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Abstract

Selection and Introgression in Humans and Other Animals

Many longstanding questions in evolution concern the major forces that shape genetic varia-

tion in natural populations: natural selection, genetic drift, mutation, gene flow, and recom-

bination. Their interaction determines the means by which populations adapt and explains

patterns of genetic and phenotypic variation within and among populations. In this disser-

tation, I use recent developments in population genetics to study the genomic signatures of

these outcomes and their implications for inferring the history of adaptation and predicting

phenotypes.

In chapters 1 and 2, I focus on the process of adaptive introgression, whereby selection

favors the spread of alleles introduced by gene flow from another species. For both of these

chapters, I develop methods based on coalescent theory that use recombination as a signal to

understand how and when introgressed alleles facilitated adaptation to new environments.

In chapter 1, I analyzed both ancient- and present-day DNA samples from humans and Ne-

anderthals, determining genomic regions where Neanderthal introgression provided standing

variation for future adaptation in human populations. In chapter 2, I analyzed samples from

two sister killifish species in which some populations can survive extremely toxic waters from

pollution. In resistant Fundulus grandis populations of the Houston ship channel, I identified

cases of extremely strong selection acting on rare introgressed variation that was introduced

recently from a resistant Fundulus heteroclitus population along the Atlantic coast. Together,

these chapters uncover the selection pressures acting on populations and highlight that ad-

mixture between closely related species can be a source of adaptive variation immediately

and in the long term.

In chapter 3, I provide an evolutionary perspective on the limitations of genome-wide

association study results to understand complex trait variation in understudied populations.

-vi-



I model how mutation, stabilizing selection, and genetic drift interact to shape quantitative

trait variation and quantify their implications for phenotype prediction across populations

when ascertaining underlying genetic variation in a subset of populations.

The combination of theoretical models and analysis of population genomic data in this

dissertation provide a rich investigation into the genetics of adaptation and limitations of

common approaches in understanding the relationship between genetic and phenotypic vari-

ation.
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Chapter 1

The timing of human adaptation from

Neanderthal introgression

Sivan Yair1,2, Kristin M. Lee3, Graham Coop1,2

1 Center for Population Biology, University of California, Davis

2 Department of Evolution and Ecology, University of California, Davis

3 Previous address: Department of Biological Sciences, Columbia University

Abstract

Admixture has the potential to facilitate adaptation by providing alleles that are immedi-

ately adaptive in a new environment or by simply increasing the long term reservoir of genetic

diversity for future adaptation. A growing number of cases of adaptive introgression are be-

ing identified in species across the tree of life, however the timing of selection, and therefore

the importance of the different evolutionary roles of admixture, is typically unknown. Here,

we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed al-

leles in modern human populations. Using both ancient and present-day samples of modern

humans, we integrate the known demographic history of populations, namely population

divergence and migration, with tests for selection. We model how a sweep placed along dif-
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ferent branches of an admixture graph acts to modify the variance and covariance in neutral

allele frequencies among populations at linked loci. Using a method based on this model of

allele frequencies, we study previously identified cases of Neanderthal adaptive introgression.

From these, we identify cases in which Neanderthal introgressed alleles were quickly benefi-

cial and other cases in which they persisted at low frequency for some time. For some of the

alleles that persisted at low frequency, we show that selection likely independently favored

them later on in geographically separated populations. Our work highlights how admix-

ture with ancient hominins has contributed to modern human adaptation and contextualizes

observed levels of Neanderthal ancestry in present-day and ancient samples.

1.1 Introduction

Within the last decade, population genomic studies have revealed many cases of hybridiza-

tion that have led to the introgression of genetic material between diverged populations.

While these genetic introductions are often ecologically or developmentally maladaptive, a

growing number of studies are providing evidence of adaptive introgression, whereby natural

selection favored the spread of introgressed alleles (e.g. Whitney et al., 2006; The Heliconius

Genome Consortium, 2012; Jones et al., 2018; Oziolor et al., 2019). These introgressed alleles

likely facilitated adaptation to new or changing environments, highlighting admixture as a

potentially important source of genetic variation for fitness.

Patterns of archaic introgression in modern humans offer some of the most compelling ex-

amples of adaptive introgression (reviewed in Racimo et al., 2015). When a subset of modern

humans spread out of Africa, likely in the past hundred thousand years, they encountered a

broad range of novel environments, including reduced UV exposure, new pathogen pressures,

and colder climates. At roughly the same time that modern humans outside of Africa expe-

rienced new conditions, they were also interbreeding with Neanderthals, who had been living

in and adapting to these Eurasian environments for hundreds of thousands of years (Hublin,
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2009). The early-generation hybrids of Neanderthals and modern humans may have had

low fitness due to the accumulation of weakly deleterious alleles in Neanderthals, who had

a small effective population size. The low fitness of these early hybrids, combined with the

greater efficacy of purifying selection in modern humans, led to widespread selection against

deleterious Neanderthal alleles and linked Neanderthal variation (Harris and Nielsen, 2016;

Juric et al., 2016). As a result, Neanderthal alleles segregate at around 1-3% frequency

genome-wide in present day modern humans, with a depletion in gene rich, regulatory, and

low recombination regions (Sankararaman et al., 2014; Schumer et al., 2018; Steinrücken

et al., 2018; Petr et al., 2019; Telis et al., 2020).

While, on average, Neanderthal-derived alleles have been selected against, a few alleles

persist at high frequency in present-day non-African populations and reflect putative cases of

adaptive introgression (Abi-Rached et al., 2011; Sankararaman et al., 2014; Khrameeva et al.,

2014; Vernot and Akey, 2014; Dannemann et al., 2016; Deschamps et al., 2016; Gittelman

et al., 2016; Racimo et al., 2017; Jagoda et al., 2018; Quach et al., 2016; Sams et al., 2016;

Setter et al., 2020). These alleles have been identified based on the characteristic patterns

left behind by adaptive introgression, namely high haplotype similarity between Eurasian

modern humans and Neanderthals, and the deep divergence of haplotypes within modern

human populations. It appears that most sweeps on Neanderthal introgressed alleles were

partial, with selected alleles only reaching frequencies around 30 to 60%. Thus, dips in

genetic diversity due to adaptive Neanderthal introgression are dampened relative to hard,

full sweeps on de novo mutations.

Some of the selected Neanderthal alleles contribute to traits that may have been under

selection during modern human expansion out of Africa, such as immunity, skin pigmen-

tation, and metabolism (Abi-Rached et al., 2011; Sankararaman et al., 2014; Khrameeva

et al., 2014; Vernot and Akey, 2014; Dannemann et al., 2016; Gittelman et al., 2016; Racimo

et al., 2017; Jagoda et al., 2018; Quach et al., 2016). Since modern humans mated with
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Neanderthals around the same time that they were exposed to new environments, a natural

assumption is that Neanderthal variation immediately facilitated modern human adaptation.

Alternatively, some of the selected Neanderthal introgressed alleles may have contributed to

the reservoir of standing genetic variation that became adaptive much later (Jagoda et al.,

2018) as human populations were exposed to and created further novel environments. A

recent study found evidence of this phenomenon for a Denisovan haplotype contributing to

high altitude adaptation on the Tibetan Plateau (Zhang et al., 2020), and so non-immediate

selection on introgressed archaic variation may be more common than previously thought.

Population genetics offers a number of approaches to date the timing of selection on

alleles. The first broad category of approaches relies on the hitchhiking signal created in

surrounding linked variants as the selected alleles sweep up a chunk of the haplotype on

which they arose (or introgressed) (Maynard Smith and Haigh, 1974). Second, ancient DNA

now offers an opportunity to assess when these selected haplotypes rose in frequency, and the

ancient populations where they first achieved high frequency. Currently, methods that use

ancient DNA to investigate the temporal history of selection focus on identifying significant

increases in selected allele frequencies over time (e.g. Mathieson et al., 2015; Schraiber et al.,

2016; Mathieson and Mathieson, 2018). These time series approaches are powerful because

they can provide more direct evidence of selection driving allele frequency change, however

they are limited to characterizing cases of selection that began after the oldest sampling time

and among sampled populations. For studies of modern human evolution, we are currently

restricted to learning about adaptation in mostly European populations and within the last

ten thousand years, long after hybridization with Neanderthals.

Here, we leverage the advantages of both temporal sampling and patterns of neutral

diversity at linked loci (the hitchhiking effect) to infer the time that Neanderthal introgressed

alleles became adaptive. Our investigation of the hitchhiking effect allows us to date selection

older than the ancient samples, while ancient populations provide useful reference points
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closer to the sweep time. We use coalescent theory to describe patterns of sequence similarity

around a selected site when selection favors introgressed variation at different times since

admixture. Our predictions relate sequences among ancient and present day populations

by incorporating information about their history of divergence and migration. In addition,

we utilize information from partial sweeps by modeling this hitchhiking effect among both

selected and non-selected haplotypes. Our approach builds on the model-based inference

framework introduced in Lee and Coop (2017), which connects predicted coalescent histories

to their corresponding probability distribution of population allele frequencies. Thus, we can

distinguish among possible selection times by analyzing allele frequency data from ancient

and present day populations.

By providing the age of selection favoring Neanderthal alleles in specific regions, we can

determine the context within which Neanderthal alleles facilitated modern human adapta-

tion and in turn narrow their potential phenotypic contributions. If selection was immediate,

then the Neanderthal variation was useful in the early Eurasian environments that modern

humans experienced, possibly because Neanderthals had been adapting to those same con-

ditions for a long period of time. Otherwise, Neanderthal haplotypes were selected during

different time periods and in different populations. These latter haplotypes are particularly

interesting candidates, as they shed light on the similarities and differences in selection pres-

sures affecting human populations over space and time. Further, they show that admixture

between closely related species can provide an important source of standing genetic varia-

tion for future adaptation. In this paper, we provide evidence for each of these scenarios in

different genomic regions of adaptive introgression.

We begin by introducing the data that we analyzed, followed by an intuitive description

of the hitchhiking patterns that we modeled before providing the mathematical details of

our model and inference framework. We then show how our method performs on simulations

and its results when applied to candidates of adaptive Neanderthal introgression.
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1.2 Distribution of adaptive Neanderthal introgressed

haplotypes across populations

Choice of population samples We applied our method to a set of eight population

samples: one archaic (Neanderthals), three present day modern human, and four ancient

modern human. For the Neanderthal sample we used the Vindija 33.19 Neanderthal (n=2,

for two chromosomes sampled from one individual) because it is high coverage and most

closely related to the introgressing population (Prüfer et al., 2017; Mafessoni et al., 2020).

Our results only change slightly when the high coverage Altai Neanderthal sample is included

in the Neanderthal population, which we discuss later. The present day populations are from

Phase 3 of the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2015): the

Yoruba in Ibadan, Nigeria (YRI; n=216), Han Chinese from Beijing (CHB; n=206), and

Utah Residents (CEPH) with Northern and Western European Ancestry (CEU; n = 198).

We chose ancient populations based on previous work about their relationships with present

day populations. We included the West Eurasian Upper Paleolithic (EurUP; n = 12),

who are the oldest samples and basally related to all West Eurasians (mean sampling time

t ≈ 34kya), and three populations known to be ancestral to present day Europeans: the

Mesolithic hunter gatherers from western Europe (WHG; n = 66; t ≈ 9kya), the Neolithic

Anatolian Farmers (EF; n = 134; t ≈ 7kya), and the Bronze Age Steppe individuals (Steppe;

n = 14; t ≈ 5kya). Each population ancestral to present day Europeans was composed of

samples with ≥ 90% inferred ancestry corresponding to that population. Inferred ancestry

proportions are from Mathieson et al. (2018)’s supervised ADMIXTURE analysis using four

clusters with fixed membership corresponding to each of these three ancient populations and

Eastern Hunter Gatherers. See File S2 for detailed information on the ancient samples we

analyze. One reason for taking this set of ancient populations is that our method requires a

known population history, namely the approximate timing and admixture proportions among
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populations, as well as the timing of divergence among Neanderthal-admixed populations.

The primary admixture graph that we used is shown in Figure 1.1 (Skoglund et al., 2012;

Lazaridis et al., 2014; Allentoft et al., 2015; Haak et al., 2015; Mathieson et al., 2015; Fu et al.,

2016; Lipson et al., 2017; Sikora et al., 2017; Mathieson et al., 2018). We acknowledge that

we take a coarse approach by simplifying human demographic history to a set of ancestral

populations, who themselves are products of mixtures of the past.

All ancient modern human samples were typed on a 1240k capture array. Since we needed

dense sampling of the neutral loci surrounding the selected site, we imputed genotypes in

the ancient modern human samples using Beagle 4.1 (Browning and Browning, 2007, 2016).

To ensure imputation accuracy, we selected ancient samples for analysis if they had ≥ 1x

coverage. This cutoff was chosen because at this point an imputation procedure very similar

to ours can correctly recover around 80-95% of an ancient sample’s heterozygous sites and

preserves properties of the genotypic data such as samples’ PCA locations relative to no

imputation (Mathieson, 2016). To perform the imputation we followed a procedure similar

to that of Mathieson et al. (2015). At the 1240k sites, we computed genotype likelihoods

from read counts according to binomial likelihoods of these counts and a small amount of

sequencing error. We then ran Beagle twice, first to impute genotypes at just the 1240k sites

using the gl and impute=false arguments, and then to impute the remaining sites using the

gt and impute=true arguments. After each round of imputation we removed polymorphic

sites with allelic r2 < 0.8 (a measure of imputation accuracy). These intermediate filter-

ing steps can improve the imputation accuracy of even ultra-low coverage ancient samples

(Hui et al., 2020). To account for some of the uncertainty in the imputation procedure,

we calculated population allele frequencies by weighting sample genotypes by their poste-

rior probability, rather than using the maximum likelihood genotypes. We imputed each

population separately, used the HapMap Project’s genetic map (The International HapMap

Consortium, 2007), and used a reference panel consisting of all East Asian and European
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1000 Genomes populations (as multi-population panels can improve imputation accuracy in

untyped populations; Huang et al., 2009). Finally, to assess the impact of imputation uncer-

tainty on our results, we also ran our method on bootstrapped datasets, which we describe

after introducing the method.

Choice of Neanderthal introgressed regions We analyzed genomic regions that were

previously identified as putative candidates of adaptive introgression by Racimo et al. (2017).

We chose regions with signals of adaptive introgression in European populations, as we have

more information on their ancestral populations to infer the age of selection. We removed

any regions whose introgressed sequences could not be distinguished from Denisovan ancestry

(according to Racimo et al., 2017) and any regions on the X chromosome. To ensure we

were capturing the full window of potentially selected sites, we extended the 45kb windows

identified by Racimo et al. (2017) by 2 × 10−2 cM (20kb if the window has a constant per

base pair recombination rate of 10−8) and collapsed those that were overlapping or directly

adjacent. This resulted in 36 distinct regions, listed in Table 1.2, out of 50 45kb windows

with signals of adaptive Neanderthal introgression in Europeans.

Neanderthal ancestry over time As a first step to understand the temporal history

of selection, we investigated levels of Neanderthal ancestry in ancient and present day ad-

mixed modern human populations within each of the previously specified regions. These

levels were determined from ancestry informative sites, which we identified as bi-allelic sites

in modern humans that have one allele fixed in Neanderthals (combined Vindija and Altai,

two high coverage Neanderthals) and at less than 5% frequency in Yoruba. We included the

Altai Neanderthal sample here to increase our confidence that we identified true fixed dif-

ferences between Neanderthal and modern human lineages. In Figure 1.2, we show average

Neanderthal allele frequencies across all ancestry informative sites with a Neanderthal allele

frequency of at least 20% in at least one population. We use this subset of ancestry infor-
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mative sites because we are interested in frequencies along the selected haplotype(s), which

do not necessarily span the entire length of the previously described windows. If selection

quickly favored introgressed alleles, we would at least expect all admixed modern human

populations, whether sampled in the past or present, to show high levels of Neanderthal

ancestry. However, in a number of these genomic regions, Neanderthal ancestry is almost or

completely absent from East Asian and/or some ancient populations (Figure 1.2).

EF

CEU

WHG

Steppe

EurUP

CHB

EF sampled: 252 gen
Steppe sampled: 165 gen

WHG sampled: 314 gen

EurUP sampled: 1161 gen

CHB split: 1724 gen

EurUP split: 1552 gen

European split: 1379 gen

Neanderthal admixture: 2069 gen

Figure 1.1: The primary admixture graph that we use in our method. Our method requires
the divergence times among admixed modern human populations, the time and proportion of
admixture with Neanderthals, and the sampling time of each population. It also requires the
timing and proportions of admixture among modern human populations, which we describe
in detail in Table 1.1. We converted many of these estimates from years to generations
assuming a generation time of 29 years (Fenner, 2005). Our method is robust to modifications
to this admixture graph, which we discuss later.

1.3 Method to estimate the timing of selection from

introgressed haplotypes

1.3.1 Verbal Description

We first describe the intuition behind our models, before laying out the mathematical frame-

work. We focus on how patterns of haplotype similarity among modern human populations
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Figure 1.2: Average Neanderthal allele frequency at ancestry informative sites in ancient
and present day populations in genomic regions with signatures of adaptive introgression.
Darker shades of purple correspond to higher average Neanderthal allele frequencies. The
size of points correspond to the number of sites over which the average Neanderthal allele
frequency was calculated. Moving left to right, regions have decreasing average Neanderthal
allele frequencies among ancient populations.

and Neanderthals change with the start time of selection. Since we describe selection favor-

ing a Neanderthal introgressed allele, the earliest selection can begin is the time of admixture

between Neanderthals and modern humans. To accompany our description, in Figure 1.3

we show a cartoon of haplotype diversity and introgressed ancestry under two scenarios:

immediate selection and recent selection.

Neanderthal alleles that introgress into modern human populations start on long Nean-

derthal ancestry tracts (entire chromosomes at the time of admixture) that shorten over time

with recombination. Since the selected Neanderthal allele takes its linked variation to high

frequency with it, the timing of selection determines the genetic distance over which neu-

tral Neanderthal alleles sweep to high frequency as well. The earlier selection is, the larger
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the Neanderthal haplotypes that sweep to high frequency with the selected Neanderthal al-

lele. Conversely, the later selection is, the shorter the Neanderthal haplotypes that sweep to

high frequency, such that some haplotypes in modern humans that did not introgress from

Neanderthals (which we call ‘modern human haplotypes’) also rise in frequency.

Because Neanderthal genetic diversity is very low, haplotypes that introgressed from Ne-

anderthals into modern human populations should look almost identical to each other and to

haplotypes sampled from Neanderthals. Conversely, Neanderthal haplotypes are relatively

distinct from modern human haplotypes compared to differences typically observed among

modern human haplotypes. This is because the earliest time that modern human and Nean-

derthal haplotypes can coalesce is when Neanderthals and modern humans shared a common

ancestor, about 16,000 generations ago. Therefore, when selection brings Neanderthal hap-

lotypes to high frequency in those modern human populations where the Neanderthal allele

experienced positive selection (hereafter ‘selected populations’), selected populations gain

unusually high sequence similarity with Neanderthals and unusually low sequence similar-

ity with other modern human populations in which Neanderthal haplotypes are rare in the

genomic region affected by the sweep. These patterns of unusually high and low sequence

similarity persist over greater genetic distances as selection begins closer to the time of

introgression.

Within selected populations, selection increases sequence similarity because the sam-

pled haplotypes descended from one or a few ancestral haplotypes that hitchhiked to high

frequency during the sweep. When selection begins earlier, these ancestral haplotypes are

mainly one of the few Neanderthal haplotypes introduced by admixture. The later selec-

tion begins, the more likely these ancestral haplotypes are modern human haplotypes that

became linked to the selected allele prior to the selection onset.

In the cases of adaptive introgression that we investigated, the putative selected Nean-

derthal allele did not reach fixation, either because the sweep is ongoing and selection is weak,
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selection pressures changed before the Neanderthal allele reached fixation, or the phenotypic

response to selection was achieved by allele frequency changes at multiple loci. Our models

allow for all of these possibilities, where if selection stopped favoring the Neanderthal allele

we consider a neutral phase after the sweep. From this phase, we can further distinguish

among selection times based on how recombination distributes Neanderthal ancestry among

haplotypes within the same population that do and do not carry the selected Neanderthal

allele. As the partial sweep finishes, the Neanderthal alleles that hitchhike to higher fre-

quency with the selected allele have a higher chance of recombining onto the background of

the non-selected allele. The earlier the onset of selection, the more time post-sweep for these

recombination events to occur, and therefore the higher the probability that alleles on the

non-selected background descended from Neanderthals.

1.3.2 Model Background

Our aim is to distinguish among the possible scenarios of selection on introgressed variation.

Each scenario is defined by the combination of two parameters we aim to infer in our model:

the amount of time between Neanderthal admixture and the onset of selection, which we

refer to as the waiting time until selection (tb) and the additive strength of selection favoring

the beneficial Neanderthal allele (s). We build on the model-based, statistical approach

introduced in Lee and Coop (2017), which uses coalescent theory to describe how different

selection scenarios modify the neutral variance and covariance of population allele frequencies

surrounding the selected site. This allows us to describe a multivariate normal model of

population allele frequencies for each scenario, which serves as a simple approximation for

their probability distribution (Weir et al., 2002; Nicholson et al., 2002).

Here, we review the framework laid out by Lee and Coop (2017). We model the change in

allele frequency ∆xi = xi − xa in our sampled populations (i) from their common ancestral

population (a) at the root of the tree relating all populations we consider. For neutral alleles,
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Figure 1.3: (Top) Cartoon of haplotype diversity and ancestry at three time points when
selection favors Neanderthal introgressed alleles immediately (tb = 0) and when selection fa-
vors Neanderthal introgressed alleles more recently (tb > 0). Our models use a specific value
of tb, but here our purpose is to visualize qualitative differences between early and recent
selection. Purple tracts represent Neanderthal introgressed haplotypes, whereas green tracts
represent haplotypes that did not descend from Neanderthals. We display Neanderthal an-
cestry tracts with fewer shades to represent their lower genetic diversity. (Bottom) Example
frequency trajectory of a selected Neanderthal introgressed allele when there is a waiting time
until selection. The light grey lines represent 50 stochastic trajectories in which the selected
allele reached a frequency greater than 20%. The dark grey line represents the trajectory we
assume in our models using the same waiting time until selection (tb), selection coefficient
(s), and duration of the sweep phase (ts) used to generate the stochastic trajectories.
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the population allele frequency will on average be the same as the ancestral allele frequency

(E[∆xi] = 0) because drift and hitchhiking are direction-less on average. Drift and hitchhik-

ing do however cause an increase in the variance in the change in allele frequencies within a

population, and pairs of populations can also covary in their change in allele frequency from

the ancestor if they have some shared population history or gene flow, i.e. their changes in

allele frequency since the ancestral population are not independent of one another. These

effects are captured by the population covariance between populations, i and j, given by

Cov[∆xi,∆xj] = xa(1 − xa)fij, (1.1)

where fij is the probability that the ancestral lineages of an allele sampled in population i

and an allele sampled in population j coalesce before reaching the ancestral population (see

Lee and Coop, 2017, for details).

We can estimate the neutral probabilities of coalescing among populations from neutral

allele frequency data genome-wide. If we are considering k populations in our analysis, we

thus have a k × k matrix, F, that describes probabilities of coalescing within and between

these populations. See Appendix 1.8.2 for details on how we estimate this matrix. These

estimated neutral probabilities of coalescing allow us to describe our neutral expectations

without making any assumptions about the demographic history of populations: they im-

plicitly account for population size, divergence, and migration. We note, however, that while

this flexible approach allows for arbitrary relationships among populations, our tree requires

a root that our coalescent probabilities and frequency deviations will be relative to. We de-

fine this root by placing the two most genetically distant populations on opposite sides of it.

This implies that in our models, they have no shared history since the ancestral population,

and therefore no chance for coalescence between the ancestral lineages of alleles sampled

in each. In our analysis, the Neanderthals and Yoruba are the most distantly related, and

therefore are placed on opposite sides of the root, without any subsequent gene flow. This
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does not negate the possibility of indirect gene flow between them; we simply define all other

relationships relative to theirs.

When we incorporate the effects of selection, we model how probabilities of coalescing

change with increasing genetic distance from the selected site. Importantly, all of our pre-

dictions converge to our neutral estimates because increasing recombination rates between

selected and neutral sites allows for increasing independence of their coalescent history. At a

far enough genetic distance, dynamics at the selected site become quickly disassociated with

those at the neutral site, such that the probability of coalescing at the neutral site is that of

any neutral allele unaffected by linked selection.

1.3.3 Haplotype Partitioning and the Null Model

No identified case of adaptive Neanderthal introgression has resulted in the population fixa-

tion of a Neanderthal-derived allele. These partial sweeps weaken the effect of linked selection

on surrounding neutral diversity because much of the original genetic diversity prior to selec-

tion persists in these populations. In order to increase the power of our approach, we divide

admixed populations according to ancestry assignments at the putative selected site. For the

1000 Genomes samples, from which we have phased haplotypes, we create two partitions: one

consisting of haplotypes that carry the beneficial Neanderthal allele at the selected site (B),

and the other consisting of haplotypes that carry the non-Neanderthal allele at the selected

site (b). For the ancient samples, we only have unphased genotype data, and so we divide

the population samples into three partitions according to individuals’ ancestry genotypes at

the selected site: BB, Bb, and bb. In our models, we are concerned with a neutral allele’s

ancestry background at the selected site when it is sampled. Therefore, haplotype partition

B is equivalent to genotype partition BB in that any neutral allele sampled in these parti-

tions is linked to the Neanderthal allele at the selected site. Similarly, haplotype partition b

is equivalent to genotype partition bb in that any neutral allele sampled in these partitions
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is linked to the non-Neanderthal allele at the selected site. From here on we refer to them in

our models as partition B or partition b. Predictions for genotype partition Bb are simply a

linear combination of our predictions for the other partitions, which we describe in section

1.9.3.5.

Our haplotype partitioning of the data requires us to modify our null model from that of

Lee and Coop (2017), who focused on full sweeps and simply used the genome-wide neutral

F matrix to parameterize their null model. The neutral probabilities of coalescing that we

estimate between any pair of populations (i, j) are essentially averaged over all possible

migration histories of our alleles. However, our population partitioning scheme alters the

probability of each migration history because we split populations based on ancestry at the

partition site. When we create a population that only carries Neanderthal alleles at the

partition site (partition B), nearby sites will have a much higher frequency of Neanderthal

alleles relative to the full population. Therefore, even under neutrality, the probability that

a randomly sampled allele in partition B will coalesce with an allele sampled in Neanderthals

is much higher than in the full population case.

Under population partitioning, we can describe our null coalescent probabilities as a

function of the genome-wide neutral probabilities of coalescing and the recombination rate

(r) between the partition site and neutral site of interest. We first consider the relationship

between Neanderthal population n and partition B of population i in which all haplotypes

carry a Neanderthal allele at the partition site. We define tI as the number of generations

ago that Neanderthal alleles introgressed into modern human populations. We are interested

in the probability that the neutral lineage remains linked to the same Neanderthal allele at

the partition site that it was linked to at sampling by the time of admixture. We can

approximate this probability as e−rtI . By remaining linked to the Neanderthal allele at the

partition site, we know that it, too, introgressed from Neanderthals and thus will coalesce

with the Neanderthal allele with approximately the same probability as any two alleles
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sampled from Neanderthals (fnn). If it does recombine out at some point before admixture,

it has the population’s neutral probability of coalescing with Neanderthals. This neutral

probability of coalescing still accounts for the possibility that the neutral allele descended

from Neanderthals, when the average Neanderthal-introgressed allele frequency is the initial

admixture fraction (g). We define probabilities of coalescing under the null model as f
(N)
in ,

where superscript (N) refers to predictions under our null model. In all we derive the

probability of coalescing between a pair of lineages sampled from partition B of population

i and Neanderthal population n to be

f
(N)
in = e−rtIfnn + (1 − e−rtI )fin, if sampled from partition B . (1.2)

In partition b of the same population (i), all alleles are linked to the non-Neanderthal

allele at the partition site when sampled. If an allele sampled in this partition never recom-

bines out, we know it cannot have introgressed. Therefore in order to have the chance at

coalescing with the ancestral lineage of the sampled Neanderthal allele, it must recombine

out before admixture. Forward in time, that means that a Neanderthal allele recombined

onto the sequence carrying the non-Neanderthal allele at the partition site. Therefore the

ancestral lineage of a neutral allele sampled from partition b of population i has the following

probability of coalescing with the neutral lineage sampled from Neanderthals:

f
(N)
in = (1 − e−rtI )fin, if sampled from partition b. (1.3)

1.3.4 Selection Model

Selection favoring Neanderthal alleles in modern human populations modifies probabilities

of coalescing from neutral expectations because it increases levels of Neanderthal ancestry

around the selected site in selected populations. Thus, in the whole (non-partitioned) pop-

ulation, the probability that an allele descended from Neanderthals is much higher than the
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original admixture proportion, as we described informally above in our discussion of Figure

1.3.

1.3.4.1 Derivation

In selected populations, we consider three phases in the selected allele frequency trajectory:

the neutral phase following admixture in which the Neanderthal-derived variant is at fre-

quency g for tb generations (neutral phase I), the sweep phase in which the variant rises

from frequency g to frequency xs in time ts, and the neutral phase between the sweep finish

and the present in which the variant remains at frequency xs (neutral phase II). When the

relative fitness advantage of the selected allele is additive, such that heterozygotes have an

advantage of s and homozygotes 2s, the sweep duration

ts =
1

s
log

(
xs(1 − g)

g(1 − xs)

)
, if xs < 1. (1.4)

Since the sum of all three phase durations equals the time between the present day and

admixture (tI), the duration of neutral phase II equals tI − tb − ts.

As the waiting time until selection tb increases, and assuming the same tb for all selected

populations, we transition from describing a case in which the selected allele became bene-

ficial in the common ancestor of all Eurasian populations, to the case in which the selected

allele became beneficial independently in each selected population. If tb is short enough such

that selection began in the common ancestor of a group of selected populations, we must

account for the possibility that this common ancestor also has descendent populations that

do not carry the selected allele at high frequency, possibly due to subsequent drift or negative

selection. According to tb, we assign each population with very low frequency of the selected

allele into one of two categories: (i) ancestors never selected or (ii) ancestors selected with

subsequent loss of the selected allele in this population. We assign the first category if the

low frequency population does not share a common ancestor with any selected populations at

the time selection starts, i.e. its divergence from all selected populations predates selection.
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Otherwise we assign the second category.

Similar to the null model, we condition on ancestry at the putative selected site and

consider how recombination modulates ancestry with increasing genetic distance. The most

important difference between the null and selection model is neutral phase II: in the selection

model, if a neutral lineage recombines, it has a high probability of recombining onto the

selected allele’s background. Therefore, there is a higher chance that the neutral lineage

itself descended from Neanderthals.

Between Neanderthals and selected populations In this section we derive the proba-

bilities of coalescing between the haplotypes in each partition of selected human populations

and Neanderthals. When we sample an allele, we know whether or not it is linked to the

selected Neanderthal allele based on the partition it belongs to. Conditioning on this an-

cestry background at sampling, we focus on whether the ancestral lineage is linked to the

selected Neanderthal allele when we transition between each phase looking backwards from

the present to admixture.

First, we determine the probability that a neutral lineage is linked to the selected Ne-

anderthal allele at the transition point between neutral phase II and the sweep completion

(which occurs at time tI − tb − ts). If there is never a recombination event between the

selected and neutral site during neutral phase II, then the neutral lineage remains associated

with its initial ancestry background at the time of the sweep completion. Alternatively, if

at least one recombination event occurs, then the final recombination event determines the

ancestry background that the neutral lineage is associated with at the time of the sweep

completion. The frequency of the selected allele determines the probability that a recombin-

ing neutral lineage becomes associated with the selected background. Thus with probability

xs, the neutral lineage becomes associated with the selected Neanderthal allele, and with

probability 1−xs it becomes associated with the non-Neanderthal allele at the selected site.
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Therefore, the probability that a neutral lineage sampled from a selected population is linked

to the selected Neanderthal allele at the transition point between neutral phase II and the

sweep completion is

Pr(linked to selected allele at sweep finish)

=



exp (−r(tI − tb − ts)) + (1 − exp (−r(tI − tb − ts)))xs,

if sampled from partition B .

(1 − exp (−r(tI − tb − ts)))xs,

if sampled from partition b.

(1.5)

in which an allele sampled from partition b can only be linked if it recombines off of its

background.

Second, during the sweep phase, an allele that begins linked to the selected allele will

always be associated with that background with probability

Pr(always linked to selected allele during sweep)

≈ exp

(
−r

∫ ts

0

1 − r(1 −X(t))dt

)
=

(
x(1 − g)

g

)− r
s

,

(1.6)

where X(t) is the frequency of the selected allele in generation t of the sweep, following a

deterministic, logistic trajectory. In words, this probability is approximately the product of

the probabilities of not recombining onto the non-selected background each generation of the

sweep. Similarly, an allele that begins the sweep phase linked to the non-selected allele will

always be associated with that background during the sweep with probability

Pr(always linked to non-selected allele during sweep)

≈
(

1

xs

)− r
s

, if xs < 1.
(1.7)
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The above associations persist if the lineage never recombines out of its background during

neutral phase I, with approximate probability e−rtb . So, if a neutral lineage remains linked

to the selected allele during the sweep phase and fails to recombine during neutral phase

I, it must have descended from Neanderthals and thus coalesces with the lineage sampled

from Neanderthals with approximately the same probability as any two lineages sampled

from Neanderthals, fnn. If the neutral lineage remains linked to the non-selected allele

throughout the sweep phase and fails to recombine during neutral phase I, it definitely

did not descend from Neanderthals and thus cannot coalesce with an allele sampled from

Neanderthals. If a lineage becomes disassociated with its background at some point during

the sweep phase, and/or recombines out at least once during neutral phase I, we assume it

has its population’s neutral probability of coalescing with Neanderthals. Our approximation

ignores the possibility that a lineage linked to the non-selected allele can recombine onto

the selected allele’s background during the sweep. In total, the ancestral lineage of an allele

sampled from an admixed, selected population coalesces with the ancestral lineage of an

allele sampled from Neanderthals with probability

f (S)
pn

=
[

Pr(linked to selected allele at sweep finish)

× Pr(always linked to selected allele during sweep)e−rtbfnn

]
+
[

Pr(linked to selected allele at sweep finish)

×
(
1 − Pr(always linked to selected allele during sweep)e−rtb

)
+
(
1 − Pr(linked to selected allele at sweep finish)

)
×
(
1 − Pr(always linked to non-selected allele during sweep)

× e−rtb
)]
fpn,

(1.8)
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where the superscript S in f
(S)
pn refers to our predictions under the selection model, and

subscript p denotes any partition of any selected population. In sections 1.9.3.1 and 1.9.3.2

we illustrate predictions for other population relationships under the selection model. We

follow by describing modifications under both the null and selection models to incorporate

ancient samples (S3.3), migration among admixed modern human populations (S3.4), and

genotype partition Bb (S3.5). Our approximations provide a good fit to those obtained by

simulations, see Figure 1.4.

1.3.5 Inference

For each model (null or selection) and combination of free parameters, we define a variance-

covariance matrix of population allele frequencies for a given distance away from the selected

site (Lee and Coop, 2017). We approximate the joint probability distribution of population

allele frequencies at a neutral locus (l) as being multivariate normal around the ancestral

allele frequency (xal) with covariance equal to xal(1− xal) times the modified matrix of coa-

lescent probabilities (F(N) or F(S)) (Weir et al., 2002; Nicholson et al., 2002; Samanta et al.,

2009; Coop et al., 2010). In both the null and selection models, the modified matrices of coa-

lescent probabilities depend on the genetic distance to the selected site (rl), the genome-wide

neutral matrix of coalescent probabilities (F), and all of the admixture graph parameters

of interest (AG), which describe admixture proportions and timing among Neanderthal and

admixed modern human populations as well as divergence and sampling times of admixed

modern human populations (see Figure 1.1 and Table 1.1). The selection model’s F(S) de-

pends on three additional parameters: the strength of selection (s), the waiting time until

selection (tb), and the final frequency of the selected allele (xs). Therefore at a neutral poly-

morphic site with allele frequency data in our populations, we can estimate the probability

of the observed population allele frequencies (x⃗l) under the selection model as
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Figure 1.4: Probabilities of coalescing between pairs of alleles at increasing genetic distances
from the selected site. Analytical predictions (lines) closely match estimates averaged across
250 simulations (points). Here, we show results for a case in which the Neanderthal derived
allele became adaptive in the ancestors of Early Neolithic Farmers immediately upon in-
troduction (tb=0, red) and after 600 generations (blue). The favorable allele experienced a
selective advantage (s) of 0.01 and on average reached a frequency (xs) of 0.7 before becom-
ing neutral again. The genetic window corresponds to 1 Mb with a constant recombination
rate of 10−8. Partition B refers to alleles linked to the beneficial Neanderthal allele, while
partition b refers to alleles linked to the non-Neanderthal counterpart at the selected site.
We present categories of population relationships in which probabilities of coalescing vary
the most with different waiting times until selection. See Figures 1.20 and 1.21 for more
population relationships, waiting times until selection, and final frequencies of the selected
allele.
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P(x⃗l|rl,F, AG, s, tb, xs)

≈ N
(
x⃗l|xal, xal(1 − xal)F

(S)(rl,F, AG, s, tb, xs)
)
,

(1.9)

where the set of parentheses following F(S) denote the parameters of the function F(S).

When we predict F(S), we categorize Neanderthal-admixed populations as ‘selected’ if their

frequency of the Neanderthal allele at the selected site is greater than or equal to 0.05. We

set xs to be the average selected Neanderthal allele frequency among all of these putative

selected populations. Our method could be extended to allow xs to vary among populations

and to do model choice of the selected populations, however for simplicity we do not pursue

those applications here. We estimate the composite likelihood of free parameters s and

tb given the allele frequency data across populations (D) in a window around a candidate

selected site by taking the product of all likelihoods calculated at each locus to the left and

right of the candidate selected site as follows,

LC(s, tb;D) =

Lleft∏
i=1

P(x⃗i|ri,F, AG, s, tb, xs)

×
Lright∏
j=1

P(x⃗j|rj,F, AG, s, tb, xs),

(1.10)

where Lleft and Lright represent the number of polymorphic loci to the left and right of the

candidate selected site. We calculate composite likelihoods among the proposed parameter

combinations of s and tb shown in Table 1.3.

The composite likelihood under the null model takes the same form as selection; we

simply replace F(S) with F(N) and remove dependence on s, tb, and xs. Each partition site

represents a potential selected site and thus differs in its genetic distance to each neutral

locus. Therefore, each partition site has its own set of composite likelihoods for the null

and selection models. We identify the ‘best’ partition site for each region by selecting the

site whose ratio of its maximum composite likelihood under the selection model to the null
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model is greatest, i.e. by maximizing the level of support for selection at this site. From

this partition site, we identify the maximum composite likelihood estimates t̂b and ŝ for the

region. We note that in our application, these estimates tended to be very similar among

partition sites.

Our method focuses on inferring the history of selection from haplotypes alone, and

does not incorporate the distribution of the selected allele frequency across populations

(as in Racimo et al., 2018; Refoyo-Mart́ınez et al., 2019). We could incorporate into our

composite likelihoods the conditional probability of xs across populations under a given

parameterization of the selection model, but here our focus is on the information about the

timing of selection contained in haplotype patterns.

We analyze bi-allelic sites that are polymorphic among our set of samples. Since our

multivariate normal approximation works best when alleles segregate ancestrally at some

intermediate frequency, we remove sites polymorphic in only one population with a minor

allele frequency less than 0.01. In practice, we mean centered our observed allele frequencies,

which removes dependence on the ancestral allele frequency xal. We provide more detail on

mean centering, sample size correction, and implementation in Appendix 1.8.3.

Distinguishing between immediate and non-immediate selection To assess the

timing of selection relative to introgression we first distinguish between immediate (tb = 0)

and non-immediate (tb > 0) selection. We do so by using the ratio of the maximum composite

likelihood under all parameter combinations to the maximum composite likelihood when

selection is immediate,

CLRtb>0 =

sup
s,tb

LC(s, tb;D)

sup
s

LC(s, tb = 0;D)
. (1.11)

The higher this ratio, the more support we have in favor of an initial neutral period relative to

immediate selection. Since composite likelihoods ignore the correlation in allele frequencies

across loci due to linkage disequilibrium, we cannot use traditional statistical methods for
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model selection. Therefore we rely on simulations and reject the immediate selection case if

the upper 97.5th percentile of CLRtb>0 from immediate selection simulations does not exceed

the observed value in a region. In other words, we reject the null hypothesis of immediate

selection if we observe a value of CLRtb>0 high enough to be unlikely if selection were truly

immediate. The following sections contain more detail on the simulation procedure used to

reject immediate selection.

Validation We ran our method on simulated data to evaluate its performance, using SLiM

3.0 for forward in time simulations (Haller and Messer, 2019). We simulated 2cM (2 Mb)

loci with the selected mutation at the center of the locus. We simulated under the demo-

graphic history shown in Figure 1.1, along with a divergence time between the Yoruba and

Eurasian populations of 2,500 generations and a divergence time between modern humans

and Neanderthals of 16,000 generations. The Neanderthal population was simulated with a

population size of 3,000, whereas all other populations were simulated with a size of 10,000.

Our SLiM simulations generated tree sequences, onto which we added neutral mutations

and calculated population allele frequencies using the same sample sizes as in our real data

in Python version 3.7.4 with msprime (Kelleher et al., 2016), tskit (Kelleher et al., 2018),

and pyslim (Haller et al., 2019). We ran our method on these data in R version 3.4.4.

The method assumed the same demographic history that we simulated and used a neutral

F estimated from neutral allele frequency data, also produced by SLiM simulations under

the same demographic history as the selection simulations. See Appendix 3.8.1 for more

simulation details.

Our first goal was to determine our power to detect selection that did not begin imme-

diately, and so we established the significance cutoff using simulations under the null model

of immediate selection. Running the method on simulations of immediate selection, we

identified a positive correlation between xs, the average selected allele frequency among all
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putative selected populations, and CLRtb>0, the composite likelihood ratio quantifying the

method’s support for non-immediate selection relative to immediate selection (Figure 1.9).

This relationship between xs and CLRtb>0 among our immediate selection simulations does

not differ among combinations of the selection coefficient (s) and the duration of the sweep

(ts) (Figure 1.9). Thus, for each simulation of non-immediate selection, we rejected imme-

diate selection if its CLRtb>0 was greater than the upper 97.5th percentile of CLRtb>0 from

the 500 immediate selection simulations with the closest xs. We used a similar procedure to

determine the significance cutoffs for the real dataset.

Varying the onset time of selection in our simulations, we found that the method’s power

to reject immediate selection increases with the true waiting time until selection (tb) and xs

(Figure 1.5). Our method has reasonable power to reject immediate selection when selection

begins > 1000 generations after admixture, suggesting that we should correctly identify

many of the regions that only recently contributed to adaptation. Overall, s is not well

inferred, likely because we deal with old selection events. Therefore, while s appears in

our selection model, we concentrate on inferring tb in our application. The method yields

somewhat biased estimates of the waiting time until selection (Figures 1.10–1.13). However,

among the simulations in which the method rejected immediate selection, the method does

a good job tracking the true waiting time until selection (Figure 1.6). This performance

decreases when fewer populations are considered to be selected, but still the method can

identify that selection started much later in time. For more details on method performance,

see section 1.9.2.1.

1.4 Data Availability

Scripts for imputation, simulations, and the method are provided at www.github.com/

SivanYair/selTime_neanderthal_AI. The script that computes genotype likelihoods can

be found at www.github.com/mathii/gdc3/blob/master/apulldown.py. Supplement file
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Figure 1.5: Power to reject immediate selection as the true waiting time until selection (tb)
increases. Lines correspond to simulations with different groups of high frequency popula-
tions (each with the selected allele frequency greater than 0.05), i.e. groups of populations
considered selected. Note that this does not perfectly correspond to groups of populations
truly selected in our simulations, and so we have different numbers of observations contribut-
ing to each point. Points with fewer than 10 observations were removed. Panels correspond
to bins of xs, the selected allele’s average frequency among populations considered selected.
Results for xs > 0.4 are qualitatively similar, though we show finer bins in Figure 1.15.

28



n=74 n=154 n=295 n=306 n=232 n=253 n=276

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

200 400 600 800 1000 1200 1400
true waiting time until selection (tb)

es
tim

at
ed

 w
ai

tin
g 

tim
e 

un
til

 s
el

ec
tio

n 
 t b^  

Figure 1.6: Estimated waiting time until selection (t̂b) among simulations with all populations
considered selected (each xs > 0.05) and in which the method rejected immediate selection.
Target points mark the true waiting time until selection that we aim to estimate. Earlier
true waiting times have fewer observations because the method has less power to reject
immediate selection in this parameter space. Results for more groups of putative selected
populations are shown in Figure 1.14. Estimated waiting times until selection under the
immediate selection case can be found in Figure 1.9.

S2 is available on ProQuest.

1.5 Data application to estimate the timing of selection

on Neanderthal alleles

Procedure for identifying selected site and parameter estimates For each region,

we ran our method on the previously defined windows in addition to 1 cM flanking them

on each side, because if selection is immediate with s = 0.01 it takes about 1 cM for the

signals of selection to almost completely decay. We used the HapMap Project’s genetic map

to identify the endpoints of genomic analysis windows and recombination rates between each

neutral and selected site for the method (note that this means that we need to assume that
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recombination rates have been relatively constant over this time period). We excluded sites

without Neanderthal allele frequency data from our analysis, as they are less informative of

introgression patterns and the method might instead pick up on unrelated signals of selection

at these sites.

We estimated the neutral F from putative neutral allele frequency data genome wide.

We chose regions at least 300 base pairs long, at least 0.4 cM away from a gene, and with a

minimum per base pair recombination rate of 0.9×10−8 using the ‘Neutral Regions Explorer’

(Arbiza et al., 2012). This led to 105,786 sites after filtering. While these sites may not be

entirely unaffected by linked selection, we can still use them to represent background patterns

of genetic diversity from which we distinguish strongly altered patterns caused by adaptive

introgression.

Among the ancestry informative sites in each region, we chose partition sites (which

represent potential selected sites) to be all sites with at least two ancient populations with

data and a Neanderthal allele frequency ≥ 20% in at least one European, East Asian, or

South Asian 1000 Genomes population. For a region, we looped over possible partition sites

to run the method on their corresponding dataset, and then selected among these partition

sites. Then from the ‘best’ partition site we selected among parameter estimates of tb and

s. For example, in Figure 1.7 we show the profile composite likelihood surface of tb at the

maximum composite likelihood partition site (relative to the null model at this site) in the

region OAS1,OAS3. The peak in this surface corresponds to our estimate of tb, which in

this region we found to be very high. As the relationships among our populations are only

partially understood, we ran the method with the Altai Neanderthal sample included in

the Neanderthal population (discussed in section 1.9.2.2 and Figure 1.18) and with multiple

plausible modifications to the admixture graph in Figure 1.1 (discussed in section 1.9.2.2 and

Figure 1.19). To account for the uncertainty in our imputation procedure, in each region

we reran the method 40 times on bootstrapped datasets: rather than using the maximum
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Figure 1.7: Profile composite likelihood surface of the waiting time until selection (tb) in the
region OAS1,OAS3.

likelihood genotype at the partition site to assign an ancient sample to a genotype partition,

in each bootstrap run we randomly assigned the sample to one of the partitions according

to its posterior genotype probabilities provided by the imputation algorithm (results shown

in Figure 1.17).

Procedure for distinguishing between immediate and non-immediate selection

Among the regions in which the method estimated a non-immediate waiting time until

selection (t̂b > 0), we rejected immediate selection if their CLRtb>0 exceeded the upper 97.5th

percentile of those from the 500 immediate selection simulations with the closest xs (the

average selected allele frequency among all putative selected populations). Recall that we can

only identify these significance thresholds with simulations. Since composite likelihoods may

be sensitive to the spatial distribution of analyzed sites and their corresponding populations

with known allele frequencies, we sampled sites to analyze in the simulated data using the

same spatial patterning as the region of interest. Specifically, we binned the genetic positions

of analyzed sites into 10−3 cM intervals to the left and right of the selected site. For each of

these sites, we sampled a site in the simulated data from the same genetic distance bin and
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masked its allele frequencies from populations with no data. We used the same immediate

selection simulations as in the Validation section, except this time evaluating them over a

larger 3 Mb (3 cM) locus .

Of the 36 regions we ran our method on, our method estimated t̂b > 0 in 26, and rejected

immediate selection in 17 (Figure 1.8). Four of the regions in which we rejected immediate

selection had a standard deviation greater than 100 generations of t̂b in their bootstraps over

the imputation uncertainty: CHRM2, chr1:193885932, chr2:154493544, and chr12:84903554

(Figure 1.17). For the remaining 13 regions in which we have greater confidence in our esti-

mated waiting times, nine of these regions have t̂b ≤ 700, whereas the remaining four have ex-

tremely high estimates: SEMA7A,UBL7 has t̂b = 1300 and CACNA1S,ASCL5; OAS1,OAS3;

and chr4:189187062 have t̂b = 1500.

As with many selection scans, the function of alleles underlying adaptation are obviously

unknown. Among the set of regions with a shorter initial period at low frequency, BNC2 is

a better-studied candidate of adaptive Neanderthal introgression, where the likely selected

Neanderthal variant is associated with lighter skin pigmentation (Dannemann et al., 2017).

As for the other regions with early selection, mutations in EYS affect the development and

maintenance of photoreceptors in the retina (Collin et al., 2008; Abd El-Aziz et al., 2008;

Alfano et al., 2016), proteins encoded by EVC are involved in the regulation of Hedgehog

signaling and mutations in this gene affect patterning during development (Ruiz-Perez et al.,

2000; Blair et al., 2011; Caparrós-Mart́ın et al., 2013; Pusapati et al., 2014), proteins en-

coded by CRMP1 may be involved in the development of the nervous system and epithelial

sheets (Nakamura et al., 2014; Yu-Kemp et al., 2017), and SLC7A10 contributes to synaptic

regulation in the central nervous system (Ehmsen et al., 2016; Palaćin et al., 2016; Mesuret

et al., 2018). HELZ2 is involved in regulating the differentiation of adipocytes and could

thus play a role in metabolism (Katano-Toki et al., 2013). PLA2R1, ITGB6, and SLIT3

putatively play a role in tumor suppression, however mutations at all of these loci are also
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known to influence variation in other phenotypes (Marlow et al., 2008; Hezel et al., 2012;

Guo et al., 2013; Bernard and Vindrieux, 2014; Yu et al., 2014; Ng et al., 2018; Yoshikawa

and Asaba, 2020). Most research on RHPN2 and PTK6 has focused on the role of their

expression in cancer progression (e.g. Zheng et al., 2010; He et al., 2015). The remainder

of regions in this category are poorly studied or intergenic and far from genes. As for the

recently selected regions, SEMA7A plays a role in both the immune and nervous systems,

regulating active T cells in the former and axon growth and formation during development

in the latter (Pasterkamp et al., 2003; Suzuki et al., 2007; Gras et al., 2013). Polymorphisms

at this locus are also associated with variation in bone mineral density (Koh et al., 2006).

UBL7 may play a role in ubiquitin signaling, however little is known about the effects of

variation at this locus (Zhang et al., 2017). CACNA1S encodes a protein known to con-

tribute to the structure of calcium channels involved in skeletal muscle contraction (Tanabe

et al., 1990; Ptáček et al., 1994; Ertel et al., 2000) and in some cases can influence body

heat regulation (Beam et al., 2017). ASCL5 is less well studied, though mutations in this

gene have been implicated to affect tooth development (He et al., 2019). OAS1 and OAS3

haplotypes can influence innate immunity, which we discuss in more detail later. Based on

what we currently understand about mutations in these genomic regions, the non-immediate

benefits provided by Neanderthal alleles may have varied widely and were perhaps associated

with different environmental factors.

1.6 Discussion

Here we use patterns of linked selection to develop one of the first model-based methods that

infers the time at which Neanderthal introgressed alleles became adaptive. Our approach uses

ancient DNA as well as the hitchhiking effect to investigate the temporal history of selection.

We directly address partial sweeps, which likely reflect most cases of human adaptation and

perhaps adaptive introgression more generally, and use them as a tool to time the onset
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Figure 1.8: (Top) Distribution of estimated waiting times until selection (t̂b) in the applica-
tion of the method to 36 regions of adaptive introgression. Blue bars represent cases in which
the method did not reject immediate selection, and orange bars represent cases in which the
method did reject immediate selection. Blue bars are stacked on top of orange bars (they
do not overlap). (Bottom) Results among all regions with t̂b > 0. These represent 26 out of
36 cases. Regions in which the method did not reject immediate selection are colored blue,
and regions in which the method rejected immediate selection are colored orange (17 cases).
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of selection. While we require a known demographic history among Neanderthal-admixed

populations, our method is robust to modifications in these assumptions (see section 1.9.2.2

for discussion).

We found that in most regions that we analyzed, we could not reject a model of se-

lection immediately favoring Neanderthal-introgressed alleles upon admixture. In some of

these regions, East Asians and/or ancient populations do not contain signatures of adaptive

introgression. Obviously some of these cases may represent our lack of power to rule out

short onset times from haplotypes alone and so our results should not be taken as indicating

that selection began immediately for many Neanderthal haplotypes. In addition, the regions

that we ran our method on were identified from signals of unusual sharing with Neanderthals

(Racimo et al., 2017), and so we may be missing some cases of recent selection on Nean-

derthal introgression that dragged up only very short blocks of Neanderthal ancestry. We

also limited our analysis to regions with signatures of adaptive introgression in European

populations, so there may be cases of recent selection in East Asian or other populations

that we did not identify. Among the regions in which we did reject immediate selection, we

estimated a wide range of waiting times until selection. From simulations, we found that

we can generally classify these cases into earlier (0 < t̂b ≤ 800) and more recent (t̂b > 800)

selection. These time frames may be coarse, but with our estimates of recent selection be-

ing far from the boundary between early and recent selection, the transition between them

possibly marks the end of the last glacial period (∼ 11.5 kya). Thus, we are potentially

distinguishing between adaptation to conditions during the Upper Paleolithic versus later

periods defined by warming, technological innovation, the emergence of farming, and higher

population densities.

We modeled that the beneficial allele was at a low frequency for some time followed by the

onset of selection due to some environmental change. This initial period could correspond to

the Neanderthal allele being neutral or balanced at low frequency. However there are a few
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possibilities other than a truly delayed onset of selection that could explain our rejection of

immediate selection. First, selection may have immediately favored an allele, but the allele

was recessive and thus took a long time to rise in frequency. We chose to model additive

selection because we do not have information on dominance, but for recessive alleles we may

be timing its rise to intermediate frequency rather than the selection onset (see Jones et al.,

2020, for a possible dominance related lag in an introgressed pigmentation allele in snowshoe

hares). Given that the method does a poor job estimating the selection coefficient for these

old sweeps from haplotype data alone, we likely cannot distinguish among different models

of dominance. Second, selection may have immediately favored a beneficial Neanderthal

allele, but it was only able to rise in frequency once it recombined off other tightly linked

deleterious alleles on its Neanderthal haplotype background. There are two ways that this

could lead us to incorrectly infer more recent selection: (i) the beneficial allele could have

recombined earlier than expected, causing it to rise in frequency close to its introgression

time but on a shorter Neanderthal haplotype than we predict under immediate selection,

or (ii) a time lag between the selection onset and the recombination event that allowed the

allele to rise in frequency could cause our timing estimates to mark the recombination event

rather than the selection onset. Some studies have described the conditions in which an

adaptive allele could introgress and eventually fix given its linked deleterious background

upon introduction (e.g. Uecker et al., 2015), with some investigation into the timescale in

which recombination would generate a haplotype with a net selective advantage (Sachdeva

and Barton, 2018). Finally, the sweep of Neanderthal alleles up in frequency may not be

due to a beneficial Neanderthal allele, but instead hitchhiking with a new beneficial allele

that arose via mutation more recently than the Neanderthal introgression, by chance on

the background of a Neanderthal haplotype. If Neanderthal-introgressed alleles are at ∼ 2%

frequency genome-wide, then we should expect about 2% of recent sweeps from new mutation

to arise on a Neanderthal-introgressed background and sweep them to high frequency.
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We identify two regions as having clear statistical support for very recent selection

(OAS1,OAS3 and CACNA1S,ASCL5). These regions have very high t̂b, which our simu-

lations show are very rarely estimated under cases of early selection. We are less convinced

of alternative explanations for their late rise in frequency because they would need to be

replicated in multiple populations. Specifically, given that the Neanderthal alleles rose in

frequency so late, and that in both of these regions Neanderthal ancestry is at high frequency

in present day Europeans and East Asians, this rise must have begun after Europeans and

East Asians diverged from each other, i.e. independently. The chance that the Neanderthal

alleles both recombined off of their deleterious background or both hitchhiked on a sweep in

the region are extremely small. Thus, for OAS1,OAS3 and CACNA1S,ASCL5, we have evi-

dence that Neanderthal alleles were independently beneficial in Europeans and East Asians,

well after admixture with Neanderthals.

In the CACNA1S,ASCL5 region, the estimated waiting time until selection (t̂b = 1500)

implies selection began after the sampling time of the West Eurasian Upper Paleolithic,

however this population does carry Neanderthal haplotypes at high frequency in this region.

The Neanderthal allele may have drifted away from low frequency in this population after

it diverged from the European ancestry populations that we study, which our simulations

show happens reasonably often and does not confound our method. Alternatively, selection

may have started earlier in the common ancestor of European ancestry populations and more

recently in East Asian ancestry populations. We reran our method after removing East Asian

samples but our estimates did not change, which could either reflect a selection onset more

recent than the West Eurasian Upper Paleolithic were sampled or poor performance of the

method in the absence of East Asian samples. The latter possibility was beyond the scope of

this paper to investigate, however future applications could investigate the effect of sampling

and extend the method to allow for different onset times when selection independently favors

alleles. In total, Neanderthal alleles in this region appear to have been independently favored
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in the ancestors of East Asians and the ancestors of Europeans, indicating that geographically

separated populations experienced similar changes in environmental conditions, possibly at

different times.

The selection pressure favoring the OAS1,OAS3 haplotype is thought to be related to

innate immunity. Indeed, a recent study found that the Neanderthal haplotype at OAS1

is protective against COVID-19 severity, hospitalization, and susceptibility (Zhou et al.,

2020; Zeberg and Pääbo, 2021). It has previously been suggested that this gene contributes

to traits under balancing selection because haplotypes at this locus have shown variable

expression responses to different Flaviviruses (Sams et al., 2016) and a separate Denisovan

haplotype segregates at high frequency at this locus in Melanesians (Mendez et al., 2012).

Our recent date of selection, and the fact that genomic samples dated closer to the admixture

time do not carry Neanderthal haplotypes in this region, are consistent with a recent onset of

positive selection in a longterm cycle of balancing selection. A number of other genes known

to influence immunity such as the TLR6-TLR1-TLR10 cluster and HLA class I genes harbor

candidates of adaptive introgression, however we did not analyze them as they contain both

Neanderthal and Denisovan haplotypes in Eurasian populations (Abi-Rached et al., 2011;

Dannemann et al., 2016). The timing of adaptation for the OAS1,OAS3 region is at odds

with the hypothesis that the transfer of pathogens from Neanderthals to modern humans

necessitated rapid human adaptation using Neanderthal-derived immunity alleles (Enard

and Petrov, 2018; Greenbaum et al., 2019). However, it would be interesting to test this idea

more generally by attempting to date the start of adaptation for more of these introgressed,

putative immunity-related haplotypes.

Our investigation contributes to a growing model-based understanding of the genomic

patterns of adaptive introgression. Setter et al. (2020) introduced VolcanoFinder, a method

that identifies cases of adaptive introgression by probing the recipient population’s patterns

of heterozygosity around the selected site. Using expected coalescence times and assuming
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fixation of the selected allele, they predict very low diversity in a small window around the

selected site and very high levels of diversity at intermediate distances. Our predicted within-

population probabilities of coalescing characterize similar patterns when combining results

from both partitions of a selected population (weighted by their frequency in the population,

i.e. the frequency of the selected allele). However, the characteristic volcano pattern would

disappear as the frequency of the selected allele decreases or waiting time until selection

increases. Our work demonstrates that both of these situations are frequent, and thus the

continued difficulty of developing relaxed tests for adaptive introgression while avoiding false

positives. Shchur et al. (2020) also use a coalescent approach, in their case to model how

adaptive introgression affects the distribution of introgression tract lengths. Fixing the time

until introgression and admixture proportion, they show how stronger selection increases the

introgression tract lengths. While we do not explicitly model tract lengths, these patterns

are apparent in our coalescent predictions.

We implemented a flexible inference framework that could be further modified to investi-

gate the spatio-temporal history of adaptation in modern humans and other systems, whether

via introgression or derived mutations. Future applications could distinguish among groups

of truly selected populations, allow the frequency of the selected allele to vary among pop-

ulations, or to distinguish between drift and selection. Our models and estimation method

for the timing of adaptation via introgression can be generalized to other organismal sys-

tems. In our current application we assume that the introgressed lineage coalesces with the

Neanderthal lineage due to the Neanderthal population’s low effective population size, as

this allows us to side step modeling the sweep in Neanderthals. However, in other systems

the donor population cannot be assumed to have a very low effective population size, but it

should be simple to include the extra terms modeling the sweep-induced increase in coales-

cence between the recipient and donor populations close to the selected site. The application

of methods like this to other species would allow a more general understanding of how often
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introgression is rapidly favored versus supplying genetic variation for future adaptation.

Using a combination of ancient DNA and haplotype based timing, we documented spa-

tially and temporally varying selection on Neanderthal alleles. Our results provide evidence

that admixture between diverged populations can be a source of genetic variation for adapta-

tion in the long term. They also allow us to better understand the historical and geographic

contexts within which selection favored Neanderthal introgression. As experimental work

begins to identify the specific alleles and phenotypes potentially selected on, we can more

fully flesh out how interbreeding with archaic populations tens of thousands of years ago has

shaped the evolution of modern human populations.
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1.8 Appendix

1.8.1 Simulation Details

1.8.1.1 Selection Simulations

Keeping demography constant, we simulated different combinations of tb, s, ts, and set

of selected populations (Tables 1.4 and 1.5). After the divergence between the ancestors

of Neanderthals and modern humans, we added a mutation with s = 0.025 to a single

Neanderthal haplotype at the selected site. It became neutral before admixture with modern

humans. We restarted any runs in which the selected mutation did not reach fixation in the

Neanderthal population prior to admixture, was not segregating in all selected populations

at the onset of selection, was lost from any selected population during the sweep, was not at

greater than 20% frequency in at least one selected population at the sweep finish, or was

not at greater than 20% frequency in either the European or East Asian population sampled

in the present day. The 20% frequency cut off was motivated by the same criteria with which

adaptive introgression candidates were identified (Racimo et al., 2017).

As frequency trajectories in SLiM are stochastic, we chose combinations of s and ts that

would target different final frequencies (xs) under a deterministic trajectory. For each s and

target xs, we calculated ts according to equation 1.4 and assuming that the frequency at the

sweep start is the admixture proportion we used in simulations (g = 0.02). However, because

our simulations condition on the selected mutation segregating in all selected populations at

the selection onset, the average starting frequency in our simulations tended to be greater

than g, and increased the later selection began. Therefore, our chosen ts on average led

to rather high xs in cases of late selection, even when we targeted xs = 0.2. Alternative

approaches to target a certain low xs in our simulations would have led to many simulations

where a target xs was reached due to genetic drift rather than natural selection. Those

approaches are inappropriate for us, as we focus on understanding the history of natural
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selection, rather than distinguishing between genetic drift and natural selection.

Of all polymorphic sites that were not filtered, we randomly down-sampled the data set

to 12,000 sites, which is close to the number of sites analyzed for data in our application with

loci of the same size. As described in the main text, we used a different sampling approach

for simulations generated to identify the CLRtb>0 boundary for the regions we analyzed in

our application.

1.8.1.2 Neutral Simulations

We generated simulations under neutrality using the same demographic history as the selec-

tion simulations so that we could estimate the “genome-wide” neutral F. We simulated 2000

independent trees by separately recording the tree sequences of 1 bp loci and subsequently

overlaying multiple mutations. From these 2000 independent “loci” we estimated the neutral

F from 19,323 sites after filtering.

1.8.2 Estimating probabilities of coalescing from allele frequencies

Using allele frequencies, we obtain unbiased estimates of F, our genome-wide neutral prob-

abilities of coalescing. Rearranging the equation providing the covariance of the change in

population allele frequencies from the ancestral population, the probability a pair of ancestral

lineages coalesce before the root is

fij =
Cov[∆xi,∆xj]

xa(1 − xa)
. (1.12)

Since ∆xi = xi−xa, the above covariance equals El[xilxjl]−El[x
2
al]. In our scripts we estimate

fij using an equivalent expression that directly averages over the two possible alleles at a

locus,

fij = 1 − El[xil(1 − xjl) + xjl(1 − xil)]

El[2xal(1 − xal)]
. (1.13)

The numerator of the fraction represents the probability of sampling different alleles from

population i and population j, which we estimate by taking its average over all loci. When
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i and j correspond to the populations that root the tree, this average serves as the unbiased

estimator of the denominator, 2xa(1− xa). When i = j, such that the numerator represents

the expected heterozygosity within a population, we must account for how allele frequencies

change when we sample without replacement, i.e. we must remove the finite sampling bias.

If nil represents the sample size of population i at locus l, then when i = j,

El[xil(1 − xjl) + xjl(1 − xil)] =
1

L

L∑
l=1

nil

nil − 1
(2xil(1 − xil)). (1.14)

When validating that our model predictions match the probabilities of coalescing in our

selection simulations, such as in Figure 1.4, we repeated the above procedure for sets of loci

binned by genetic distance to the selected site.

1.8.3 Inference Details

When we calculate likelihoods of population allele frequencies, we need to account for the

finite sampling bias in our estimates. Previously, we described the variance in the true

population allele frequency due to genetic drift, however there is an additional variance

in our estimates due to sampling. Since the count of a certain allele type in a sample is

binomially distributed according to the true allele frequency, then with sample size nil the

variance in allele frequency due to sampling is expected to be approximately xa(1 − xa)
1
nil

.

Thus the total variance in the population allele frequency is xa(1− xa)(fii + 1
nil

). Therefore,

when we calculate the probability of population allele frequencies at a locus, we first modify

F(S) by adding 1
nil

along the diagonal for each population i.

Since we do not know the ancestral allele frequency at each locus, we approximate it with

the mean across our sampled population allele frequencies,

x̄l =
1

kl

kl∑
i=1

xil, (1.15)

where kl is the number of populations with allele frequency data at locus l. We acknowledge

that in our case x̄l will be biased toward European allele frequencies. With allele frequencies
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now distributed relative to each other, we accordingly modify the population allele frequen-

cies and covariance matrix by mean-centering them. The new population allele frequencies

therefore represent deviations from their mean, and a negative covariance among pairs of

populations implies that we predict their allele frequencies to be on opposite sides of this

mean. As x̄l uses information from all populations, we lose a degree of freedom and thus

drop information from a single population. Our resulting mean-centered allele frequencies

are

x⃗l
′ = Tlx⃗l (1.16)

and our mean-centered covariance matrix is

F(S)′ = TlF
(S)TT

l , (1.17)

where Tl is the kl−1 by kl matrix with kl− 1
kl

on the diagonal and − 1
kl

elsewhere. Therefore

we calculate the probability of mean-centered allele frequencies at a locus as

P(x⃗l
′|rl,F, AG, s, tb, xs)

≈ N
(
x⃗l

′|0, x̄l(1 − x̄l)F
(S)′(rl,F, AG, s, tb, xs)

)
.

(1.18)

We take the same approach when calculating probabilities under the null model.

To allow for computational efficiency, we first bin each site’s absolute genetic distances

to the selected site into 10−3 cM intervals. Each bin’s midpoint value is then used as the

representative recombination rate to predict F(N) and F(S) for each parameter combination.

When we calculate the probability of allele frequencies at each site, we use its bin’s repre-

sentative F and remove the rows and columns corresponding to unsampled populations at

the site prior to sample size correction and mean centering.

1.9 Supplementary Information

1.9.1 Supplementary Tables
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Population Migration

Time

(generations

ago)

Admixture

Proportion

EF 224 0.52

Steppe 155 0.36

WHG 226 0.12

Table 1.1: Timing and proportion of admixture between listed ancient populations and CEU
(a European-ancestry population). Admixture proportions were determined from Haak et
al. (2015). Simulations use adjusted admixture proportions so that CEU has the listed
admixture proportions following the final admixture event. Our models assume a single time
for all admixture among European-ancestry populations, which we define as the average of
the migration times listed here.

Chrom. Start to End

Positions (hg19)

Genes Plot Label

1 193772128 -

193999736

chr1:193885932

1 195854615 -

195922174

chr1:195888394

1 201038832 -

201102553

CACNA1S, ASCL5 CACNA1S,ASCL5

2 65395511 - 65533682 ACTR2 ACTR2

2 68347097 - 68507952 PPP3R1, PNO1 PPP3R1,PNO1

2 119536920 -

119693701

EN1 EN1
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2 154435207 -

154551882

chr2:154493544

2 159794421 -

160204173

TANC1, WDSUB1,

BAZ2B

TANC1...BAZ2B

2 160896628 -

161078020

PLA2R1, ITGB6 PLA2R1,ITGB6

4 5828060 - 5920067 EVC, CRMP1 EVC,CRMP1

4 189157618 -

189216507

chr4:189187062

5 507500 - 653905 SLC9A3 SLC9A3

5 167971758 -

168166025

SLIT3 SLIT3

6 1396838 - 1451472 FOXF2 FOXF2

6 66231951 - 66532520 EYS EYS

7 129861223 -

129929228

CPA2 CPA2

7 136570934 -

136667889

CHRM2 CHRM2

8 13846885 - 13942904 chr8:13894894

8 13946965 - 14174597 SGCZ SGCZ

9 16596898 - 16845056 BNC2 BNC2

11 11552692 - 11625808 GALNT18 GALNT18

11 70891472 - 70976597 chr11:70934034

12 54151324 - 54244563 chr12:54197944
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12 84808525 - 84998584 chr12:84903554

12 113337379 -

113427536

OAS1, OAS3 OAS1,OAS3

14 100944952 -

101071031

WDR25, BEGAIN WDR25,BEGAIN

15 43432954 - 44053859 TGM5, TGM7 TGM5,TGM7

15 74702840 - 75030779 SEMA7A, UBL7 SEMA7A,UBL7

15 85908189 - 86341507 AKAP13, KLHL25 AKAP13,KLHL25

16 51306915 - 51398178 chr16:51352546

16 77959647 - 78071863 VAT1L VAT1L

18 60124891 - 60268585 ZCCHC2 ZCCHC2

18 60658804 - 60777888 chr18:60718346

19 33510019 - 33763643 RHPN2, GPATCH1,

WDR88, LRP3,

SLC7A10

RHPN2...SLC7A10

20 62156560 - 62210005 PPDPF, PTK6,

HELZ2

PPDPF...HELZ2

22 49077496 - 49144645 FAM19A5 FAM19A5

Table 1.2: Putative regions of adaptive introgression that we analyzed. Genes correspond to those
listed with signals of adaptive introgression in Racimo et al. (2017). We label intergenic regions by
their chromosome and midpoint position.
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Waiting time

until selection (tb)

Selected

human populations

Combinations of

s and ts

(rows in Table 1.5)

0 All Eurasian 1, 2, 3, 4, 5

200 All Eurasian 7, 8, 9

400
All Eurasian 7, 8, 9

All European 6, 7, 8, 9

600

All Eurasian 7, 8, 9

All European 6, 7, 8, 9

All Eurasian except EurUP 6, 7, 8, 9

800

All Eurasian 7, 8, 9

All Eurasian except EurUP 6, 7, 8, 9

All Eurasian except East

Asia, EurUP

6, 7, 8, 9

1000
All Eurasian except EurUP 6, 7, 8, 9

All Eurasian except East

Asia, EurUP

6, 7, 8, 9

1200
All Eurasian except EurUP 6, 7, 8, 9

All Eurasian except East

Asia, EurUP

6, 7, 8, 9

1400
All Eurasian except EurUP 6, 7, 8, 9
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All Eurasian except East

Asia, EurUP

6, 7, 8, 9

Table 1.4: Simulated combinations of waiting time until selection (tb), group of selected popula-
tions, selection coefficient s, and sweep phase duration (ts). Combinations of s and ts are labeled
by numbers in Table 1.5.
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Proposed selection coefficients (s) Proposed waiting times until selection (tb)

0.002, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03,

0.05

0, 100, 200, 300, 400, 500, 600, 700, 800,

900, 1000, 1100, 1200, 1300, 1400, 1500,

1600, 1700

Table 1.3: Proposed parameters of s and tb, each combination of which we calculated com-
posite likelihoods. For a given run of the method, we did not evaluate a combination of s
and tb if the sweep would not complete (deterministically) before the present day, i.e. if the
time until selection is recent enough and/or the sweep time ts (which also depends on xs) is
long enough such that tb + ts > ti.

Selection Coefficient (s) Sweep Phase Duration (ts) Target xs # Runs

1 0.005 501 0.20 700

2 0.005 697 0.40 700

3 0.010 349 0.40 700

4 0.010 430 0.60 700

5 0.010 528 0.80 700

6 0.005 501 0.20 100

7 0.005 655 0.35 200

8 0.010 327 0.35 200

9 0.010 474 0.70 100

Table 1.5: Combinations of s and ts used in selection simulations used to evaluate the
method’s performance. Target xs corresponds to the average frequency the selected allele
would reach at the end of the sweep phase if it started the sweep at frequency g = 0.02. The
last column (# Runs) provides the number of replicates simulated for a provided waiting
time until selection and group of populations experiencing selection.
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1.9.2 Method Details

1.9.2.1 Method Validation

The method’s power to reject immediate selection increases with the true waiting time un-

til selection (tb) and the average frequency of the selected allele among putative selected

populations (xs) because they each lead to later estimates of tb, which correspond to higher

CLRtb>0 (Figures 1.9-1.13). Among the simulations in which our method rejects immediate

selection, it reliably identifies late selection when tb > 800. Notably, it can tell that selection

is recent despite the selected allele having drifted to high frequency earlier in time. For

example, the West Eurasian Upper Paleolithic (EurUP) were sampled 908 generations after

admixture, such that whenever tb > 900, allele frequencies in that population can only reach

higher frequencies because of genetic drift. Despite these high frequency cases when the true

tb > 900, the method can tell that selection started after the EurUP were sampled.

When East Asians are the only Eurasian population that does not carry the allele at high

frequency, the method is biased toward inferring earlier selection when tb < 800 and does

poorly when tb = 800. When EurUP is the only population that does not carry the allele at

high frequency, the method is biased toward inferring later selection when tb < 800.
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Figure 1.9: (Top) Relationship between the average final frequency of the selected variant
(xs) and the estimated waiting time until selection (t̂b) among immediate selection simu-
lations. The method estimated immediate selection (t̂b = 0) in 85% of these simulations.
(Bottom) Relationship between xs and the log of the composite likelihood ratio between
non-immediate and immediate selection, CLRtb>0, among immediate selection simulations.
log CLRtb>0 equals zero for the vast majority of low to intermediate xs because at these lower
frequencies the method is more biased toward inferring immediate selection. The relation-
ship between xs and log CLRtb>0 does not differ among combinations of s and ts. See Table
1.5 for targeted xs corresponding to each combination of s and ts.
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Figure 1.10: Distribution of estimated waiting times until selection among simulations in
which the method considers all Eurasian populations to be selected. Blue bars represent
cases in which the method did not reject immediate selection, and orange bars represent
cases in which the method did reject immediate selection. Blue bars are stacked on top of
orange bars (they do not overlap). Results are shown for each combination of true waiting
times until selection (columns) and binned average final frequencies of the selected variant
(xs, rows). Asterisks mark the estimated waiting time until selection that matches the truth.
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Figure 1.11: Distribution of estimated waiting times until selection among simulations in
which the method considers all European populations (including the West Eurasian Upper
Paleolithic) to be selected. Blue bars represent cases in which the method did not reject
immediate selection, and orange bars represent cases in which the method did reject imme-
diate selection. Blue bars are stacked on top of orange bars (they do not overlap). Results
are shown for each combination of true waiting times until selection (columns) and binned
average final frequencies of the selected variant (xs, rows). Asterisks mark the estimated
waiting time until selection that matches the truth.
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Figure 1.12: Distribution of estimated waiting times until selection among simulations in
which the method considers all Eurasian populations except the West Eurasian Upper Pale-
olithic to be selected. Blue bars represent cases in which the method did not reject immediate
selection, and orange bars represent cases in which the method did reject immediate selec-
tion. Blue bars are stacked on top of orange bars (they do not overlap). Results are shown
for each combination of true waiting times until selection (columns) and binned average fi-
nal frequencies of the selected variant (xs, rows). Asterisks mark the estimated waiting time
until selection that matches the truth.
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Figure 1.13: Distribution of estimated waiting times until selection among simulations in
which the method considers all Eurasian populations except the West Eurasian Upper Pa-
leolithic and East Asians (represented by CHB) to be selected. Blue bars represent cases
in which the method did not reject immediate selection, and orange bars represent cases in
which the method did reject immediate selection. Blue bars are stacked on top of orange
bars (they do not overlap). Results are shown for each combination of true waiting times
until selection (columns) and binned average final frequencies of the selected variant (xs,
rows). Asterisks mark the estimated waiting time until selection that matches the truth.
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Figure 1.14: Estimated waiting time until selection (t̂b) among simulations in which the
method rejected immediate selection. Target points mark the true waiting time until selec-
tion that we aim to estimate. Earlier true waiting times have fewer observations because the
method has less power to reject immediate selection in this parameter space. Each panel
corresponds to a different group of populations that the method considers selected.
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Figure 1.15: Power to reject immediate selection as the true waiting time until selection (tb)
increases. Lines correspond to simulations with different groups of populations considered
selected. Points with fewer than 10 observations were removed. Panels correspond to bins
of xs, the selected allele’s average frequency among populations considered selected.

58



[0,0.4] (0.4,1]

s=
0.005, ts =

655
s=

0.01, ts =
474

s=
0.01, ts =

327
s=

0.005, ts =
501

20
0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00 20
0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

true waiting time until selection (tb)

po
w

er
 to

 r
ej

ec
t i

m
m

ed
ia

te
 s

el
ec

tio
n 

(%
)

group of high frequency populations

All Eurasian

All European

All Eurasian except EurUP

All Eurasian except East Asia, EurUP

Figure 1.16: Power to reject immediate selection as the true waiting time until selection (tb)
increases. Lines correspond to simulations with different groups of populations considered
selected. Points with fewer than 10 observations were removed. Columns correspond to bins
of xs, the selected allele’s average frequency among populations considered selected, and
rows correspond to combinations of s and ts used in simulations.
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Figure 1.17: Each region’s estimated waiting time until selection (t̂b) when different sets of
ancient samples were randomly assigned to each population’s genotype partitions according
to their posterior genotype probabilities from imputation. Boxplots show the distribution
under 40 resampled datasets. The red asterisks mark each region’s t̂b under the dataset in
which ancient partitions are assigned based on the maximum likelihood genotypes. Regions
are presented in the same order as in Figure 1.2.

1.9.2.2 Results under different datasets and demographic assumptions

Inclusion of the Altai Neanderthal Sample Population structure among Neanderthals

and among Neanderthal-introgressed haplotypes could lead to erroneous results if we do not

include the true introgressing populations in our analysis. To investigate our method’s sen-

sitivity to our choice of Neanderthal population, we compared our results between using

only the Vindija sample and using both the Vindija and Altai samples to calculate allele

frequencies for the Neanderthal population. We made a single comparison for each region

at the ‘best’ partition site whose maximum composite likelihood under the selection model
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was greatest relative to the null model. In the vast majority of regions, our estimated

waiting times until selection (t̂b) did not change, and if they did they only moved within

200 generations (Figure 1.18). Our estimates changed greatly in two regions, CHRM2 and

chr11:70934034, both of which we have identified elsewhere as difficult to infer their timing

of selection onset (see the above and below sections). Our results are likely not sensitive to

specification of the Neanderthal population because of their low effective population sizes

leading to high probabilities of coalescing before the common ancestor of Neanderthals and

modern humans. When the Neanderthal population is composed of Vindija alone, we esti-

mate that the probability of coalescing fnn = 0.95. For a population composed of Altai and

Vindija (n=4), we estimate fnn = 0.91. Therefore, the ancestral lineages of an allele sampled

from the Altai Neanderthal and an allele sampled from the Vindija Neanderthal still have

an extremely high probability of coalescing. Since in our models we mainly track whether

sampled lineages descended from Neanderthals, such that those lineages coalesce while seg-

regating in a Neanderthal population, the Neanderthal source population has a negligible

effect on our predictions.

Sensitivity to Admixture Graphs In our application, we ran our method on all partition

sites while assuming the admixture graph specified in Figure 1.1, which we call option A. To

evaluate the sensitivity of our estimates to these assumptions, we re-ran the method using

three other graphs and the dataset of the highest maximum composite likelihood partition

site relative to the null model under option A. Each of these additional graphs contain a

single modification from the original. In option B, we changed the time of admixture with

Neanderthals from 2068 generations in the past (60kya with a generation time of 29 years) to

1988 generations (55kya with a generation time of 29 years). In option C, we did not model

present day Europeans as a mixture of the Bronze Age Steppe, Early Neolithic Farmers,

and Western Hunter Gatherers. While there is strong evidence that present day Europeans
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Figure 1.18: Each region’s estimated waiting time until selection t̂b under different sets of
samples comprising the Neanderthal population. Regions are presented in the same order as
in Figure 1.2.

are indeed a mixture of these three populations, we chose an extreme option to generally

demonstrate the insensitivity of our method to specifications of admixture among human

populations. In option D, we modified the divergence time among present day Europeans,

the Bronze Age Steppe, Early Neolithic Farmers, and Western Hunter Gatherers to be 333

generations (10k years with a generation time of 29 years) later (from 40kya to 30kya). Each

region’s timing estimates when assuming each admixture graph are shown in Figure 1.19.

Overall, estimated waiting times until selection for the majority of regions did not change

with each admixture graph, or changed very little. In particular, our modification of the

divergence time among European populations (option D) did not change the estimated wait-

ing time until selection from option A with the exception of 3 regions (PPPDF..HELZ2;
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PPP3R1,PNO1; and chr11:7093403). Generally, estimates more often changed when the

admixture time with Neanderthals shifted to be more recent. Among those regions in which

there was a change in the estimate from option A when using option C, the estimated wait-

ing time until selection was one or two hundred generations shorter, therefore corresponding

to a very similar fixed time that selection began. Thus, changing the admixture time re-

sulted in consistency either in the waiting time until selection or how recently selection

began. However, three regions showed large inconsistencies in their estimates as we changed

the admixture time, transitioning from very early to very late selection: chr12:54197944,

FAM19A5, and chr16:51352546. In the former two regions, we did not reject immediate se-

lection under option A. In chr12:54197944, we would potentially reject immediate selection

if we simulated immediate selection under the new admixture graph, and therefore caution

that the history of selection in this region is unclear. As for FAM19A5, the composite likeli-

hood ratio between non-immediate and immediate selection remains low such that we would

likely still reject immediate selection. In chr16:51352546, we previously rejected immediate

selection and likely still would, however we caution that our estimated waiting time until

selection is not informative in this region. When we remove any migration among modern

human populations, the regions with a large change (> 300 generations) are chr12:84903554,

chr1:193885932, ACTR2, SEMA7A,UBL7, and CPA2. Based on the composite likelihood

ratio between non-immediate and immediate selection, we would likely continue to reject im-

mediate selection in chr12:84903554, chr1:193885932, and SEMA7A,UBL7. In each of those

regions the removal of migration is the only change that alters results, and in each case

moves our estimates from recent to early selection. These earlier estimates may be unrealis-

tic given that we have strong evidence for migration among European ancestry populations.

It is unclear whether we would continue not to reject immediate selection in ACTR2 and

CPA2, though we note these two regions also had wide variation in their estimates when we

re-partitioned ancient populations (Figure 1.17), and so we refrain from making any claims
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Figure 1.19: Each region’s estimated waiting time until selection t̂b under different admixture
graphs. Each admixture graph specified by a letter is introduced in section 1.9.2.2. Regions
are presented in the same order as in Figure 1.2.

about the timing of selection in these regions.

1.9.3 Model Derivation

1.9.3.1 Between selected populations that diverged during neutral phase I

Here, we illustrate another example of how we predict probabilities of coalescing between

different categories of populations. We focus in depth on the probability of coalescing be-

tween pairs of selected populations who diverged from each other before the sweep started,

i.e. during neutral phase I. Afterward, we describe how we change these predictions among

other categorical pairs of populations. As a reminder, we consider three phases of the selected

allele frequency trajectory: during neutral phase I the selected allele segregates at frequency

g for tb generations, during the sweep phase the selected allele rises from frequency g to
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frequency xs over ts generations, and during neutral phase II the selected allele segregates

at frequency xs until the present day. Thus neutral phase II lasts a duration of tI − tb − ts

generations, where tI is the time between introgression and the present.

If a pair of populations (i, j) diverged from each other dij generations in the past, and

if this divergence occurred during neutral phase I, then they share a common ancestor for

tI − dij generations before the time of introgression. Since the duration of neutral phase I

is tb, we also know that these populations were isolated for the last tb − tI + dij generations

of neutral phase I. To get the probability that the ancestral lineages of an allele sampled

in population i and an allele sampled in population j coalesce, we consider the ancestry

background at the selected site that each ancestral lineage is associated with at each phase

transition. In the main text, we described the probabilities that a lineage is linked to

the selected or non-selected background at the transition between neutral phase II and the

sweep completion (Equation 1.5), in addition to the probability that a lineage remains strictly

associated with this ancestry background for the duration of the sweep phase (Equation 1.6).

With probability exp (−(tb − tI + dij)) a lineage does not recombine out of the background

that it was associated with at the transition between the sweep start and neutral phase I,

until the time at which the two populations share a common ancestor in neutral phase I.

We begin by describing the probability that the pair of lineages coalesce conditional on

them both being linked to the selected allele at the transition between neutral phase II and

the sweep finish. We say a lineage is “strictly associated” with the sweep if it never recom-

bines out of that background during the sweep phase and does not recombine at all during

the preceding generations of neutral phase I when the lineages are in separate populations,

such that

Pr(strictly associated with sweep) = Pr(always linked to selected allele during sweep)

× exp
(
− r(tb − tI + dij)

)
.

(1.19)
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If both lineages remain strictly associated with the sweep, then we consider the possibility

that they coalesce because they are associated with a background that is now relatively rare

during neutral phase I. This could be due to their descent from the same introgressed allele,

or the same non-introgressed allele that became associated with the selected background

before the sweep began. As these lineages can only coalesce if they remain on the same

background, we treat coalescence and recombination as competing Poisson processes, with

recombination occurring at rate 2r and coalescence at rate 1
2Neg

, where Ne is the mean

effective population size of populations (i, j) and g is the neutral admixture proportion, or

similarly the frequency of the selected background during neutral phase I. The probability

that neither of these events occur before the time of introgression is

Pr(no event) = exp

(
−(tI − dij)

(
2r +

1

2Neg

))
. (1.20)

In that case, both lineages are still associated with the selected background at the time

of introgression and thus must have descended from Neanderthals, so they coalesce with

probability fnn (the probability a pair of alleles sampled from Neanderthals coalesce). If

at least one coalescence or recombination event does occur, we care about the outcome

of the first event. The relative probability of coalescence is 1
1+4Negr

and of recombination is

4Negr
1+4Negr

. If the event is recombination of one of the lineages, then we condition on whether the

other lineage recombines at some point before introgression. With approximate probability

exp (−r(tI − dij)) it does not recombine, and therefore remains associated with the selected

background such that it descended from Neanderthals. Thus the lineages can only coalesce

if the lineage that did recombine also descended from Neanderthals, with probability g. If

both lineages recombined during this shared portion of neutral phase I, then they coalesce

with neutral probability fij, which already accounts for whether they are each introgressed

or not. We use a similar logic for the remainder of cases that involve one or no lineages

remaining strictly associated with the selected background before the pair are in the same
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population, such that

Pr(coalesce | both linked to selected allele at sweep finish) =

Pr(strictly associated with sweep)2

[
Pr(no event)fnn +

(
1 − Pr(no event)

)
×(

1

1 + 4Negr
+

4Negr

1 + 4Negr

(
exp (−r(tI − dij)) gfnn+

(1 − exp (−r(tI − dij))) fij
))]

+

2 Pr(strictly associated with sweep)
(
1 − Pr(strictly associated with sweep)

)
×[

exp (−r(tI − dij)) gfnn + (1 − exp (−r(tI − dij))) fij

]
+(

1 − Pr(strictly associated with sweep)
)2
fij.

(1.21)

Next we describe the probability that the pair of lineages coalesce conditional on one be-

ing associated with the selected allele and the other being associated with the non-selected

allele at the transition between neutral phase II and the sweep finish. Since it is relatively rare

for the lineage linked to the non-selected allele to switch to the background of the selected

allele during the sweep phase, we do not consider the possibility of increased coalescence

during neutral phase I. Therefore, we are simply interested in the ancestry background of

each lineage at the time of introgression. If neither of them become disassociated with their

backgrounds during the sweep phase and do not recombine before the time of introgression,

then we know that one allele descended from Neanderthals while the other did not, such that

they cannot coalesce. If the lineage originally associated with the non-selected background

remains associated with this background during the sweep and does not recombine before in-

trogression, whereas the other lineage does disassociate at some point, they can only coalesce

if the disassociating allele did not descend from Neanderthals, with probability 1−g. At this
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point, we need to slightly modify their probability of coalescing from the neutral estimate

because we are dealing with a case in which we exclude descent from Neanderthals as a pos-

sibility. The probability that two lineages sampled from Neanderthal admixed populations

coalesce, conditional on them both not descending from Neanderthals, is

Pr(coalesce | both non-Neanderthal) =
fij − g2fnn

(1 − g)2
, (1.22)

where g is the neutral admixture proportion. We have previously described our predictions

when one of the lineages descends from Neanderthals due to their consistent association with

the selected background while the other lineage may not maintain a consistent association,

in addition to when neither lineage maintains a consistent association. Therefore we obtain

the following with conditional probabilities ordered in the same manner we discussed them,

Pr(coalesce | linked to different allele types at sweep finish) =

Pr(always linked to non-selected allele during sweep)e−rtb

×
(
1 − Pr(always linked to non-selected allele during sweep)e−rtb

)
(1 − g)

× Pr(coalesce | both non-Neanderthal)+

Pr(always linked to selected allele during sweep)e−rtb

×
(
1 − Pr(always linked to non-selected allele during sweep)e−rtb

)
gfnn+(

1 − Pr(always linked to non-selected allele during sweep)e−rtb
)

×
(
1 − Pr(always linked to selected allele during sweep)e−rtb

)
fij

(1.23)

Finally, we describe the probability that the pair of lineages coalesce conditional on

both being associated with the non-selected allele at the transition between neutral phase

II and the sweep finish. We again condition on their background associations at the time of

introgression. If both lineages never disassociate from this background during the sweep and
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never recombine during neutral phase I, then neither descended from Neanderthals and they

coalesce with a slightly higher probability than neutrality as we previously described. If this

happens with just one of the lineages, then the other lineage must not have descended from

Neanderthals for them to coalesce, again with a slightly higher probability than neutrality.

In the remainder of cases, the lineages coalesce neutrally. These cases are summarized in the

following,

Pr(coalesce | both linked to non-selected allele at sweep finish) =(
Pr(always linked to non-selected allele during sweep)e−rtb

)2×
Pr(coalesce | both non-Neanderthal)+

Pr(always linked to non-selected allele during sweep)e−rtb

×
(
1 − Pr(always linked to non-selected allele during sweepe−rtb)

)
(1 − g)

× Pr(coalesce | both non-Neanderthal)+(
1 − Pr(always linked to non-selected allele during sweepe−rtb)

)2
fij.

(1.24)

Together, the full probability that a pair of lineages coalesce before the root is

f (S)
pipj

= Pr(linked to selected allele at sweep finish)2×

Pr(coalesce | both linked to selected allele at sweep finish)+

2 Pr(linked to selected allele at sweep finish)×(
1 − Pr(linked to selected allele at sweep finish)

)
× Pr(coalesce | linked to different allele types at sweep finish)+(
1 − Pr(linked to selected allele at sweep finish)

)2
× Pr(coalesce | both linked to non-selected allele at sweep finish),

(1.25)

where subscript pi refers to any partition of population i and subscript pj refers to any
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partition of population j.

1.9.3.2 Modifications under other scenarios among pairs of selected and non-

selected populations

If the pair of selected populations diverged during the sweep phase, we modify our above

predictions so that the lineages are in the same population for all of neutral phase I by

substituting any term tI − dij with tb (these terms represent the time during neutral phase I

in which the pair of lineages are segregating in the same population). If the pair of selected

populations are either the same population or diverged from each other during neutral phase

II (when the selected allele segregates at frequency xs), and if the pair of lineages are linked to

the same allele type at the most recent time they share a common ancestor, we consider the

additional possibility that they coalesce during neutral phase II because of their associations

with a subpopulation of haplotypes. We account for this using the same Poisson processes

described above, except during neutral phase II the frequency of the selected background is

xs and the frequency of the non-selected background is 1−xs. Recall that in cases of earlier

selection, it is possible that the common ancestor of a set of selected populations also has

descendant populations that do not carry the allele at high frequency. For those populations,

our models assume the selected allele has the same frequency trajectory as other selected

populations until the time it diverges from them, after which we switch the frequency of the

selected allele in this population to be its sampled frequency. This influences the probability

that this population’s ancestral lineages were linked to the selected allele at the time its

sweep phase begins.

In non-selected Neanderthal admixed populations, we track whether a lineage recombines

out of its initial ancestry association, specified by its partition, over the entire time to

introgression. If it loses this association, the only way it can have a non-neutral probability

of coalescing with another lineage from a similarly non-selected population would be if that

other lineage never recombined out of its initial background. As for a lineage from a selected
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population, they would have a non-neutral probability of coalescing if the lineage from the

selected population maintained an association with a selected or non-selected background by

the time of introgression. In the non-selected population, the probability that a lineage could

have descended from Neanderthals, conditional on it recombining out of its background at

sampling, is g throughout the whole time to introgression. We show how our predictions

change with tb and xs in Figure 1.20 and 1.21.

1.9.3.3 Modifications if a population was sampled in the past

If a population was sampled in the past, we modify the probabilities that its sampled lineages

are linked to each background according to the number of generations allotted to a given

phase. For example, consider a population i that was sampled τi generations ago, and carries

the selected allele at high frequency such that in our application we consider it selected. If

its sampling time falls within neutral phase II, then to calculate the probability that a

lineage sampled from partition B of population i is linked to the selected background at

the transition between neutral phase II and the sweep completion we simply reduce the

amount of time for recombination in neutral phase II by τi. If the provided waiting time

until selection tb and selection coefficient s make it so that population i was instead sampled

during the sweep phase, then at the transition between neutral phase II and the sweep

completion, the sampled lineages are linked to the background denoted by their partition

with probability 1. Then, we calculate that lineage’s probabilities of remaining associated

with either background during the sweep phase as if the selected allele reached the lower

frequency expected under the provided s and the allotted time for the sweep, tI − tb − τi.

If population i was sampled during neutral phase I, then we do not consider it a selected

population, and it has tI − τi generations for possible recombination by the introgression

time.
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1.9.3.4 Incorporating migration among Neanderthal admixed human popula-

tions

In our application, most admixture graphs we use make CEU (the European ancestry rep-

resentative population) a mixture of ancient populations WHG, EF, and Steppe. In our

models, we modify predictions for partition B of CEU, assuming that ancient populations

contributed only haplotypes with selected alleles to CEU. We thus consider donor popula-

tions to be only those contributing ancient populations with a partition B in the dataset. We

set a single migration time tm to be the average migration time from all human donor pop-

ulations (see Table 1.1). With probability exp(−rtm) a lineage sampled from partition B of

CEU does not recombine before the migration time. In this case, the probability this lineage

coalesces with a lineage sampled from any other partition pj is an average of the probability

that each donor population’s partition A coalesces with the lineage from pj, weighted by

the relative admixture proportions of each of these donor populations. If the lineage does

recombine by the time of migration, the probability it coalesces with a lineage from pj is that

of partition b of CEU. To predict coalescent probabilities for a pair of alleles sampled within

CEU’s partition B, we average over results from the possible migration histories of both

lineages. We acknowledge that our approach to treat migration does not reflect a realistic

coalescent history. Other options did not allow our predictions to converge to CEU’s neutral

probabilities of coalescing with increasing genetic distance from the selected site.

1.9.3.5 Predictions for genotype partition Bb

After making modifications for migration, we make predictions for all Bb partitions. The

probability a lineage sampled from this partition in population i coalesces with any other

partition from any other population pj is the mean of this prediction for population i’s

partition B and partition b. This reflects that half of the time we are sampling a neutral

allele that is linked to the selected allele, whereas in the remainder of cases the neutral allele

is linked to the non-selected allele. The probability of coalescing between partition Bb of
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Figure 1.20: Model predictions under different values of tb (the waiting time until selection)
when s = 0.01 and xs = 0.7.

population i and partition Bb of population j is the mean of the probability of coalescing

of all four combinations of partitions A and a in populations i and j, in which there is a

50% chance either partition is sampled in either population. For probabilities of coalescing

between lineages that were both sampled from partition Bb of population i, we take a

weighted average of the probabilities of coalescing within partition B, within partition b,

and between partition B and partition b, all partitions corresponding to population i. The

first two cases occur with probability 0.25 and the last case occurs with probability 0.5.
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between Early Neolithic Farmers (B) and (b) between East Asia (B) and Early Neolithic Farmers (B)

between the Yoruba and Early Neolithic Farmers (B) within Early Neolithic Farmers (B)

between Neanderthals and Early Neolithic Farmers (B) between Neanderthals and Early Neolithic Farmers (b)
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Figure 1.21: Model predictions under different values of tb (the waiting time until selection)
when s = 0.01 and xs = 0.3. Note that predictions of tb become less distinguishable when
xs decreases (see Figure 1.20 for comparison to xs = 0.7).
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Statement of Contribution

This chapter resulted from a collaboration among the above authors. My contribution to

this work was to extend and run a model-based inference method that was used to formally

test for introgression and estimate the timing and strength of selection. To include the full

story, the Main Text describes the work of all authors whereas the Supplement describes

only my contribution.

Abstract

Radical environmental change that provokes population decline can impose constraints on

the sources of genetic variation enabling evolutionary rescue. Adaptive toxicant resistance

has rapidly evolved in Gulf killifish (Fundulus grandis) occupying polluted habitats. We

show that resistance scales with pollution level and negatively correlates with inducibility

of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent

selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18-

34 generations ago) from Atlantic killifish (F. heteroclitus). One introgressed locus contains

a deletion in AHR conferring a large adaptive advantage (s = 0.8). Given limited migration

of killifish, recent adaptive introgression is likely mediated by human-assisted transport. We

suggest migratory inter-species connectivity as an important source of adaptive variation

during extreme environmental change.

2.1 Main Text

Human alterations of the environment can be swift and severe, and thereby result in popu-

lation declines and elevated selective pressures. Adaptation requires genetic variation from

mutations, standing variation, migration or interspecific hybridization (introgression). How-

ever, declining population size coupled with immediate threats to fitness may constrain the

sources of genetic variation that enable evolutionary rescue (Bell and Gonzalez, 2009; Messer
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et al., 2016); new mutations arise slowly, standing variation may be insufficient, habitat

fragmentation may limit migration, and hybridization may be rare and deleterious. Little is

known of the relative importance of these sources of variation in the context of evolutionary

rescue.

The Gulf killifish (Fundulus grandis) is common in coastal estuaries along the northern

Gulf of Mexico. They occupy the Houston Ship Channel, much of which is heavily polluted

with halogenated and polycyclic aromatic hydrocarbons (HAHs and PAHs) resulting from

over 60 years of industrial activity (Yeager et al., 2007), forming a gradient of contamina-

tion through Galveston Bay (Oziolor et al., 2018) (Figure 2.1A). Many HAHs cause cardiac

deformities in developing vertebrates that directly impair fitness (Hicken et al., 2011; White-

head et al., 2012). Nevertheless, F. grandis persist at these sites and are resistant to the

normally lethal effects of these toxicants (Oziolor et al., 2014). Here we examine the molec-

ular underpinnings of apparently evolved resistance to extreme pollution among populations

densely sampled across the pollution gradient, using experimental and population genomic

approaches. We integrate prior work on F. grandis ’ sister taxon, the Atlantic killifish (F.

heteroclitus), which has also adapted to similar chemicals (Reid et al., 2016), to uncover the

evolutionary history of key adaptive variants.

We sampled fish from 12 sites spanning the pollution gradient (Figure 2.1A), spawned

them separately in the lab, and exposed their embryos to a range of polychlorinated biphenyl

126 concentrations (PCB126; a model HAH). At the population level, resistance to toxicity,

measured by rates of cardiac teratogenesis, is correlated with pollution along this gradient,

where fish from the most polluted sites are resistant to concentrations of HAHs 1,000 times

higher than normally teratogenic levels (Figure 2.1B, 2.1C). Resistance is retained through

at least two generations in a clean environment (Figure 2.4) and is intermediate in hybrids

from crosses between sensitive and resistant populations (Oziolor et al., 2014), indicating a

genetic basis.
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Figure 2.1: Variation in sensitivity to pollution among F. grandis populations distributed
along a steep pollution gradient in Galveston Bay (USA). (A) Pollution gradient is scaled
by color, from low (blue) to high (black). Populations include resistant (black, R1 to R3),
intermediate-high resistance (red, IH1 to IH3), intermediate-low resistance (gold, IL1 to
IL3), and sensitive (blue, S1 to S3). Genomics data were collected for populations denoted
with circles. (B) Population variation in cardiac deformities in embryos exposed to PCB126
(error bars indicate standard error of the mean). Population variation in sensitivity to PCB-
induced cardiac deformities (log median effective concentration EC50) correlates with (C)
habitat pollution and (D) AHR pathway inducibility (CYP1A activation by PCB126). (E)
PCB-induced CYP1A activity varies among individuals and populations.
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AHR signaling mediates HAH-induced cardiac teratogenesis (Clark et al., 2010). We

compared AHR pathway function (CYP1A activity in response to PCB126 exposure (Nacci

et al., 1998)) among populations across the pollution gradient (Figure 2.5). Similar to

resistance, desensitization of the AHR pathway scales with levels of pollution (Figure 2.1D,

2.6). Within intermediate populations, inter-individual variation in AHR inducibility ranges

between sensitive and resistant populations (Figure 2.1E). Together, our experimental results

suggest that desensitization of AHR to HAHs underlies resistance in F. grandis.

To understand the genetic basis of this phenotype, we sequenced whole genomes of 24-49

fish (∼ 0.6x coverage) from three resistant (R1, R2, R3), two intermediate (IH1, IH2), and

two sensitive (S1, S2) populations. We searched for signatures of selection that co-vary with

pollution through pairwise genetic differentiation (FST ), population branch statistic (PBS)

(Yi et al., 2010), and differences in nucleotide diversity (π) between polluted and sensitive

populations in 20 kb windows. Neighboring 20 kb windows were merged into regions, which

were ranked by their size and overall divergence. We defined the 1% most differentiated

windows as outliers for each polluted population.

Genome-wide differentiation between populations is low (pairwise FST = 0.002-0.029;

Figure 2.7) and genetic structure is consistent with geography (Figure 2.2A). Compared to

sensitive populations, resistant populations have reduced nucleotide diversity and elevated

Tajima’s D (Figure 2.2B, 2.8), consistent with a recent reduction in population size. Evolved

resistance (Figure 2.1) accompanied by strong recent selection (Figure 2.2C, 2.9) and pop-

ulation decline (Figure 2.2B) is consistent with evolutionary rescue in polluted populations

(Bell and Gonzalez, 2009).

Top-ranked signatures of selection are shared across all pollution-adapted populations

(Figure 2.2C). We detected 88 shared outlier regions distributed across 23 of 24 chromosomes.

Differentiation in shared regions is higher between resistant and sensitive populations than

between intermediate and sensitive populations (Figure 2.2D), and intermediate populations
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Figure 2.2: Genetic variation within and among populations. (A) Neighbor-joining tree
(from genome-wide data) indicates population clustering along the pollution gradient. (B)
Consistent with a demographic bottleneck, populations from polluted sites have an excess
of rare variants (Tajima’s D, top panel) and reduced nucleotide diversity genome wide (π,
bottom panel) compared with clean site populations. (C) Genetic differentiation for each re-
sistant and intermediate population (five panels) compared with both sensitive populations
(population branch statistic). Background divergence is low, and purple indicates outlier
regions (1% most divergent) that are shared among all adapted populations. (D) Multidi-
mensional scaling (mds) of genetic variation for shared outlier regions clusters individuals
and populations by resistance level. (E) A deletion in F. grandis (∼ 77 kb spanning AHR2a
and AHR1a on chromosome 1) has swept to high frequency in resistant populations (wt,
wild type; del, deletion).
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show no consistent signatures of selection relative to both resistant and sensitive populations

(Figure 2.10). We conclude that intermediate populations are distinguished from resistant

populations not by selection on different loci, but by weaker selection at the same loci.

Genomic regions showing the strongest signatures of selection harbor genes encoding key

regulators of the AHR signaling pathway. AHR1a and AHR2a are centered in the most

highly ranked shared outlier region (chromosome 1; Figure 2.2C, 2.11). Two paralogs of aryl

hydrocarbon receptor nuclear translocator (ARNT), which dimerize with AHR to activate

transcription (Figure 2.5), are within the second- and third-ranked shared outlier regions

on chromosomes 8 and 10, respectively (Figure 2.2C, 2.12-2.14). Aryl hydrocarbon receptor

interacting protein (AIP) regulates nuclear translocation of pollutant-activated AHR and is

within the R1-R2 shared outlier region on chromosome 2 (Figure 2.2C, 2.15). Signatures of

selection in multiple AHR pathway elements, coupled with additional selection signatures

throughout the genome, indicate that AHR pathway modification is an important component

of polygenic adaptation to the fitness challenges present in this urban estuary.

The top ranked outlier region spans ∼ 2 Mb and encompasses the tandem paralogs

AHR1a and AHR2a (Figure 2.2C). Spanning these genes, we detect a 77 kb deletion at high

frequency in resistant populations (85%, 83%, and 68%, in R1, R2, and R3, respectively), and

moderate frequency in intermediate populations (25% and 5%, in IH1 and IH2, respectively),

and in only one heterozygous individual from a sensitive population (Figure 2.2E, 2.16, 2.17).

Given that the AHR pathway is profoundly desensitized in resistant populations (Figure

2.1D, 2.1E, 2.6), moderately desensitized in intermediate populations, and its experimental

knockdown is protective of toxicity (Clark et al., 2010), we propose that this mutation is

important for the adaptive phenotype. Five unique deletions in AHR genes have now been

associated with rapidly evolved resistance to HAHs across three species of wild fish (Reid

et al., 2016; Wirgin et al., 2011). Consistent with the “less-is-more” hypothesis (Olson,

1999), this suggests that rapid adaptation via disabling mutations may be common. We
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speculate that sweeps of such large effect loci may quickly recover fitness following extreme

environmental change, while smaller effect loci with reduced negative pleiotropy advance

more slowly and perhaps eventually supersede the large effect loci.

We analyzed whole genome sequences from F. grandis and F. heteroclitus to contrast

variants associated with resistance. In resistant F. grandis, the region containing the AHR

deletion on chromosome 1, as well as the region from chromosome 10 encompassing ARNT,

was more similar to F. heteroclitus haplotypes than to other F. grandis haplotypes (Fig

3A, 3B, S11), which could result from incomplete lineage sorting or admixture. The species

divergence time elsewhere in the genome predated the divergence of the selected haplotypes,

suggesting admixture as the source (Fig 3C).

To formally test for introgression and estimate the timing and strength of selection, we

extended a coalescent theory-based inference method that distinguishes among modes of

adaptation (Lee and Coop, 2017). Introgression of the deletion-bearing haplotype was much

more likely than incomplete lineage sorting (Figure 2.3E, 2.18-2.20), consistent with diver-

gence time estimates (Figure 2.3C). We inferred a large fitness advantage for individuals

carrying the AHR deletion haplotype (selection coefficient = 0.8), and very recent gene flow

(16 generations before onset of selection; Figure 2.3E) with the sweep occurring over 18

generations. This model estimates introgression happened 34 generations before sampling.

As we are unlikely to have sampled the true F. heteroclitus source population (resistance is

widespread in this species), this time may be even shorter. For the adaptive ARNT region

we infer similar timing of gene flow (36-37 generations before sampling) and strong selective

advantage (s=0.55) (Figure 2.21-2.22). These alleles clearly have a large effect on fitness

and so likely explain a large proportion of the genetic variance in pollution tolerance. We

conclude that recent introgression from a few successful F. heteroclitus migrants (Figure

2.20D, 2.22D) provided crucial genetic variation to rescue F. grandis populations from rapid

environmental change. We speculate that sweeps of such large effect loci may quickly re-
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cover fitness following extreme environmental change, while smaller effect loci with reduced

negative pleiotropy advance more slowly and perhaps eventually supersede the large effect

loci.

We evaluated the footprint of introgression in F. grandis genomes by scanning for genomic

segments (> 400 kb) showing evidence of F. heteroclitus ancestry. These ancestry blocks

collapse into 15 discrete regions totaling 70 Mb on 9 chromosomes (Figures 2.3A, 2.23, 2.24).

Most large introgressed blocks are rare (11 of the 15 regions found in ¡ 5 individuals) and are

found exclusively in polluted populations (Figure 2.3D). Over 30 Mb of the 40 Mb comprising

chromosome 1 showed evidence of introgression in at least 1 individual, representing F.

heteroclitus ancestry that hitchhiked with the deletion sweep. Mean haplotype block size

also suggests that the introgression event was recent ( 65-155 generations before sampling).

A recent discrete hybridization event occurred in the Houston Ship Channel, introducing

highly advantageous adaptive haplotypes from F. heteroclitus, and leaving behind evidence

of F. heteroclitus ancestry scattered across the genome. Since F. heteroclitus have small

home ranges (Teo and Able, 2003) and the nearest populations are in Florida, ¿2500 km

away, human-mediated transport is the likely mechanism of introduction (Morim et al.,

2019), possibly through ballast water transfer (Wonham et al., 2000) or baitfish transport

(Kilian et al., 2012).

The importance of hybridization in conservation biology is contentious (Allendorf et al.,

2001; Hamilton and Miller, 2016). Recipient populations are at risk for negative ecologi-

cal interactions with invaders, introduction of locally maladaptive or deleterious alleles, or

genetic incompatibilities (Uecker et al., 2015; Simberloff et al., 2013). We propose that

F. heteroclitus introgression into Galveston Bay was sufficiently rare to preclude extensive

accumulation of deleterious variation in F. grandis, and that the adaptive advantage af-

forded by introgressed loci was sufficient to overcome maladaptation imposed by linked loci.

Though a growing body of work shows that ancient hybridization can contribute adaptive
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Figure 2.3: Evidence for adaptive introgression from F. heteroclitus. (A) Sequence simi-
larity (DXY ) calculated between each resistant F. grandis population and F. heteroclitus,
contrasted with similarity between a sensitive F. grandis population and F. heteroclitus.
Negative values indicate similarity with F. heteroclitus that is higher in resistant than sensi-
tive F. grandis populations (pink). (B) Genetic variation flanking the AHR deletion is more
similar between resistant F. grandis and F. heteroclitus than between resistant and sensitive
F. grandis, suggesting introgression. (C) Mean time to coalescence of 1 Mb surrounding
the AHR deletion between F. grandis and southern F. heteroclitus is 0.0026 mutations per
site, and between intact F. grandis alleles and all of F. heteroclitus is 0.018. Interspecific
coalescence times that predate population divergence (0.0066) is evidence of gene flow. (D)
Large introgression blocks are restricted to resistant populations. (E) Maximum composite
log-likelihood ratios under introgression and incomplete lineage-sorting models, as a func-
tion of strength of selection (pink, bottom axis) and time between introgression and onset of
selection (top axis) for the AHR deletion region, relative to a neutral model. Introgression
is likely the source of the adaptive haplotype in F. grandis, which rapidly swept because of
large selective advantage (s = 0.8).
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genetic variation (Huerta-Sánchez et al., 2014; Jones et al., 2018, e.g.,), our work shows

that hybridization can provide variation crucial for adaptation following swift and extreme

environmental change.

2.2 Supplement

The supplementary material included here concerns the model-based inference of introgres-

sion, DMC-MYAdIDAS (DMC Modified for Young Adaptive Introgression Distinguished

from Allele Standing)

2.2.1 Method overview

In two genomic regions, we confirmed and characterized adaptive introgression using and

extending the inference method DMC (https://github.com/kristinmlee/dmc) (14) that

aims to distinguish among types of convergent adaptation. This composite likelihood-based

approach utilizes genomic data to detect cases of convergent adaptation at the genetic level

and the loci involved, taking advantage of the signature that selection has on linked neutral

variation. We compared the composite likelihoods estimated under various modes of conver-

gent adaptation, including those due to gene flow and selection on shared ancestral standing

variation. Here, we extended this method by i) modifying the migration model to include

staggered sweeps, ii) allowing for extremely strong selection regimes, and iii) allowing for

differences in effective population sizes among populations. We also slightly modified this

method to fit patterns observed to be unique to each region. In our analysis for chromosome

1, we assigned the selected site to be the deletion midpoint instead of making it a free pa-

rameter. In our analysis for chromosome 10, we modified the models to exclude selection in

the source population of the putatively introgressed haplotype. Details for these extensions

can be found in Section 4.4. The R code and documentation for our approach are provided

in https://github.com/kristinmlee/dmc/myAdidas.
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We ran this method on two regions that show the greatest signals of adaptive introgression

in the dxy analysis (Fig 3A): the AHR deletion on chromosome 1 and the ARNT region on

chromosome 10. To investigate the origin of the putatively introgressed haplotypes in F.

grandis, we distinguished between models in which the deletion was found in both F. grandis

and F. heteroclitus due to incomplete lineage sorting or introgression. These models are

consistent with the evidence that the AHR deletion in resistant F. grandis lies on a haplotype

most closely related to the resistant F. heteroclitus population sampled from the Elizabeth

River (hT4) and that, for an F. heteroclitus population with whole-genome resequencing

data (8), hT4 is geographically closest to the species range of F. grandis. DMC can be

used to dissect the mode of convergence between any group of populations and controls for

background population structure. Here, we ran the method using population allele frequency

data from three pairs of resistant and sensitive populations, respectively: i) hT2 and hS2 –

from the northern clade of F. heteroclitus, ii) hT4 and hS4 – from the southern clade of F.

heteroclitus, and iii) gR2 and gS2 – from F. grandis. We chose gR2 as the representative for

resistant F. grandis because it has the AHR deletion at high frequency ( 85%) and the highest

number of individuals sampled among the resistant F. grandis populations. The F. grandis

gS2 population was used as the representative sensitive population because no deletions were

sampled in it. In the analysis for the AHR deletion, for each resistant and sensitive population

used for inference, we included only individuals that were either homozygous for a deletion

(resistant) or homozygous for intact haplotypes (sensitive). In the analysis of the ARNT

region, we included only F. grandis individuals in gR2 that had an introgressed haplotype (at

30-45% frequency), and only individuals in gR2 that did not have an introgressed haplotype.

Haplotypes were estimated with a custom script (https://github.com/eoziolor/fgfh_

post/blob/master/scripts/combined.Rmd), assigning individuals to groups of introgressed

vs. non-introgressed haplotype in this region based on genetic similarity.

We tested four models (Figure 2.18) to further investigate the similar haplotypes observed
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between hT4 and gR2. First, we assumed a model of selection on ancestral standing variation

(Figure 2.18A), (here referred to as the incomplete lineage sorting model). This model

specifies that the selected variant was standing at very low frequency in the ancestor of the

two adapted populations (here the two species) and remained standing after the species split

until it recently swept independently in both populations. The other three models invoke

migration of the selected variant from hT4 to gR2. First, the standing variant source model

(see Appendix A.4 in Lee and Coop, 2017) in which the selected variant was standing at

low frequency in hT4 and then was introduced to gR2 via migration (Figure 2.18B). The

selected variant may still be standing for some time post-migration before it sweeps in both

populations when the selective pressure begins. Next, we assumed the migration model

(Figure 2.18C), in which the selected variant migrates from hT4 to gR2 during the sweep

in hT4 and immediately begins to sweep in gR2. This model assumes that migration occurs

during the sweep and may be more relevant for populations that are more closely related and

experience constant rates of gene flow. We call this case the concurrent sweeps model since

both populations are sweeping at once. Lastly, we specified a new model of migration (Figure

2.18D) that is a modification of the concurrent sweeps model and may be more relevant for

our distantly related populations. Since contemporary migration from the Atlantic coast

to the Gulf coast is extremely rare, we allowed the sweep to finish in hT4 before migration

to gR2. In this case, we also allow for some amount of “standing time” (a free parameter)

between when migration ended and the sweep began in gR2. This may be relevant if gR2

does not immediately experience a large selective advantage of having the migrant haplotype

(i.e. pollution has not started yet or is weaker). Additionally, while hT4 is our southernmost

sampled F. heteroclitus population, it is likely that the deletion actually migrated from a

different southern-clade population of F. heteroclitus. The standing time can then represent

some time that allows for more independent recombination to occur between hT4 and gR2

that may be a better fit to the data if the haplotypes in hT4 and gR2 look slightly different
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at the edges. We refer to this model as the staggered sweeps model and outline the details

below. Here, the standing variant source, concurrent sweeps, and staggered sweeps models

are all cases of adaptive introgression that we aimed to distinguish between.

For the analysis of the AHR deletion and ARNT region, we used SNPs from the first

15 Mb of chromosome 1 and last 16 Mb of chromosome 10, respectively. We assumed a

recombination rate of 1.48 x 10-8 M/bp/gen, estimated from a linear fit in our regions of

interest from the F. heteroclitus recombination map (EBI BioStudies Accession S-BSST163).

Genome-wide SNP data from regions not showing signs of selection and only individuals in-

cluded in the respective analysis (565,528 SNPs for chromosome 1 analysis and 594,086 SNPs

for chromosome 10 analysis) were used to estimate the neutral coancestry matrix, following

Lee and Coop (2017), to summarize neutral population structure. We used SNPs that had

data across all populations, effectively excluding the deletion region from our analysis of

chromosome 1. Since the approach utilizes signatures in neutral loci flanking the putatively

selected site (their population allele frequencies and the recombination distance from the

selected site), there is no effect of removing the deletion apart from fixing the location of

the selected site, which is normally a free parameter in the models. We expand on this in

Section 4.4.3. The parameters in which we tested our models on for each genomic region are

shown in Tables 2.1 (AHR) and 2.2 (ARNT).

2.2.2 AHR Deletion Analysis

The profile-likelihood surfaces for each parameter are shown for each model in Figures S16

and S17. The standing variant source and staggered sweeps models consistently have higher

likelihoods than the concurrent sweeps model. All models have their highest likelihoods at

extremely strong selection pressures, between 60% and 92% reduction in fitness for individ-

uals homozygous for intact haplotypes compared to individuals homozygous for deletions

(Figure 2.19). The models that include a frequency of the deletion haplotype, the standing
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variant source and staggered sweeps models, both have maximum composite-likelihood es-

timates of fraction of migrants in in gR2 that imply the initial deletion haplotype was very

rare (Figure 2.20D). The inferred standing time between introgression and selection is 18

generations in the standing variant source model and 16 generations in the staggered sweeps

model (Figure 2.20B). We consider this an upper bound because the inferred standing time

may have actually been shorter had we sampled a more southern F. heteroclitus popula-

tion. Under the incomplete lineage sorting model, the inferred minimum age of the deletion

is 10,000 generations (Figure 2.20C). This time specifies the time between the splitting of

hT4 and gR2 and the onset of selection. Overall, the standing variant source and staggered

sweeps models have the highest likelihoods. We are unable to distinguish between them

(Figure 2.20A). This is not surprising because these two models leave very similar signatures

on haplotype patterns. Even though we are not able to distinguish between whether the

deletion had already swept in hT4 or not prior to migration, the staggered sweeps model is

more plausible. In the standing variant source model, the deletion haplotype migrated into

F. grandis from F. heteroclitus where it was standing at frequency 2x10-6. Given the high

estimates for the strength of selection, it is not unlikely for the deletion haplotype to sweep

from a very low initial frequency. However, with such rare migration between the species,

the probability of that deletion haplotype migrating would be very low. It is more probable

to have arrived from a source population where the haplotype is at very high frequency as

is the case in the staggered sweeps model.

2.2.3 ARNT Region Analysis

We ran separate analyses for a sweep that finishes at both 30% and 45% frequency, the range

of the observed putatively introgressed haplotype frequency. For both final frequencies, the

profile-likelihood surfaces for each parameter are almost identical. This is because when

the sweep ends at intermediate frequencies, the same selection coefficient will lead to a very
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similar number of generations that the sweep takes to reach each final frequency. Our method

uses this sweep duration to describe patterns of haplotype similarity among populations,

and therefore the results for each final frequency are indistinguishable. We therefore present

results for a sweep that ends at 45% frequency and note when results differ for a sweep that

ends at 30% frequency.

The results from the ARNT region are largely consistent with the results from the AHR

deletion region. Like the AHR deletion region, the adaptive introgression models have much

higher likelihoods than the incomplete lineage sorting model (Figure 2.21). In addition, the

standing variant source and staggered sweeps models consistently have higher likelihoods

than the concurrent sweeps model. All models have their highest likelihoods at strong selec-

tion pressures, though weaker than in the AHR deletion region (Figure 2.22A). The standing

variant source and staggered sweeps models both have the highest likelihood for a 55% re-

duction in fitness for individuals without any copies of the selected variant. This is consistent

with a sweep that lasts 30-31 generations, the lower bound of this estimate corresponding

to a final frequency of 30% and the upper bound, 45%. Inferred migration rates in the

concurrent sweeps model are the same as in the AHR deletion region, at approximately 10-5

proportion migrants per generation. For the models that include the fraction of migrants in

gR2, the standing variant source and staggered sweeps models, the former has a maximum

composite-likelihood estimate at 5x10-6 and the latter at 10-6 (Figure S19D). The inferred

standing time between introgression and selection is 10 generations in the standing variant

source model and 6 generations in the staggered sweeps model (Figure 2.22B). Thus, in-

trogression was extremely recent and occurred approximately 36-37 generations ago in the

staggered sweeps model (upon inclusion of an estimate of the duration of the sweep). This

is consistent with results from the AHR deletion region, in which introgression was inferred

to occur 34 generations ago. Under the incomplete lineage sorting model, the inferred mini-

mum age of the deletion is 5000 generations, shorter than in the AHR deletion region (Figure
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2.22C). This time specifies the time between the splitting of hT4 and gR2 and the onset of

selection.

2.2.4 Details of modifications to DMC

We begin with a brief description of the model framework to provide some background for

this section. The inference method, DMC, uses coalescent theory to model how a sweep acts

to modify the variance and covariance in mean-centered neutral allele frequencies among

populations at linked loci, relative to neutral population structure (14). The variance in

these allele frequencies at a locus within a population can be modeled as a function of the

ancestral allele frequency at the locus and the probability that a pair of alleles sampled within

a population coalesce before reaching the ancestral population. The ancestral population

is the common ancestor of all populations that are considered. The covariance of allele

frequencies between populations at a locus is the same as the variance within a population

except it instead considers the probability that a pair of alleles, one sampled from each of the

two populations of interest, coalesce before reaching the ancestral population. The ancestral

allele frequency used to estimate the variances and covariances at a locus is the same for

each model; it is the probabilities of coalescing that differ among models and allow us to

distinguish among and characterize scenarios of convergent adaptation. The modifications

and new models that we introduce all inform these probabilities of coalescing.

The models that we outline are concerned with defining a matrix of probabilities of

coalescing due to a sweep, F(s), which is a function of the neutral probabilities of coalescing

due to population structure (F) the recombination distance between the locus of interest and

the selected site, and free parameters such as the location of the selected site, the strength of

selection, and others specific to the models. The rows and columns of F(s) and F represent

the different populations we consider.
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2.2.4.1 Modification of the probability that a lineage does not recombine out

of the sweep (y)

Previously, the probability that a lineage stays linked to the selected variant during the

sweep used approximations that assumed the strength of selection was very low (s ≪ 1).

However, the length of haplotype similarity within resistant F. grandis populations implies

that selection was extremely strong and thus violates these assumptions. Instead of using

this analytical approximation, we used numerical analysis as outlined by Charlesworth and

Charlesworth 2010 (37). We calculated the probability that a lineage stays linked to the

selected variant during the sweep by taking the product of the probabilities that the lineage

does not recombine out each generation, which change according to the frequency of the

deletion. To get the frequency of the deletion each generation, we simulated a deterministic

sweep from starting frequency value 1/2Ne or low standing frequency (depending on the model)

to frequency 0.85 in AHR and 0.3 or 0.45 in ARNT. We used an additive model of selection

in which the homozygote of the deletion has fitness 1, the heterozygote 1 − s/2, and the

homozygote of the intact haplotype 1 − s. Thus,

y =
τ∏

i=1

[1 − r(1 − xi)] , (2.1)

where τ is the number of generations the sweep lasts, and xi is the frequency of the selected

variant in generation i.

2.2.4.2 Allowing for different effective population sizes between species

Our two species have different effective population sizes, with F. heteroclitus being larger

than F. grandis. Two terms in the model are parameterized by the effective population size:

i) the probability that a lineage does not recombine out of the sweep (y) and ii) the rates

of coalescence and recombination during standing phase. While the written model assumes

that these terms don’t vary according to effective population size, in practice we estimate

and apply them separately for each population. Effective population sizes for each species
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were inferred from estimates of π, using the Atlantic herring mutation rate (38). There are

few estimates of mutation rate existing in fish and this mutation rate is on the same order

of magnitude, and within the confidence interval of other known rates in fishes, such as the

estimated cichlid mutation rate (39). More importantly, the mutation rate itself is not a

parameter in these models, and the effective population sizes estimated from it play a small

role in them. The models are robust to effective population sizes changing within an order of

magnitude. The effective population size for F. heteroclitus is 2.25 × 106 and for F. grandis

is 8.00 × 105.

2.2.4.3 Assignment of selected site to be the AHR deletion

In the analysis of the AHR deletion on chromosome 1, we used the midpoint of the deletion

breakpoints that are furthest from each other and therefore did not vary the position of

the selected site in the inference. We defined the breakpoints as specified in Figure S14.

Therefore, we set the locus experiencing selection to be 762.684 kb and assumed normal

recombination outside the breakpoints as we did not consider SNPs falling inside our de-

fined breakpoints. Additionally, this allowed us to utilize only the SNPs with reads in all

populations.

2.2.4.4 Staggered Sweeps Model

Prelude The resistant F. heteroclitus population from which the haplotype migrated is

called the ‘source’ (j) and the resistant F. grandis population that received migrants is

called the ‘recipient’ (i). In this model, there is a sweep in the source. After the sweep

finishes, there is migration from the source to the recipient. We specify migration as a single

pulse of admixture (lasts one generation), in which a proportion g of alleles in the recipient

population are migrants from the source. After some standing time tm, there is a sweep at

that locus in the now resistant F. grandis recipient population (i).

The sections below describe the modified probability of coalescing within or between
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pairs of populations due to migration and selection. Since we know g should be very low, we

can assume that the probability a lineage in the recipient population that is not a migrant

coalesces with lineages in other populations or lineages in its own population is the same as

the neutral probability of coalescing estimated from the data.

The following terms are used multiple times in the model specification and are therefore

described here:

• r is the recombination rate between the selected site and the neutral site of interest in

a single generation

• y =
∏τ

i=1 [1 − r(1 − xi)] is the probability that a lineage does not recombine out of the

sweep (i.e. remains linked to the selected variant). τ is the number of generations the

sweep lasts, and xi is the frequency of the selected variant in generation i.

• e−rtm is the probability a lineage does not recombine out of its background during the

standing time (tm) between migration and the sweep

• pm is the probability a lineage sampled from the recipient (resistant) population mi-

grates back to the source population. pm = y (e−rtm + (1 − e−rtm)g) + (1 − y)g. A lin-

eage does not migrate back with probability 1−pm = y(1−e−rtm)(1−g)+(1−y)(1−g).

Below, each heading describes independent probabilities. Nested ones are conditional on

the statement of the overarching subsection heading.

Within resistant, source F. heteroclitus population (j) We can treat this case the

same as independent sweep model (14).

f
(s)
jj = y2 + (1 − y2)fjj (2.2)

Within recipient population (i) First we define a term z that is used multiple times

in this case. Conditional on both lineages recombining out at some point before migration,
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the probability that they coalesce is z = g2f
(s)
jj + 2g(1 − g)fij + (1 − g)2fii. Here, whether

the lineages coalesce or not depends on whether they still migrate back or not.

• Neither lineage recombines out of the sweep with probability y2. Now, they enter

standing phase that lasts time tm before migration.

– A coalescence or recombination event occurs before migration with probability

w = 1 − e−( 1
2Ng

+2r)tm . This event is coalescence with probability 1
1+4Ngr

. Oth-

erwise, one of the lineages recombines off of the introgressed ‘haplotype’ with

probability 4Ngr
1+4Ngr

. We call the lineage that recombined off L1, and the other

lineage that is still linked L2. In the case that the first event is recombination:

∗ L2 does not recombine out with probability e−rtm , meaning it must migrate

back to the source population (j). The lineage that did recombine out also

migrates back with probability g or does not migrate back with probability

1 − g. Thus they coalesce with probability gf
(s)
jj + (1 − g)fij.

∗ L2 also recombines out with probability 1 − e−rtm . Conditional on this, the

lineages coalesce with probability z (defined earlier).

– A coalescence or recombination event does not occur before migration with prob-

ability 1−w. Therefore both lineages migrate back to the source population, and

coalesce there with probability f
(s)
jj .

• Both lineages recombine out of the sweep with probability (1 − y)2. Conditional on

this, the lineages coalesce with probability z (defined earlier).

• One lineage recombines out of the sweep while the other doesn’t with probability

2y(1 − y). We call the lineage that recombined out L1, and the other lineage that is

still linked L2.
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– L2 does not recombine out with probability e−rtm , meaning it must migrate back

to the source population (j). The lineage that did recombine out also migrates

back with probability g or does not migrate back with probability 1 − g. Thus

they coalesce with probability gf
(s)
jj + (1 − g)fij.

– L2 recombines out during standing phase with probability 1− e−rtm . Conditional

on this, the lineages coalesce with probability z (defined earlier).

Altogether:

f
(s)
ii =y2

[
w

(
1

1 + 4Ngr
+

4Ngr

1 + 4Ngr
(e−rtm(gf

(s)
jj + (1 − g)fij) + (1 − e−rtm)z)

)
+ (1 − w)f

(s)
jj

]
+ (1 − y)2z + 2y(1 − y)

[
e−rtm(gf

(s)
jj + (1 − g)fij) + (1 − e−rtm)z

]
(2.3)

Between recipient (i) and source (j) Both the recipient and the source experience a

sweep. To get the probability that one lineage sampled from each coalesce, we condition on

whether the lineage from i migrates to j or not (pm and 1 − pm, respectively).

f
(s)
ij = pmf

(s)
jj + (1 − pm)fij (2.4)

Between recipient (i) and non-source populations (k) The probability that a lineage

sampled from i (recipient) and a lineage sampled from k (not source) coalesce depends on

whether the lineage in i migrates to j (source population).

f
(s)
ik = pmfjk + (1 − pm)fik (2.5)

2.2.4.5 Modification of models to exclude selection in the source population of

the putatively introgressed haplotype

In the ARNT region of chromosome 10, there is no signal of selection in hT4 or any other

F. heteroclitus population we included in our model. Therefore, the following describes the
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probability of coalescing for the terms that are altered in each model. For all models, the

probability of coalescing within the source population (j) is no longer modified by selection,

and is rather the neutral probability of coalescing:

f
(s)
jj = fjj (2.6)

In the incomplete lineage sorting model, there is no migration modeled between pop-

ulations. Therefore, the probability of coalescing for every pair of lineages sampled from

different populations is the neutral probability estimated for each population pair.

The probability of coalescing within the recipient population (gR2) changes for both the

staggered sweeps and concurrent sweeps models. This is because lineages sampled in the

recipient population that migrate back to the source population were previously considered

to experience another sweep in the source population. The change we make in the staggered

sweeps model is more straightforward: replace all f
(s)
jj terms with fjj (where j is the source

population). The following describes the modifications we make to the concurrent sweeps

model:

As described in Lee and Coop (2017), Q describes the probability that two lineages

sampled at the selected site coalesce in the recipient population (i), such that a single

lineage migrates back to the source population (j). 1 − Q is therefore the probability that

two lineages sampled at the selected site do not coalesce before migrating back to the source

population. We can condition on these two scenarios to get the probability of coalescing for

a pair of lineages sampled at a neutral site a given distance away from the selected site.

f
(s)
ii = Q

(
y2 ∗ 1 + (1 − y)2fii + 2y(1 − y)fij

)
+ (1 −Q)

(
y2fjj + (1 − y)2fii + 2y(1 − y)fij

)
= y2 (Q + (1 −Q)fjj) + (1 − y2)fii + 2y(1 − y)fij

(2.7)

For all adaptive introgression models, the probability of coalescing between the recipient
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population (gR2) and all other populations depends on whether the lineage sampled in the

recipient population migrates back to the source populations. This probability of migrating

to the source (pm) varies by model and is described below:

For the standing variant source and staggered sweeps models, v is the probability that a

lineage does not recombine out of the selected background during standing phase, if it didn’t

recombine out during the sweep. As a reminder, tm is the amount of standing time between

migration and the sweep and g is the standing frequency of the selected variant.

v = e−r∗tm (2.8)

Standing variant source and staggered sweeps:

pm = y(v + (1 − v)g) + (1 − y)g (2.9)

Concurrent sweeps:

pm = y (2.10)

According to the different probabilities of migrating to the source for each model, the

probability of coalescing between the source and recipient populations for all adaptive intro-

gression models is as follows:

f
(s)
ik = pmfjk + (1 − pm)fik (2.11)

2.2.5 Figures and Tables

Parameter Model(s) that include it Values
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Strength of selection (s) All 0.001, 0.005, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.08, 0.1,

0.12, 0.14, 0.16, 0.18, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.82, 0.84, 0.86, 0.88, 0.9,

0.92, 0.94, 0.96, 0.98, 1

Standing time between

migration and selection

(tm)

Standing variant source,

Staggered sweeps

0, 5, 10, 15, 16, 18, 20, 22,

24, 26, 28, 30, 35, 40, 60, 80,

100, 200, 500, 1000, 5000,

107

Minimum age of standing

variant / Standing time

between species split and

selection (t)

Incomplete lineage sorting 3000, 4000, 5000, 7500, 9000,

10000, 25000, 50000, 105,

106, 107, 108

Frequency of variant before

selection / fraction of

migrants in R2 (g)

Standing variant source,

Staggered sweeps,

Incomplete lineage sorting

6.878 × 10−7(= 1/2Ne),

8.5 ∗ 10−7, 10−6, 2 ∗ 10−6,

5 × 10−6, 8 × 10−6, 10−5,

10−4, 10−3, 10−2

Migration rate per

generation (m)

Concurrent sweeps 10−5,10−4, 5 × 10−4, 0.001,

0.005, 0.01, 0.1, 0.3

Table 2.1: Parameters that coalescent-based models were tested on in the AHR deletion region.

Parameter Model(s) that include it Values
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Position of selected site All 18000003, 18572796,

19145589, 19718382,

20291175, 20863968,

21436761, 22009554,

22582347, 23155140,

23727933, 24300726,

24873519, 25446312,

26019105, 26591897,

26735096, 26878294,

27021492, 27164690,

27355621, 27546552,

27737483, 28310276,

28883069, 29455862,

30028655, 30601448,

31174241, 31747034,

32319827, 32892620,

33465413, 34038206,

34610999

Strength of selection (s) All 0.001, 0.005, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.08, 0.1,

0.12, 0.14, 0.16, 0.18, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.82, 0.84, 0.86, 0.88, 0.9,

0.92, 0.94, 0.96, 0.98, 1
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Standing time between

migration and selection

(tm)

Standing variant source,

Staggered sweeps

0, 5, 10, 15, 16, 18, 20, 22,

24, 26, 28, 30, 35, 40, 60, 80,

100, 200, 500, 1000, 5000,

107

Minimum age of standing

variant / Standing time

between species split and

selection (t)

Incomplete lineage sorting 3000, 4000, 5000, 7500, 9000,

10000, 25000, 50000, 105,

106, 107, 108

Frequency of variant before

selection / fraction of

migrants in R2 (g)

Standing variant source,

Staggered sweeps,

Incomplete lineage sorting

6.878 × 10−7(= 1/2Ne),

8.5 ∗ 10−7, 10−6, 2 ∗ 10−6,

5 × 10−6, 8 × 10−6, 10−5,

10−4, 10−3, 10−2

Migration rate per

generation (m)

Concurrent sweeps 10−5,10−4, 5 × 10−4, 0.001,

0.005, 0.01, 0.1, 0.3

Table 2.2: Parameters that coalescent-based models were tested on in the ARNT deletion region.
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Figure 2.4: (Contined on the following page.)
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Figure 2.4: Resistance to high levels of contamination is inherited to two generations out

of the stressor environment. A) The most resistant populations of F. grandis (e.g., R2

and R3) can withstand PCB126-induced cardiac teratogenesis at concentrations more than

1200x higher than those that induce induces cardiac teratogenesis in reference sensitive

populations (B). Populations (e.g., R3 and S1) vary in resistance to PCB126-induced cardiac

teratogenesis (B) and CYP1A activation (C), and these differences are retained between first

generation (f1) and second generation (f2) animals raised in a common clean environment,

indicating that population differences in resistance are heritable.
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Figure 2.5: Diagram of the aryl hydrocarbon receptor (AHR) signaling pathway. In the cy-
toplasm, AHR is associated with proteins heat shock protein 90 (HSP90), aryl hydrocarbon
receptor interacting protein (AIP, also known as XAP2), and HSP90 co-chaperone (p23).
When entering the cell, halogenated aromatic hydrocarbons (HAHs) act as ligands that
bind to, and activate, AHR which then translocates to the nucleus. In the nucleus, ligand-
activated AHR forms a complex with the aryl hydrocarbon receptor nuclear translocator
(ARNT). This complex binds xenobiotic response elements (XREs) and activates transcrip-
tion of a battery of genes. One of the most strongly up-regulated genes within this battery
is cytochrome P450 1A (CYP1A).
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Figure 2.6: Multi-population dose-response curves of CYP1A activity (relative fluorescent
units, EROD assay) following embryonic exposure to PCB126. Fish from polluted sites
(black curves) were resistant to the dose-dependent induction of the AHR pathway observed
in fish from clean sites (blue curves), whereas fish from sites of intermediate pollution exhib-
ited intermediate levels of CYP1A induction. The de-sensitization of the AHR pathway in
fish from polluted sites is characterized by a lower total expression, and therefore activity,
of CYP1A, as well as activation at higher concentrations of PCB126. Variation among pop-
ulations in maximal CYP1A induction and the dose that causes significant up-regulation is
scaled by level of pollution.
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Figure 2.7: Genome-wide differentiation (FST ) between all pairs of populations (colored
cells), including nucleotide diversity for each population (π; diagonal). Genome-wide differ-
entiation between populations tends to be low (< 0.03), whereas nucleotide diversity within
populations is high. Nucleotide diversity tends to be lower in polluted site populations (red
and black population labels) compared to clean site populations (blue population labels).
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Figure 2.8: (Continued on the following page.)
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Figure 2.8: Genome wide nucleotide diversity (π; x and y axes) between pairs of polluted

(red and black labels) and clean site (blue labels) populations. Genome-wide nucleotide

diversity tends to be reduced in pollution adapted populations (skew to below 1:1 dotted

line). Loci most differentiated (FST ) from sensitive populations (red dots) tend to coincide

with regions of low π in pollution adapted populations compared to sensitive populations.

FST and π are calculated in 5kb sliding windows (1kb slide).
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Figure 2.9: Genome-wide signatures of selection for each polluted site population compared
to both reference clean site populations. Y-axis is the z-score statistic that combines two
signals of natural selection: high divergence (FST ) and low nucleotide diversity (π) in the
polluted site population relative to clean site populations, which are each calculated in 20kb
sliding windows (1kb slide). Outliers (1% highest z-score) are colored for each population.
Those colored purple are outliers that are shared across all polluted site populations. Outliers
colored black and red are outliers that are shared only among resistant or intermediate
populations, respectively.
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Figure 2.10: Differentiation between each intermediate population (IH1, IH2) and both re-
sistant and sensitive populations (R2 and S1; population branch statistic) indicate no strong
signatures of selection. Outliers (highlighted in red) are the 1% most highly differentiated
regions (5kb windows), and indicate no consistent or highly differentiated regions that are
unique to intermediate populations.
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Figure 2.11: Patterns of differentiation surrounding key genes in the aryl hydrocarbon
receptor (AHR) signaling pathway reveal signatures of selection in polluted site popula-
tions. Highlighted genes include tandem paralogs of the aryl hydrocarbon receptor (AHR),
a xenobiotic-activated transcription factor. A) Population divergence measured by popula-
tion branch statistic between each adapted population and both sensitive reference popula-
tions. B) Neighbor-joining tree groups individuals with deletion haplotype together (top),
heterozygotes for AHR deletion in the middle, and wild type haplotypes together (bottom).
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Figure 2.12: (Continued on the following page.)
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Figure 2.12: Patterns of differentiation surrounding key genes in the aryl hydrocarbon re-

ceptor (AHR) signaling pathway reveal signatures of selection in polluted site populations.

Highlighted gene is the aryl hydrocarbon receptor nuclear translocator-like 2a (ARNT-L2a),

which is the nuclear dimerization partner of AHR, required for activation of the xenobiotic

response pathway. A) Population divergence measured by population branch statistic be-

tween each adapted population and both sensitive reference populations. The ARNT gene

is located within or near the region of high differentiation. Neighbor-joining tree (B) and

MDS plot (C) reveal clustering of haplotypes from sensitive and resistant populations.
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Figure 2.13: (Continued on the following page.)
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Figure 2.13: Genetic differentiation encompassing a key AHR binding partner, AHR nuclear

translocator-like 2a (ARNT-L2a) in the aryl hydrocarbon receptor (AHR) signaling pathway

in individuals from resistant populations reveal higher similarity to F. heteroclitus than

reference F. grandis. (A) A neighbor joining tree and (C) MDS plot reveal clustering of

haplotypes suggesting an introgression pattern, later confirmed in population genetic models.
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Figure 2.14: (Continued on the following page.)
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Figure 2.14: Patterns of differentiation surrounding key genes in the aryl hydrocarbon re-

ceptor (AHR) signaling pathway reveal signatures of selection in polluted site populations.

Highlighted gene is the aryl hydrocarbon receptor nuclear translocator 1c (ARNT), which is

the nuclear dimerization partner of AHR, required for initiation of the xenobiotic response

pathway. A) Population divergence measured by population branch statistic between each

adapted population and both sensitive reference populations. The ARNT gene is located

within the region of high differentiation. Neighbor-joining tree (B) and MDS plot (C) reveal

clustering of haplotypes from sensitive and resistant populations.
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Figure 2.15: (Continued on the following page.)
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Figure 2.15: Patterns of differentiation surrounding key genes in the aryl hydrocarbon re-

ceptor (AHR) signaling pathway reveal signatures of selection in polluted site populations.

Highlighted gene is the aryl hydrocarbon receptor interacting protein (AIP, also known as

XAP2) which regulates AHR signaling. A) Population divergence measured by population

branch statistic between each adapted population and both sensitive reference populations.

The AIP gene is located within the region of high differentiation. Neighbor-joining tree (B)

and MDS plot (C) reveal clustering of haplotypes from sensitive and resistant populations.
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Figure 2.16: A deletion, spanning the last exon of AHR2a and first 6 exons of AHR1a,
is present at high frequency in resistant populations (R1, R2) and at low frequency in
intermediate populations (IH1, IH2). Each horizontal line represents a single individual and
the intensity of green is amount of raw sequence coverage over the represented region. Dark
coloring indicates regions where few or no reads mapped to the reference genome from that
individual. Though deletions are found in the same genomic region in both F. heteroclitus
(resistant population Elizabeth River, top panel) and in F. grandis polluted populations,
the deletion break points appear to be different between F. heteroclitus and F. grandis.
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Figure 2.17: The deletion that encompasses portions of genes AHR1a and AHR2a on chromo-
some 1 is apparent from plots of smoothed sequence coverage from individuals that represent
the three genotypic variants (homozygous wildtype, homozygous deletion, heterozygote).
The blue line is from an individual from a reference sensitive population (S2) that does not
carry the deletion (homozygous wildtype), where sequence coverage is relatively continuous
across the region. The black line is from an individual from a resistant population (R1) that
is homozygous for the deletion, where sequence coverage drops very low (effectively zero).
The red line is from an individual from an intermediate population (IH1) that is heterozy-
gous for the deletion, where reduced sequence coverage is intermediate. Purple dashed lines
bracket the most continuous portion of the deletion, which is preceded by a region of likely
high mis-mapping, which is common for deletion breakpoints.
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Figure 2.18: Models tested on three pairs of sensitive (black) and resistant (red) populations
(one from F. grandis and two from F. heteroclitus representing Northern and Southern
clade). We allowed for selection in hT4 and gR2 for the analysis of the AHR deletion
region (chromosome 1) and selection only in gR2 for the ARNT region (chromosome 10). A)
Incomplete lineage sorting (incomplete lineage sorting) model: selected variant arose (orange
star) in ancestor of F. heteroclitus and F. grandis, and stood until the onset of selection (blue
triangles). B) Standing variant source model: selected variant arose in hT4 (could be along
ancestral branch between hS4 and hT4 in this cartoon as well). Haplotype was introduced
into gR2 and may have stood for some time in both populations (free parameter) prior to
selection. C) Concurrent sweeps model: deletion haplotype arose in hT4 and migrated into
gR2 during the sweep in hT4 and began to sweep immediately. D) Staggered sweeps model:
Selected variant arose in hT4 and was immediately selected. After fixation, the haplotype
migrated into gR2, where it may have stood for some time (free parameter) prior to the
onset of selection in gR2.
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Figure 2.19: Likelihood results from AHR deletion region (chromosome 1). Composite log-
likelihood ratio of given model relative to the neutral model of no selection as a function
of the selection coefficient (s). The standing variant source and staggered sweeps models
have the highest maximum likelihood. For the standing variant source model, the maximum-
composite-likelihood estimate (MCLE) is at s = 0.82. For the staggered sweeps model, the
MCLE is at s = 0.8.
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Figure 2.20: (Continued on the following page.)
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Figure 2.20: Likelihood results from AHR deletion region (chromosome 1). Composite log-

likelihood ratio (CLR) of given model relative to the neutral model of no selection as a

function of various parameters. A) CLR as function of selection coefficient zoomed in for

the top two models. B) CLR as a function of time between introgression and selection for

models that include this parameter. The standing variant source model has a maximum-

composite-likelihood estimate (MCLE) of 18 generations while the staggered sweeps model

has a MCLE of 16 generations. C) CLR as a function of the duration of the standing time in

the incomplete lineage sorting model. This time represents the minimum age of the standing

variant and specifically is the time (in generations) between the splitting of hT4 and gR2

and the onset of selection. The MCLE of this time is 10,000 generations but there is little

change in likelihood as the parameter increases past this value. D) CLR as a function of the

frequency of variant prior to selection. In the top two introgression models, this represents

the frequency of the allele upon introgression. For the incomplete lineage sorting model, this

parameter represents the frequency at which the variant is standing. We find the MCLE for

the staggered sweeps model is 1/2Ne = 6.8x10−7, where Ne is the effective population size

estimate for F. grandis. The MCLE for the standing variant source model is 2 × 10−6 and

for the incomplete lineage sorting model is 10−6.
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Figure 2.21: Likelihood results from ARNT region (chromosome 10). Composite log-
likelihood ratio of given model relative to the neutral model of no selection as a function
of the position of the selected site. All models have their maximum-composite-likelihood
estimate (MCLE) at 26019105 bp, or 2 Mb downstream of the ARNT region ( 24 Mbp).
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Figure 2.22: (Continued on the following page.)
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Figure 2.22: Likelihood results from ARNT region (chromosome 10). Composite log-

likelihood ratio (CLR) of given model relative to the neutral model of no selection as a

function of various parameters. A) CLR as function of selection coefficient for all models.

The maximum-composite-likelihood estimate (MCLE) for the standing variant source and

staggered sweeps model is s = 0.55, for the incomplete lineage sorting model is s = 0.8, and

for the concurrent sweeps model is s = 0.45. B) CLR as a function of time between intro-

gression and selection for models that include this parameter. The standing variant source

model has an MCLE of 10 generations and the staggered sweeps model has an MCLE of 6

generations. C) CLR as a function of the duration of the standing time in the incomplete

lineage sorting model. This time represents the minimum age of the standing variant and

specifically is the time (in generations) between the splitting of hT4 and gR2 and the onset

of selection. The MCLE of this time is 9000 generations. D) CLR as a function of the

frequency of variant prior to selection. In the top two introgression models, this represents

the frequency of the allele upon introgression. The standing variant source model has an

MCLE of 5 × 10−6 and the staggered sweeps model has an MCLE of 10−6. For the incom-

plete lineage sorting model, this parameter represents the frequency at which the variant is

standing. This model’s MCLE is 8.5 × 10−7.
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Figure 2.23: (Continued on the following page.)
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Figure 2.23: Modified Gmin statistic reveals regions of introgression present among polluted

sites. A) Histogram of window scores with selected outlier threshold, resulting in 0.6%

of windows being labeled as introgressed. B) Genome-wide distribution of modified Gmin

statistic (100kb windows) for 5 resistant populations (top panel) and 2 sensitive populations

(bottom panel). Large regions of introgressed F. heteroclitus ancestry are restricted to

resistant populations located in the Houston Ship Channel.
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Figure 2.24: The distribution of introgression blocks. A) Length distribution of introgression
blocks ≥ 400kb across all F. grandis individuals. Most introgression blocks were < 3mb,
with few larger blocks found in few individuals. B) Number of introgression blocks ≥ 100kb
per individual, by population. The largest number of introgression blocks are found in R3,
which suggests that R3 may closest among sampled populations to the location of the initial
hybridization event between F. grandis and F. heteroclitus that introduced beneficial alleles.
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Abstract

Given the many small-effect loci uncovered by genome-wide association studies (GWAS),

polygenic scores have become central to genomic medicine, and have found application in

diverse settings including evolutionary studies of adaptation. Despite their promise, poly-

genic scores have been found to suffer from limited portability across human populations.

This at first seems in conflict with the observation that most common genetic variation is

shared among populations. We investigate one potential cause of this discrepancy: stabi-

lizing selection on complex traits. Counter-intuitively, while stabilizing selection constrains

phenotypic evolution, it accelerates the loss and fixation of alleles underlying trait variation
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within populations (GWAS loci). Thus even when populations share an optimum pheno-

type, stabilizing selection erodes the variance contributed by their shared GWAS loci, such

that predictions from GWAS in one population explain less of the phenotypic variation in

another. We develop theory to quantify how stabilizing selection is expected to reduce the

prediction accuracy of polygenic scores in populations not represented in GWAS samples. In

addition, we find that polygenic scores can substantially overstate average genetic differences

of phenotypes among populations. We emphasize stabilizing selection around a common op-

timum as a useful null model to connect patterns of allele frequency and polygenic score

differentiation.

3.1 Introduction

Lewontin’s foundational early work found that most common genetic variation is shared

among human populations (Lewontin, 1972). Thus it strongly refuted the view that genetic

variation is partitioned among mostly invariable populations and has become a classic work

discrediting discrete human races. Lewontin’s finding is reflected by low estimates of FST

among populations (Li et al., 2008), i.e. only a small proportion (∼ 10%) of the total allelic

variance is attributable to differences in frequency between populations (a finding that has

been replicated for many different marker types genome-wide; Li et al., 2008; Barbujani

et al., 1997; Jorde et al., 2000; Rosenberg et al., 2002; Conrad et al., 2006; Bergström et al.,

2020). While some loci that are highly differentiated among human populations have been

uncovered (e.g. underlying loci in skin pigmentation and infectious disease immunity; see

Fan et al., 2016, for a review), there are relatively few such strongly selected loci (Coop

et al., 2009; Hernandez et al., 2011).

Lewontin’s results also have implications for our a priori expectations of the partition-

ing of phenotypic variation within and among human populations. For phenotypes evolving

neutrally in diploids, we expect the proportion of additive genetic variance attributable to

133



among-population differences to be ≈ 2FST when all individuals are measured in a com-

mon set of environments (Wright, 1951; Lande, 1976; Rogers and Harpending, 1983; Lande,

1992; Whitlock, 1999; Edge and Rosenberg, 2015). Thus in humans, we expect only ∼18%

of additive genetic variance to be due to among population differences when measured in

a common set of environments. Compared to this null, phenotypes subject to divergent

selection among populations are expected to be over-dispersed, while phenotypes subject

to stabilizing selection with the same selective optimum are expected to be less differenti-

ated among populations. To distinguish among potential contributors to genetic differences

among populations, researchers often turn to settings like common gardens in an effort to

eliminate among-population environmental variation. However, it is not feasible to measure

human phenotypes in a common environment (a major drawback of studies that investigated

population level phenotypic variation; Relethford and Lees, 1982; Chakraborty, 1990). Thus

for the majority of complex traits, we do not know the role of genetics, let alone natural

selection, in explaining phenotypic differences among human populations.

These questions have received renewed interest in human genetics due to genome-wide

association studies (GWAS), which have found common variation associated with many phe-

notypes within populations. GWAS have revealed that most phenotypes are highly polygenic

within populations (Loh et al., 2015; Shi et al., 2016; Boyle et al., 2017) and confirmed that

much of the genetic variance is additive (reviewed in Hill et al., 2008). These observations

have motivated phenotype prediction through additive genetic values, the additive contribu-

tion of polymorphisms to phenotypic differences among individuals. One common approach

to predict an individual’s additive genetic value is based on a polygenic score, the sum across

trait-associated loci of genotypes weighted by their estimated effects. Predictions based on

polygenic scores are being explored in a number of clinical settings and more generally as a

tool for understanding the genetic basis of disease and phenotypic variability. However, the

generalizability of polygenic scores across populations is concerning because GWAS samples
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are strongly biased towards European populations and studies of other populations are much

smaller (Li and Keating, 2014; Popejoy and Fullerton, 2016; Macarthur et al., 2017; Martin

et al., 2019). There is wide agreement that these portability issues must be addressed so

that the future clinical use of polygenic scores does not further compound inequalities in

healthcare (Li and Keating, 2014; Popejoy and Fullerton, 2016; Martin et al., 2019).

Currently, for most complex traits, polygenic scores poorly predict additive genetic val-

ues, and therefore phenotypes. This issue stands even in samples closely related to the GWAS

population, because polygenic scores aggregate across many loci with slightly mis-estimated

effects. These problems increase as we move to populations that are genetically and envi-

ronmentally more distant to the GWAS populations. For one, the associated loci are usually

not the causal loci underlying trait variation; instead they tag the effects of linked causal

sites. The interpretation of the effect size of an associated variant can be tricky because

of: (i) linkage disequilibrium (LD), whereby it absorbs the effects at correlated causal sites

(Vilhjálmsson et al., 2015; Horikoshi et al., 2017; Lam et al., 2019; Wang et al., 2020; Weiss-

brod et al., 2021); (ii) population stratification, whereby it absorbs the effects of covarying

environments (Haworth et al., 2019; Kerminen et al., 2019; Sakaue et al., 2020; Trochet et al.,

2021; Isshiki et al., 2021); and (iii) gene-by-environment (GxE) or gene-by-gene (GxG) in-

teractions, whereby its estimate is averaged over the interacting environmental contexts or

genetic backgrounds in the sample (Horikoshi et al., 2017; Brown et al., 2016; Coram et al.,

2017; Adhikari et al., 2019; Bentley et al., 2019; Galinsky et al., 2019; Grinde et al., 2019;

Veturi et al., 2019; Wojcik et al., 2019; Mostafavi et al., 2020; Mathieson, 2021; Patel et al.,

2021). As all of these factors can and will vary across populations, the effect sizes of alle-

les will differ among them and so polygenic scores will have lower prediction accuracy, i.e.

imperfect portability, across populations.

Even with perfectly estimated effects at the causal loci with significant trait associations,

the prediction accuracy of polygenic scores will be limited because GWAS only identify loci
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with common alleles that contribute enough variance to exceed some significance threshold

determined by the sample size. Therefore, an allele that is rare in the GWAS sample but

common elsewhere will not be discovered. This would lead to a greater reduction in the

phenotypic variance accounted for, or prediction accuracy, in populations not represented in

the GWAS sample (hereafter ‘unrepresented populations’; Wang et al., 2020; Bentley et al.,

2019; Wojcik et al., 2019; Martin et al., 2017,?; Curtis, 2018; Kim et al., 2018; Conti et al.,

2021). Indeed, many variants contributing to trait variation in European GWAS samples

are not at a high enough frequency to be detected in other populations, suggesting different

sets of polymorphisms contribute to the trait variance in different populations (Liu et al.,

2015; Durvasula and Lohmueller, 2021). Genetic differentiation likely contributes to the

reduction in the prediction accuracy of polygenic scores in unrepresented populations, as

groups with increasing genetic distance from GWAS samples experience a greater loss in

prediction accuracy (Scutari et al., 2016; Bitarello and Mathieson, 2020; Cavazos and Witte,

2021; Privé et al., 2022).

The factors that reduce the utility of polygenic scores for individual level prediction may

also complicate the interpretation of average polygenic score differences across populations.

Such issues arise in studies of adaptation that use polygenic scores to assess the contribution

of selection to the genetic basis of phenotypic differentiation among human populations. An

early application of this approach found polygenic signals of selection on height within Europe

(Turchin et al., 2012; Berg and Coop, 2014), where polygenic scores were over-differentiated

among populations compared to the neutral prediction based on FST . Importantly, the

null distribution of this test of neutrality at the level of the phenotype does not rely on

accurate polygenic scores and so changes in LD, GxG, and GxE should not cause false

signals. However, the results are very sensitive to slight biases in estimated effect sizes due

to population structure, and indeed the signal of polygenic selection on height turned out

to be almost entirely due to stratification (Berg et al., 2019; Sohail et al., 2019; Refoyo-
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Mart́ınez et al., 2020). More generally, the imperfect portability of polygenic scores, and

the fact that the mean environmental contribution to phenotypes can vary greatly between

populations, raises concerns about over-interpreting differences in mean polygenic scores

as genetic differences in the average phenotype among populations (Berg and Coop, 2014;

Novembre and Barton, 2018; Coop, 2019; Rosenberg et al., 2019; Harpak and Przeworski,

2021).

The consequence of genetic differentiation on the low generalizability of GWAS results

for phenotype prediction may appear to contradict Lewontin’s observation of minor allele

frequency differences between populations. However, allele frequency differentiation for com-

plex traits under selection can occur at a rate faster than drift. This would lead to noisy

estimates of additive genetic values, and so reduced prediction accuracy of polygenic scores,

for unrepresented populations. In order to understand the impact of this turnover on porta-

bility, we need models of allele frequency differentiation that are informed by plausible forms

of natural selection on complex traits.

Stabilizing selection with a constant fitness optimum is a sensible null model for the

evolution of complex traits. Indeed, studies of its influence on allelic dynamics have set

a conceptual foundation for interpreting and designing GWAS within populations (Simons

et al., 2018). Under stabilizing selection, intermediate trait values have the highest fitness,

with decreasing fitness with distance from that optimum (Figure 3.1A). Many quantitative

traits have been shown to experience stabilizing selection in humans (e.g. Sanjak et al.,

2018) as well as across many other species (e.g. Bumpus, 1899; Kingsolver et al., 2001;

de Villemereuil et al., 2020). Stabilizing selection also contributes to the lack of variation

in morphological traits within and between closely related species and the morphological

constancy of traits in the fossil record (Gingerich, 1983; Weber, 1990; Barton and Keightley,

2002; Hill and Kirkpatrick, 2010; Houle et al., 2017).

Here, we show how stabilizing selection on complex traits reduces portability and in-
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creases the chance of false signals of directional polygenic adaptation, despite low overall

genetic differentiation and no genetically-based trait differentiation among populations. Un-

der parameter ranges estimated from empirical studies, we combine simulations of stabilizing

selection on complex traits with analytical models of its effect on genetic differentiation to

investigate how stabilizing selection drives these results. We focus only on scenarios in

which the trait optimum is shared among populations, leading to levels of trait differentia-

tion among populations much smaller than neutrality. In our baseline scenario, stabilizing

selection occurs on a single additive trait, where alleles have the same effect in different popu-

lations (reflecting no GxG or GxE interactions and no pleiotropy; we relax these assumptions

later).

We study differentiation between a pair of populations, either an ancestral and descendant

population or a pair of contemporary populations, in which the results of a GWAS in one of

those populations is used to make trait predictions in the other. In doing so we provide a

polygenic score perspective on earlier investigations into the relationship between population

structure, stabilizing selection, and quantitative trait variation (e.g. Cohan, 1984; Narain and

Chakraborty, 1987; Lande, 1991; Goldstein and Holsinger, 1992; Latta, 1998; Le Corre and

Kremer, 2003). We show how these factors reduce the prediction accuracy of polygenic scores

and can readily lead to patterns of polygenic score differentiation rife with the potential for

misinterpretation.

3.2 Model Background

An individual’s additive genetic value Gi is the sum of the additive effects of all alleles they

carry,

Gi =
∑
l

algil, (3.1)

where al represents the additive effect of an allele relative to another at locus l and gl is

the number of copies of that allele carried by the individual. All of these loci denoted
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Figure 3.1: Stabilizing selection to a constant phenotypic optimum constrains the
evolution of mean phenotypes through underdominant selection at the locus-
level. A) Gaussian fitness function for phenotypic stabilizing selection (teal) and resulting
density of simulated phenotypes in the population (coral). Lines correspond to the inter-
mediate strength of stabilizing selection that we simulated (w = 5, where w determines the
width of the fitness peak, see Section 3.2). Note how stabilizing selection keeps the genetic
variance of the population (VP ) small compared to the width of the selection peak (w).
B) Change in mean phenotype from the ancestor (generation 0) under stabilizing selection
(orange) and neutral phenotypic evolution (pink). Each line corresponds to a single simu-
lation; here 10 simulations are shown for each strength of selection. C) Deterministic allele
frequency trajectories, assuming an infinite population size, based on the underdominant
model, at a locus that contributes to the variance of a trait under stabilizing selection (here
w = 5). The trajectory differs according to effect size and starting frequency. Note the
symmetry for starting frequencies that are the same distance to their closest boundaries.
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by l are polymorphic within a specified population from which the individual was drawn.

Note that the additive genetic value does not represent an absolute measure of an individual’s

phenotype, and instead represents the additive contribution of the polymorphisms they carry

to their deviation from their population’s mean.

Under a constant selective environment, stabilizing selection keeps the population mean

phenotype close to the optimum and decreases the phenotypic variance in the population

because individuals on both tails of the distribution have lower fitness (Figure 3.1A,B; Lande,

1976; Wright, 1935; Lande and Arnold, 1983). To understand the process by which stabilizing

selection reduces the phenotypic variance, we focus on the additive genetic variance,

VA = Var(G) =
∑
l

a2l Var(gl)︸ ︷︷ ︸
genic variance

+
∑
l ̸=l′

alal′Cov(gl, gl′)︸ ︷︷ ︸
LD contribution

, (3.2)

in which the first component refers to the additive genic variance (Va) and the second compo-

nent accounts for the contribution of linkage disequilibrium (LD) among loci that contribute

to the variance. In the short term, stabilizing selection reduces the phenotypic variance

by generating negative LD between like-effect alleles, thereby limiting extreme phenotypes

(known as the Bulmer effect; Bulmer, 1971). The additive genetic variance quickly reaches an

equilibrium reflecting a balance between selection producing negative LD and recombination

and chromosome segregation breaking up that generated LD (Turelli and Barton, 1994).

The long-term genetic response to stabilizing selection is driven by a reduction in the

additive genic variance, in particular the variance in genotypes at a locus (Var(gl); the

expected heterozygosity). Yet if the genetic basis of trait variation was truly infinitesimal,

i.e. made up of loci of infinitely small effect, only genetic drift would erode variation in

the long term. However, while the loci discovered by GWAS contribute very small effects,

these effects are not infinitesimally small and so they can be directly acted on by selection

(Simons et al., 2018; Sella and Barton, 2019). Selection at the individual loci underlying trait
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variation trait is in many cases well approximated by underdominant selection, in which the

more common allele fixes and the minor allele is lost (Figure 3.2A; Wright, 1935; Robertson,

1956). Due to underdominant selection at the locus level, stabilizing selection removes

polymorphisms at a faster rate than neutrality with selection coefficients proportional to

their squared effect sizes (see Simons et al., 2018; Sella and Barton, 2019; Hayward and

Sella, 2021, for recent applications of such models to understand GWAS variation within

populations). Meanwhile, under moderate strengths of stabilizing selection and a constant

environment, the population mean phenotype stays very close to the optimum through rapid,

small fluctuations at many individual loci.

We note that the full analysis of models of stabilizing selection is challenging because

changes in allele frequencies and covariances must be tracked over many loci (e.g. Turelli and

Barton, 1994, 1990). Indeed, when we simulated physically linked loci with low recombina-

tion, we found that selection on an allele was weaker than we predicted due to the persistence

of selection-generated LD between alleles with opposing effects (the Bulmer effect; 3.6). To

understand the long-term turnover in the genetic basis of trait variation, from here on we

focus on the additive genic variance, Va, under the assumption that loci contributing to the

variance are physically unlinked.

We begin by thinking of an ancestral population at equilibrium and the loss of ancestral

phenotypic variance over time. When the population is at mutation-drift-selection equi-

librium, stabilizing selection and genetic drift remove variation such that as time goes on

less and less of the variance in the descendant population is contributed by ancestral poly-

morphisms. Instead, the variance contributed by new mutations that are private to the

descendant population will increase, replenishing what was removed by drift and selection.

We assume a model of Gaussian stabilizing selection where the width of the fitness peak is

determined by w (w2 is equivalent to VS in other models of stabilizing selection, e.g. Turelli,

1984), which will approximate any symmetric quadratic stabilizing selection model when the
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mean trait is close to its optimum. We also assume thousands of unlinked loci contributing

to trait variation and explore dynamics resulting from three different mutation effect size

distributions (Figure 3.2C); see Appendix 3.8.1 for simulation details.

We can predict the reduction in additive genic variance contributed by ancestral variants

(anc) in the descendant population (desc) after t generations for alleles with effect size a

using a common approximation for the per generation loss (e.g. Keightley and Hill, 1988),

Va[anc, desc](a, t)

Va(a, 0)
= (1 − 1/2N)t × (1 − a2/4(w2+VP ))

t
(3.3a)

≈ exp

(
−t

2N

(
1 +

2Na2

4w2

))
(3.3b)

≈ exp

(
−FST

(
1 +

S

4

))
, (3.3c)

where VP is the total population trait variance and VP ≪ w2, S = 2Na2/w2 is the population-

scaled selection coefficient of the allele, and FST ≈ t/2N for neutral polymorphisms. On the

right-hand side of Equation 3.3a, the first bracketed term is the per generation reduction

due to drift and the second term is the reduction due to stabilizing selection. Looking at the

exponent in Equation 3.3c, we see that the decay of the variance (heterozygosity) contributed

by alleles depends on FST , but will be increased for alleles whose effect sizes are large enough

such that their population scaled selection is appreciable (S > 1). The above equation offers

good intuition, however in the remainder of the main text we show results from a diffusion

approximation that we developed that is better for our purposes (extending from Simons

et al., 2018, see Appendix 3.8.3).

The reduction in additive genic variance contributed by a particular polymorphism with

effect size a is the same as the reduction in heterozygosity at that site. Selection causes a

stronger reduction when the fitness peak is narrower (i.e. when w is smaller) and when the

allele’s effect is larger (Figure 3.2A; see 3.7 for the approximation in Equation 3.3a). We
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can average the reduction in heterozygosity across all sites, weighting by the distribution

of effect sizes and genic variance contributed by a given effect size, to predict the total

remaining variance and thus total reduction in Va over time (Figure 3.2B; Equation 3.22).

In the example shown in Figure 3.2, this total reduction tends to be weaker than what we

see for the largest effect polymorphisms, because most sites that contribute to the variance

are of small effect. This is because (i) under our mutational distribution most alleles have

small effects, and (ii) under stabilizing selection, the equilibrium distribution of observed

effects is more narrow than the distribution of mutation effects.

The form of the decay in ancestral variance strongly depends on the distribution of

mutation effects. Consider a case in which a higher proportion of introduced mutations are

strongly selected due to their large effects (S > 10). Some of these alleles are still capable of

drifting to intermediate frequencies, and so a higher proportion of the ancestral variance will

be contributed by larger effect polymorphisms (Simons et al., 2018). Therefore stabilizing

selection will cause a steeper reduction in the ancestral variance (Figure 3.2C). Moreover,

if most of the other mutations are nearly neutral, the early and steep decline in ancestral

variance will be followed by a decline more consistent with neutrality (yellow lines in Figure

3.2C; see Simons et al., 2018, for a discussion of selection regimes). The extent to which

ancestral variance is depleted determines the amount of shared additive genetic variance

between diverging populations and thus the portability of polygenic scores.

3.3 Accuracy of polygenic score predictions

To understand the effect of stabilizing selection and drift on the prediction accuracy of

polygenic scores in isolation from other sources of bias, we make the simplifying assumption

that GWAS identify associations between polymorphisms and trait variation only at causal

loci. For a GWAS within a population to identify a locus as being associated with the trait,

the locus has to be polymorphic in that population and its phenotypic association has to
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Figure 3.2: The effect of stabilizing selection, distribution of effect sizes, and
GWAS ascertainment scheme on the portability of a GWAS to another pop-
ulation. A) Reduction in heterozygosity at loci that contributed to the variance 1500
generations ago in a population with Ne = 10, 000. Each open point represents the mid-
point of the effect size bin of width 0.01, within which we averaged heterozygosity from
200 simulations. Each filled point represents our analytical predictions for that midpoint.
B) Reduction over time in the total variance contributed by polymorphisms in an ancestral
population. Lighter lines show results from 200 simulations and darker lines show analytical
predictions. The axis at the top shows the expected neutral FST between the ancestral and
descendant population for the time scales of divergence shown on the bottom axis. The
inset on the left shows the distribution from which mutation effect sizes are drawn. For the
results shown we used a normal distribution with standard deviation of 0.1. The inset on
the right shows the equilibrium density of variance contributed from each effect size. As the
width of the fitness peak increases, and thus stabilizing selection weakens, mutations with
large effects can drift to higher frequencies and contribute a greater proportion of the trait’s
variance. C) The reduction over time in the total variance contributed by polymorphisms
in an ancestral population for three different mutation effect size distributions, holding the
strength of phenotypic stabilizing selection constant (w = 5). The inset shows the three
mutation effect size distributions: two normal (green and blue) and a mixture of normals to
produce a heavy-tailed distribution (yellow). The blue lines correspond to the same distribu-
tion used to produce sub-figure B, thus replicating the orange lines in sub-figure B. Lighter
lines show results from simulations (100 each for yellow and green) and darker lines show
analytical predictions. Predictions in B and C are based on the diffusion approximation,
see Equations 3.22 and 3.23.
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achieve some level of statistical significance (i.e. contribute above some level of variance to

the trait). For those causal loci with significant associations, we also assume their effects are

estimated perfectly and for the moment that these true effects do not vary within the sample,

population the sample was drawn from, or across populations (i.e. populations experience

the same set of environments). We also assume their effects are strictly additive. At the

trait-associated loci, one can sum the additive effects of all alleles an individual carries at a

predefined set of markers to form a polygenic score.

We are interested in the reduction in prediction accuracy for a population not represented

in the GWAS sample, relative to the prediction accuracy of those represented populations.

To explore this we consider the genetic differentiation between a pair of populations, A and

B, in which the GWAS sample is drawn from population A but not population B. When

the effects of alleles do not vary between populations, we can quantify the reduction in

phenotype prediction accuracy (r2) of polygenic scores, compared to using additive genetic

values, constructed for any population as

r2S
r2G

=
Var(S)

Var(G)
, (3.4)

where Si is an individual’s polygenic score and Gi is their additive genetic value. Since an in-

dividual’s polygenic score is only part of their additive genetic value when a GWAS estimates

true effects, this reduction can be understood as the proportion of the total additive genetic

variance, or proportion of the heritability, explained by GWAS-significant sites (Appendix

3.8.2). The ratio of r2S/r2G in population B to population A quantifies the reduction in predic-

tion accuracy due to a lack of GWAS representation for population B. If these populations

experience the same selective environment, we expect the same Var(G) for each population,

so this reduction due to a lack of representation would simply be the ratio of the variances

explained by polygenic scores.

Note that our definition of the prediction accuracy in population B is the squared cor-
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relation of the deviation of an individual’s polygenic score with its deviation in phenotype,

where both of these deviations are with respect to the mean phenotype in population B. This

definition matches typical polygenic score practices where predictions are statements about

the departure of an individual from their ancestry group’s mean genetic value, rather than

a prediction of their departure from the mean genetic value of the GWAS population. How-

ever, this definition of prediction accuracy does not include discrepancies from the evolution

of mean polygenic scores and phenotypes among populations, meaning it does not account

for a systematic shift in polygenic scores between populations. We turn to this point in

Section 3.4.

3.3.1 Ascertainment of all causal loci in GWAS sample

We begin with the simplified case in which all causal loci that are polymorphic in population

A have been identified, such that polygenic scores equal the additive genetic values in popu-

lation A. As polygenic scores from ancient DNA are being used to investigate the phenotypic

diversity of ancient human populations (Irving-Pease et al., 2021), we first consider the pre-

diction accuracy in a population ancestral to population A of a polygenic score constructed

using variants found in population A. The reduction in polygenic score prediction accuracy

for this ancestral population is approximately the reduction in variance contributed by that

ancestral population to the present (Figure 3.2B,C; 3.9; see Appendix 3.8.3.2 for an expla-

nation). While ancient individuals were likely not drawn from populations directly ancestral

to present-day populations, we should observe the same general patterns with genetic differ-

entiation between the ancient and present-day population (see also Carlson et al., 2021, for

approximations of this decline).

For the remainder of this article we consider A and B to be contemporary populations;

we assume for simplicity that they split from a common ancestral population without subse-

quent gene flow. In Figure 3.3A, we use simulations and analytical predictions to show how
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the prediction accuracy in population B decreases with increasing time since its common

ancestor with population A. The span of neutral genetic differentiation was chosen to reflect

a scale along which various human populations could fall. We see slightly weaker reductions

in prediction accuracy with time when the variance of the mutation effect size distribution

is quartered and stronger reductions when the mutation effect size distribution has a heavy

tail (Figure 3.3B; 3.10). All variance-contributing loci were ascertained in population A, so

the only reason the full genic variance in population B was not captured is because private

polymorphisms contribute to the phenotypic variance in each population. At the time of

divergence between the pair of populations, they entirely share their genetic basis of trait

variation. Then as stabilizing selection and drift remove polymorphisms (at equilibrium),

new mutations replenish them at different sites in each population, leading to the same to-

tal variance but different genetic bases of that variance (assuming a very large mutational

target). Without gene flow between the pair of populations, the polymorphisms that arose

since their common ancestor will remain private to each population and will thus not con-

tribute to the variance in the other population. Therefore the polymorphisms in population

A that also contribute to the variance in population B must be ancestrally shared polymor-

phisms, specifically at those loci in which ancestral polymorphisms were not removed by

drift or selection in either descendant population. Note that these shared polymorphisms on

average contribute less variance in the descendant populations than in their ancestor. Thus

we see a loss in the additive genetic variance shared between populations over time due to

a reduction in both the number of shared ancestral polymorphisms and the variance they

each contribute. In Appendix 3.8.3.2 we describe our analytical predictions for this process,

which match well to simulations.
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3.3.2 Ascertainment of subset of causal loci in GWAS sample

To more realistically explore the impact of GWAS ascertainment, we explore power- and

frequency-based variant discovery. In the main text, we focus on a case in which a GWAS

uncovered the top 5% of variance-contributing polymorphisms in population A. Under our

choice of effect size distribution and strengths of stabilizing selection, these polymorphisms

explain just under 50% of the additive genic variance in population A (similar to that of

height in Europeans; Yang et al., 2010; Wood et al., 2014; Yang et al., 2015). We also consider

a case in which a GWAS uncovered all causal loci with a minor allele frequency (MAF) that

exceeds 1%. As expected, under any ascertainment scheme we observe a substantial drop in

the variance explained in population B compared to the case in which all polymorphisms in

population A are ascertained (Figure 3.3B). If this reduction in variance for each population

is the same, then the decline in prediction accuracy in population B relative to population A

over time will be similar to the case when all polymorphisms in population A are ascertained.

We find that this is approximately the case for a Gaussian mutation effect size distribution

but not for the heavy-tail effect size distribution that we simulate (Figure 3.3C). These

differences arise from differences in the strength of selection on and variance contributed

by ancestrally shared polymorphisms; see Supplement 3.9.2 for details. We present results

under GxE, pleiotropy, and directional selection in Supplement 3.9.3.

3.4 Difference in polygenic means among populations

In the previous section we described how stabilizing selection and ascertainment in the

GWAS sample can reduce the prediction accuracy of individual genetic values, but what

are the consequences for the mean polygenic score of populations? The mean polygenic

score of the population is twice the sum of population allele frequencies weighted by effect

sizes. If a trait is neutrally evolving, the loci contributing to its variation are just like other

neutrally evolving loci, and so differences among populations in their mean polygenic score
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Figure 3.3: Reduction of polygenic score prediction accuracy in unrepresented
population B relative to contemporary, represented population A increases with
the strength of stabilizing selection, density of large-effect mutations, and power-
based GWAS discovery schemes. A) Reduction of prediction accuracy in population
B, when all variance-contributing polymorphisms in population A were ascertained, with
increasing time since the common ancestor of populations A and B. Lighter lines show results
from simulations and darker lines show results from analytical predictions. B) Distribution
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sub-figure A.
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just reflect a weighted sum of neutral allele frequency differences. Naively, as trait increasing

alleles underlying a neutral trait are equally likely to drift up or down, one might think that

over many loci we expect only a small mean difference between populations. However, the

polygenic score is a sum rather than a mean, and so each locus we add into the score is

like an additional step in the random walk that two populations take away from each other

(Chakraborty and Nei, 1982). We expect the variance among populations, i.e. the average

squared difference between population means and the global mean, to be 2VAFST (Wright,

1951; Lande, 1992). We first explore the differentiation of mean polygenic scores under a

constant optimum and constant environment, and then relax these assumptions.

3.4.1 Stabilizing selection to a constant optimum

Under a constant selective environment, stabilizing selection keeps population mean phe-

notypes close to their optimum in the face of genetic drift and mutation, such that the

difference in mean phenotypes among populations with the same optimum should be minor

relative to neutral expectations (even accounting for the lower genetic variance within popu-

lations under stabilizing selection; Figure 3.4A). This reduction in the divergence of the mean

phenotype between populations reflects the fact that if trait-increasing alleles accidentally

drift up in frequency, thus pushing the population mean away from its selective optimum,

trait-decreasing alleles are subject to directional selection in their favor (and vice versa).

To explore population differences in mean polygenic scores, we can use the polygenic

score equivalent of QST/2FST (Prout and Barker, 1993; Spitze, 1993), where QST measures

the proportion of total variance in additive genetic values attributable to among-population

differences. Under neutrality, for strictly additive traits we expect QST to equal 2FST esti-

mated from neutral polymorphisms (Lande, 1992; Whitlock, 1999), and their ratio should be

χ2-distributed with degrees of freedom equal to one fewer than the number of populations

(an extension of the Lewontin-Krakauer test; Lewontin and Krakauer, 1973). The polygenic
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score analog is QX (Berg and Coop, 2014), where additive genetic values are substituted by

polygenic scores. For our pair of populations, our QX statistic is

QX =
(ZA − ZB)2

4VaFST

, (3.5)

where Z is the mean polygenic score in the population denoted in the subscript. When

population mean phenotypes are over-dispersed relative to neutral expectations, QX will

be larger than 1, potentially resulting in a statistically significant p-value under the null

distribution. When population means are under-dispersed relative to neutral expectations,

as we would expect for traits under stabilizing selection with the same optimum across

populations, QX will be much smaller than 1, and the p-values under the null will be large.

Stabilizing selection to the same optimum tightly constrains the difference in mean ad-

ditive genetic values between populations, i.e. the difference in mean polygenic scores using

all of the variation, to be much lower than the difference for neutral traits even after stan-

dardizing for the lower overall levels of variation (Figure 3.4A). This leads to a distribution

of QX that is skewed toward lower values than the neutral χ2-distribution (3.17). However,

when we ascertain the top 5% of variance-contributing polymorphisms in population A, the

level of standardized polygenic score differentiation under stabilizing selection becomes more

similar to neutral levels (Figure 3.4B) with a comparable level of false positive signals of

adaptive differentiation as in the neutral case (3.17). While this result is more specific to our

choice of mutation effect size distribution and strengths of stabilizing selection, we can gen-

erally conclude that for cases of stabilizing selection with limited ascertainment, estimates

of standardized mean polygenic score differences will approach and perhaps exceed what we

observe under neutrality. Note that under the neutral case, the distribution of standardized

mean polygenic score differences stays about the same between ascertainment levels, whether

ascertaining all polymorphisms from both populations or just the top 5% in population A.

This is because under neutrality, all alleles exhibit the same behavior and do not evolve in
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coordination with one another. Thus stabilizing selection, combined with incomplete and

asymmetric ascertainment, causes the inflation of estimated mean standardized population

differences above that seen for the underlying genetic values.

Since under stabilizing selection to the same optimum we expect only small differences

between populations in their mean genetic value, the disparity between the (true) differences

in mean genetic values and (estimated) differences in mean polygenic scores represents the

mean difference contributed by non-ascertained polymorphisms. Intuitively this occurs be-

cause if population B has a larger value of an ascertained polygenic score than population

A, then the ascertained trait-increasing alleles have by chance drifted up in population B

(compared to A) and this imbalance will have induced directional selection for the rest of

the trait-increasing alleles to decrease their frequency to keep the population close to the

optimum (under high polygenicity). In line with our expectations, we find that the mean

polygenic score differences calculated from ascertained sites and mean polygenic score differ-

ences calculated from non-ascertained sites are close to opposite one another (Figure 3.4B).

The countervailing effect of the non-ascertained loci is noisier when stabilizing selection is

weaker, because with weaker selection population means can drift further from their opti-

mum. These results confirm that mean polygenic scores calculated from all polymorphisms

(i.e. additive genetic values) should closely match between populations experiencing stronger

and similar selection pressures and highlight how incomplete ascertainment can by chance

generate misleading differences between them.

3.4.2 Adapting to a changing optimum or environment

The combination of changes in the stabilizing selection regime and incomplete ascertainment

of causal polymorphisms can also generate misleading differences in mean polygenic scores

and signals of differential selection among populations. When the optimal phenotype shifts

from its ancestral value equally in both descendant populations, this directional selection
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Figure 3.4: Polygenic scores can overestimate differences in additive genetic values
between populations for traits under stabilizing selection. A) Absolute standard-

ized mean polygenic score differences between populations A and B, |ZA−ZB |√
Va

, either when

all polymorphisms in both populations were ascertained, or when the top 5% of variance-
contributing polymorphisms in population A were ascertained. This measure has the same
interpretation as QX ; it equals

√
4QXFST . B) Partitioning of mean polygenic score dif-

ferences between the ascertained and non-ascertained set of polymorphisms. Ascertained
polymorphisms are from the top 5% of variance-contributing sites in population A. Points
represent results for a single simulation. Ellipses denote the 95% confidence interval. The
dashed grey line is the line of exactly opposing effects.

generates responses in the true mean genetic values in each population that track each other

extremely closely. However, because our polygenic score based on ascertained SNPs explains

less of the variance in population B than population A, we capture less of its response

to selection and thus artificially generate a difference between populations in their mean

polygenic scores (Figure 3.5A). This shift in the mean polygenic score between populations,

as well as a decrease in the total variance explained, can push the distribution of QX towards

larger values than the neutral case (Figure 3.5B). The chances of getting a p-value below

a significance threshold of 0.05 are highest when stabilizing selection is strongest (w = 4;

up to 30% chance depending on time since the optimum shift) but tend to be greater than

neutrality for the strengths of selection we investigated (3.11). These signals of polygenic
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Figure 3.5: Polygenic scores can generate false signals of adaptive differentiation
when populations adapt to the same optimum shift. A) Change in mean phenotype
or polygenic score over time since the optimum shifted 2 standard deviations of the phenotype
distribution. True phenotypes are different from additive genetic values in that they account
for the contribution of substitutions. B) Quantile-quantile plot of observed p-values against
expected p-values under neutrality (uniform distribution). The dashed line shows equality;
points that lie above this line indicate that the observed distribution has a higher density of
low p-values than the neutral distribution, and points that lie below it indicate the opposite.

selection are consistent with the idea that QX informs us about directional selection on

polygenic scores, as selection has driven an increase in the polygenic score of A relative to

B. However, they also highlight the very incomplete picture that we obtain about selection

and genetic differences in the phenotype.
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3.5 Discussion

Our work builds on population genetics theory of stabilizing selection to investigate why

polygenic scores perform poorly in populations not represented in GWAS samples (‘unrep-

resented populations’) and how they can be misleading about average genetic differences

among populations. Specifically, we provide a theoretical foundation to understand how sta-

bilizing selection on complex traits impacts the population differentiation of polygenic scores

without a difference in environments or trait optima. Negative selection has been invoked as

an explanation for low portability, consistent with large effect alleles discovered by GWAS

being rare in the population(Wang et al., 2020; Durvasula and Lohmueller, 2021). Here we

explore these predictions under a model of stabilizing selection that has the advantage of

offering clear-cut connections between an allele’s phenotypic and fitness effects. With this

approach to modeling allele frequency dynamics, we obtained a detailed understanding of

how a lack of population representation in GWAS can reduce the utility of polygenic scores

in explaining phenotypic variation within and among populations. We discuss the dynamics

contributing to low portability, considerations for those interested in explaining variation be-

yond the GWAS sample, and necessary discretion when using polygenic scores to understand

group differences.

3.5.1 Dynamics contributing to low portability

While stabilizing selection around the same optimum among populations reduces pheno-

typic differentiation relative to neutrality, somewhat counter-intuitively it increases genetic

differentiation at trait-influencing loci compared to neutral polymorphisms. Genetic differ-

entiation increases because stabilizing selection drives the turnover of polymorphisms that

contribute to trait variation within populations; thus polymorphisms that are ancestrally

shared between populations are eventually lost and replaced by private mutations. The con-

sequences of this differentiation at large effect QTLs and few loci have been explored by
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various authors (Latta, 1998; Le Corre and Kremer, 2003; Kremer and Le Corre, 2012), and

here we investigated its implications on GWAS results and downstream analyses. Over time,

the sets of polymorphisms that contribute substantial variance in each population diverge,

such that stabilizing selection reduces the additive genic variance in one population that can

be explained by polymorphisms in another. Thus polygenic scores constructed from poly-

morphisms ascertained in a GWAS will have reduced prediction accuracy in unrepresented

populations compared to represented ones. The prediction accuracy for unrepresented popu-

lations decreases with increasing strengths of stabilizing selection and time since the common

ancestor with represented populations. Occasional fluctuations in the fitness optima would

negligibly influence our portability results, because such directional selection would cause

very minor shifts in frequency over the short time scales we consider (Hayward and Sella,

2021).

The distribution of mutation effect sizes is critical to understanding the effects of sta-

bilizing selection on the turnover of genetic variation among populations. With increasing

weight towards larger mutation effects, stabilizing selection leads to a faster reduction in

the shared additive genetic variance, and thus polygenic score portability. In addition, the

decline in prediction accuracy for unrepresented populations relative to represented ones will

depend on frequency- and power-based ascertainment schemes; since polymorphisms shared

between populations will more likely be of small effect and common, the discovery of poly-

morphisms based on minor allele frequency will lead to a weaker decline than discovery based

on variance contributed. Conversely, if the trait was truly infinitesimal, stabilizing selection

would not contribute to the loss of heterozygosity, such that the sharing of genetic variance

would be well predicted by genetic drift, or neutral FST . While the loci mapped by GWAS

are often of small effect, and the traits highly polygenic, we know that their effects are not

infinitesimal, as loci must make a reasonable contribution to the variance to be discovered

by a GWAS (see Simons et al., 2018, for a detailed population genetic model).
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While we do not consider migration between represented and unrepresented populations

here, the general decline in portability with increasing genetic differentiation between groups

should hold, though the exact prediction will differ. Pleiotropy and GxE complicate the

predictions of stabilizing selection for portability, which we discuss in Supplement 3.9.3.

Differences in the environment among populations can lead to changes in the effect sizes

of alleles (GxE), which reduces the portability because (i) effect sizes will be only partially

correlated between populations and (ii) stabilizing selection will purge more of the ancestral

variation shared between populations since GxE increases the overall trait variance when the

interacting environment changes. Pleiotropy, in our implementation, leads to the opposite

effect. Holding the average strength of selection on all alleles constant, when an allele can

independently affect multiple traits under stabilizing selection, the correlation between its

effect size on the trait of interest and its selection coefficient weakens. Thus stabilizing

selection purges less of the shared variation and causes a weaker reduction in portability.

3.5.2 Considerations for applications of GWAS results across

groups

Like much of the recent work on portability, our work emphasizes the reduction in prediction

accuracy for populations not represented in GWAS (Lam et al., 2019; Weissbrod et al., 2021;

Martin et al., 2017; Márquez-Luna, 2017; Duncan et al., 2019). A natural conclusion is that

polygenic predictions that work well across populations will require GWAS across a range of

diverse ancestries, in line with other calls to reduce Euro-centrism in GWAS (Li and Keating,

2014; Popejoy and Fullerton, 2016; Martin et al., 2019). In addition to changes in allele

frequency and linkage disequilibrium, the relationship of polygenic scores to phenotypes will

vary across populations due to variation in genetic effects, assortative mating, and differences

in GxG and GxE. Indeed the prediction accuracy of polygenic scores for some traits was

recently shown to be quite variable across different groups within an ancestry, suggesting that
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GxE and environmental variation are quite prevalent for some traits (Mostafavi et al., 2020).

In addition, associated variants on the same haplotype were found to have differing effects in

European-Americans and admixed African-Americans, suggesting genetic or environmental

interactions modify additive effect sizes across groups (Patel et al., 2021). Thus, we caution

that a better understanding of the portability of polygenic scores across populations also

requires a stronger understanding of the causes of variation in prediction accuracy within

populations.

With the rise of ancient DNA sequencing, GWAS from contemporary populations have

also been used to construct polygenic scores for ancient individuals (reviewed in Irving-

Pease et al., 2021). These scores have been used to provide a window into the phenotypic

diversity of past populations (Mathieson et al., 2015; Berens et al., 2017; Martiniano et al.,

2017) and to disentangle genetic and environmental contributors to temporal phenotypic

variation (e.g. at the Neolithic transition; Cox et al., 2019, 2022; Marciniak et al., 2021).

Such studies are most convincing when there are relevant phenotypic measurements on at

least some ancient individuals and polygenic prediction accuracies can be judged. However,

investigators will often not have this luxury, leaving unclear the insight these approaches can

provide. Some studies using ancient DNA have identified reduced rates of disease alleles in

the past compared to present-day populations. While we have focused here on quantitative

traits, rather than disease traits, we caution that purifying selection against risk alleles will

lead modern day populations to systematically underrepresent the diversity of disease alleles

in the past (Berens et al., 2017; Aris-Brosou, 2019; Esteller-Cucala et al., 2020; Simonti and

Lachance, 2021).
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3.5.3 Misinterpretations of group differences based on polygenic

scores

When using polygenic scores constructed from the ascertained set of polymorphisms, we in-

crease the possibility of generating misleading signals of differentiation between populations.

Stabilizing selection to a constant optimum alone does not generate more false signals of di-

rectional selection than what we expect under the neutral evolution of complex traits. How-

ever, the standardized difference between populations will be systematically over-estimated

with ascertained polygenic scores. We see this result because with stabilizing selection, the

unascertained portion of the variance tends to act exactly counter to the trend seen in the

ascertained portion. Misleading signals of adaptive polygenic differentiation can also be

generated when the stabilizing selection regime shifts in the same way in each population

(such that there is still minor phenotypic differentiation between them) as the ascertained

polymorphisms only capture a shift in the ascertainment population. This issue arises be-

cause stabilizing selection lowers the proportion of the additive genic variance explained in

the unrepresented population and so we capture a lower proportion of that population’s

response to directional selection. Thus this issue of missing the parallel adaptive response

across ancestries can be expected in many situations with imperfect portability. Such signals

of polygenic adaptation can be useful as QX is correctly detecting that directional selection

has acted on the genetic variation along the branch leading to the represented population,

but the signal is very open to the misinterpretation that the unrepresented population has

not also responded to the same selection pressures.

Many traits have likely experienced a mixture of stabilizing selection and bursts of di-

rectional selection across human history. Even if the populations share the same phenotypic

optimum, if an environmental change systematically shifts one population away from this

optimum, there would be directional polygenic adaptation to move that population back to-

wards the optimum, resulting in a difference in polygenic scores but no difference in the mean
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phenotypes between populations (Harpak and Przeworski, 2021). Therefore, under current

ascertainment schemes and pervasive stabilizing selection, the difference in mean polygenic

scores among populations provides very unreliable information about the potential role of

selection in generating phenotypic differences among populations.

A polygenic score is a prediction of how an individual’s phenotype is expected to deviate

away from the sample mean given their genotype at some (large) number of polymorphisms.

Sometimes they are quoted as absolute values, but that is always based on an empirical

phenotypic mean. The mean polygenic score in a population cannot inform us of the mean

phenotype in a population, even if it was constructed from all polymorphisms and averaged

across all individuals. This is because these scores are based on polymorphic genotypes alone

whereas the absolute phenotype of an individual represents the end product of the entire

genome and environment played out through a vast number of developmental processes. Yet

it is easy to fall into the trap of believing that a difference in polygenic scores between groups

is a strong statement about the difference in the mean phenotype of those groups who also

differ in a myriad of environmental and cultural factors (a related set of issues are present

in epidemology; Rose, 2001). Thus while the field of human genetics is increasing its power

to predict phenotypic variance among individuals within groups, it remains a poor guide

to the causes of phenotypic variance among groups with greater environmental and genetic

differentiation (Lewontin, 1974; Feldman and Lewontin, 1975).

3.6 Data Availability

Code used to generate simulations and process output can be found at https://github.

com/SivanYair/SLiMsims_StabilizingSelection.
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3.8 Appendix

3.8.1 Simulation Details

In SLiM version 3.6 (Haller and Messer, 2019), we simulated stabilizing selection on additive

traits and divergence between a pair of populations with the same optimal phenotype (set at

zero). Each simulation consisted of a constant population size of 10,000 diploid individuals

and genomes comprising 4000 1bp quantitative trait loci and 1000 1bp neutral loci, with

free recombination between loci. Mutations arose at rate 2 × 10−6 per base pair and for

quantitative trait loci their effect size was randomly assigned from a normal distribution or

a mixture of normal distributions. We used a Gaussian fitness function setting the fitness of

an individual to

W (r⃗) = exp

(
− r2

2w2

)
, (3.6)

where r = ||r⃗|| is the phenotypic distance from the optimum of an individual with a vector of

phenotypes r⃗ and w quantifies the width of the fitness peak. The form of Gaussian selection

is consistent with any form of quadratic selection if the population mean is near the optimum

(see section 3.8.1.2). We simulated quantitative traits under neutrality (w = ∞) and under
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varying widths of the fitness peak, w, in which larger values of w indicate weaker stabilizing

selection. We chose strengths of stabilizing selection and an effect size distribution that

correspond to observations in human populations (see section 3.8.1.1 and 3.8.1.2 for details).

We calculated an individual’s fitness each generation based on equation 3.6, where their

phenotype was the sum of the effects of alleles they carried at both variable and fixed sites.

We burned in each simulation for 60,000 (6N) generations before splitting the population

into two for 3500 generations. We recorded mutation effect sizes and frequencies in each pop-

ulation every 100 generations for the first 500 generations, and then every 500 generations.

To reduce computation times, groups of 10 simulation replicates shared the first 40,000 gen-

erations of their burn-in. The remaining 20,000 generations provided more than enough time

for a complete turnover in the genetic basis of trait variation, such that simulations within

a group were effectively independent. We simulated 100 or 200 replicates of each parameter

combination.

3.8.1.1 Choice of parameter values for strength of selection on the trait

We simulated under four different strengths of stabilizing selection (w), chosen to range from

no selection (neutral trait) to the highest strength of stabilizing selection estimated from the

UK BioBank (Sanjak et al., 2018). These estimates were determined from regressions of

relative fitness (based on estimates of lifetime reproductive success) on squared standard

normal phenotypes, r2, where half of the coefficient of the quadratic term is the quadratic

selection gradient, γ, in which negative values imply stabilizing selection, and the intercept

is the mean fitness in the population, w̄. The authors report estimates of γ from their regres-

sions, and so to get strengths of stabilizing selection (w) under our slightly different fitness

model, we make the following approximations to fitness. At equilibrium, the distribution of

phenotypes are closely centered around the optimal phenotype relative to the width of the

fitness gradient, and therefore we assume that mean fitness w̄ ≈ 1. Additionally assuming
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that the mean phenotype in the population is the optimal phenotype, we can then approxi-

mate that the quadratic fitness function that is equivalent to ours when γ = − 1
w2 , because

γ
2
r2+1 ≈ exp(γr

2

2
). Based on incremental γ values of 0, -0.02, -0.04, and -0.06 (the maximum

estimated), we use the following values of the strength of stabilizing selection on the trait:

w = ∞ (neutral trait), w = 7, w = 5, and w = 4.

3.8.1.2 Choice of effect size distribution

Effect sizes of new mutations were drawn from a normal distribution or mixture of normal

distributions with mean zero. Provided that the strengths of selection we chose correspond to

selection on standard normal phenotypes, we used a standard deviation that would result in

a genetic variance close to 1 at equilibrium. However, we note that the size of the mutational

target provides a simple inflation factor to the variance and cancels out when calculating the

reduction in prediction accuracy; the mutation effect size distribution that we use is more

important for determining the distribution of selection coefficients. See equation 3.18 for the

solution to the equilibrium genic variance. Since the strength of selection helps determine the

equilibrium genic variance, by changing the variance of effect sizes of incoming mutations, we

used the weakest strength of selection to determine the variance of this effect size distribution

(w = 7). For a Gaussian distribution of effect sizes, this leads to a solution for the standard

deviation (σa) of 0.1. This distribution generates mutations that are mostly nearly neutral

or weakly selected. To explore how different selection regimes lead to different declines in

prediction accuracy, we also simulated mutation effect size distributions that involve a higher

density of nearly neutral mutations or a higher density of strongly selected mutations. We

used a Gaussian distribution with σa = 0.05 for the former and a mixture of Gaussians for

the latter, which we call the “heavy tail” distribution. The heavy tail distribution generates

mutations from a Gaussian distribution with σa = 0.05 that has mean 0 with probability

0.65 and mean ±0.25 with probability 0.175. We chose these specifications for the heavy tail
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distribution in order to match the median absolute deviation of selection coefficients for the

standard Gaussian with σa = 0.1.

3.8.1.3 Extension: Directional Selection

We extended our baseline stabilizing selection scenario for directional selection by imposing a

positive optimum shift of either one or two standard deviations of the phenotypic distribution.

The optimum shifted in the same way 2500 generations after the pair of populations diverged.

We started directional selection simulations from the states of the baseline scenario that were

recorded at the time of the optimum shift. To calculate the extent of the optimum shift in

each simulation, we averaged the phenotypic standard deviation of each population in that

simulation. Simulation details and results for other extensions can be found in Supplement

3.9.3.

3.8.2 Relative prediction accuracy of polygenic scores

The prediction accuracy of a polygenic score is the the proportion of the phenotypic variance

explained by that polygenic score (the squared correlation R2). We write out the correlation

between an individual’s polygenic score constructed from unlinked polymorphisms discovered

by GWAS, Si, and the true additive genetic value, Gi, in a particular target population.

We assume that a GWAS discovers associations only at causal loci, and that at these loci

with significant associations, it estimates their true effects. There are Ls loci with significant

associations in the study and a remaining Lr that contribute to trait variation in a particular
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target population. Therefore an individual’s predicted and true genetic values are

Si =
Ls∑
l=1

algil

Gi =
Ls+Lr∑
l=1

algil

= Si + G
(r)
i ,where G

(r)
i =

Ls+Lr∑
l=Ls+1

algil,

(3.7)

in which their true genetic value is a sum of their predicted genetic value and genetic value

contributed by the remainder of sites contributing to trait variation. Because the predicted

genetic value is a portion of the true genetic value, the covariance between them is the

variance in predicted genetic values,

Cov(S,G) = Cov(S, S + G
(r)
i )

= Cov(S, S)

= Var(S)

(3.8)

Thus the correlation between the predicted and true genetic values is

Corr(S,G) =
Var(S)√

Var(S) × Var(G)
=

√
Var(S)

Var(G)
, (3.9)

meaning that the correlation between the predicted and true additive genetic values is the

square root of the proportion of the trait variance explained by SNPs ascertained by the

GWAS, or that the variance in true genetic values explained by polygenic scores (r2) is the

proportion of the variance explained by the polymorphisms used to construct the polygenic

scores. This value also represents the reduction in the prediction accuracy of polygenic

scores compared to additive genetic values, when predicting true additive phenotypes (with

contributions from both genetics and environment). We denote the additive environmen-

tal contribution to the phenotype in an individual as Ei. The prediction accuracy of an
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individual’s full additive phenotype (Gi + Ei) when using polygenic scores is

r2S =
Cov2(S,G + E)

Var(S)Var(G + E)

=
Var2(S)

Var(S)Var(G + E)

=
Var(S)

Var(G + E)

(3.10)

and when using additive genetic values is

r2G =
Cov2(G,G + E)

Var(G)Var(G + E)

=
Var(G)

Var(G + E)
,

(3.11)

such that the reduction of prediction accuracy when using polygenic scores instead of additive

genetic values is
r2S
r2G

=
Var(S)

Var(G)
. (3.12)

Thus r2S/r2G represents the prediction accuracy of polygenic scores for additive genetic values,

as well as the reduction in prediction accuracy for full additive phenotypes due to incomplete

ascertainment.

3.8.2.1 Modification for gene-by-environment interactions

While we assume the effects of a causal allele are perfectly estimated in the GWAS sample,

these effects may differ in populations that experience different environments (GxE). Thus

for populations not represented in the GWAS, the correlation between polygenic scores and

true additive genetic values will be lower than without GxE. Imagine that we use the set

of effect sizes from GWAS population A (al,A) to construct polygenic scores for population

B where the true effect sizes (al,B) differ. The covariance of the polygenic scores with true

additive genetic values is then

Cov(S,G) =
∑
l

al,Aal,BVar(gl). (3.13)
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Therefore the correlation between polygenic scores and additive genetic values is

Corr(S,G) =

∑
l al,Aal,BVar(gl)√
V ar(S)V ar(G)

,where

Var(S) =
Ls∑
l=1

a2l,AVar(gl), and

Var(G) =
Ls+Lr∑
l=1

a2l,BVar(gl).

(3.14)

For a neutrally evolving trait, effect sizes and heterozygosities are independent and so

Corr(S,G) = Corr(al,A, al,B)

∑
l Var(gl)√(∑Ls

l=1 Var(gl)
)(∑Ls+Lr

l=1 Var(gl)
) (3.15)

such that the neutral drop in prediction accuracy due to GxE is simply the decrease from 1

of the correlation of effect sizes between A and B.

3.8.3 Modeling Details

3.8.3.1 Background

Assuming Gaussian stabilizing selection and that the population mean stays close to its opti-

mum value, selection at an individual locus is well described by a model of underdominance

where the per-generation change in an allele’s frequency x can be described by its mean and

variance,

E(∆x) ≈ sx(1 − x)(x− 1/2)

Var(∆x) ≈ x(1 − x)

2N
,

(3.16)

where s = a2

w2 is the the selection coefficient, with a being the additive effect of the allele

with frequency x relative to the alternate allele, and N is the diploid population size. This

approximation further assumes that the phenotypic variance is much smaller than the width

of the stabilizing selection (σ2 ≪ w).
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Assuming an infinite sites model, the mean time that a mutation spends in a certain

frequency interval before fixation or loss (at a single site) multiplied by its population mu-

tation rate is equivalent to the expected number of alleles segregating at those frequencies

at a single time point (see Sawyer and Hartl, 1992). The mutation rate of an allele with

effect a is 2NU Pr(a), where U is the per-generation mutation rate for the entire mutational

target, and Pr(a) is the proportion of mutations with effect a (with density f(a | σa), where

σa is the standard deviation of the mutation effect size distribution). The mean time τ spent

in frequency interval (x, x + dx) for a new mutation with effect a can be solved using the

Green’s function (see equation A18 of Simons et al., 2018), such that

τ(x | a, w) =

√
Nπ
2s

exp
(
2Ns(x− 1

2
)2
)

(erf (γ) + erf (γ(1 − 2x)))
(
erf (γ) − erf

(
γ
(
1 − 1

N

)))
erf (γ)x(1 − x)

(3.17)

where erf is the error function and γ =
√

Ns
2

. Thus we can solve for the expected total

additive genic variance at equilibrium by summing over the heterozygosities contributed by

all sites,

E(Va|w, σa) ≈ 2NU

∫ ∞

−∞

∫ 1−1/2N

1/2N

2a2x(1 − x)τ(x | a, w)f(a | σa)dxda, (3.18)

3.8.3.2 Results

In our models we focus on divergence without gene flow between a pair of populations, in

which case they only share polymorphisms that arose in their common ancestor and were

not lost in either population. To predict the loss of ancestral heterozygosity and probability

that the descendant populations share polymorphisms, and thus describe the proportion of

additive genic variance in one population explained by polymorphisms identified by a GWAS

in the other, we consider the frequency trajectory of ancestrally segregating variants. To fully

calculate these quantities we would need the diffusion transition density with underdominant

selection to calculate the distribution of the frequency in the current day given the ancestral
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frequency, but we can build simple approximations of the combined effects of selection and

drift. If we assume that the frequency of our allele x is close to 0 such that 1 − x ≈ 1, then

we can approximate its expected per-generation change (eqn (3.16)) as

E(∆x) ≈ sx(x− 1/2), (3.19)

such that its deterministic frequency trajectory follows the logistic function from starting

frequency x0,

E(xt | x0, a, w) ≈
1/2

1 − (exp(st/2) × (1 − 1/2x0))
,where s =

a2

w2
(3.20)

To consider the effects of genetic drift on the frequency trajectory, we assume that xt is

normally distributed around its deterministic frequency trajectory as follows,

g(xt | x0, a, w) ∼ N
(

E(xt | x0, a, w), x0(1 − x0)
t

2N

)
. (3.21)

Reduction in variance due to drift and selection We can predict the additive genic

variance contributed by all ancestral polymorphisms (anc) to the descendent (desc) after t

generations by averaging over their effect sizes, starting frequencies, and trajectories,

E(Va[anc, desc](t, w, σa)) = 2NU

∫ ∞

−∞

[∫ 1−1/2N

1/2N

[∫ 1

0

2a2xt(1 − xt)︸ ︷︷ ︸
var. after time t

g(xt | x0, a, w)︸ ︷︷ ︸
prob. density of
xt given x0 and a

dxt

]

× τ(x0 | a, w)︸ ︷︷ ︸
mean time
at freq. x0

given effect a

dx0

]
f(a | σa)︸ ︷︷ ︸
prob. density

of a

da.

(3.22)

The total reduction in the additive genetic variance contributed by ancestral polymorphisms

after time t is thus given by
E(Va[anc, desc](t,w,σa))

E(Va(w,σa))
.

To obtain the reduction in heterozygosity used in Figure 3.2A, we use the ratio of expected

heterozygosities for the midpoints of the effect size bins evaluated. The equations we use
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have a similar structure to those where we predict the total variance explained by ancestral

polymorphisms at time 0 and t, except we do not integrate over all effect sizes and remove

a2 to calculate the heterozygosity instead of variance,

Ht[anc, desc](w, a)

H0(w, a)
=

∫ 1−1/2N
1/2N

[ ∫ 1

0
2xt(1 − xt)g(xt | x0, a, w)dxt

]
τ(x0 | a, w)dx0∫ 1−1/2N

1/2N
2x0(1 − x0)τ(x0 | a, w)dx0,

(3.23)

where Ht refers to the heterozygosity at time t.

Variance in ancestor explained by polymorphisms in descendant To understand

the ancestral variance attributable to present-day polymorphisms, we need to think of the

properties of present-day alleles backward in time. For alleles with effect sizes large enough

for selection to act strongly, selection (usually) constrains them from reaching appreciable

frequencies and selection acts approximately like additive selection against the allele (eqn

(3.19)). Conditional on the present-day frequency, the distribution of a deleterious, additive

allele’s trajectory backward in time is the same as the process forward in time, such that

g(xt|x0, a, w) = g(x0|xt, a, w) (Maruyama and Kimura, 1975). Therefore, we can write the

expected additive genic variance in the ancestral population explained by variation segre-

gating in the descendant population, in which they have diverged for t generations, as

E(Va[desc, anc](t, w, σa)) = 2NU

∫ ∞

−∞

[∫ 1−1/2N

1/2N

[∫ 1

0

2a2x0(1 − x0)︸ ︷︷ ︸
var. t gen. ago

g(x0 | xt, a, w)︸ ︷︷ ︸
prob. density of
x0 given xt and a

dx0

]

× τ(xt | a, w)︸ ︷︷ ︸
mean time
at freq. xt

given effect a

dxt

]
f(a | σa)︸ ︷︷ ︸
prob. density

of a

da,

(3.24)

which is identical to the additive genic variance contributed by all ancestral polymorphisms

to the descendent (with just a flip in the subscripts, see equation (3.22)). Thus the decay

in the additive genic variance segregating in an ancestral population to the present day is
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the same as loss in prediction accuracy when using present day polymorphisms to predict

phenotypes in the ancestral population.

Variance in population B explained by polymorphisms in population A When the

population in which we make predictions is contemporary with the population represented in

the GWAS, we again consider the variance explained by all polymorphisms that contribute

to the variance in the prediction population. In our model of population divergence, these

sites that contribute to the variance in the prediction population are sites that were segre-

gating in the common ancestor that remain segregating in both the GWAS and prediction

population. We first account for the variance contributed by ancestrally segregating sites

in the descendant population in which we make predictions (B), as explained in equation

(3.22)), and then for the possibility that each site is segregating, and thus ascertained, in

the population from which the GWAS sample was drawn (A),

E(Va[A, B](a, t, w, σa)) = 2NU

∫ ∞

−∞

[∫ 1−1/2N

1/2N

[∫ 1

0

2a2xt,B(1 − xt,B)g(xt,B | x0, a, w)dxt,B

]
︸ ︷︷ ︸

expected variance after time t explained by
ancestral variants starting at freq. x0 with effect a

×

Pr(0 < xt,A < 1 | x0, a, w)︸ ︷︷ ︸
prob. of ancestral variant

starting at freq. x0 with effect a
segregating in pop. A

τ(x0 | a, w)︸ ︷︷ ︸
mean time
at freq. x0

given effect a

dx0

]
×

f(a | σa)︸ ︷︷ ︸
prob. density

of a

da,

(3.25)

where x0 is the frequency of an allele in the common ancestor of populations A and B, xt,A and

xt,B are its frequencies after time t in each of those descendant populations respectively, and

the probability that the ancestral variant is segregating in population A for ascertainment
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is given by,

Pr(0 < xt,A < 1 | x0, a, w) =

∫ 1−1/2N

1/2N

g(xt,A | x0, a, w)dxt,A
. (3.26)

3.9 Supplementary Text and Figures

3.9.1 Figures referenced in the main text
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Figure 3.6: Comparison of A) reduction in heterozygosity at loci that contributed to the
variance 1500 generations ago within effect size bins of width 0.01 and B) total reduction
in ancestral variance over time for simulations that differed on the size of QTLs. QTLs
were either 1bp (main text results) or 1kb with low within-QTL recombination. Simulations
with 1kb QTL consisted of genomes comprising 3000 QTL, with free recombination between
QTLs and a per base pair recombination rate of 10−8 within a QTL. Mutations arose at
rate 10−8 per base pair. All other simulation details match the baseline stabilizing selection
scenario introduced in Appendix 3.8.1. The genome-wide mutation rate (U) differs for each
simulation type, however under the assumptions of our models this should not influence the
reduction in heterozygosity or variance.
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Figure 3.7: Reduction in heterozygosity at loci that contributed to the variance 1500 genera-
tions ago. Each open point, connected by a dashed line, represents the midpoint of the effect
size bin of width 0.01 within which we averaged heterozygosity from 200 simulations. Each
filled point, connected by a solid line, represents our analytical predictions for that midpoint
using the approximation in Equation 3.3. These predictions over-estimate the reduction in
heterozygosity, whereas the predictions from the diffusion approximation provide a much
better fit (Figure 3.2).
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Figure 3.8: Reduction over time in the total variance contributed by polymorphisms in an
ancestral population. Lighter lines show results from simulations and darker lines show
analytical predictions based on the diffusion approximation. The results from “Gaussian 2”
are the same as presented in Figure 3.2B.
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Figure 3.9: A) Reduction in prediction accuracy in population ancestral to population A
with increasing divergence time between them. Lighter lines show results from simulations
and darker lines show analytical predictions. B) At particular time depths of divergence, the
reduction in prediction accuracy in ancestral population (y-axis) is about the same as the
reduction in ancestral variance (x-axis). Points represent results from a single simulation.
The dashed line is the line of equality.
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Figure 3.10: A) Reduction in prediction accuracy in population B when ascertaining all
polymorphisms in population A, under different mutation effect size distributions than shown
in the main text. Light lines show results from simulations, and dark lines show results from
analytical predictions. B) mutation effect size distributions correspond to what was used to
produce results from sub-figure A. Results from the distribution “Gaussian 2” are shown in
the main text Figure 3.3A.
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Figure 3.11: Under the directional selection scenario, proportion of p-values below the sig-
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3.9.2 Decline in prediction accuracy for population B relative to

population A under various ascertainment schemes and mu-

tational effect size distributions

Here we compare the decline in prediction accuracy for population B relative to population

A among various ascertainment schemes within population A. Given that any set of poly-

morphisms discovered within population A is a subset of all polymorphisms in population A,

we use the case where all polymorphisms in A were ascertained as the point of comparison

for other ascertainment schemes. We simulate cases where populations A and B experienced

the same selective environment, such that they have the same expected total additive genic

variance at equilibrium. Therefore the prediction accuracy in population B relative to popu-

lation A is simply the ratio of the variances explained by the GWAS-significant sites in each

population. This relative decline will not change when moving from all polymorphisms in A

ascertained to a particular subset if the reduction in variance explained for population A and

population B is the same. We find that this is approximately the case for a Gaussian muta-

tion effect size distribution containing mostly nearly neutral and weakly selected mutations

(Figure 3.3C; 3.13). However, the heavy-tailed effect size distribution, which consists of a

higher density of strongly selected mutations, leads to different patterns of relative decline

for population B when compared to the case when all polymorphisms in A are ascertained.

This is because in the heavy-tailed case, most ancestral polymorphisms that are shared be-

tween populations are nearly neutral and segregate at intermediate frequencies 3.12. Thus

when moving from ascertaining all polymorphisms in A to just those with MAF>1%, pop-

ulation B experiences less of a reduction in variance explained than population A. However,

few of those shared polymorphisms explain much of the variance in population A, and thus

population B experiences more of a reduction in variance explained when ascertaining the

polymorphisms in population A based on variance explained.
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Figure 3.12: (Continued on the following page.)
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Figure 3.12: Descriptions of the joint distribution of allele frequencies and effect sizes within

a population. A) Derived allele frequency spectrum under two mutation effect size distri-

butions shown in the inset, whose colors are used to reference them in the panels of B-D.

B) Joint density of derived allele frequencies and effect sizes in population A, separated

for polymorphisms private to A and shared with B. Note that some private polymorphisms

may be polymorphisms in the common ancestor of A and B that persisted in A but were

subsequently lost in B. C) Cumulative fraction of the total variance in population A with

increasing derived allele frequencies in population A for different generations of divergence

between population B (columns) and two different mutation effect size distributions (rows).

Line colors refer to all polymorphisms in population A, polymorphisms private to population

A, and polymorphisms shared between populations A and B. D) Cumulative fraction of the

total variance in population A with increasing derived allele frequencies in population A for

two different mutation effect size distributions (rows). Line colors refer to all polymorphisms

in population A, the top 5% of variance-contributing polymorphisms in population A, and

the remaining non-ascertained polymorphisms (bottom 95%).
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Figure 3.13: (Continued on the following page.)
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Figure 3.13: A) Proportion of the variance explained in population A when ascertaining

different sets of variance-contributing sites in population A. The proportion of the variance

explained is the same as the reduction in prediction accuracy for population A when as-

certaining a particular set of sites instead of all variance-contributing sites. Facets show

results from three different mutation effect size distributions. B) Reduction in prediction

accuracy for population B relative to population A under different ascertainment schemes

in population A and mutation effect size distributions. C) mutation effect size distributions

that were used to produce results in sub-figures A and B.
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Figure 3.14: A) The relative reduction in the variance explained for populations A and
B when switching from ascertaining all variance-contributing polymorphisms in population
A to either those polymorphisms with MAF>1% or the top 5% of variance-contributing
polymorphisms. Points show results from simulations, and their colors correspond to the
mutation effect size distributions in (B). The black line is the line of equality. Points
that fall along this line indicate the same variance reduction in both populations, and thus
a similar decline in prediction accuracy for this ascertainment scheme compared to when
all polymorphisms in population A are ascertained. Points above the line indicate that
population B experiences less of a reduction in variance explained, and points below it
indicate that population B experiences more of a reduction in variance explained, compared
to population A.
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3.9.3 Extensions to the baseline stabilizing selection scenario

3.9.4 Directional Selection

Simulation details for directional selection are provided in Appendix 3.8.1.3. We also discuss

in the main text how the same optimum shift among populations can lead to false signals of

adaptive differentiation.

Accuracy of polygenic score predictions The observed relative reduction in predic-

tion accuracy for the baseline scenario (main text) is slightly weaker than under directional

selection for the optimum shifts we considered (up to two standard deviations of the trait

distribution; 3.15A).

3.9.5 Gene-by-environment interactions (GxE)

Simulation Details We simulated GxE using the same framework as the baseline sce-

nario, except we drew the effect sizes of mutations from a multivariate normal distribution

with three dimensions representing the ancestral burn-in population and its two descendant

populations. The covariance matrix was determined according to the standard deviation

of the effect size distribution and correlation of effect sizes provided (either 0.9 or 0.95).

Phenotypes and thus fitness were calculated using the effect size assigned for the particular

population in which they were evaluated. This means that the environments of the descen-

dant populations changed at their time of divergence from the ancestral population, causing

the effect sizes in each descendant population to be perturbed away from the ancestral effect

sizes by a small normal deviate. These environmental changes do not generate a difference

in the mean environment nor the optimum phenotype. The effect size correlations we chose

are higher than most estimates, though GxG and differences in LD likely play a role as well

(Liu et al., 2015; Galinsky et al., 2019; Lam et al., 2019; Veturi et al., 2019).

Accuracy of polygenic score predictions Gene by environment interactions (GxE)

combined with environmental differences between the GWAS sample and unrepresented pop-
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ulation result in lower prediction accuracies in the unrepresented population, relative to the

baseline scenario we discuss in the main text (3.15). Two factors contribute to why we find

lower prediction accuracies under GxE. First, the effect sizes estimated by the GWAS in

population A are only partially correlated with the true effects in population B. Thus, noise

is introduced to the predictions when using the effect sizes from A for polygenic prediction in

B. In Appendix 3.8.2.1 we describe how we modify the equation for the reduction in predic-

tion accuracy when the effect sizes between the GWAS sample and the prediction population

are only partially correlated. Second, the slight changes in effect sizes, due to environmental

changes experienced by each descendant population after they shared a common ancestor,

transiently inflate the variance in a population relative to equilibrium conditions, leading to

a faster removal of ancestral polymorphisms and thus fewer shared polymorphisms between

the population pair. Specifically, at equilibrium, most common alleles have small effects.

After an environmental change, many of these previously near-zero effect alleles tend to shift

toward larger effect sizes (3.16). The accumulation of these minor shifts at many sites leads

to an increase in the total variance within the descendant populations, and these changes

are not correlated between them, so prediction accuracy is reduced.

Difference in polygenic means among populations Under GxE, we also find higher

chances of false signals of adaptation, even though the optimum never changes and is shared

among populations. The chances of these false signals decay with time since the common

ancestor of the population pair (3.18).

3.9.6 Pleiotropy

Simulation Details We simulated pleiotropy using the same framework as the baseline

scenario. A mutation’s effect on each trait was independently drawn from the same normal

distribution. An individual’s fitness was calculated using their Euclidean distance from the

optimum, based on their distance in each phenotypic dimension. For this extension we
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simulated n = 5 and n = 10 traits (the baseline scenario is n = 1). The selection coefficient

that an allele experiences is approximately

s ≈
∑n

i=1 a
2
i

w2
, (3.27)

where ai denotes the allele’s effect on trait i (Simons et al., 2018). Thus when we sample

the effect of an allele on each trait independently and use the same distribution, with more

pleiotropy there would always be stronger selection, where

E(s) =
nVar(ai)

w2
, (3.28)

such that as n increases there would be a decrease in the amount of shared additive genetic

variance, and thus portability, between populations. However, we were interested in investi-

gating how the distribution of an allele’s effects on multiple traits impacted the amount of

shared additive genetic variance between populations, in isolation from the effects of overall

stronger selection on alleles. Therefore, we standardized the fitness function so that the

average selection coefficient would be the same across pleiotropy levels (n). To achieve the

same expectation across simulations, we multiplied w2 by n in the fitness function. While

the average selection coefficient is the same for a particular w across n, its distribution differs

according to the number of traits influenced,

s ∼ Var(ai)

nw2
χ2
n. (3.29)

Accuracy of polygenic score predictions Under this model of pleiotropy, we find less

of a reduction in the prediction accuracy of ascertained variation compared to our baseline

scenario. This is because the effect of the mutation on the trait of interest becomes more

weakly correlated with its total selection coefficient. Specifically, common alleles can have

larger effects on the trait of interest but by chance experience weaker selection due to small

effects on the other selected traits. Therefore, the initial variance explained by a large
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effect polymorphism will be higher in the ancestor and there will be less of a per-generation

reduction of variance at this locus. Together, more large effect and common alleles will

be shared between populations, increasing the amount of additive genetic variance that

polymorphisms ascertained in one population can explain in another. Thus pleiotropy, for a

constant average strength of selection, reduces the rate at which prediction accuracy declines.

Difference in polygenic means among populations Under pleiotropy, we see similar,

though slightly lower, chances for false signals of adaptation as under the baseline stabilizing

selection scenario (3.19).
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Figure 3.15: (Continued on the following page.)
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Figure 3.15: Comparison of the baseline stabilizing scenario and each extension (labelled by

title) for the reduction in prediction accuracy in population B. Boxplots show the distribution

of observations from 100 simulations, and are colored by the parameter values that vary in

a particular extension. Results from the baseline scenario are always represented in purple

(the first parameter value in each legend). Each column represents a different width of the

fitness peak, and each row represents the set of polymorphisms ascertained in population A

(top: all, bottom: top 5% based on variance contributed).
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Figure 3.16: Shift of effect sizes and within-population variances when there’s GxE and
populations A and B begin to experience different environments from their common ancestor
at the time of divergence. A) Changes in effect sizes from the ancestral population (x-axis)
to one of its descendant populations (y-axis) for each variance-contributing polymorphism.
Colors represent the number of sites in a particular bin (outlined by hexagon). Results are
shown for a single simulation with w = 5 and effect size correlation of 0.9. B) At the time of
divergence/environmental shift, the variance in the descendant population (y-axis) increases
relative to the variance in the ancestral population (x-axis) due to the shift in effect sizes.
Each point represents a single simulation. Dashed lines in A and B represent lines of equality.
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Figure 3.17: Quantile-quantile plot of observed p-values for QX under the baseline case
against expected p-values under neutrality (uniform distribution). The dashed line shows
equality; points that lie above this line indicate that the observed distribution has a higher
density of low p-values than the neutral distribution, and points that lie below it indicate the
opposite. Columns show results from every 500 generations of divergence between popula-
tions A and B and rows show results from different sets of ascertained polymorphims (top: all
polymorphisms from both populations, top-middle: all polymorphisms in A, bottom-middle:
polymorphisms with MAF>1% in A, bottom: top 5% of variance-contributing polymor-
phisms in A).
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Figure 3.18: Quantile-quantile plot of observed p-values for QX under GxE against expected
p-values under neutrality (uniform distribution). The dashed line shows equality; points that
lie above this line indicate that the observed distribution has a higher density of low p-values
than the neutral distribution, and points that lie below it indicate the opposite. Columns
show results from every 500 generations of divergence between populations A and B and
rows show results from each simulated correlation of effect sizes among populations.
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Figure 3.19: Quantile-quantile plot of observed p-values for QX under pleiotropy against
expected p-values under neutrality (uniform distribution). The dashed line shows equality;
points that lie above this line indicate that the observed distribution has a higher density of
low p-values than the neutral distribution, and points that lie below it indicate the opposite.
Columns show results from every 500 generations of divergence between populations A and
B and rows show results from each simulated number of fitness-related traits (n) influenced
by a mutation.
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W. Haak, F. Hallgren, E. Fornander, N. Rohland, D. Delsate, M. Francken, J. M. Guinet,
J. Wahl, G. Ayodo, H. A. Babiker, G. Bailliet, E. Balanovska, O. Balanovsky, R. Barrantes,
G. Bedoya, H. Ben-Ami, J. Bene, F. Berrada, C. M. Bravi, F. Brisighelli, G. B. Busby,
F. Cali, M. Churnosov, D. E. Cole, D. Corach, L. Damba, G. Van Driem, S. Dryomov,
J. M. Dugoujon, S. A. Fedorova, I. Gallego Romero, M. Gubina, M. Hammer, B. M. Henn,
T. Hervig, U. Hodoglugil, A. R. Jha, S. Karachanak-Yankova, R. Khusainova, E. Khus-
nutdinova, R. Kittles, T. Kivisild, W. Klitz, V. Kučinskas, A. Kushniarevich, L. Laredj,
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M. Šlaus, V. Slavchev, P. Stanev, A. Starovic, T. Szeniczey, S. Talamo, M. Teschler-
Nicola, C. Thevenet, I. Valchev, F. Valentin, S. Vasilyev, F. Veljanovska, S. Veneli-
nova, E. Veselovskaya, B. Viola, C. Virag, J. Zaninovic, S. Zäuner, P. W. Stockhammer,
G. Catalano, R. Krauß, D. Caramelli, G. Zarin, B. Gaydarska, M. Lillie, A. G. Nikitin,
I. Potekhina, A. Papathanasiou, D. Boric, C. Bonsall, J. Krause, R. Pinhasi, and D. Reich
(2018). The genomic history of southeastern Europe. Nature 555, 197–203.

Mathieson, I., I. Lazaridis, N. Rohland, S. Mallick, N. Patterson, S. A. Roodenberg, E. Har-
ney, K. Stewardson, D. Fernandes, M. Novak, K. Sirak, C. Gamba, E. R. Jones, B. Llamas,
S. Dryomov, J. Pickrell, J. L. Arsuaga, J. M. B. de Castro, E. Carbonell, F. Gerritsen,
A. Khokhlov, P. Kuznetsov, M. Lozano, H. Meller, O. Mochalov, V. Moiseyev, M. A. R.
Guerra, J. Roodenberg, J. M. Vergès, J. Krause, A. Cooper, K. W. Alt, D. Brown, D. An-
thony, C. Lalueza-Fox, W. Haak, R. Pinhasi, and D. Reich (2015). Genome-wide patterns
of selection in 230 ancient Eurasians. Nature 528, 499–503.

Mathieson, S. and I. Mathieson (2018). FADS1 and the Timing of Human Adaptation to
Agriculture. Molecular Biology and Evolution 35 (12), 2957–2970.

Maynard Smith, J. and J. Haigh (1974). The hitch-hiking effect of a favourable gene. Genetics
Research 23, 23–35.

Mendez, F. L., J. C. Watkins, and M. F. Hammer (2012). Global Genetic Variation at OAS1
Provides Evidence of Archaic Admixture in Melanesian Populations. Molecular Biology
and Evolution 29 (6), 1513–1520.

Messer, P. W., S. P. Ellner, and N. G. Hairston Jr (2016). Can population genetics adapt
to rapid evolution? Trends in Genetics 32 (7), 408–418.

Mesuret, G., S. Khabbazzadeh, A. M. Bischoff, H. Safory, H. Wolosker, and S. Hülsmann
(2018). A neuronal role of the Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1)
for glycine inhibitory transmission and respiratory pattern. Scientific Reports 8 (1), 1–8.

Morim, T., G. R. Bigg, P. M. Madeira, J. Palma, D. D. Duvernell, E. Gisbert, R. L. Cunha,
and R. Castilho (2019). Invasion genetics of the mummichog (fundulus heteroclitus):
recent anthropogenic introduction in iberia. PeerJ 7, e6155.

Mostafavi, H., A. Harpak, I. Agarwal, D. Conley, J. K. Pritchard, and M. Przeworski (2020).
Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376.

208



Nacci, D., L. Coiro, A. Kuhn, D. Champlin, W. Munns Jr, J. Specker, and K. Cooper
(1998). Nondestructive indicator of ethoxyresorufin-o-deethylase activity in embryonic
fish. Environmental Toxicology and Chemistry: An International Journal 17 (12), 2481–
2486.

Nakamura, F., K. Kumeta, T. Hida, T. Isono, Y. Nakayama, E. Kuramata-Matsuoka, N. Ya-
mashita, Y. Uchida, K. I. Ogura, K. Gengyo-Ando, S. Mitani, T. Ogino, and Y. Goshima
(2014). Amino- and carboxyl-terminal domains of Filamin-A interact with CRMP1 to
mediate Sema3A signalling. Nature Communications 5 (5325).

Narain, P. and R. Chakraborty (1987). Genetic differentiation of quantitative characters
between populations or species II: Optimal selection in infinite populations. Heredity 59,
199–212.

Ng, L., A. K. Chow, J. H. Man, T. C. Yau, T. M. Wan, D. N. Iyer, V. H. Kwan, R. T. Poon,
R. W. Pang, and W. L. Law (2018). Suppression of Slit3 induces tumor proliferation
and chemoresistance in hepatocellular carcinoma through activation of GSK3β/β-catenin
pathway. BMC Cancer 18 (1), 1–13.
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F. Clé ment, A. Boland, and J.-F. ois Deleuze (2016). Genetic Adaptation and Neandertal
Admixture Shaped the Immune System of Human Populations. Cell 167, 643–656.

Racimo, F., J. J. Berg, and J. K. Pickrell (2018). Detecting Polygenic Adaptation in Ad-
mixture Graphs. Genetics 208, 1565–1584.

Racimo, F., D. Marnetto, and E. Huerta-Sánchez (2017). Signatures of archaic adaptive
introgression in present-day human populations. Molecular Biology and Evolution 34 (2),
296–317.

Racimo, F., S. Sankararaman, R. Nielsen, and E. Huerta-Sánchez (2015). Evidence for
archaic adaptive introgression in humans. Nature Reviews Genetics 16, 359–371.

Refoyo-Mart́ınez, A., R. R. Da Fonseca, K. Halldórsdóttir, E. Árnason, T. Mailund, and
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