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This thesis develops a novel methodology incorporating symbolic knowledge in deep learning.

We constructed a logical-constraint semantic loss, using a neural network’s output vectors as vari-

ables. Semantic loss captures the symbolic knowledge and adds previously-lost information to

neural networks. An experimental evaluation shows that it leads the neural network to achieve

(near-)state-of-the-art performance on semi-supervised multi-class classification. Moreover, it is

applicable to more complex constraints. We present a process, at the end of the thesis, of calculat-

ing the semantic loss and its derivatives for complex constraints to show its generality. The work

presented in this thesis was published at the International Conference on Machine Learning.
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CHAPTER 1

Introduction

Neural Networks have attracted a lot of attention due to its empirical success on vision and natural

language processing tasks. However, their performance highly depends on a large amount of data

being available. How can we reduce its dependence on data? A number of approaches have been

proposed [38, 36, 30, 28]. Among them, one particular research interest is to apply constraints

to neural network. This resulted from the observation that humans not only learn from concrete

examples, but also infer using general knowledge/rules. [35] seeks to use physics and domain

knowledge to direct neural network learning. Logic rules, incorporating symbolic knowledge, is

naturally a good candidate in formulating constraints. [14] seeks to use probabilistic soft logic

(PSL) [17] to construct the constraints. In the form of boolean logic, we propose a novel loss

function to capture the semantic knowledge. Neural networks were previously oblivious to seman-

tic knowledge. Semantic loss is calculated using neural networks’ last layer’s output vectors. By

adding the semantic loss function on top of the existing loss function, it directs neural networks to

make better predictions subject to constraints. Our goal here is to augment neural networks with

the symbolic knowledge to improve their performance.

This paper is written in the following order. In Section 2, we will list the necessary background

knowledge and notation to understand the paper. In Section 3, we will present the definition of

semantic loss function. In Section 4, we will present the method of using semantic loss function

on existing neural network models. Experimental results on semi-supervised learning will be pre-

sented, followed by some discussion on the benefits and limits of semantic loss. In this section, we

will also compare our method with several competitive models. In Section 5, we will introduce the

method of calculating semantic loss and its derivatives for more complex constraints using existing

techniques.[7, 1, 3, 13]
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CHAPTER 2

Background and Notation

To formally define semantic loss, we make use of concepts in propositional logic. We write upper-

case letters (X ,Y ) for Boolean variables and lowercase letters (x,y) for their instantiation (X = 0

or X = 1). Sets of variables are written in bold uppercase (X,Y), and their joint instantiation in

bold lowercase (x,y). A literal is a variable (x) or its negation (¬x). A logical sentence (α or β) is

constructed in the usual way, from variables and logical connectives (∧, ∨, etc.), and is also called

a formula or constraint. A state or world x is an instantiation to all variables X. A state x satisfies

a sentence α, denoted x |= α, if the sentence evaluates to be true in that world, as defined in the

usual way. A sentence α entails another sentence β, denoted α |= β if all worlds that satisfy α also

satisfy β. A sentence α is logically equivalent to sentence β, denoted α ≡ β, if both α |= β and

β |= α.

The output row vector of a neural net is denoted p. Each value in p represents the probability

of an output and falls in [0, 1]. We use both softmax and sigmoid units for our output activation

functions. The notation for states x is used to refer the an assignment, the logical sentence enforc-

ing the assignment, or the binary vector capturing that same assignment, as these are all equivalent

notions.

First, we examine the exactly-one or one-hot constraint capturing the encoding used in multi-

class classification. It states that for a set of indicators X = {X1, . . . , Xn}, one and exactly one of

those indicators must be true, with the rest being false. This is enforced through a logical constraint

α by conjoining sentences of the form ¬X1 ∨ ¬X2 for all pairs of variables (at most one variable

is true), and a single sentence X1 ∨ · · · ∨Xn (at least one variable is true).

2



CHAPTER 3

Semantic Loss

In this section, we formally introduce semantic loss by giving the formal definition and our intuition

behind it. This definition itself provides all of the necessary mechanics for enforcing constraints,

and is sufficient for the understanding of our experiments in Sections 4 and 5.

3.1 Definition

The semantic loss Ls(α, p) is a function of a sentence α in propositional logic, defined over vari-

ables X = {X1, . . . , Xn}, and a vector of probabilities p for the same variables X. Element pi

denotes the predicted probability of variable Xi, and corresponds to a single output of the neural

net. For example, the semantic loss between the one-hot constraint from the previous section, and

a neural net output vector p, is intended to capture how close the prediction p is to having exactly

one output set to true (i.e. 1), and all others set to false (i.e. 0), regardless of which output is

correct. The formal definition of this is as follows:

Definition 1 (Semantic Loss). Let p be a vector of probabilities, one for each variable in X, and

let α be a sentence over X. The semantic loss between α and p is

Ls(α, p) ∝ − log
∑
x|=α

∏
i:x|=Xi

pi
∏

i:x|=¬Xi

(1− pi).

Intuitively, the semantic loss is proportionate to a negative logarithm of the probability of gen-

erating a state that satisfies the constraint, when sampling values according to p. Hence, it is the

self-information (or “surprise”) of obtaining an assignment that satisfies the constraint [16].
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CHAPTER 4

Semi-Supervised Classification

The most straightforward constraint that is ubiquitous in multi-class classification is mutual exclu-

sion over one-hot-encoded outputs. That is, for a given example, exactly one class and therefore

exactly one binary indicator must be true. How can we formulate this constraint using semantic

loss function and use semantic loss to guide the neural network? Our proposed method intends

to be generally applicable and compatible with any feedforward neural net. Semantic loss is sim-

ply another regularization term that can directly be plugged into an existing loss function. More

specifically, with some weight w, the new overall loss becomes

existing loss + w · semantic loss.

When the constraint over the output space is simple (for example, there is a small number of

solutions x |= α), semantic loss can be directly computed using Definition 1. Specifically, for the

exactly-one constraint used in n-class classification, semantic loss reduces to

Ls(exactly-one, p) ∝ − log
n∑
i=1

pi

n∏
j=1,j 6=i

(1− pj),

where values pi denote the probability of class i as predicted by the neural net. Semantic loss

for the exactly-one constraint is efficient and causes no noticeable computational overhead in our

experiments.

In general, for arbitrary constraints α, semantic loss is not efficient to compute using Defini-

tion 1, and more advanced automated reasoning is required. Section 5 discusses this issue in more

detail.

Previously, we tried our method on multi-class supervised learning tasks and observed negli-

gible improvement on performance. This is due to the neural networks being able to overfit the
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Class 1
Class 2
Unlabeled

(a) Trained w/o semantic loss

Class 1
Class 2
Unlabeled

(b) Trained with semantic loss

Figure 4.1: Binary classification toy example: a linear classifier without and with semantic loss.

labeled training data, resulting in the exact binary indicator of the actual class, that the picture

belongs to, to be true. Adding the exactly-one constraint gives no additional information to the

neural network. However, neural networks cannot ensure the exactly-one constraint on unlabeled

data, without semantic loss.

This section shows why semantic loss naturally qualifies for the semi-supervised learning

multi-class tasks.

Illustrative Example To illustrate the benefit of semantic loss in the semi-supervised setting, we

begin our discussion with a small toy example. Consider a binary classification task as depicted in

Figure 4.1. Ignoring the unlabeled examples, a simple linear classifier learns to distinguish the two

classes by separating the labeled examples as in Figure 4.1a. However, the unlabeled examples

also carry some information by being in the dataset. They only belong to one particular label and

hence should also be as far away from the decision boundary as possible. That is how the semantic

loss helps as it gives additional information to neural networks. As we we can see in Figure 4.1b,
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the decision boundary is more accurate. Next, we further explore how this idea helps improve the

performance on real-world classification tasks.

4.1 Experimental Evaluation

In this section, we will begin by presenting the semi-supervised semantic loss experiment settings

and results first. Then we will discuss the benefits and limits of semantic loss by comparing it with

several competitive models.

Eexperiment Setting As most semi-supervised learners build on a supervised learner, changing

the underlying model significantly affects the semi-supervised learner’s performance. For com-

parison, we add semantic loss to the same base models used in ladder nets [29], which previously

achieved state-of-the-art results on semi-supervised MNIST and CIFAR-10 [20] at the time we

started our experiment. Recently, we became aware that [23] extended their work to CIFAR-10

and achieved state-of-the-art results [24], surpassing our performance by 5%. In the future work,

we intend to apply semantic loss on their architecture to see if we yield an even stronger perfor-

mance.

Specifically, the MNIST base model is a fully-connected multilayer perceptron (MLP), with

layers of size 784-1000-500-250-250-250-10. On CIFAR-10, it is a 10-layer convolutional neural

network (CNN) with 3-by-3 padded filters. After every 3 layers, features are subject to a 2-by-

2 max-pool layer with strides of 2. Furthermore, we use ReLu [25], batch normalization [15],

and Adam optimization [18] with a learning rate of 0.002. We refer to Appendix A and B for a

specification of the CNN model and additional details about hyper-parameter tuning.

For all semi-supervised experiments, we use the standard 10,000 held-out test examples pro-

vided in the original datasets and randomly pick 10,000 from the standard 60,000 training examples

(50,000 for CIFAR-10) as validation set. For values of N that depend on the experiment, we re-

tain N randomly chosen labeled examples from the training set, and remove labels for the rest

of training instances. We balance classes in the labeled samples to ensure no particular class is

over-represented. Images are preprocessed for standardization and Gaussian noise with a standard
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deviation 0.3 is added to every pixel.

Table 4.1: MNIST. Previously reported test accuracies followed by semantic loss results (± stddev)

Accuracy % with # of used labels 100 1000 ALL

AtlasRBF [28] 91.9 (± 0.95) 96.32 (± 0.12) 98.69

Deep Generative [19] 96.67(± 0.14) 97.60(± 0.02) 99.04

Virtual Adversarial [23] 97.67 98.64 99.36

Ladder Net [29] 98.94 (±0.37 ) 99.16 (±0.08) 99.43 (± 0.02)

Baseline: MLP, Gaussian Noise 78.46 (±1.94) 94.26 (±0.31) 99.34 (±0.08)

Baseline: Self-Training 72.55 (±4.21) 87.43 (±3.07 )

MLP with Semantic Loss 98.38 (±0.51) 98.78 (±0.17) 99.36 (±0.02)

MNIST The permutation invariant MNIST classification task is commonly used as a test-bed

for general semi-supervised learning algorithms. This setting does not use any prior information

about the spatial arrangement of the input pixels. Therefore, it excludes many data augmentation

techniques that involve geometric distortion of images, as well as convolutional neural networks.

When evaluating on MNIST, we run experiments for 10 epochs, with a batch size of 10 la-

beled and 10 unlabeled examples. Experiments are repeated 10 times with different random seeds.

Table 4.1 has shown that given 100 labeled examples (N = 100), MLP with semantic loss gains

around 20% improvement over the purely supervised baseline. Comparing to the state of the art,

ladder nets slightly outperform semantic loss by 0.5% accuracy. This difference may be an arti-

fact of the excessive tuning of architectures, hyper-parameters and learning rates that the MNIST

dataset has been subject to. In the coming experiments, we extend our work to more challenging

datasets, in order to provide a clearer comparison with ladder nets.

FASHION The FASHION [37] dataset consists of Zalando’s article images, aiming to serve as a

more challenging drop-in replacement for MNIST. Arguably, it has not been overused and requires

more advanced techniques to achieve good performance. As in the previous experiment, we run

our method for 10 epochs, whereas ladder nets need 100 epochs to converge. Again, experiments

7



Table 4.2: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.

Accuracy % with # of used labels 100 500 1000 ALL

Ladder Net [29] 81.46 (±0.64 ) 85.18 (±0.27) 86.48 (± 0.15) 90.46

Baseline: MLP, Gaussian Noise 69.45 (±2.03) 78.12 (±1.41) 80.94 (±0.84) 89.87

MLP with Semantic Loss 86.74 (±0.71) 89.49 (±0.24) 89.67 (±0.09) 89.81

are repeated 10 times and Table 4.2 reports the classification accuracy and its standard deviation

(except for N = all where it is close to 0 and omitted for space).

Experiments show that utilizing semantic loss results in a very large 17% improvement over

the baseline when only 100 labels are provided. Moreover, our method compares favorably to

ladder nets, except when the setting degrades to be fully supervised. Note that our method already

nearly reaches its maximum accuracy with 500 labeled examples, which is only 1% of the training

dataset.

Table 4.3: CIFAR. Test accuracy comparison between CNN with Semantic Loss and ladder nets.

Accuracy % with # of used labels 4000 ALL

CNN Baseline in Ladder Net 76.67 (± 0.61) 90.73

Ladder Net [29] 79.60 (±0.47)

Baseline: CNN, Whitening, Cropping 77.13 90.96

CNN with Semantic Loss 81.79 90.92

CIFAR-10 To show the general applicability of semantic loss, we evaluate it on CIFAR-10. This

dataset consisting of 32-by-32 RGB images in 10 classes. A simple MLP would not have enough

representation power to capture the huge variance across objects within the same class. To cope

with this spike in difficulty, we switch our underlying model to a 10-layer CNN as described

earlier. We use a batch size of 100 samples of which half are unlabeled. Experiments are run for

100 epochs. However, due to our limited computational resources, we report on a single trial. Note

that we make slight modifications to the underlying model used in ladder nets to reproduce similar

baseline performance. Please refer to Appendix A for the details of this experimental setup.
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As shown in Table 4.3, our method compares favorably to ladder nets. However, due to the

slight difference in performance between the supervised base models, a direct comparison would

be methodologically flawed. Instead, we compare the net improvements over baselines. In terms

of this measure, our method scores a gain of 4.66% whereas ladder nets gain 2.93%.

4.2 Benefits and Limits of Semantic Loss

The experiments so far have demonstrated the competitiveness and general applicability of our

proposed method on semi-supervised learning tasks. It surpassed the previous state of the art

(ladder nets) on FASHION and CIFAR-10, while being close on MNIST.

The first benefit of Semantic Loss is its simplicity. We only add one more term to the existing

loss function, with only one extra hyper-parameter to be tuned. Ladder Net has more than 5 hyper

parameters to be tuned. This quality of semantic loss requires less human effort when applying

it to other semi-supervised tasks, and adds negligible overhead computational cost to the baseline

model MLP. Experiments on MNIST, Fashion MNIST and CIFAR has shown that we achieved

similar performance with much simplier model.

The second benefit of Semantic Loss is its recoverability from over-confidence. Table 4.1

compares it with a second baseline—the classic self-training method for semi-supervised learning.

After every 1000 iterations, the unlabeled examples that are predicted by the MLP to reach 95%

confidence belong to a single class, are assigned a psuedo-label and become labeled data. It is

shown that self-training’s accuracy is 6% lower than that of the baseline MLP model. The reason

we believe is that once an unlabeled example is confidently predicted wrongly and becomes the

labeled data, it has a huge irreversible negative effect on the neural network’s prediction. However,

it is a different case for Semantic Loss Function. Even if semantic loss constraint is fulfilled by

confidently assigning a wrong label to an unlabeled instance, semantic loss can later recover from

its mistake when the underlying neural network sees more labeled examples.

The above comparison also exposes one limit of semantic loss function as its performance

highly depends on the underlying model’s performance. Without the underlying predictive power

of a strong supervised learning model, we do not expect to see the same benefits we observe here.
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The third baseline we attempted to create is a constraint term using Probabilistic Soft Logic

(PSL) [17]. PSL uses a designed rule to approximate boolean logic sentence into probabilities.

However, different encodings in fuzzy logic will affect the performance. We select 2 reasonable

encodings for the exactly-one constraint, which are detailed in Appendix C. Both encodings em-

pirically deviates from 1 by less than 0.02 and has no significant effect on performance. Hence

we do not report the results here. People naturally assumes that an approximation method has a

lower computational cost than an exact method. In this particular setting, running MLP with either

encoding of PSL actually takes longer, as it takes more steps to calculate PSL’s derivatives. In

the next Chapter, we will see how complex constraints can be constructed easily in semantic loss

funciton as the hard boolean logic is a well-studied field. There exists techniques we could use to

easily construct semantic loss.

10



CHAPTER 5

Complex Constraints Construction

The example we used in semi-supervised learning explores a simple constraint. While in the real

world, constraints such as a valid path from source to destination in simple path problem and so

on, are much more complex. The complexity of encoding more complicated constraints from the

definition seems to grow exponentially. A resonable question arised from the previous section is

whether semantic loss function is still applicable to complex constraints. In this section, we will

present a framework of making semantic loss tractable on highly complex constraints.

We aim to develop a general method for computing both semantic loss and its gradient in a

tractable manner. From the definition 1, we can tell that semantic loss is inversely proportional

to a well-studied task in propositional logic, called weighted model counting (WMC) [2, 32].

Circuit language can compute WMCs and are amenable to backpropagation [4]. Language and

circuit compilation techniques described in [5] can be used to build a Boolean circuit representing

semantic loss. We refer to the literature for details of this compilation approach. Both the values

and the gradients of semantic loss can be computed in time linear in the size of the circuit [6]. Then

semantic loss function can be applied as the additional term in the method described in Section 4.

We present an example here to show the process of calculating semantic loss and its gradients

through circuit compilation. Figure 5.1 shows an example Boolean circuit for the exactly-one

constraint with 3 variables.

1. We begin with the standard logical encoding for the exactly-one constraint (x1 ∨ x2 ∨ x3) ∧

(¬x1 ∨ ¬x2) ∧ (¬x1 ∧ ¬x3) ∧ (¬x2 ∧ ¬x3)

2. Then compile above encoding into a circuit that can perform WMC efficiently [2]. Our

semantic loss framework can be applied regardless of how the circuit gets compiled. On our

11



x1 ¬x2 ¬x3 ¬x1 x2 x3

Figure 5.1: A compiled decomposable and deterministic circuit for the exactly-one constraint with

3 variables.

Pr(x1) Pr(¬x2) Pr(¬x3) Pr(¬x1) Pr(x2) Pr(x3)

× × ×

+

Figure 5.2: The corresponding arithmetic circuit for the exactly-one constraint with 3 variables.

example, following the circuit bottom up, the logical function can be read as (x1 ∧ ¬x2 ∧

¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2 ∧ x3).

3. Once this Boolean circuit is built, we can convert it to an arithmetic circuit, by simply chang-

ing AND gates into ∗, and OR gates into +, as shown in Figure 5.2.

4. Now, by pushing the probabilities up through the arithmetic circuit, evaluating the root gives

the probability of the logical formula described by the Boolean circuit - this is precisely the

exponentiated semantic loss.

5. Finally, we can similarly do another pass down on the circuit to compute partial derivatives

[6].
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CHAPTER 6

Related Work

Incorporating symbolic meanings into machine learning is always difficult [34]. There has been

some work trying to apply logical constraints in deep learning. Particularly, [14] uses probablistic

soft logic (PSL) in natural language processing tasks. PSL has shown to be effective in horn

clauses, however, as shown in Section 4, PSL is not very efficient when encodings of PSL involve

multiple variables.

Various deep learning techniques have been proposed to enforce either arithmetic constraints [27,

21] or logical constraints [31, 14, 8, 35, 22, 9, 10] on the output of a neural network. The com-

mon approach is to reduce logical constraints into differentiable arithmetic objectives by replacing

logical operators with their fuzzy t-norms and logical implications with simple inequalities. A

downside of this fuzzy relaxation is that the logical sentences lose their precise meaning. The

learning objective becomes a function of the syntax rather than the semantics (see Section 4).

Moreover, these relaxations are often only applied to Horn clauses. One alternative is to encode

the logic into a factor graph and perform loopy belief propagation to compute a loss function [26],

which is known to have issues in the presence of complex logical constraints [33].

There already exists some methods benefiting from the real-world structure of labels [12, 11],

by including entropy penalty terms. In Semi-Supervised experiment setting, both entropy methods

and semantic loss make use of subtle information provided by unlabeled data. Semantic loss differs

itself from these methods by its general applicability (shown in Section 5). Semantic loss can be

extended to construct more complex constraints, while the above entropy methods cannot.
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CHAPTER 7

Conclusions

How machine learning can benefit from both data and symbolic meaning has been receiving more

attention from research community. The research in this area offers a possible solution in reducing

the neural networks’ dependence on data. One of the barriers in combining symbolic reasoning

with deep learning methods is differentiability of symbolic reasoning. We presented a symbolic

meaning method here that is easily differentiable on the outputs of feed-forward neural networks.

In addition, the effectiveness of our method has been demonstrated in semi-supervised learning

tasks, despite the simplicity of our model. We also showed this method can extend to more complex

constraints with a process of calculating semantic loss and its derivatives in linear time of the size of

the circuit. In the future, it would be interesting to see how to apply our model when the constraints

cannot be directly formulated by the outputs of last-layer of feedforward neural networks.
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Appendix A

Specification of the Convolutional Neural Network Model

Table A.1 shows the slight architectural difference between the CNN used in ladder nets and ours.

The major difference lies in the choice of ReLu. Note we add standard padded cropping to pre-

process images and an additional fully connected layer at the end of the model, neither is used in

ladder nets. We only make those slight modification so that the baseline performance reported by

[29] can be reproduced.
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Table A.1: Specifications of CNNs in Ladder Net and our proposed method.

CNN in Ladder Net CNN in this paper

Input 32×32 RGB image

Resizing to 36× 36 with padding

Cropping Back

Whitening

Contrast Normalization

Gaussian Noise with std. of 0.3

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

3×3 conv. 96 BN LeakyReLU 3×3 conv. 96 BN ReLU

2×2 max-pooling stride 2 BN

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

2×2 max-pooling stride 2 BN

3×3 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

1×1 conv. 192 BN LeakyReLU 3×3 conv. 192 BN ReLU

1×1 conv. 10 BN LeakyReLU 1×1 conv. 10 BN ReLu

global meanpool BN

fully connected BN

10-way softmax

16



Appendix B

Hyper-parameter Tuning Details

Validation sets are used for tuning the weight associated with semantic loss, the only hyper-

parameter that causes noticeable difference in performance for our method. For our semi-supervised

classification experiments, we perform a grid search over {0.001, 0.005, 0.01, 0.05, 0.1} to find the

optimal value. Empirically, 0.005 always gives the best or nearly the best results and we report its

results on all experiments.

For the FASHION dataset specifically, because MNIST and FASHION share the same image

size and structure, methods developed in MNIST should be able to directly perform on FASHION

without heavy modifications. Because of this, we use the same hyper-parameters when evaluating

our method. However, for the sake of fairness, we subject ladder nets to a small-scale parameter

tuning in case its performance is more volatile.

The predictive model we use here is a 3 layer MLP with 25 hidden sigmoid units per layer. It is

trained using Adam Optimizer with full data batches [18]. Early stopping with respect to validation

loss is used as a regularizer.
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Appendix C

Probabilistic Soft Logic Encodings

We here give both encodings on the exactly-one constraint over three x1, x2, x3. The first encoding

is:

(¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3)

The second encoding is:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)

Following the pattern presented, readers should be able to extend both encodings to cases whether

the number of variables is 10 and beyond.
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