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Abstract—We present a novel architecture for adaptive weight 

calculation (AWC) that uses the QR decomposition based 

recursive least squares (RLS) algorithm. Our AWC core achieves 

a throughput of 0.20M updates per second for a 4 x 4 matrix on a 

Xilinx Virtex4 SX FPGA. We show that our core is significantly 

faster than other published FPGA implementations and it 

requires fewer resources. This is largely a consequence of careful 

error analysis that allows us to take advantage of a fixed point 

data representation with little degradation in the final results. 

Finally, our proposed architecture scales well for larger size 

matrices. 
 

Index Terms—Adaptive Weight Calculation, Field 

Programmable Gate Arrays, Matrix Decomposition  

 

I. INTRODUCTION 

daptive weight calculation (AWC) is required in many 

communication applications including adaptive 
beamforming, equalization, predistortion and multiple-input 
multiple-output (MIMO) systems [1]. These applications 
require solving over-determined systems of equations in many 
cases. In general, the least squares approach, e.g. Least Mean 
Squares (LMS), Normalized LMS (NLMS) and Recursive 
Least Squares (RLS), is used to find an approximate solution 
to these kinds of system of equations. Among them, RLS is 
most commonly used due to its good numerical properties and 
fast convergence rate [2]. However, it requires matrix 
inversion which is not efficient in terms of precision and 
hardware implementation. Applying QR decomposition 
(QRD) to perform adaptive weight calculation based on RLS 
avoids this problem and leads to more accurate results and 
efficient architectures.  
 There are three different QR decomposition methods: 
Gram-Schmidt orthogonormalization, Givens Rotations (GR) 
and Householder reflections [3]. GR is preferred because of its 
stability and accuracy. GR lends itself easily to a systolic array 
architecture using CORDIC blocks [4] which makes an 
efficient hardware implementation. Therefore, it is often used 
for hardware implementation. However, it was shown that the 
modified Gram-Schmidt (MGS) method is numerically 
equivalent to Givens rotations method [5]. And our results 
using QRD-MGS are better than previously published results 
using GR.  

A wide variety of computationally intensive applications are 
moving from Digital Signal Processors (DSPs) to Field 
Programmable Gate Arrays (FPGAs) because FPGA 
architectures present designers with substantially more 
parallelism allowing more efficient application 
implementations. Moreover, FPGAs are a flexible, cost 
effective alternative to Application Specific Integrated 
Circuits (ASICs). 

FPGAs are perfect platforms for arithmetic operations such 
as matrix decomposition as they provide powerful 
computational architectural features, e.g. embedded 
multipliers, shift register LUTs (SRLs), Block RAMs 
(BRAMs), DSP blocks and DCMs (Digital Clock Managers). 
If used correctly, these features can enhance the performance 
and throughput significantly. We will discuss the design 
decisions that we encountered as we customized our design to 
utilize the FPGA architectural features. 

In this paper we present an architectural scheduling 
approach for a scalable adaptive weight calculation (AWC) 
core which uses QRD-RLS with fixed-point arithmetic and 
map it onto Xilinx Virtex 4SX FPGA. We explore practical 
hardware design and implementation issues for FPGAs. Our 
core results in a high performance, scalable architecture for 
adaptive weight calculation. The remainder of the paper is 
organized as follows: Section II presents related work. Section 
III discusses RLS approach and QRD-MGS algorithm for 
weight calculation. Section IV addresses the advantages of 
fixed-point arithmetic and subsequently presents error analysis 
for different amounts of precision. Section V explains the 
architectural design of AWC core. Section VI introduces 
FPGA resources, discusses design decision and challenges, 
and presents implementation results in terms of area and 
timing. We conclude in Section VII. 

II. RELATED WORK   

In the most recent work using Modified Gram Schmidt 
(MGS) algorithm for QR decomposition, Singh et al. 
implemented a fully parallel VLSI architecture using fixed 
point arithmetic for matrix inversion [6]. The main 
contribution of the paper is introducing a Look Up Table 
(LUT) based approach to the MGS. Lightbody et al. presented 
generic mapping of a triangular QR architecture for linear or 
rectangular array of processors using square GR [7]. Other 
different QR array architectures for adaptive beamforming are 
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presented in [8-10]. However, FPGA implementations of these 
designs are not considered. 

Karkooti et al. presented an FPGA implementation of 
matrix inversion using the QRD-RLS algorithm along with 
square GR and folded systolic arrays [11]. Boppana et al. 
presented a weight calculation core using QRD-RLS [12] 
which is very similar to our work; however the solution of QR 
decomposition method and architectural design are different. 
Dick et al. considered the architecture, design flow and the 
verification process of a real-time beamformer using FPGAs 
[13]. The proposed design uses a mixture of CORDIC-based 
processing and MAC-based arithmetic. Our results are better 
than these previous solutions as we show in Section VI.  

III. RLS APPROACH AND QRD-MGS ALGORITHM 

A. Recursive Least Squares Approach 

Many communication applications must solve systems of 
equations for weight calculation which can be seen as 
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A is the observations matrix which is assumed to be noisy, b is 
known training sequence and x is the vector to be computed by 
using least squares method. This is described more compactly 
in matrix notation: 

 
                                     ebAx +=         (2) 
 

If there are the same numbers of equations as there are 
unknowns, i.e. n = m, this system of equations has a unique 

solution, bAx 1−= . However, the high sampling rate 
communication applications are often over-determined, i.e.     
n > m. Introducing the least squares approach helps to solve 
the problem by minimizing the residuals:   
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However RLS approach requires matrix inversion which is 

expensive for hardware implementation and introduces low 
precision results due to its complexity. Furthermore the 
resulting normal equations in the RLS approach are more ill 
conditioned than the given over-determined system which 
further affects the precision. For these reasons, QRD–RLS is a 
better method to solve the problem.  

QR decomposition is an elementary operation, which 
decomposes a matrix into an orthogonal and a triangular 
matrix. QR decomposition of a matrix A is a decomposition of 
A as A = Q×R, where Q is an orthogonal matrix (QT

 × Q = I) 
and R is an upper triangular matrix. The decomposition of      
m x n matrices (with m ≥ n) of full rank is the product of an m 

x n orthogonal matrix where QT
 × Q = I and an n x n upper 

triangular matrix. 
The resulting upper triangular matrix, R, which is the 

solution of QR decomposition, is used to find coefficients of 
the system by back-substitution after converting b into another 
column matrix, c, such that Rx = c. The required calculations 
for AWC are shown in Figure 1. 

 
 

 
   
Fig. 1. AWC using QRD-RLS method consists of two different parts to 
calculate the weights, QR decomposition and back-substitution.  
 

B. QR decomposition using Modified Gram-Schmidt 

Algorithm and back-substitution 

Applying slight modifications to the Classical Gram-
Schmidt (CGS) algorithm gives the modified Gram-Schmidt 
(MGS) algorithm. QRD-MGS is numerically more accurate 
and stable than the QRD-CGS. And it is numerically 
equivalent to the Givens Rotations solution. If the given 
matrix, A, is well-conditioned, the resulting matrices satisfy 
their required matrix characteristics. The algorithm for QRD-
MGS is shown in Figure 2.    

 
 

 
Fig. 2. MGS algorithm 

 
 

After decomposition of the given matrix, back-substitution 
is performed to calculate the weights. The back-substitution 
stage has fewer calculations compared to QR decomposition; 
this algorithm is shown in Figure 3.  
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Fig. 3.  Back-substitution algorithm 
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IV. FIXED POINT ARITHMETIC AND ERROR ANALYSIS 

Fixed point arithmetic is important as it results in faster 
smaller, functional units. However, it can results in less 
accurate results if it is not carefully designed. In this section, 
we discuss these tradeoffs and formulate an appropriate fixed 
point representation that provides results that are similar to a 
floating point implementation, yet they are much faster and 
smaller. 

A. Fixed Point Arithmetic 

There are two different types of approximations for real 
numbers: fixed-point and floating-point numeration systems 
[13]. The floating-point arithmetic allows us to represent very 
large range of numbers with some constant relative precision. 
Fixed-point arithmetic represents a reduced range of numbers 
with a constant absolute precision. Usage of floating point 
arithmetic is expensive in terms for hardware and leads to 
inefficient designs especially for FPGA implementation. On 
the other hand, fixed point arithmetic results in efficient 
hardware designs with the possibility of introducing 
calculation error. Our design uses two’s complement fixed 
point arithmetic, which is shown in Figure 4. The data lines 
used in implementation for fixed point arithmetic consist of an 
integer part, a fractional part and a sign bit.  

 
 

 
Fig. 4. Two’s complement fixed-point representation is used in the 
calculations of the AWC core. The limited nature of the representation leads 
round-off and truncation errors. These errors must be investigated carefully 
for the precision analysis. 
 
   

QR decomposition requires the usage of addition, 
subtraction, multiplication, division and square root 
operations. Number of calculations increases as the matrix 
dimensions grows. This is shown for different matrix sizes in 
Figure 5.  

 

 
Fig. 5. Number of calculations for different matrix sizes, 4 x 4, 6 x 6, 8 x 8, 10 
x 10 and 12 x 12 in terms of different operations. Number of calculations 
increases for larger matrices which affects the precision.    

Figure 5 shows that decomposing a matrix into orthogonal and 
upper triangular matrices requires high number of operations. 
Some of these calculations are straightforward such as 
addition, subtraction and multiplication; however, division and 
square root operations are complex and can affect the 
precision significantly. Furthermore, they are inefficient in 
terms of FPGA implementation. Fixed-point arithmetic 
reduces precision and consequently introduces two types of 
errors: round-off and truncation errors. Round-off error occurs 
when the result requires more bits than the reserved bit length 
after a computation. Truncation error occurs due to the limited 
number of bits to represent numbers. These issues must be 
handled carefully to prevent overflow which leads to incorrect 
results. Error analysis is a crucial step and will be considered 
in the next section.    
 

B. QR Decomposition Error Analysis 

While performing arithmetic calculations, a result may not 
fit into the reserved bits and if this case is not handled 
carefully, it causes overflow and incorrect results. To prevent 
overflow, every entry in the given matrix is normalized as the 
first step before starting decomposition. Normalizing is 
performed by dividing every entry by the largest matrix entry. 
Therefore, the given matrix entries are always in the [0, 1]. 
Normalization allows us to calculate the maximum number of 
bits required for the biggest possible integer. We then reserve 
this number of bits to insure that overflow does not occur.  
Error analysis for precision is very important in hardware 
designs especially when the arithmetic units use finite word 
length. We chose to evaluate QRD results for the error 
analysis due to its complexity compared to the back-
substitution process. Also, these analysis results are useful in 
the evaluation of other designs which use QRD. The error 
analysis is performed by comparing the hardware simulation 
results with the actual results. The hardware simulation results 
are derived using Modelsim software by simulating our 
proposed architecture while the actual results are derived 
using Matlab software by simulating the decomposition using 
16 bits floating point arithmetic. The error analysis is done for 
three different matrix sizes: 4 x 4, 6 x 6 and 8 x 8. Three 
different metrics are used for error analysis: mean error, 
standard deviation of error, and the mean percentage error.  

The first metric, mean error, is computed by finding the 
error for all entries and then dividing the sum of these errors 
by the total number of entries. This calculation can be seen as 
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where y , 
^

y  and m are the actual results, the computed 

results and the number of entries which are used in the 
decomposition, respectively. Mean error is an important 
metric for error analysis however it does not include the 
information about outliers. This is the case where a small 
number of entries have very high error but the majority of 
entries have very small error. To calculate the dispersion from 



 

 
Fig. 6. The mean error and its standard deviation are important metrics for 
error analysis. For better precision, more bits must be used in calculations 
which introduce the tradeoff between the precision and area of the design.  
The solid lines and dotted lines represent mean error and standard deviation of 
the error respectively. The error and its standard deviation become significant 
if the number of bits used is less than 14. 
 
the mean error, a second metric, the standard deviation of 
error, is used. The results of the two metrics are shown in 
Figure 6. The error depends on the number of bits used as data 
length for representing the numbers. There is a negative 
relationship between the error and the data length and this 
introduces a trade-off between precision and area of the 
design. It is important to notice that there is a cut-off point 
where the data length is 14. Precision doesn’t improve 
significantly by using more bits than 14. More area efficient 
designs can be implemented using smaller data lengths where 
more accurate design can be implemented using bigger data 
lengths. Besides, the second metric shows that there is no 
significant effect of outlier errors where the data length is 14 
or bigger.   
 
 
 
 
 Mean error sometimes leads to misleading conclusions 
because of the small range of numbers after normalization 
process. Therefore the third metric, mean percentage error, 
makes more sense if the relative error is considered. This 
metric is defined as 
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It considers the error compared to the actual result. The mean 
percentage error is increasing significantly for the number of 
bits less than 14 which is the same observation as before. 
These results are shown in Figure 7.  
 

 
Fig 7. The mean error for error analysis can be misleading due to usage of 
normalized numbers which are always in the [0, 1]. The mean percentage 
error leads to more accurate conclusions if the relative error is considered.  

V. ARCHITECTURAL DESIGN OF AWC CORE 

 The proposed architecture works at the instruction-level 
where the instructions define the required calculations for the 
computation of weights of the system. For better performance 
results, instruction level parallelism is exploited. The 
dependencies between the instructions limit the amount of 
parallelism that exists within a group of computations. 
Dynamic Scheduling using Tomasulo’s approach is a widely 
known approach to produce instruction level parallelism in 
presence of dependences [14]. In this approach, controller 
units track the operands to determine whether they are 
available and perform register renaming which assigns a free 
arithmetic unit for the desired calculation. Register renaming 
is provided by reservation station usage in every arithmetic 
unit where reservation stations fetch and buffer an operand as 
soon as the operand is ready. Our proposed design consists of 
two controller units and three arithmetic units. The arithmetic 
units are capable of computing decomposition and back-
substitution. The control units are instruction & timing and 
operand controller. The arithmetic units are adder/subtractor, 
multiplier/divider and square root units. The proposed AWC 
core is shown in Figure 8. 

 

 
Fig. 8. The proposed AWC core is capable of doing QRD and back-
substitution. AWC core consists of 2 controller and 3 arithmetic units.  
 
 



 

The Instruction & Timing controller unit keeps the 
instructions which are required to perform AWC. The control 
elements supervise the status of the reservation stations of the 
arithmetic units and the current place of the operands. The 
Instruction & Timing controller function is as follows: 1) it 
gets the instructions from the memory element by ensuring the 
maintenance of correct data flow, 2) decodes the instruction to 
understand the desired calculation, the required operands and 
the destination memory entry in operand controller unit, 3) 
creates scheduled instructions by performing register 
renaming, 4) checks  the current status of the arithmetic units 
and the current place of the operands and sends the scheduled 
instruction to the other units of the design or stall the AWC if 
there is no free reservation station.  

Every AWC starts by storing the given matrix data, A, and 
vector b into the memory entries of the Operand Controller. 
The Operand Controller sends the required operands for 
calculations if the operand is ready. Otherwise it waits until 
the calculation of the operand is completed and then sends the 
data after updating the memory.  

Arithmetic units are reserved for specific calculations. The 
arithmetic units are adder/subtractor, multiplier/divider and 
square root finder. Each unit, except the square root unit, 
consists of matrix size number of reservation stations to 
perform desired calculations concurrently. Every arithmetic 
unit has three different stages: fetching the instruction from 
Instruction & Timing Controller, fetching the required 
operands from the outputs of the arithmetic units or from the 
memory unit of Operand Controller unit and performing the 
calculation. Addition, subtraction and multiplication use one 
clock cycle. Division and square root operations use N clock 
cycles, where N is equal to the number of bit in the input data.  

If the input matrix is 4 x 4, AWC core uses 4 reservation 
stations in each adder/subtractor and multiplier/divider units 
due to the fact that they are able to perform these calculations 
in parallel. The Square root function unit uses only one 
reservation station because it is rarely needed during the QR 
decomposition. Figure 9 depicts our proposed architecture for 
scheduled arithmetic units to calculate QRD in AWC core. 
There are 4 different stages for computing QRD and every 
stage follows its next one like a thread and the stage resources 
are the same because of the usage of scheduling. The solution 
of back-substitution uses the same architecture with different 
scheduling. 

 

VI. FPGA IMPLEMENTATION RESULTS  

The proposed architecture is implemented on a Virtex4-
xc4vsx35 FPGA. We use 14 bits for the data representation 
and also compare its results with the usage of 19 bits. The 
addition and subtraction functional units are implemented by 
using SLICEs with low delay carry chain network, the 
multiplications use XtremeDSP blocks which are very 
efficient for this purpose, divider core creates a circuit for 
fixed-point division based on radix-2 non-restoring division 
and finally square root function uses CORDIC core, all 
provided by Xilinx Coregen toolset. 

 Fig. 9. The proposed architecture for scheduled arithmetic units to calculate 
QRD is shown. The input is given A matrix and the results are Q, R or the 
updates of A matrices.  

 
We use Block RAMs available on Xilinx FPGAs as 

memory storage space for instructions. The Block RAM 
modules provide flexible 18Kbit dual-port RAM, that are 
cascadable to form larger memory blocks. Embedded 
XtremeDSP slices with 18 x 18 bit dedicated multipliers and 
48-bit accumulator provide flexible resources to implement 
multipliers to achieve high performance. Furthermore, Xilinx 
Coregen software implements these cores very efficiently 
since it uses special mapping and place and route algorithms 
to implement the abovementioned cores to attain high 
performance design. 

AWC core which uses 14 bits achieves 136 MHz of speed 
on the state of art Virtex4-xc4vsx35 FPGA with a throughput 
of 0.20M updates per second. The latency for AWC is 670 
cycles. The resources used for AWC core are shown in Table 
1. The design is easily extendable for larger matrix sizes by 
changing the instructions for scheduling which are required 
for AWC and using more block RAMs. For best timing results 
n number of reservation stations in arithmetic units are added 
in AWC core which is 4 in our design; and works for 4 x 4 
matrices. It is important to state that more area efficient 
designs can be implemented using less reservation stations 
with the cost of more clock cycles to calculate the weights.      

 



 

Table 1 – Resources for AWC core on a Virtex-4 FPGA using 14 bits for 

data representation 

 
Design Unit 

Area 
LUTs FFs BRAMs DSP48 SLICEs 

Instruction & 
Timing 

Controller 

 
179 

 
45 

 
1 

 
- 

 
93 

Operand 
Controller 

1310 360 - - 747 

Arithmetic 
Units 

1780 1066 - 4 1052 

Total 3,269 1,471 1 4 1,892 

 
As we present in Section IV- B, using more bits for data 

representation leads to more accurate results however 
introduces more area. Figure 10 shows the comparison 
between using 14 and 19 bits in terms of area. AWC core 
which uses 19 bits achieves 130 MHz of speed on the same 
device with a throughput of 0.13M updates per second. AWC 
core which uses 19 bits also achieves better results than the 
previous works in terms of area and throughput.  The increase 
in the area is not significantly high due to usage of scheduling 
for utilizing the resources.   

   

 
Fig. 10. The area comparison between using 14 and 19 bits for data 
representation. More accurate designs need more number of bits and leads to 
larger area results.  

 
Table 2 shows the comparison between our design, [11] and 

[13] in terms of area and throughput. Karkooti et. al. presented 
a matrix inversion core using QRD-RLS algorithm [11] and 
we choose their results to compare with ours because of the 
similarity between the matrix inversion and AWC. The usage 
of squared Givens rotations and a folded systolic array is 
considered in their work. Number of resources is presented as 
slices, DSP48 and BRAMs, however FFs and LUTs are not 
given as total. Dick et. al is considered the design of a real-
time QRD-based beamformer using GR[13]. Their design 
employs CORDIC-based processing and multiply-accumulate 
(MAC) based arithmetic. The throughput result is presented 
for 5 x 5 matrices. Both of these designs are implemented on a 
Virtex4 FPGA.  Table 2 shows that our design results are 
better than the previous works. NR stands for the data which is 
not reported. 

Table 2 - Comparison of Our Results with the Previous Work in terms of 

area and throughput. The term “NR” means that the results were not 

reported in the other publications.  

 
 

Area Through 
put 

Slices FF LUT DSP48 BRAM Updates/
s 

[11] 9117 NR NR 22 9 0.13M 
[13] 3530 5916 5411 13 6 0.09M 

Our  1,892 1,471 3,269 4 1 0.20M 

VII. CONCLUSION 

An adaptive weight calculation (AWC) core is designed and 
implemented on Xilinx4-SX FPGA using QRD-RLS and 
Modified Gram-Schmidt algorithms with fixed-point 
arithmetic. The error analysis for QRD is investigated for 
different size of matrices and 14 bits of data length is found as 
a cut-off point between precision and area. The proposed 
design runs with a clock rate of 136 MHz and achieves a 
throughput of 0.20M updates per second. The proposed design 
has better results than the previous works in terms of area and 
throughput. The design is easily extendable to other matrix 
sizes.   
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