
UC San Diego
Technical Reports

Title
FPGA Implementation of Adaptive Weight Calculation Core Using QRD-RLS Algorithm

Permalink
https://escholarship.org/uc/item/9514v2jb

Authors
Irturk, Ali
Mirzaei, Shahnam
Kastner, Ryan

Publication Date
2009-03-09

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9514v2jb
https://escholarship.org
http://www.cdlib.org/

Abstract—We present a novel architecture for adaptive weight

calculation (AWC) that uses the QR decomposition based

recursive least squares (RLS) algorithm. Our AWC core achieves

a throughput of 0.20M updates per second for a 4 x 4 matrix on a

Xilinx Virtex4 SX FPGA. We show that our core is significantly

faster than other published FPGA implementations and it

requires fewer resources. This is largely a consequence of careful

error analysis that allows us to take advantage of a fixed point

data representation with little degradation in the final results.

Finally, our proposed architecture scales well for larger size

matrices.

Index Terms—Adaptive Weight Calculation, Field

Programmable Gate Arrays, Matrix Decomposition

I. INTRODUCTION

daptive weight calculation (AWC) is required in many

communication applications including adaptive
beamforming, equalization, predistortion and multiple-input
multiple-output (MIMO) systems [1]. These applications
require solving over-determined systems of equations in many
cases. In general, the least squares approach, e.g. Least Mean
Squares (LMS), Normalized LMS (NLMS) and Recursive
Least Squares (RLS), is used to find an approximate solution
to these kinds of system of equations. Among them, RLS is
most commonly used due to its good numerical properties and
fast convergence rate [2]. However, it requires matrix
inversion which is not efficient in terms of precision and
hardware implementation. Applying QR decomposition
(QRD) to perform adaptive weight calculation based on RLS
avoids this problem and leads to more accurate results and
efficient architectures.
 There are three different QR decomposition methods:
Gram-Schmidt orthogonormalization, Givens Rotations (GR)
and Householder reflections [3]. GR is preferred because of its
stability and accuracy. GR lends itself easily to a systolic array
architecture using CORDIC blocks [4] which makes an
efficient hardware implementation. Therefore, it is often used
for hardware implementation. However, it was shown that the
modified Gram-Schmidt (MGS) method is numerically
equivalent to Givens rotations method [5]. And our results
using QRD-MGS are better than previously published results
using GR.

A wide variety of computationally intensive applications are
moving from Digital Signal Processors (DSPs) to Field
Programmable Gate Arrays (FPGAs) because FPGA
architectures present designers with substantially more
parallelism allowing more efficient application
implementations. Moreover, FPGAs are a flexible, cost
effective alternative to Application Specific Integrated
Circuits (ASICs).

FPGAs are perfect platforms for arithmetic operations such
as matrix decomposition as they provide powerful
computational architectural features, e.g. embedded
multipliers, shift register LUTs (SRLs), Block RAMs
(BRAMs), DSP blocks and DCMs (Digital Clock Managers).
If used correctly, these features can enhance the performance
and throughput significantly. We will discuss the design
decisions that we encountered as we customized our design to
utilize the FPGA architectural features.

In this paper we present an architectural scheduling
approach for a scalable adaptive weight calculation (AWC)
core which uses QRD-RLS with fixed-point arithmetic and
map it onto Xilinx Virtex 4SX FPGA. We explore practical
hardware design and implementation issues for FPGAs. Our
core results in a high performance, scalable architecture for
adaptive weight calculation. The remainder of the paper is
organized as follows: Section II presents related work. Section
III discusses RLS approach and QRD-MGS algorithm for
weight calculation. Section IV addresses the advantages of
fixed-point arithmetic and subsequently presents error analysis
for different amounts of precision. Section V explains the
architectural design of AWC core. Section VI introduces
FPGA resources, discusses design decision and challenges,
and presents implementation results in terms of area and
timing. We conclude in Section VII.

II. RELATED WORK

In the most recent work using Modified Gram Schmidt
(MGS) algorithm for QR decomposition, Singh et al.
implemented a fully parallel VLSI architecture using fixed
point arithmetic for matrix inversion [6]. The main
contribution of the paper is introducing a Look Up Table
(LUT) based approach to the MGS. Lightbody et al. presented
generic mapping of a triangular QR architecture for linear or
rectangular array of processors using square GR [7]. Other
different QR array architectures for adaptive beamforming are

FPGA Implementation of Adaptive Weight
Calculation Core Using QRD-RLS Algorithm

Ali Irturk†, Shahnam Mirzaei‡, Ryan Kastner†

†Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093
{airturk, b1benson, kastner}@cs.ucsd.edu

A

‡Department of Electrical and Computer Engineering
University of California, Santa Barbara

Santa Barbara, CA 93106
shahnam@umail.ucsb.edu

presented in [8-10]. However, FPGA implementations of these
designs are not considered.

Karkooti et al. presented an FPGA implementation of
matrix inversion using the QRD-RLS algorithm along with
square GR and folded systolic arrays [11]. Boppana et al.
presented a weight calculation core using QRD-RLS [12]
which is very similar to our work; however the solution of QR
decomposition method and architectural design are different.
Dick et al. considered the architecture, design flow and the
verification process of a real-time beamformer using FPGAs
[13]. The proposed design uses a mixture of CORDIC-based
processing and MAC-based arithmetic. Our results are better
than these previous solutions as we show in Section VI.

III. RLS APPROACH AND QRD-MGS ALGORITHM

A. Recursive Least Squares Approach

Many communication applications must solve systems of
equations for weight calculation which can be seen as

nnmnmnn

mm

mm

ebxaxaxa

ebxaxaxa

ebxaxaxa

+=+++

+=+++
+=+++

L

MMMM

L

L

2211

222222121

111212111

 (1)

A is the observations matrix which is assumed to be noisy, b is
known training sequence and x is the vector to be computed by
using least squares method. This is described more compactly
in matrix notation:

 ebAx += (2)

If there are the same numbers of equations as there are
unknowns, i.e. n = m, this system of equations has a unique

solution, bAx 1−= . However, the high sampling rate
communication applications are often over-determined, i.e.
n > m. Introducing the least squares approach helps to solve
the problem by minimizing the residuals:

∑

n

ne
2min (3)

However RLS approach requires matrix inversion which is

expensive for hardware implementation and introduces low
precision results due to its complexity. Furthermore the
resulting normal equations in the RLS approach are more ill
conditioned than the given over-determined system which
further affects the precision. For these reasons, QRD–RLS is a
better method to solve the problem.

QR decomposition is an elementary operation, which
decomposes a matrix into an orthogonal and a triangular
matrix. QR decomposition of a matrix A is a decomposition of
A as A = Q×R, where Q is an orthogonal matrix (QT

 × Q = I)
and R is an upper triangular matrix. The decomposition of
m x n matrices (with m ≥ n) of full rank is the product of an m

x n orthogonal matrix where QT
 × Q = I and an n x n upper

triangular matrix.
The resulting upper triangular matrix, R, which is the

solution of QR decomposition, is used to find coefficients of
the system by back-substitution after converting b into another
column matrix, c, such that Rx = c. The required calculations
for AWC are shown in Figure 1.

Fig. 1. AWC using QRD-RLS method consists of two different parts to
calculate the weights, QR decomposition and back-substitution.

B. QR decomposition using Modified Gram-Schmidt

Algorithm and back-substitution

Applying slight modifications to the Classical Gram-
Schmidt (CGS) algorithm gives the modified Gram-Schmidt
(MGS) algorithm. QRD-MGS is numerically more accurate
and stable than the QRD-CGS. And it is numerically
equivalent to the Givens Rotations solution. If the given
matrix, A, is well-conditioned, the resulting matrices satisfy
their required matrix characteristics. The algorithm for QRD-
MGS is shown in Figure 2.

Fig. 2. MGS algorithm

After decomposition of the given matrix, back-substitution
is performed to calculate the weights. The back-substitution
stage has fewer calculations compared to QR decomposition;
this algorithm is shown in Figure 3.













−=

−=

=

∑

+=

n

ij

jiji

ii

i

nn

n
n

xRc
R

x

nifor

R

c
x

1

1

1:1

Fig. 3. Back-substitution algorithm

iijjj

jiij

iiii

iii

ii

QRtt

tQR

nijfor

RtQ

tR

nifor

At

nifor

−=

=
+=

=
=

=
=

=

*

:1

/

:1

:1

IV. FIXED POINT ARITHMETIC AND ERROR ANALYSIS

Fixed point arithmetic is important as it results in faster
smaller, functional units. However, it can results in less
accurate results if it is not carefully designed. In this section,
we discuss these tradeoffs and formulate an appropriate fixed
point representation that provides results that are similar to a
floating point implementation, yet they are much faster and
smaller.

A. Fixed Point Arithmetic

There are two different types of approximations for real
numbers: fixed-point and floating-point numeration systems
[13]. The floating-point arithmetic allows us to represent very
large range of numbers with some constant relative precision.
Fixed-point arithmetic represents a reduced range of numbers
with a constant absolute precision. Usage of floating point
arithmetic is expensive in terms for hardware and leads to
inefficient designs especially for FPGA implementation. On
the other hand, fixed point arithmetic results in efficient
hardware designs with the possibility of introducing
calculation error. Our design uses two’s complement fixed
point arithmetic, which is shown in Figure 4. The data lines
used in implementation for fixed point arithmetic consist of an
integer part, a fractional part and a sign bit.

Fig. 4. Two’s complement fixed-point representation is used in the
calculations of the AWC core. The limited nature of the representation leads
round-off and truncation errors. These errors must be investigated carefully
for the precision analysis.

QR decomposition requires the usage of addition,
subtraction, multiplication, division and square root
operations. Number of calculations increases as the matrix
dimensions grows. This is shown for different matrix sizes in
Figure 5.

Fig. 5. Number of calculations for different matrix sizes, 4 x 4, 6 x 6, 8 x 8, 10
x 10 and 12 x 12 in terms of different operations. Number of calculations
increases for larger matrices which affects the precision.

Figure 5 shows that decomposing a matrix into orthogonal and
upper triangular matrices requires high number of operations.
Some of these calculations are straightforward such as
addition, subtraction and multiplication; however, division and
square root operations are complex and can affect the
precision significantly. Furthermore, they are inefficient in
terms of FPGA implementation. Fixed-point arithmetic
reduces precision and consequently introduces two types of
errors: round-off and truncation errors. Round-off error occurs
when the result requires more bits than the reserved bit length
after a computation. Truncation error occurs due to the limited
number of bits to represent numbers. These issues must be
handled carefully to prevent overflow which leads to incorrect
results. Error analysis is a crucial step and will be considered
in the next section.

B. QR Decomposition Error Analysis

While performing arithmetic calculations, a result may not
fit into the reserved bits and if this case is not handled
carefully, it causes overflow and incorrect results. To prevent
overflow, every entry in the given matrix is normalized as the
first step before starting decomposition. Normalizing is
performed by dividing every entry by the largest matrix entry.
Therefore, the given matrix entries are always in the [0, 1].
Normalization allows us to calculate the maximum number of
bits required for the biggest possible integer. We then reserve
this number of bits to insure that overflow does not occur.
Error analysis for precision is very important in hardware
designs especially when the arithmetic units use finite word
length. We chose to evaluate QRD results for the error
analysis due to its complexity compared to the back-
substitution process. Also, these analysis results are useful in
the evaluation of other designs which use QRD. The error
analysis is performed by comparing the hardware simulation
results with the actual results. The hardware simulation results
are derived using Modelsim software by simulating our
proposed architecture while the actual results are derived
using Matlab software by simulating the decomposition using
16 bits floating point arithmetic. The error analysis is done for
three different matrix sizes: 4 x 4, 6 x 6 and 8 x 8. Three
different metrics are used for error analysis: mean error,
standard deviation of error, and the mean percentage error.

The first metric, mean error, is computed by finding the
error for all entries and then dividing the sum of these errors
by the total number of entries. This calculation can be seen as

 myy
m

i

ii /
1

^

∑

=

− (4)

where y ,
^

y and m are the actual results, the computed

results and the number of entries which are used in the
decomposition, respectively. Mean error is an important
metric for error analysis however it does not include the
information about outliers. This is the case where a small
number of entries have very high error but the majority of
entries have very small error. To calculate the dispersion from

Fig. 6. The mean error and its standard deviation are important metrics for
error analysis. For better precision, more bits must be used in calculations
which introduce the tradeoff between the precision and area of the design.
The solid lines and dotted lines represent mean error and standard deviation of
the error respectively. The error and its standard deviation become significant
if the number of bits used is less than 14.

the mean error, a second metric, the standard deviation of
error, is used. The results of the two metrics are shown in
Figure 6. The error depends on the number of bits used as data
length for representing the numbers. There is a negative
relationship between the error and the data length and this
introduces a trade-off between precision and area of the
design. It is important to notice that there is a cut-off point
where the data length is 14. Precision doesn’t improve
significantly by using more bits than 14. More area efficient
designs can be implemented using smaller data lengths where
more accurate design can be implemented using bigger data
lengths. Besides, the second metric shows that there is no
significant effect of outlier errors where the data length is 14
or bigger.

 Mean error sometimes leads to misleading conclusions
because of the small range of numbers after normalization
process. Therefore the third metric, mean percentage error,
makes more sense if the relative error is considered. This
metric is defined as

 m
y

yym

i i

ii /)(
1

^

∑

=

−
 (5)

It considers the error compared to the actual result. The mean
percentage error is increasing significantly for the number of
bits less than 14 which is the same observation as before.
These results are shown in Figure 7.

Fig 7. The mean error for error analysis can be misleading due to usage of
normalized numbers which are always in the [0, 1]. The mean percentage
error leads to more accurate conclusions if the relative error is considered.

V. ARCHITECTURAL DESIGN OF AWC CORE

 The proposed architecture works at the instruction-level
where the instructions define the required calculations for the
computation of weights of the system. For better performance
results, instruction level parallelism is exploited. The
dependencies between the instructions limit the amount of
parallelism that exists within a group of computations.
Dynamic Scheduling using Tomasulo’s approach is a widely
known approach to produce instruction level parallelism in
presence of dependences [14]. In this approach, controller
units track the operands to determine whether they are
available and perform register renaming which assigns a free
arithmetic unit for the desired calculation. Register renaming
is provided by reservation station usage in every arithmetic
unit where reservation stations fetch and buffer an operand as
soon as the operand is ready. Our proposed design consists of
two controller units and three arithmetic units. The arithmetic
units are capable of computing decomposition and back-
substitution. The control units are instruction & timing and
operand controller. The arithmetic units are adder/subtractor,
multiplier/divider and square root units. The proposed AWC
core is shown in Figure 8.

Fig. 8. The proposed AWC core is capable of doing QRD and back-
substitution. AWC core consists of 2 controller and 3 arithmetic units.

The Instruction & Timing controller unit keeps the
instructions which are required to perform AWC. The control
elements supervise the status of the reservation stations of the
arithmetic units and the current place of the operands. The
Instruction & Timing controller function is as follows: 1) it
gets the instructions from the memory element by ensuring the
maintenance of correct data flow, 2) decodes the instruction to
understand the desired calculation, the required operands and
the destination memory entry in operand controller unit, 3)
creates scheduled instructions by performing register
renaming, 4) checks the current status of the arithmetic units
and the current place of the operands and sends the scheduled
instruction to the other units of the design or stall the AWC if
there is no free reservation station.

Every AWC starts by storing the given matrix data, A, and
vector b into the memory entries of the Operand Controller.
The Operand Controller sends the required operands for
calculations if the operand is ready. Otherwise it waits until
the calculation of the operand is completed and then sends the
data after updating the memory.

Arithmetic units are reserved for specific calculations. The
arithmetic units are adder/subtractor, multiplier/divider and
square root finder. Each unit, except the square root unit,
consists of matrix size number of reservation stations to
perform desired calculations concurrently. Every arithmetic
unit has three different stages: fetching the instruction from
Instruction & Timing Controller, fetching the required
operands from the outputs of the arithmetic units or from the
memory unit of Operand Controller unit and performing the
calculation. Addition, subtraction and multiplication use one
clock cycle. Division and square root operations use N clock
cycles, where N is equal to the number of bit in the input data.

If the input matrix is 4 x 4, AWC core uses 4 reservation
stations in each adder/subtractor and multiplier/divider units
due to the fact that they are able to perform these calculations
in parallel. The Square root function unit uses only one
reservation station because it is rarely needed during the QR
decomposition. Figure 9 depicts our proposed architecture for
scheduled arithmetic units to calculate QRD in AWC core.
There are 4 different stages for computing QRD and every
stage follows its next one like a thread and the stage resources
are the same because of the usage of scheduling. The solution
of back-substitution uses the same architecture with different
scheduling.

VI. FPGA IMPLEMENTATION RESULTS

The proposed architecture is implemented on a Virtex4-
xc4vsx35 FPGA. We use 14 bits for the data representation
and also compare its results with the usage of 19 bits. The
addition and subtraction functional units are implemented by
using SLICEs with low delay carry chain network, the
multiplications use XtremeDSP blocks which are very
efficient for this purpose, divider core creates a circuit for
fixed-point division based on radix-2 non-restoring division
and finally square root function uses CORDIC core, all
provided by Xilinx Coregen toolset.

 Fig. 9. The proposed architecture for scheduled arithmetic units to calculate
QRD is shown. The input is given A matrix and the results are Q, R or the
updates of A matrices.

We use Block RAMs available on Xilinx FPGAs as

memory storage space for instructions. The Block RAM
modules provide flexible 18Kbit dual-port RAM, that are
cascadable to form larger memory blocks. Embedded
XtremeDSP slices with 18 x 18 bit dedicated multipliers and
48-bit accumulator provide flexible resources to implement
multipliers to achieve high performance. Furthermore, Xilinx
Coregen software implements these cores very efficiently
since it uses special mapping and place and route algorithms
to implement the abovementioned cores to attain high
performance design.

AWC core which uses 14 bits achieves 136 MHz of speed
on the state of art Virtex4-xc4vsx35 FPGA with a throughput
of 0.20M updates per second. The latency for AWC is 670
cycles. The resources used for AWC core are shown in Table
1. The design is easily extendable for larger matrix sizes by
changing the instructions for scheduling which are required
for AWC and using more block RAMs. For best timing results
n number of reservation stations in arithmetic units are added
in AWC core which is 4 in our design; and works for 4 x 4
matrices. It is important to state that more area efficient
designs can be implemented using less reservation stations
with the cost of more clock cycles to calculate the weights.

Table 1 – Resources for AWC core on a Virtex-4 FPGA using 14 bits for

data representation

Design Unit

Area
LUTs FFs BRAMs DSP48 SLICEs

Instruction &
Timing

Controller

179

45

1

-

93

Operand
Controller

1310 360 - - 747

Arithmetic
Units

1780 1066 - 4 1052

Total 3,269 1,471 1 4 1,892

As we present in Section IV- B, using more bits for data

representation leads to more accurate results however
introduces more area. Figure 10 shows the comparison
between using 14 and 19 bits in terms of area. AWC core
which uses 19 bits achieves 130 MHz of speed on the same
device with a throughput of 0.13M updates per second. AWC
core which uses 19 bits also achieves better results than the
previous works in terms of area and throughput. The increase
in the area is not significantly high due to usage of scheduling
for utilizing the resources.

Fig. 10. The area comparison between using 14 and 19 bits for data
representation. More accurate designs need more number of bits and leads to
larger area results.

Table 2 shows the comparison between our design, [11] and

[13] in terms of area and throughput. Karkooti et. al. presented
a matrix inversion core using QRD-RLS algorithm [11] and
we choose their results to compare with ours because of the
similarity between the matrix inversion and AWC. The usage
of squared Givens rotations and a folded systolic array is
considered in their work. Number of resources is presented as
slices, DSP48 and BRAMs, however FFs and LUTs are not
given as total. Dick et. al is considered the design of a real-
time QRD-based beamformer using GR[13]. Their design
employs CORDIC-based processing and multiply-accumulate
(MAC) based arithmetic. The throughput result is presented
for 5 x 5 matrices. Both of these designs are implemented on a
Virtex4 FPGA. Table 2 shows that our design results are
better than the previous works. NR stands for the data which is
not reported.

Table 2 - Comparison of Our Results with the Previous Work in terms of

area and throughput. The term “NR” means that the results were not

reported in the other publications.

Area Through
put

Slices FF LUT DSP48 BRAM Updates/
s

[11] 9117 NR NR 22 9 0.13M
[13] 3530 5916 5411 13 6 0.09M

Our 1,892 1,471 3,269 4 1 0.20M

VII. CONCLUSION

An adaptive weight calculation (AWC) core is designed and
implemented on Xilinx4-SX FPGA using QRD-RLS and
Modified Gram-Schmidt algorithms with fixed-point
arithmetic. The error analysis for QRD is investigated for
different size of matrices and 14 bits of data length is found as
a cut-off point between precision and area. The proposed
design runs with a clock rate of 136 MHz and achieves a
throughput of 0.20M updates per second. The proposed design
has better results than the previous works in terms of area and
throughput. The design is easily extendable to other matrix
sizes.

REFERENCES
[1] Simon Haykin, Adaptive Filter Theory, Prentice Hall, Fourth Edition.
[2] Jun Ma; Parhi, K.K.; Deprettere, E.F., Annihilation-reordering look-

ahead pipelined CORDIC-based RLS adaptive filters and their

application to adaptive beamforming, IEEE Transactions on Signal
Processing, 2000.

[3] G.H. Golub and C. F. Van Loan, Matrix Computations, 3 rd ed. John
Hopkins University Press, Baltimore, MD, 1996.

[4] Ray Andraka, A Survey of CORDIC Algorithms for FPGA based

computers, International Symposium on Field Programmable Gate
Arrays, 1998.

[5] Å, Björck, “Numerics of Gram-Schmidt Orthogonalization”, Linear
Algebra and Its Applications, 198:297-316, 1994.

[6] Singh, C.K.; Sushma Honnavara Prasad; Balsara, P.T., VLSI

Architecture for Matrix Inversion using Modified Gram-Schmidt based

QR Decomposition, 20th International Conference on VLSI Design,
2007.

[7] Lightbody, G.; Woods, R.; Walke, R., Design of a parameterizable

silicon intellectual property core for QR-based RLS filtering, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2003.

[8] Zhaohui Liu; McCanny, J.V.; Lightbody, G.; Walke, R., Generic SoC

QR array processor for adaptive beamforming, IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 2003.

[9] Lightbody, G.; Walke, R.; Woods, R.; McCanny, J., Parameterisable

QR core, Conference Record of the Thirty-Third Asilomar Conference
on Signals, Systems, and Computers, 1999.

[10] Lightbody, G.; Woods, R.; McCanny, J.; Walke, R.; Hu, Y.; Trainor, D.,
Rapid design of a single chip adaptive beamformer, IEEE Workshop on
Signal Processing Systems, 1998.

[11] Karkooti, M.; Cavallaro, J.R.; Dick, C., FPGA Implementation of Matrix

Inversion Using QRD-RLS Algorithm, Thirty-Ninth Asilomar
Conference on Signals, Systems and Computers, 2005.

[12] Boppana, D.; Dhanoa, K.; Kempa, J., FPGA based embedded processing

architecture for the QRD-RLS algorithm, 12th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, 2004. FCCM
2004.

[13] Dick, Chris; Harris, Fred; Pajic, Miroslav; Vuletic, Dragan; Real-Time

QRD-Based Beamforming on an FPGA Platform, Fortieth Asilomar
Conference on Signals, Systems and Computers, 2006. ACSSC '06.

[14] Deschamps, J. P., Bioul G. J. A., Sutter G., Synthesis of Arithmetic

Circuits, FPGA, ASIC and Embedded Sytems. John Wiley & Sons, Inc.,
2006.

[15] John L.Hennessy and David A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufman Publishers, Third Edition.

