definition 2 (d-separation) A path p in G is said to be d-
separated by a set Z if and only if either

1 p contains one of the following three patterns of edges:
I → M → J , I ↔ M → J , or I ← M → J , such that
M ∈ Z, or

2 p contains one of the following three patterns of edges
(called colliders): I → M ← J , I ↔ M ← J , I ↔
M ↔ J , such that De(M)G ∩ Z = ∅.

Two sets X, Y are said to be d-separated given Z (written
X ⊥ Y|Z) in G if all paths from X to Y in G are d-separated
by Z. Paths or sets which are not d-separated are said to
be d-connected. The relationship between d-separation and
conditional independence is provided by the following well-
known theorem.

Theorem 1 Let G be a causal diagram. Then in any model
M inducing G, if X ⊥ Y|Z, then X ⊥⊥ Y|Z.

Using d-separation as a guide, we can look for a condi-
tioning set Z which renders given sets X and Y independent
by only examining the causal diagram, without having to in-
spect the probability distribution P (v).

In this paper, we examine probabilistic independencies
in distributions resulting from not only conditioning but a
second, powerful operation of intervention, defined in the
previous section. An intervention is a more powerful op-
eration than conditioning, for the purposes of determining
probabilistic independence. This is because conditioning on
a variable can d-separate certain paths, but also d-connect
certain paths (due to the presence of colliders). On the other
hand, interventions can only block paths, since incoming
arrows are cut by interventions, destroying all colliders in-
volving the intervened variable. Moreover, if we restrict our-
selves to interventions identifiable from the observational
distribution, we don’t pay the price for this power, in a sense

that we don’t use any information other than the observa-
tional distribution, and the causal graph.

Identifiability can be defined formally as follows.

Definition 3 (identifiability) Consider a class of models M
with a description T , and two objects φ and θ computable
from each model. I say that φ is θ-identified in T if φ is
uniquely computable from θ in any M ∈ M. In other words
all models in M which agree on θ will also agree on φ.

If φ is θ-identifiable in T , we write T, θ
id φ. Otherwise,
we write T, θ �
id φ. In our case, the model class T corre-
sponds to a causal graph, θ is the observational distribution
P (v), and φ is the causal effect P (y|do(x)) of interest. For
example, in Fig. 1 (a), P (v), G
id Pz(x, w, y).

We call conditional independencies in interventional dis-
tributions dormant, to emphasize the fact that such indepen-
dencies are not apparent in a given observational distribution
without causal assumptions that make interventions a mean-
ingful operation.

Definition 4 (dormant independence) A dormant (condi-
tional) independence exists between variable sets X, Y in
P (v) obtained from the causal graph G if there exist vari-
able sets Z, W such that P (y|x, z, do(w)) = P (y|z, do(w)).
Furthermore, if P (v), G
id P (y, x|z, do(w)), the dormant
independence is identifiable and we denote this as X ⊥⊥w

Y|Z. If an identifiable dormant independence does not exist
between X, Y we write X �⊥⊥∗ Y.

We can extend the definition of d-separation in a straight-
forward way to mirror identifiable dormant independencies.

Definition 5 (d*-separation) Let G be a causal diagram.
Variable sets X, Y are d*-separated in G given Z, W (written
X ⊥w Y|Z), if we can find sets Z, W, such that X ⊥ Y|Z in
Gw, and P (v), G
id P (y, x|z, do(w)). If X, Y are not d*-
separable, we write X �⊥∗ Y.

Note that despite the presence of probability notation in
the definition, this is a purely graphical notion, since iden-
tification can be determined using only the graph. We can
prove a theorem analogous to Theorem 1 for dormant inde-
pendencies, which allows us to reason about dormant inde-
pendencies graphically.

Theorem 2 Let G be a causal diagram. Then in any model
M inducing G, if X ⊥w Y|Z, then X ⊥⊥w Y|Z.

Proof: This follows from the fact that Gw is the graph in-
duced by the submodel Mw, and any submodel is just an
ordinary causal model where Theorem 1 holds. �

In this paper we seek to characterize cases when arbitrary
disjoint sets can be d*-separated, and therefore to character-
ize identifiable dormant independencies among sets which
are entailed by causal graphs. The next section will consider
the simpler version of the problem where X and Y are sin-
gleton sets.

D*-separation Among Singletons
To characterize identifiable dormant independence between
X and Y , it makes sense to consider the “difficult” neigh-
borhoods of X, Y , in a sense that no intervention on those

function Find-MACS(G, Y)
INPUT: G, a causal diagram, Y a node in G.
OUTPUT: Ty , the MACS for Y in G.

1 If (∃X �∈ An(Y)G),
return Find-MACS(GAn(Y), Y).

2 If (∃X �∈ C(Y)G),
return Find-MACS(GC(Y), Y).

3 Else, return G.

Figure 2: An algorithm for computing the MACS of Y .

neighborhoods is identifiable. We call such neighborhoods
ancestral confounding sets.

Definition 6 Let Y be a variable in G. A set S is ancestral
confounded (ACS) for Y if S = An(Y)GS

= C(Y)GS
.

Ancestral confounded sets are a “difficult” neighborhood
due to the following result.

Theorem 3 Let S be ancestral confounded for Y . Then for
any S′ ⊆ S \ {Y }, P (v), G �
id P (y|do(s′)).

Proof: It’s trivial to construct a Y-rooted C-tree T [Shpitser
& Pearl, 2006b] from S. But it is known that for any set
S′ of nodes in T that does not contain Y , P (v), G �
id

P (y|do(s′)) [Shpitser & Pearl, 2006b]. �

In our search for suitable variables to intervene on, in
order to separate X and Y , we can exclude ancestral con-
founded sets for X and Y . But there can be potentially many
such sets. It would be preferable to exclude all such sets at
once. Fortunately, the following results allows us to accom-
plish just that.

Theorem 4 For any variable Y in G, there exists a unique
maximum ancestral confounded set (MACS) Ty.

Proof outline: The key step is to note that if two maximal
ancestral confounded sets for Y exist, then their union is
also ancestral confounded. �

Ty contains all ancestral confounded sets for Y , which
means if we can find an efficient procedure for computing
Ty, we could rule out all “difficult” sets from consideration
at once. Such an algorithm exists, and is given in Fig. 2.

Theorem 5 Find-MACS(G, Y) outputs the MACS of Y in
polynomial time in the size of the graph.

Proof outline: It’s easy to see that the output of Find-MACS
is an ACS if given a singleton input. To see that it is maxi-
mum, we note that Find-MACS can never remove elements
from Ty at any stage. The algorithm is polynomial since de-
termining An(.) and C(.) sets can be done in polynomial
time in the size of the graph, and each recursive call elimi-
nates at least one node from the graph. �

One problem with a MACS Ty is that interventions in
Ty are not identifiable, and conditioning in Ty does not d-
separate paths from Y out of Ty which consist entirely of
colliders, although all paths with a non-collider in Ty are
blocked. In order to block some all-collider paths out of

X

M

W Z

K

Y

L

(b)
(a)

Y

Z

W

M N

L

K

X

Figure 3: (a) A graph where X ⊥z Y |W, K, L, N . (b) A
graph where X ⊥z Y , X ⊥k L, but X �⊥∗ {Y, L}.

Tx, Ty we attempt to intervene on the set Pa(Tx ∪ Ty) \
(Tx ∪ Ty). It turns out these interventions are sufficient to
create identifiable dormant independence among singletons,
if one exists.

Theorem 6 Let Tx, Ty be the MACSs of X, Y . Let Ix,y =
Pa(Tx∪Ty) \ (Tx ∪Ty). Then if either X is a parent of Ty,
Y is a parent of Tx or there is a bidirected arc between Tx

an Ty, then X, Y are not d*-separable. Otherwise, X ⊥ix,y

Y |Tx ∪ Ty \ {X, Y }.

Proof outline: If X is a parent of Ty (or vice versa), or there
is a bidirected arc between Tx and Ty, then there exists an
inducing path between X and Y , which means conditioning
cannot separate X and Y . However, we know from results in
[Shpitser & Pearl, 2006b] and [Shpitser & Pearl, 2006a] that
conditional effects Px(y|z) are equivalent to unconditional
effects of the form Px’(y’), and such effects are not identifi-
able if Y ∈ y′, and x′ ⊆ Ty . This means interventions also
don’t help.

To show the other direction, note that a d-connected path
cannot start with outgoing arrows from both X and Y (else
such a path must run into a collider, or an intervened node).
Without loss of generality, say the path crosses Tx \ {X}.
A directed arrow leaving Tx is blocked either at Tx or Ix,y ,
while a bidirected arrow cannot connect to Ty directly, and
otherwise must be blocked at Ix,y . �

To illustrate this theorem, consider the graph in Fig. 3.
Here, Ty = {K, L, N, Y }, and Tx = {W, X}. By Theorem
6, X ⊥z Y |W, K, L, N .

Thus, the MACSs turn out to be key structures for de-
termining identifiable dormant independence between two
variables. In the next section, we generalize our results to
handle dormant independence among sets of variables.

D*-separation Among Sets
To determine identifiable dormant independencies between
sets X, Y, we want to find a multi-node generalization of
MACSs. Unfortunately, we are presented with the following
problem. Assume Y = {K, L} such that K ⊥w L|Z. In this
case, there really isn’t a difficult neighborhood adjacent to
both K and L. An appropriate generalization of MACSs to
a set Y, then, must partition Y such that a difficult neighbor-
hood can be defined for each subset in the partition.

Definition 7 Let Y be a variable set in G. A set S is ances-
tral confounded for Y if for every Y ∈ Y, S = An(Y)GS

=
C(Y)GS

.

Note that ancestral confounded sets are not guaranteed to
exist for sets of nodes. However, if they do exist for some set,
finiteness of graphs we consider guarantees the existence of
a maximal ancestral confounded set. We want to define an
appropriate partition of an arbitrary set, where each element
of the partition has an ACS. We will show the following def-
inition will work for this purpose.

Definition 8 (AC-component) A set Y of nodes in G is an
ancestral confounded component (AC-component) if
• Y = {Y }, e.g., Y is a singleton set, or
• Y is a union of two distinct AC-components Y1, Y2 which

have ancestral confounded sets S1, S2, respectively, and
S1, S2 are connected by a bidirected arc

Lemma 1 Every AC-component has an ancestral con-
founded set.

Proof: If an AC-component is a singleton, this is obvious.
Otherwise, Y is a union of AC-components Y1, Y2 with an-
cestral confounded sets S1, S2. Let S = S1∪S2. Since there
is a bidirected arc from S1 to S2, for every node X ∈ S, S =
C(X)GS

. Moreover, by construction S = An(Y)GS
. Thus,

S is an ancestral confounded set for Y. �

AC-components behave just as singleton sets do with re-
spect to ACS. In fact, there is a unique MACS for every
AC-component, and the algorithm to find it is the familiar
Find-MACS with set inputs.

Theorem 7 Let Y be an AC-component. Then there exists a
unique MACS Ty for Y, and Find-MACS-on-set (shown in
Fig. 4) finds it in polynomial time in the size of the graph.

Proof: The proof is a straightforward generalization of the
proof of Theorems 4 and 5. �

What we have shown is that certain special sets of nodes
have a MACS, just as singletons do. While we cannot show
the same for arbitrary sets (consider a set of two nodes not
in the same C-component), we can show the next best thing,
namely that there exists a unique partition of any set into
AC-components.

Lemma 2 Let Y be a variable set, Y ∈ Y. Then there is a
unique maximum AC-component which both contains Y and
is a subset of Y.

Proof: Some such AC-component exists, since Y itself is a
trivial AC-component. Since Y is finite there is a maximal
such AC-component. Assume there are two distinct maxi-
mal AC-components containing Y which are subsets of Y,
say Y1, Y2. Let S1, S2 be the corresponding MACSs. Since
these AC-components have the node Y in common, S1 and
S2 have a node in common, and so are connected by a bidi-
rected arc. This implies Y1∪Y2 is an AC-component, which
is a contradiction. �

Theorem 8 Any variable set Y has a unique partition p,
called the AC-partition, where each element S in p is a max-
imal AC-component in a sense that no superset of S which
is also a subset of Y is an AC-component.

Proof: To see that there is a unique AC-partition p, start
with some node Y ∈ Y, find it’s unique maximum AC-
component which is still a subset of Y, and repeat the pro-
cess for the nodes which have not been made part of some

function Find-AC-Partition(G, Y)
INPUT: G, a causal diagram, Y a set of nodes in G.
OUTPUT: p, the unique partition of Y into AC-components,
and the unique MACS Ts for each S ∈ P .

1 Let p be the partition of Y containing all singleton subsets
of Y.

2 For each Y ∈ Y, let Ty = Find-MACS(G, Y).

3 Repeat until no merges are possible: If ∃Y1, Y2 ∈ p such
that Ty

1
, Ty

2
share a bidirected arc, merge Y1, Y2 into Y′

in p, and let Ty′ = Find-MACS-on-set(G, Y′).

4 return p, and the set of MACSs for each element in p.

function Find-MACS-on-set(G, Y)
INPUT: G, a causal diagram, Y an AC-component in G.
OUTPUT: Ty, the MACS for Y in G.

1 If (∃X �∈ An(Y)G),
return Find-MACS-on-set(GAn(Y), Y).

2 If (∃Y ∈ Y, ∃X �∈ C(Y)G),
return Find-MACS-on-set(GC(Y), Y).

3 Else, return G.

Figure 4: An algorithm for computing the AC-partition (and
the corresponding sets of MACSs) of Y.

AC-component. The set of AC-components obtained in this
way is a partition where each element is a maximal AC-
component. Since each AC-component is also maximum
and unique, p is unique. �

There is a simple algorithm, shown in Fig. 4, which, given
an arbitrary set Y, finds the unique AC-partition p of Y, and
finds the MACS for each AC-component in p.

Theorem 9 Find-AC-Partition(G, Y) outputs the unique
AC-partition of Y, and the set of MACSs for each element
in the partition. Moreover, it does so in time polynomial in
the size of G.

Proof outline: The output of Find-AC-partition is a parti-
tion p of Y where each element is an AC-component. It’s
a consequence of Lemma 2 that the AC-partition of Y is
coarser than p. If the AC-partition is not equal to p, it’s not
difficult to derive a contradiction using the definition of AC-
components, and the structure of Find-AC-Partition. To see
that the algorithm is polynomial, note that each invocation of
Find-MACS and Find-MACS-on-set terminates in polyno-
mial time, as those algorithms are themselves polynomial.
Moreover, the set merge operations performed can be easily
implemented in polynomial time. Finally, the total number
of set merges performed by the algorithm is bounded by the
number of nodes in a binary tree with the number of leaves
equal to the number of nodes in G. This means the number
of merges is linear in the size of G, and the overall algorithm
is polynomial in the size of G. �

We want to prove a result analogous to Theorem 6 for sets.
To do so, we must generalize the notion of an inducing path

to sets.

Definition 9 (inducing paths for sets) Let X, Y be sets of
variables in G. A path p between X and Y is called an in-
ducing path if the following two conditions hold

• The path forms a collider for every non-terminal node

• Every non-terminal node is an ancestor of X or Y.

Not surprisingly, inducing paths characterize d-
separability for sets just as they do for singleton variables.

Theorem 10 X cannot be d-separated from Y in G if and
only if there exists an inducing path from X to Y in G,

Proof outline: If there is no inducing path from X to Y, then
A = An(X ∪ Y) \ X ∪ Y will serve as a d-separating set.
Any path not involving nodes in A must contain a collider
and so isn’t d-connecting. Since we condition on A, the d-
connecting path must contain only colliders, but this contra-
dicts the absence of an inducing path.

If there is an inducing path, we can establish by case anal-
ysis on this path that X �⊥ Y. The key observation is that
regardless of what set of nodes we condition on, it is al-
ways possible to recover a path which behaves as an induc-
ing path, which means X and Y stay d-connected. �

We can now prove the generalization of Theorem 6 for
sets. The idea is to find the AC-partition of X ∪ Y, and gen-
eralize the two conditions for d*-separability in Theorem 6
for this AC-partition.

Theorem 11 Let X, Y be arbitrary sets of variables. Let p
be the AC-partition of X∪ Y. Then if either elements of both
X and Y share a single AC-component in p, or some ele-
ment of X is a parent of the MACS of some AC-component
containing elements of Y (or vice versa), then X cannot be
d*-separated from Y. Otherwise, let Tp be the union of all
MACSs of elements in p, and let Ip = Pa(Tp) \ Tp. Then,
X ⊥ip

Y|Tp \ (X ∪ Y).

Proof outline: If the above conditions hold, the inducing
path between X and Y exists by definition. Thus, condi-
tioning will not help to separate X and Y. To see that in-
terventions also will not help, we can show by induction on
AC-component structure that the effect of any subset of the
MACS of any AC-component on that AC-component cannot
be identified, which implies, using the results in [Shpitser &
Pearl, 2006a] we appealed to in the proof of Theorem 6, that
interventions also do not help.

The proof of the other direction follows the same lines as
the proof in Theorem 6. �

We conclude this section by noting that just as was the
case with conditional independence, identifiable dormant in-
dependence among subsets does not entail dormant indepen-
dence on sets. For example, in the graph shown in Fig. 3 (b),
X ⊥z Y , X ⊥k L, but X �⊥∗ {Y, L}.

Having given a complete solution to the problem of deter-
mining identifiable dormant independence implied by causal
graph via d*-separation, we give an example of how such
independencies can be used to test aspects of the causal dia-
gram.

X

M

W Z

K

Y

L

(a)

X

M

W Z

K

Y

L

(b)

Figure 5: (a) The true causal graph. (b) A possible valid
graph for the same domain.

Testing Causal Structure
To illustrate the usefulness of identifiable dormant indepen-
dencies for induction and testing of causal structures, we
consider the problem of detecting if certain edges in a par-
ticular causal graph are extraneous. We call graphs where
every edge is either correct or extraneous valid.

Definition 10 (valid graph) A causal graph G is valid for a
model M if every edge in the graph induced by M is present
in G.

It is possible to rule out out the presence of certain extra-
neous edges using conditional independence tests. In order
to do so, an additional property of faithfulness is assumed. In
faithful models, lack of d-separation implies dependence. In
other words, X ⊥ Y|Z iff X ⊥⊥ Y|Z. This property allows us
to reach graphical conclusions from probabilistic premises.
For instance, the presence of a conditioning set Z such that
X ⊥⊥ Y |Z implies X and Y cannot share an edge. System-
atic use of conditional independence tests to rule out adja-
cencies in this way is an important part of causal inference
algorithms such as IC [Verma & Pearl, 1990], [Pearl, 2000]
and FCI [Spirtes, Glymour, & Scheines, 1993].

The advantage of dormant independencies is their ability
to rule out edges even if all conditional independence tests
fail. For instance, it is possible to rule out the edge from
X to Y in Fig. 5 (b) as extraneous if X ⊥⊥z Y , though
no conditional independence test can succeed in doing the
same, since there is an inducing path from X to Y .

However, in order to reach graphical conclusions from
dormant independencies, we need to extend the faithfulness
property to hold in interventional settings.

Definition 11 (experimental faithfulness) A model M is
experimentally faithful, or P∗-faithful if every submodel Mx

of M is faithful (that is d-connectedness in Gx implies de-
pendence).

Experimental faithfulness states that no “numerically co-
incidental independencies” are introduced by interventions.
We use dormant independence tests to rule out extraneous
edges in valid graphs of experimentally faithful models. To
test if an edge between X and Y is extraneous, we must find
sets Z, W such that X ⊥⊥w Y |Z. A naive brute-force ap-
proach to this problem is intractable since we must try all
subsets Z, W. However, if we assume the edge we are test-
ing is absent in the graph, we can use the Find-MACS algo-
rithm to propose a dormant independence to test in polyno-

function Test-Edges(G, P (v))
INPUT: G, a valid graph of an experimentally faithful
model M , P (v), a corresponding probability distribution.
OUTPUT: G′, a valid graph with some extraneous edges
removed.

• Let π be a topological order of edges in G, where
(X, Y) ≺π (W, Z) if X, Y ∈ An({W, Z})G. Let G′

equal G.

• For every edge (X, Y) in π, if we can find sets Z, W using
Theorem 6 such that X ⊥w Y |Z in G′ \ (X, Y), and
X ⊥⊥w Y |Z in P (v), G′, remove (X, Y) from G′.

• return G′.

Figure 6: An algorithm for testing edges in valid graphs.

mial time. Since testing this independence does not require
we perform any interventions, the test can be performed on
the observational distribution alone. There is an additional
complication, namely that certain edges ancestral to X and
Y may themselves be extraneous. This may result in a situ-
ation where X �⊥∗ Y if the ancestral extraneous edges are
present, while a dormant independence can be established if
they are removed. Fortunately, since we restrict ourselves to
acyclic graphs, we can establish a topological order among
edges based on ancestry, and test for extraneous edges using
this order. The resulting algorithm is shown in Fig. 6

It is not difficult to establish that Test-Edges is sound.

Theorem 12 Test-Edges terminates in polynomial time in
the size of the graph, and any edge it removes from G′, valid
for an experimentally faithful model M , is extraneous.

Proof: The first claim is simple to establish since all input
graphs are acyclic, and using Theorem 7. Let G be the true
causal graph. Assume an edge (X, Y) is not extraneous but
is removed from G′ by Test-Edges. Assume sets Z, W wit-
ness the removal. But X ⊥⊥w Y |Z, and since the submodel
Mw of M is faithful, this implies (X, Y) must be extrane-
ous. �

To illustrate the operation of the algorithm, consider the
valid graph G′ in Fig. 5 (b). If the graph G in Fig. 5 (a) rep-
resents the true causal model, Test-Edges will be able to re-
move the edges (X, Y) and (X, L), but not the edge (L, Y).
In the case of (X, Y), X ⊥z Y in G′ \(X, Y) and the corre-
sponding dormant independence holds since the true model
induces G. Similarly, for (X, L), X ⊥k L in G′ \ (X, L)
and the corresponding dormant independence holds. On the
other hand, even though (Y, L) is an extraneous edge, Test-
Edges cannot remove it, since the algorithm cannot estab-
lish dormant independence between Y and L, even though
P (y, l|do(z, k)) is identifiable in the true model. The intu-
ition here is that this identification relies on the absence of
the very edge we are trying to test (since P (y, l|do(z, k)) is
not identifiable in G′).

Similarly, if the graph G shown in Fig. 3 (a) is the true
causal graph, and the valid graph contains an extra edge from
X to Y , Test-Edges will be able to remove this edge since

X ⊥z Y |W, K, L, N in G, and P (v), G′
id Pz(v \ z),
where G′ is G plus any edge from X to Y .

Conclusions
In this paper we consider dormant independencies, that is
conditional independencies that surface in interventional
distributions. We give a complete algorithm for the problem
of determining identifiable dormant independencies entailed
by the causal graph, in other words determining if two sets
of random variables can be rendered independent by con-
ditioning in some identifiable interventions. We also pro-
vide a characterization of graphical structures which prevent
identifiable dormant independencies. We have also demon-
strated the usefulness of the notion of dormant independen-
cies for testing and induction of causal structure by giving
an algorithm which uses constraints entailed by identifiable
dormant independencies to remove extraneous edges from
causal diagrams.

Straightforward applications of dormant independencies
rely on some knowledge of the graph in order to conclude
identification. Extending our results to the situations where
the underlying graph is not available, for instance in order to
do causal induction, is an interesting area of future work.

Acknowledgments
This work was supported in part by the NLM grant #T15
LM07356.

References
[1] Pearl, J., and Verma, T. S. 1991. A theory of inferred causa-

tion. In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Second International Conference, 441–
452.

[2] Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems.
Morgan and Kaufmann, San Mateo.

[3] Pearl, J. 2000. Causality: Models, Reasoning, and Inference.
Cambridge University Press.

[4] Shpitser, I., and Pearl, J. 2006a. Identification of conditional
interventional distributions. In Uncertainty in Artificial Intelli-
gence, volume 22.

[5] Shpitser, I., and Pearl, J. 2006b. Identification of joint interven-
tional distributions in recursive semi-markovian causal models.
In Twenty-First National Conference on Artificial Intelligence.

[6] Spirtes, P.; Glymour, C.; and Scheines, R. 1993. Causation,
Prediction, and Search. Springer Verlag, New York.

[7] Tian, J., and Pearl, J. 2002a. A general identification condi-
tion for causal effects. In Eighteenth National Conference on
Artificial Intelligence, 567–573.

[8] Tian, J., and Pearl, J. 2002b. On the testable implications of
causal models with hidden variables. In Proceedings of UAI-02,
519–527.

[9] Tian, J. 2002. Studies in Causal Reasoning and Learning.
Ph.D. Dissertation, Department of Computer Science, Univer-
sity of California, Los Angeles.

[10] Verma, T. S., and Pearl, J. 1990. Equivalence and synthe-
sis of causal models. Technical Report R-150, Department of
Computer Science, University of California, Los Angeles.

