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First described in 1935 by Pameijer, and later in 1939 by 
Meesmann and Wilke, Meesmann corneal dystrophy (MECD; 
OMIM 122100) is a rare dominantly inherited disorder 
affecting the corneal epithelium [1,2]. MECD is primarily 
characterized by the presence of fine round intraepithelial 
microcysts that are diffusely distributed or limited to the 
interpalpebral zone, extending to the limbus [3,4]. Although 
individuals with MECD may be asymptomatic, they typically 
experience mild symptoms, including glare, photophobia, 
foreign body sensation, lacrimation, contact lens intolerance, 
recurrent corneal erosions, as well as deterioration in visual 
acuity [5]. The most severe cases may necessitate photothera-
peutic keratectomy (PTK) and, rarely, lamellar or penetrating 
keratoplasty to manage corneal erosions or visual impairment 
secondary to subepithelial scarring and associated irregular 
astigmatism [6,7]. However, symptoms are expected to recur 

as the abnormal limbal epithelial stem cells repopulate the 
corneal epithelium after PTK or keratoplasty [8,9].

MECD was first linked to mutations in the (KRT3; gene 
ID #3850; OMIM #148043) and keratin 12 (KRT12; gene ID 
#3859; OMIM #601687) genes in 1997 by Irvine et al [6]. 
These genes encode the highly conserved, cornea-specific 
keratins K3 and K12, which are the intermediate filament 
proteins primarily responsible for imparting mechanical 
strength and structural support to corneal epithelial cells 
[10]. As corneal keratins naturally occur as obligate K3/K12 
heterodimers, gene mutations altering the encoded protein 
of either KRT3 or KRT12 are expected to negatively impact 
the K3/K12 heterodimer complex. To date, 25 mutations in 
KRT3 and KRT12 have been identified in individuals with 
MECD, each located in the helix-initiation (KRT12) or helix-
termination (KRT3 and KRT12) motifs (Table 1). Herein, we 
report the first de novo mutation associated with MECD, 
highlighting the clinical utility of molecular genetic analysis 
in the diagnosis of a dominantly inherited corneal disorder 
in the absence of a family history. Additionally, we report a 
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Purpose: To report potentially pathogenic mutations in the keratin 3 (KRT3) and keratin 12 (KRT12) genes in two 
individuals with clinically diagnosed Meesmann corneal dystrophy (MECD).
Methods: Slit-lamp examination was performed on the probands and available family members to identify characteristic 
features of MECD. After informed consent was obtained, saliva samples were obtained as a source of genomic DNA, 
and screening of KRT3 and KRT12 was performed. Potentially pathogenic variants were screened for in 200 control 
chromosomes. PolyPhen-2, SIFT, and PANTHER were used to predict the functional impact of identified variants. Short 
tandem repeat genotyping was performed to confirm paternity.
Results: Slit-lamp examination of the first proband demonstrated bilateral, diffusely distributed, clear epithelial mi-
crocysts, consistent with MECD. Screening of KRT3 revealed a heterozygous missense variant in exon 1, c.250C>T 
(p.(Arg84Trp)), which has a minor allele frequency of 0.0076 and was not identified in 200 control chromosomes. In 
silico analysis with PolyPhen-2 and PANTHER predicted the variant to be damaging to protein function; however, 
SIFT analysis predicted tolerance of the variant. The second proband demonstrated bilateral, diffusely distributed 
epithelial opacities that appeared gray-white on direct illumination and translucent on retroillumination. Neither parent 
demonstrated corneal opacities. Screening of KRT12 revealed a novel heterozygous insertion/deletion variant in exon 6, 
c.1288_1293delinsAGCCCT (p.(Arg430_Arg431delinsSerPro)). This variant was not present in either of the proband’s 
parents or in 200 control chromosomes and was predicted to be damaging by PolyPhen-2, PANTHER, and SIFT. Hap-
lotype analysis confirmed paternity of the second proband, indicating that the variant arose de novo.
Conclusions: We present a novel KRT12 mutation, representing the first de novo mutation and the first indel in KRT12 
associated with MECD. In addition, we report a variant of uncertain significance in KRT3 in an individual with MECD. 
Although the potential pathogenicity of this variant is unknown, it is the first variant affecting the head domain of K3 
to be reported in an individual with MECD and suggests that disease-causing variants associated with MECD may not 
be restricted to primary sequence alterations of either the helix-initiation or helix-termination motifs of K3 and K12.
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Stein Plaza, UCLA, Los Angeles, CA 90095-7003; Phone: (310) 
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variant of unknown significance in the head domain of K3, 
which also represents the first potential mutation in either 
KRT3 or KRT12 associated with MECD that is not located 
within a helix-initiation or helix-termination motif.

METHODS

Two individuals referred to one of the authors (AJA) were 
recruited for this study. Proband 1 is a 60-year-old man, and 
proband 2 is an 8-year-old boy, both otherwise healthy at 
the time of enrollment. The mother and father of proband 2 
were also recruited. Informed consent was obtained from all 
subjects according to the tenets of the Declaration of Helsinki, 
and the study adhered to the ARVO statement on human 
subjects. The Institutional Review Board at the University of 

California, Los Angeles approved the study described herein 
(UCLA IRB #11-000020).

Slit-lamp imaging, DNA collection, and preparation: Saliva 
samples were collected from both probands and the parents 
of proband 2 using the Oragene Saliva Collection Kit (DNA 
Genotek, Inc., Ottawa, Canada). Genomic DNA was extracted 
from buccal epithelial cells using the Oragene prepIT•L2P 
protocol for genomic DNA purification (DNA Genotek, Inc.). 
Slit-lamp biomicroscopic imaging was performed for all indi-
viduals from whom DNA was collected.

PCR and gel extraction: The exonic regions of KRT3 and 
KRT12 were amplified using custom designed primers 
(Appendix 1). Reactions were prepared as 25 μl mixtures 
containing 1X KAPA GC/A buffer (Kapa Biosystems, 

Table 1. Mutations in KRT3 and KRT12 associated with MECD.

Gene Exon Nucleotide change Amino acid change References
KRT3 1 c.250C>T* p.(Arg84Trp)* Current study

7 c.1493A>T p.(Glu498Val) [10]
7 c.1508G>C p.(Arg503Pro) [26]
7 c.1525G>A p.(Glu509Lys) [6]

KRT12 1 c.385A>G p.(Met129Val) [27]
1 c.386T>C p.(Met129Thr) [28,29]
1 c.389A>C p.(Gln130Pro) [31,32]
1 c.395T>A p.(Leu132His) [33]
1 c.395T>C p.(Leu132Pro) [8]
1 c.399T>G p.(Asn133Lys) [9]
1 c.403A>G p.(Arg135Gly) [15]
1 c.404G>T p.(Arg135Ile) [15]
1 c.404G>C p.(Arg135Thr) [29,30]
1 c.405A>C p.(Arg135Ser) [13]
1 c.409G>C p.(Ala137Pro) [34]
1 c.419T>G p.(Leu140Arg) [15]
1 c.419T>A p.(Leu140Gln) [31]
1 c.427G>C p.(Val143Leu) [6]
1 c.427G>T p.(Val143Leu) [18]
6 c.1198_1199ins27 p.(Leu399_Gln400ins9) [13]
6 c.1276A>G p.(Ile426Val) [35]
6 c.1277T>G p.(Ile426Ser) [28]
6 c.1285T>G p.(Tyr429Asp) [15]
6 c.1286A>G p.(Tyr429Cys) [26]
6 c.1288_1293delinsAGCCCT p.(Arg430_Arg431delins-

SerPro)
Current study

6 c.1289G>C p.(Arg430Pro) [36]
6 c.1298T>G p.(Leu433Arg) [37]

*Pathogenicity of this variant is uncertain.

http://www.molvis.org/molvis/v21/1378
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Wilmington, MA), 200  μM dNTPs, 1 unit of Kapa 2G 
Robust DNA polymerase (Kapa Biosystems), 240 nM of 
each forward and reverse primer, and 20–40 ng of genomic 
DNA. A C1000 Touch Thermal Cycler (Bio-Rad, Hercules, 
CA) was used to perform thermal cycling. Reactions were 
cycled with the following program: denaturation at 95 °C for 
3 min; 36 cycles of annealing and extension at 95 °C for 30 s, 
50–60 °C for 30 s, 72° for 30 s; and elongation at 72 °C for 10 
min. Amplified DNA was purified using the QIAquick Gel 
Extraction Kit according to the manufacturer’s instructions 
(Qiagen, Hilden, Germany).

DNA sequencing: Before sequencing, 15–30 ng of each 
amplicon was purified by treatment with 5.0 units of exonu-
clease I and 0.5 units of shrimp alkaline phosphatase (USB 
Corp., Cleveland, OH), followed by incubation at 37 °C for 
15 min and inactivation at 80 °C for 15 min. Bidirectional 
sequencing of the purified PCR template was performed by 
Laragen Sequencing & Genotyping (Laragen Inc., Culver 
City, CA). Sequences were viewed using 4Peaks (Nucleobytes 
Inc., Amsterdam, The Netherlands), and the KRT3 and KRT12 
exon and exon-intron junction sequences were compared to 
the NCBI reference sequences for KRT3 (Genbank Acces-
sion: NM_057088.2) and KRT12 (Genbank Accession: 
NM_000223). Identified sequence variants were annotated 
according to the HGVS nomenclature guidelines. The dbSNP, 
1000 Genomes, and Exome Aggregation Consortium browser 
databases were used to identify the minor allele frequencies 
of identified variants.

Paternity testing: DNA samples from proband 2 and his 
parents were submitted to Genetica DNA Laboratories, 
Inc. (Cincinnati, OH) for paternity testing. Genotyping was 
performed for a gender-associated marker, amelogenin, and 
15 different short tandem repeats using the PowerPlex 16 HS 
System (Promega Corporation, Madison, WI).

In silico protein analysis: A web tool (DNAtoprotein) was 
used to generate an in silico translation of the mutant KRT3 
and KRT12 sequences. PolyPhen-2, SIFT, and PANTHER 
were used to predict the functional impact of the identi-
fied variants. ConSurf was used to predict the evolutionary 
conservation of the amino acids affected by each identified 
variant.

RESULTS

Clinical findings:

Case 1—A 60-year-old Caucasian man (proband 1) with 
a history of corneal epitheliopathy since age 2 was exam-
ined by two of the authors (S.X.D. and A.J.A.). He reported 
experiencing episodes of foreign body sensation, tearing, 

stinging, photophobia, and decreased visual acuity approxi-
mately every 6 months. Corneal epithelial debridement had 
been performed previously, with relief of symptoms for up to 
1 year. Corrected distance visual acuity (CDVA) measured 
20/20 OU, and slit-lamp biomicroscopic examination revealed 
bilateral, diffusely distributed, fine, clear epithelial micro-
cysts (Figure 1A). Given the confluent nature of the fine 
epithelial microcysts, the cornea demonstrated a stippled 
appearance following the instillation of f luorescein dye 
(Figure 1B). The proband’s parents were deceased, he had no 
siblings, and his only offspring, a daughter, was not available 
for examination or genetic testing.

Case 2—An 8-year-old Caucasian boy (proband 2) was 
examined by one of the authors (A.J.A.). The patient has had 
a history of photophobia since age 1 and was diagnosed with 
MECD by an outside provider following an exam under anes-
thesia at age 2. The proband’s parents denied a family history 
of either MECD or corneal transplantation. Uncorrected 
Snellen visual acuities measured 20/200–1 OD (pinhole 
20/80) and 20/80–2 OS (pinhole no improvement). Slit-lamp 
examination revealed diffuse, bilateral punctate gray-white 
epithelial opacities. In the superior and inferior corneal quad-
rants, the epithelial opacities appeared as parallel lines that 
stained with fluorescein and extended to the limbus (Figure 
1C,D). Both of the proband’s parents were also examined and 
demonstrated clear corneas.

Genetic screening: Screening of KRT3 in proband 1 revealed 
three heterozygous missense variants and one synonymous 
substitution, but screening of KRT12 demonstrated one 
heterozygous missense variant (Appendix 2). Each identified 
variant has been reported to be present in more than 5% of the 
population, except c.250C>T (p.(Arg84Trp)) in KRT3 exon 
1, which corresponds to the head domain of the K3 protein 
(Figure 2A). The presence of the variant was confirmed with 
forward and reverse sequencing, and by sequencing with a 
second primer pair. Although the variant was not identified in 
200 control chromosomes, it has been reported to be present 
in 80/66,638 Europeans (0.1%) and 186/10,380 Africans (1.8%) 
according to the Exome Aggregation Consortium browser 
database, with an overall minor allele frequency (MAF) of 
0.0076 per the dbSNP and 1000 Genomes databases.

Screening of KRT3 in proband 2 demonstrated two of the 
three missense variants and the synonymous substitution iden-
tified in proband 1, each homozygous (Appendix 2). Screening 
of KRT12 demonstrated a novel heterozygous insertion/dele-
tion variant (indel), c.1288_1293delCGCCGCinsAGCCCT 
(p.(Arg430_Arg431delinsSerPro)), in the helix-termination 
motif. The presence of this variant in exon 6 was confirmed 
with forward and reverse sequencing, and by sequencing 

http://www.molvis.org/molvis/v21/1378
http://www.ncbi.nlm.nih.gov/nuccore/NM_057088.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_000223
http://www.hgvs.org/mutnomen
http://www.ncbi.nlm.nih.gov/projects/SNP
http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
http://exac.broadinstitute.org
http://www.dnatoprotein.com
http://genetics.bwh.harvard.edu/pph2
http://sift.jcvi.org/www/SIFT_chr_coords_submit.html
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://consurf.tau.ac.il
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with a second primer pair. The variant was not identified 
in the unaffected mother or father of the proband, or in 200 
control chromosomes. Genotyping of the proband and his 
parents confirmed (with greater than 99.999% certainty) that 
the proband’s mother and father were his biological parents 
(Table 2).

Protein in silico analysis: In silico analysis with PolyPhen-2 
and PANTHER predicted p.(Arg84Trp) in K3 to be likely 
damaging to protein function; however, SIFT analysis 
predicted that the missense change would be tolerated (Table 
3). In addition, ConSurf assigned amino acid 84 of K3 a score 
of 4 (scale: 1–9), indicative of slightly variable conservation 
across species.

Both missense mutations identified in KRT12 in proband 
2, p.(Arg430Ser) and p.(Arg431Pro), were predicted to be 
damaging to the function of the encoded protein by all three 
protein prediction tools. ConSurf calculations assigned amino 
acid 430 a score of 9, which indicates the highest level of 
conservation across species, and amino acid 431 a score of 5, 
which indicates average conservation across species.

DISCUSSION

Keratins are a group of structural proteins in the epithelia 
of the skin, hair, nails, and cornea. These proteins occur as 
obligate heteropolymers, assembled from dimers composed 
of type I and type II intermediate filaments. In the cornea, the 
type I intermediate filament is K12, but the type II interme-
diate filament is K3 [11]. Structurally, intermediate filaments 
consist of an N-terminal head domain, a central α-helical rod 
domain that begins with a helix-initiation motif and ends 
with a helix-termination motif, and a C-terminal tail domain 
(Figure 3) [12,13]. The rod domain, and in particular the helix 
boundary motifs, is highly conserved across species. Thus, 
mutations in this region often substantially alter the structure 
of the encoded keratin protein and negatively impact keratin 
function [14,15]. Specifically, mutations in the helix boundary 
motifs have been observed to compromise intermediate fila-
ment assembly during the early stages of filament elongation, 
resulting in cytoplasmic filament clumping and more severe 
disease phenotypes than those associated with mutations 
of other keratin protein domains [11,14,16]. Keratin gene 
mutations have consequently been linked to several tissue-
specific fragility syndromes, with certain features commonly 
observed, such as cytolysis, hyperkeratosis, and filament 
aggregation [16].

Figure 1. Slit-lamp photomicro-
graphs of two individuals with 
Meesmann corneal dystrophy. 
A: Proband 1, left eye. Direct 
illumination demonstrates subtle, 
fine round epithelial opacities best 
visualized at the pupillary border. 
B: Proband 1, left eye. Fluorescein 
staining reveals generalized stip-
pling of the epithelium, produced 
by diffuse epithelial microcysts 
(inset). C: Proband 2, right eye. 
Gray-white corneal epithelial 
opacities are observed in the 
central cornea (arrowhead), and 
gray-white parallel epithelial lines 
are present in the inferior corneal 
periphery (arrow). D: Proband 2, 
left eye. Fluorescein staining of the 
peripheral, linear corneal epithelial 
opacities is seen.

http://www.molvis.org/molvis/v21/1378
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The head domain, while fairly conserved, varies the most 
between tissue-specific keratins, and therefore accounts for 
the diversity of keratins among epithelia [16]. In contrast to the 
helical rod domains, which form the backbone of the keratin 
filaments and are responsible for maintaining the structural 
integrity of the heterodimer unit, the head domain plays a 
more significant role in higher-order intermediate filament 
assembly [12,16]. These assembly functions include interme-
diate filament organization, dimer binding to form hetero-
tetramers, and end-to-end linkage of the polymers to form 
keratin filaments [12,17]. Though not yet well understood, the 

ability of the head domain to confer tissue-specific proper-
ties to keratins is attributed to post-translational modification 
of this region, which possesses numerous sites that serve as 
substrates for phosphorylation [11,17].

Before this report, no keratin mutations in the head 
domain of either K3 or K12 had been identified that are 
presumed to cause MECD, although head domain mutations 
in other keratin proteins have been implicated in various 
dermatologic disorders, including epidermolysis bullosa 
simplex [11]. Nielsen et al. previously reported two single 

Figure 2. Pedigrees and chromato-
grams of two individuals with 
MECD. A: Pedigree of family 
of proband 1 and chromatogram 
demonstrating a portion of KRT3 
exon 1 in the proband. The chro-
matogram demonstrates a single 
heterozygous nucleotide change, 
c.250C>T, in exon 1 of KRT3. B: 
Pedigree of family of proband 2 
and chromatograms demonstrating 
a portion of KRT12 exon 6 in the 
proband and his unaffected parents. 
The chromatograms reveal a hetero-
zygous insertion/deletion variant 

(c.1288_1293delCGCCGCinsAGCCCT) in proband 2 (II:1) that is not present in the proband’s father (I:1) or mother (I:2). Filled symbols 
represent affected individuals; unfilled symbols represent unaffected individuals; question marks indicate individuals of unknown affected 
status; symbols with a diagonal line represent deceased individuals; arrowhead designates the proband. Below each symbol in which 
screening of KRT3 and KRT12 was performed, the results are given as wild-type (+) or the identified mutation is shown.

http://www.molvis.org/molvis/v21/1378
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nucleotide polymorphisms (SNVs), c.43C>T (p.(Pro15Ser)) 
and c.55C>T (p.(Arg19Trp)), in the head domain of K12 in a 
family with ocular findings of MECD [18]. However, neither 
of the SNVs is likely pathogenic, as the MAF for each of 
these variants is 0.3095 and 0.0537, respectively, and the 
affected family members harbored a presumed pathogenic 
novel heterozygous mutation in the helix-initiation motif of 
K12. The K3 mutation we report in proband 1 is the sole 
coding region variant identified in KRT3 and KRT12 with 
an MAF of less than 0.05, although the associated MAF of 
0.0076 is likely greater than the population prevalence of 
MECD. Additionally, although PolyPhen-2 and PANTHER 
predicted the variant to be damaging to protein function, 
SIFT analysis predicted tolerance of the variant. Despite the 
questions regarding the variant’s pathogenicity, it remains 

possible that the variant is associated with MECD, given the 
well-established association between keratin mutations and 
MECD. Unfortunately, as the parents of the proband were 
unavailable for examination, we were unable to establish an 
association between p.(Arg84Trp) in KRT3 and MECD in 
other members of this family, and thus present it as a variant 
of uncertain significance.

Previous studies by Liao et al. and Allen et al. provided 
a proposed mechanism for how identified KRT3 and KRT12 
mutations lead to the development of the corneal epithelial 
abnormalities that characterize Meesmann corneal dystrophy 
[19,20]. These investigators demonstrated a disruption of the 
normal intracellular keratin filament formation in cultured 
corneal epithelial cells transfected with mutant cDNA 
constructs, as well as rescue of normal keratin filament 

Table 2. Determination of paternity for proband 2 by genotyping for a sex-
associated marker, amelogenin (AMEL), and 15 short tandem repeats.

Allelic 
Marker Father (CDDL267) Child (CDDL266) Mother (CDDL268) Random Match 

Probability [38]
AMEL X Y Y X X X N/A
CSF1PO 10 13 13 12 12 12 0.112
D13S317 11 12 12 9 9 13 0.085
D16S539 11 12 12 12 12 12 0.089
D18S51 12 18 18 12 12 12 0.028
D21S11 30 32.2 32.2 29 29 29 0.039
D3S1358 18 17 17 16 16 14 0.075
D5S818 13 12 12 11 11 10 0.158
D7S820 8 9 9 8 8 12 0.065
D8S1179 13 10 10 10 10 12 0.067
FGA 20 22 22 20 20 22 0.036
PENTA D 10 13 13 12 12 9 0.004
PENTA E 12 7 7 13 13 12 0.176
TH01 7 9.3 9.3 9 9 7 0.081
TPOX 11 9 9 11 11 11 0.195
VWA 18 18 18 17 17 15 0.062

Note: There is a greater than 99.999% percent probability that both parents are the biologic parents.

Table 3. Summary of in silico analysis results.

Gene Nucleotide change Amino acid change Poly-
phen-2

SIFT PANTHER ConSurf 
(score*)

KRT3 c.250C>T p.(Arg84Trp) Probably 
damaging

Tolerated Probably 
damaging

Slightly 
variable 
(4)

KRT12 c.1288_1293delCGCCGCinsAGCCCT p.(Arg430_Arg431delinsSerPro) Probably 
damaging

Probably 
damaging

Probably 
damaging

High 
(9)

* Scale: 1 to 9.

http://www.molvis.org/molvis/v21/1378
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formation with allele-specific siRNA inhibition of the mutant 
allele [19,20]. Although it is likely that each of the identified 
mutations in KRT3 and KRT12, including those that we report, 
also causes a disruption of the intracellular keratin filament 
network, similar functional studies must be performed to 
provide additional evidence for, or alternatively, to provide 
evidence against, the pathogenicity of each variant.

To date, all 25 mutations in KRT3 and KRT12 identified 
in individuals with MECD have been located in the helix 
boundary motifs of the respective keratin proteins (Figure 3). 
The majority (15/25) of the mutations are in the helix-initia-
tion motif of K12; the remainder are in the helix-termination 
motifs of K3 and K12. We present a novel mutation, and the 
first reported indel, in KRT12 associated with a previously 
unreported phenotype of MECD, which we demonstrate to 
have arisen spontaneously. De novo mutations have been 
identified in three other genes associated with corneal dystro-
phies: TGFBI (gene ID #21810; OMIM #601692); ZEB1 (gene 
ID #21417; OMIM #189909), associated with posterior poly-
morphous corneal dystrophy 3; and UBIAD1 (gene ID #29914; 
OMIM #611632; associated with Schnyder corneal dystrophy) 
[21-25]. Such cases of de novo dominantly inherited corneal 
dystrophies highlight the utility of molecular genetic analysis 
to confirm the diagnosis of a suspected corneal dystrophy 
that is questioned given the absence of a family history. We 

also report a missense mutation of unknown significance in 
KRT3, only the fourth to be associated with MECD and the 
first in the head domain of K3. Although this variant has 
not been demonstrated to be pathogenic, the possibility that 
disease-causing variants associated with MECD may not be 
restricted to primary sequence alterations of either the helix-
initiation or helix-termination motifs of K3 and K12 should 
be considered.

APPENDIX 1. PRIMER SEQUENCES AND 
CONDITIONS USED FOR PCR.

Note: letters indicate primer pairs amplifying different 
regions of an exon, whereas numbers indicate alternative 
primer pairs used to sequence the entirety of an exon. To 
access the data, click or select the words “Appendix 1.”

APPENDIX 2. IDENTIFIED KRT3 AND KRT12 
VARIANTS WITH MINOR ALLELE FREQUENCIES 
GREATER THAN 0.05.

*Homozygous change. To access the data, click or select the 
words “Appendix 2.”

Figure 3. Protein structure of K3 
and K12, constructed using data 
from the Human Intermediate Fila-
ment Database. Each intermediate 
filament consists of an N-terminal 
head domain, a central α-helical 
rod domain, and a C-terminal 
tail domain. The rod domain is 
composed of four helical segments 
(1A (helix-initiation motif), 1B, 2A, 
and 2B (helix-termination motif)), 
which are connected to each other 
by non-helical linker regions (L1, 
L12, L2). Variants reported in 
current (*) and previous studies are 
depicted in their respective amino 
acid locations.

http://www.molvis.org/molvis/v21/1378
http://omim.org/entry/601692
http://omim.org/entry/189909
http://omim.org/entry/611632
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