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Abstract ‘‘Flyability’’ tests were conducted with sliders

designed for discrete track recording disks. Laser Doppler

vibrometry and acoustic emission were used to characterize

the dynamics of the sliders as a function of discrete track

parameters. Lubricant depletion was observed depending

on the slider nominal flying height. Comparison of exper-

imental results with numerical predictions showed good

qualitative agreement.

1 Introduction

In discrete track recording, magnetic bits are stored on

discrete circumferential tracks. In bit patterned media, bits

are recorded on single ‘‘island-like’’ regions on the disk

surface. In the case of bit patterned media, magnetic

transition noise is eliminated. In the case of discrete track

recording, magnetic transition noise is eliminated only in

the radial direction (Soeno and Moriya 2003). Soeno et al.

(2005) and Wachenschwanz et al. (2005) reported an

increase in the signal to noise ratio (SNR) and a better write

efficiency for discrete track recording. Patterned media

head/disk interfaces are challenging from a tribology point

of view (Suzuki et al. 2007), since discrete tracks or bits

influence the head/disk interface dynamics and thereby the

interface reliability. Very high and localized air bearing

pressure peaks are predicted from numerical simulations of

discrete track head/disk interfaces (Duwensee et al. 2006a).

Increased air bearing pressure is likely to cause lubricant

depletion.

Duwensee et al. (2006a, b) used a finite-element-based

air bearing simulator (Wahl et al. 1996) to study discrete

track head/disk interfaces. They simulated the steady state

slider flying height and attitude of a typical slider as a

function of groove width, groove depth, and track pitch.

Different sub-ambient pressure slider bearing designs were

used. An empirical equation was found to predict the loss

of flying height of a slider for a discrete track head/disk

interface compared to its flying height on a ‘‘smooth’’ disk.

In this study, an experimental investigation was con-

ducted to investigate the flying characteristics of typical air

bearing sliders designed for discrete track media using

laser Doppler vibrometry and acoustic emission. Long term

‘‘flyability’’ tests were also performed in order to determine

lubricant loss in the ‘‘wear track’’ of the slider.

2 Numerical model and results

Figure 1 shows numerical results for the loss of flying

height of typical magnetic sliders as a function of groove

depth d (Duwensee et al. 2006a, b). We observe that the

flying height loss increases linearly with groove depth,

independent of slider design. The loss in flying height DFH

follows the empirical equation:

DFH ¼ d � w
p
; ð1Þ

where d is the groove depth, w the groove width, and p is

the track pitch.
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Numerical simulations of the air bearing pressure dis-

tribution (Fig. 2) show that high pressure peaks can be

expected for the land regions of a discrete track recording

head/disk interface. High pressure peaks are likely to cause

lubricant depletion, which could lead to failure of the head/

disk interface.

In order to study the tribological characteristics of dis-

crete track head/disk interfaces, it would be ideal to have a

large matrix of disks with different discrete tracks available

for experimental testing. At present, however, discrete

track disks are difficult to manufacture and the experi-

mental verification of Eq. 1 is limited to a small number of

isolated test samples. To verify numerical predictions with

a limited number of test samples, we have chosen the

following approach. We have first investigated the flying

and contact characteristics of typical ‘‘present-day’’ sliders

on ‘‘smooth’’ disks using laser Doppler vibrometry and

acoustic emission analysis. We have then tested the same

sliders on discrete track disks with increasing groove depth,

and have analyzed the laser Doppler vibrometer and

acoustic emission signals for each slider/disk combination.

Using the empirical flying height loss equation (Eq. 1), we

have predicted the flying height loss for each slider/disk

combination. If the prediction shows a flying height loss

resulting in ‘‘zero’’ or ‘‘negative’’ flying height, it is

apparent that laser Doppler vibrometry and acoustic

emission signals should indicate contact between slider and

disk. Thus, by comparing the numerical predictions for the

flying height loss of different slider/disk combinations with

laser Doppler vibrometer and acoustic emission measure-

ments, an indirect verification of the numerical predictions

can be achieved.

3 Experimental setup and parameters

Figure 3 shows a schematic of the experimental setup used

in this investigation. The setup consists of an air bearing

spindle, a slider attached to a suspension, a laser Doppler

vibrometer (LDV), and acoustic emission (AE) sensor

equipment. The laser Doppler vibrometer and acoustic

emission signal lines are connected to a PC based data

acquisition system. ‘‘MATLAB�’’ was used for data

analysis. The disk was loaded onto the spin-stand, and the

slider was placed on the disk. For the investigations

reported in this paper the slider was positioned at a radial

position of 37.5 mm (1.500) from the disk center. The skew

angle was chosen to be zero. A rotational speed of

5,400 rotations per minute (rpm) was used, resulting in a

velocity of 22 m/s.

Two pico form factor slider designs (slider I and slider II)

were used in this investigation. Figure 4 shows the air

bearing contours for both slider designs, obtained from

optical surface profilometer measurements. The different

edge height levels are indicated in Fig. 4. As can be seen,

both air bearing surfaces are similar. However, the air

bearing surface features of slider I have different height

levels compared to the air bearing features of slider II. For

instance, the large cavity in the center of slider I has a height

level of approximately 2.39 lm, while the center cavity of

slider II has a height level of approximately 1.95 lm. The

nominal flying height of slider I on a smooth disk surface is

11 nm at a velocity of 22 m/s. The nominal flying height of

slider II on a smooth disk surface is 20 nm at a velocity of

22 m/s.

Five different types of disk were used for the investi-

gations reported in this paper. The specifications for the
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Fig. 1 Flying height loss DFH as a function of groove depth and

slider design (w/p = 0.5) (Duwensee et al. 2006b)
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disks used are summarized in Table 1. The predicted flying

height loss DFH for each slider/disk combination is shown

in Table 2 together with the predicted flying height.

We observe that slider I is predicted to fly at a flying

height of 2.2 nm on disk C, while the flying height of slider

II on the same disk is 11.2 nm. In addition, the flying

height of slider I on disk D is predicted to be -0.7 nm,

while the flying height of slider II on disk D is 8.3 nm.

Finally, the flying height of slider I and II on disk F is

predicted to be -24 and -15 nm, respectively. From the

prediction of the flying height of Table 2, it is apparent that

slider I should show contacts on disk D and F, and likely

also on disk C. Slider II, on the other hand, should show

contacts only on disk F.

4 Experimental results and discussion

Figure 5 shows the slider displacement spectrum of sliders

I and II flying on disk A (smooth disk). We observe that the

spectra for both sliders are similar, the main difference

being increased magnitudes at frequencies of 140 and

210 kHz, respectively, for slider II. These frequencies are

related to the first and second pitch resonance frequency.

Since the flying height of slider II on a smooth disk is much

larger than that of slider I, the increased pitch amplitudes

can be expected.

Figure 6 shows the slider displacement spectrum for

sliders I and II flying on disk C (groove depth d = 20 nm;

ratio of groove width to track pitch w/p = 0.44). We

observe well defined peaks at 130 kHz (first pitch reso-

nance frequency) for slider II and near 180 kHz for slider I

(second pitch resonance frequency).

Disk

Spindle

Laser Interferometer

Input
boardAE

MATLAB-PC

Slider on 
Suspension

Fig. 3 Schematic of experimental setup

Fig. 4 Air bearing surface of

a slider I and b slider II

Table 1 Specifications of disks

groove depth

d (nm)

track pitch

p (nm)

groove width

w (nm)

w/p

A 0 0 0 0

B 5 380 100 0.26

C 20 225 100 0.44

D 30 380 148 0.39

F 70 380 190 0.50

Table 2 Predicted flying height loss and predicted flying heights

DFH (nm) FHslider I (nm) FHslider II (nm)

A 0 11 20

B 1.3 9.7 18.7

C 8.8 2.2 11.2

D 11.7 -0.7 8.3

F 35 -24 -15
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Figure 7 shows the slider displacement spectrum for

sliders I and II flying on disk D (groove depth d = 30 nm;

ratio of groove width to track pitch w/p = 0.39). We note

that the spectrum for slider II is similar to that shown in

Fig. 6. Again, a strong peak is observed at 130 kHz. A

completely different spectrum is observed, however, for

slider I. In particular, a large number of discrete frequen-

cies is present over the complete frequency range for slider

I. The presence of these frequencies for slider I indicates

that contacts are present, i.e., slider I is not flying on disk

D. Acoustic emission measurements support this finding.

After completion of the tests on disk D, sliders I and II

were flown on disk F (groove depth d = 70 nm; ratio of

groove width to track pitch w/p = 0.5). Based on Eq. 1, the

nominal flying height loss for slider I on disk F is 35 nm,

i.e, the flying height loss on disk F is larger then the

nominal flying height of either slider on a ‘‘smooth’’ disk.

Thus, contact is predicted for both sliders on disk F.

Constant speed ‘‘drag’’ testing on disk F confirmed the

above prediction, i.e., a wear track was formed on the disk

immediately after the start of the experiments.

To characterize the dynamic behavior of sliders I and II

for all media investigated the standard deviation of the

flying height modulation during one revolution was deter-

mined and plotted in Fig. 8. The predicted flying heights

for slider I and II based on Eq. 1 are also indicated in the

figure. We observe that the flying height modulation is

nearly the same for sliders I and II on disks A, B, and C. A

substantial increase in flying height modulation is observed

for slider I on disk D and an even larger increase on disk F.

We also note that the flying height modulation for slider II

on disk D is the same as on disk C, but that a large increase

occurs for disk F. The low values of the standard deviation

of flying height modulation for slider I on disks A, B, and C

and for slider II on disks A, B, C, and D indicate that the

slider is flying. This result is in agreement with the pre-

dicted flying heights for both sliders on disks A through F.

The predicted flying height for slider I is ‘‘negative’’ for

disk D (-0.7 nm) and disk F (-24 nm). Thus, contacts are

predicted by Eq. 1 for these slider/disk combinations. The

flying height modulation results shown in Fig. 8 agree with

these predictions. For slider II, the predicted flying height

for disk F is -15 nm, i.e., contact is predicted. The results

of Fig. 8 for slider II on disk F are in agreement with these

predictions.

To investigate the long term tribological characteristics

of the head/disk interface with discrete track media,

extended ‘‘flyability’’ tests were performed. Slider II was

flown on disk C (groove depth d = 20 nm; ratio of groove
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Fig. 5 Displacement spectra for sliders I and II for disk A (smooth

disk)
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width to track pitch w/p = 0.44), and disk D (groove depth

d = 30 nm; ratio of groove width to track pitch w/

p = 0.39) on a single track. The slider displacement (laser

Doppler vibrometer) and acoustic emission were recorded

at 1 day intervals.

Figure 9 shows the slider displacement spectra of slider

II taken over several days of continuous single-track flying

on disk C (groove depth d = 20 nm; ratio of groove width

to track pitch w/p = 0.44). The displacement spectra

between day 0 and day 1 do not show any change. After 2

days, additional frequencies in the 50–75 kHz range are

observed. This trend continues for day three, with the

appearance of additional frequencies in the 25 kHz

to 100 kHz range. A similar trend is observed in the

slider displacement spectra for slider II on disk D (groove

depth d = 30 nm; ratio of groove width to track pitch

w/p = 0.39), shown in Fig. 10.

It is justifiable to postulate that continuous flying on a

single track causes lubricant depletion, resulting in

increased slider dynamics.

Lubricant displacement measurements were conducted

using surface reflectance analysis (Deoras et al. 2003).

Figure 11 shows measurements taken at the beginning of

the experiment (0 days), and after 3 days of single-track

continuous flying on disk C (groove depth d = 20 nm;

ratio of groove width to track pitch w/p = 0.44). The left-

hand pictures in Fig. 11 show the reflectance map of the

discrete track surface. The right-hand plots show a radial

trace of the reflectance. Lubricant loss in the ‘‘wear’’ track

of the slider is observed. Figure 12 shows measurements

taken for three days of single-track continuous flying of

slider II on disk D (groove depth d = 30 nm; ratio of

groove width). Clearly, lubricant loss in the ‘‘wear’’ track

of the slider is present.

Figure 13 shows the standard deviation of the flying

height modulation as a function of time for slider II flying

over disk C and D. An increase in the standard deviation of

the flying height modulation is observed as a function of

time, indicating increased slider dynamics. We postulate

that the increase in slider dynamics is related to lubricant

depletion.
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5 Summary and conclusions

To validate numerical flying height predictions for dis-

crete track head/disk interfaces, the ‘‘flyability’’ of two

types of sliders on a limited number of discrete track

disks with different discrete track parameters was inves-

tigated. Equation 1 was used to predict the occurrence of

contact for the discrete track head/disk combinations used

in the experiments. Contact is expected whenever the

predicted flying height is smaller than zero. Contact was

observed using laser Doppler vibrometry and acoustic

emission measurements. Good qualitative agreement

between the numerical flying height prediction and the

experiments was found. However, only a small number of

experiments could be conducted due to the limited

number of samples (disks and sliders) available. Addi-

tional experiments need to be performed with a large

number of samples to validate the numerical predictions

in a statistical sense.

Long-term ‘‘flyability’’ tests have shown the appear-

ance of additional frequencies in the slider displacement

spectra (Figs. 9, 10) as a function of time. We hypothe-

size that the appearance of the additional frequencies is

related to increased slider/disk interactions due to lubri-

cant depletion.

The flyability and longterm tribological tests per-

formed in this investigation indicate that numerical

predictions of flying height loss are an important tool in

predicting the performance of discrete track head/disk

interfaces.

0 days 

3 days 

Fig. 11 Surface reflectance

analyzer (SRA) data for long-

time flying of slider II on disk C

(groove depth d = 20 nm)

0 

3 

0 days

3 days

Fig. 12 Surface reflectance

analyzer (SRA) data for long-

time flying of slider II on disk D

(groove depth d = 30 nm)
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