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Lloyd Shapley’s contributions with respect to the core are interpreted as subdifferentiability
characterizations of the pricing of individuals that is similar to the pricing of commodities 
in economic models of exchange with transferable utility. Differentiability of the core 
is interpreted as perfect substitutability with respect to the pricing of individuals. 
Differentiability implies, but is not implied by, equivalence of the core and Walrasian 
equilibria. Differentiability eliminates opportunities for strategic misrepresentation of 
utilities. The assignment model with transferable utility is framed in the setting of 
exchange economies and its individual and commodity pricing is extended to non-
transferable utility.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The first application of the Gillies–Shapley concept of the core was to the assignment model (Shapley, 1955), more fully 
elaborated in the influential paper by Shapley and Shubik (1972). Necessary and sufficient conditions for a non-empty core 
of a transferable utility game were given by Bondareva (1963) and Shapley (1967) in terms of balanced sets. Shapley and 
Shubik (1969) exhibited the intimate connections between the core and Walrasian for market games with transferable, also 
known as quasilinear, utility.

Shapley (1969) also pioneered extensions of results from transferable to non-transferable utility through the introduction 
of the λ-transfer scheme. Gale and Shapley (1962) formulated the non-transferable version of the assignment model, called 
two-sided matching by Roth and Sotomayor (1990), along with an algorithm for achieving a stable matching. With some 
exceptions (e.g., Roth et al., 1993), the non-transferable utility version of the assignment model has been analyzed without 
regard to duality properties that figure prominently in the transferable utility version. The purpose of this paper is to use 
convex analysis to extend Shapley’s contributions of the pricing of individuals, including to the assignment model without 
transfers.

The emphasis, below, is on the derivation of prices as replacements for constraints. Just as prices of commodities are 
derived from the value of perturbing aggregate commodity resource constraints, so the prices of individuals can be derived 
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from the value of perturbing population constraints. This will require that individuals be regarded as elements in a linear 
space along with, but different from, the linear space of commodities.

In Section 2, a transferable utility game in characteristic function form is compared to a polyhedral concave positively 
homogeneous function and its subdifferentiability is related to the core. Properties of discrete differences and directional 
derivatives of concave functions and their connections to differentiability are reviewed.

In Section 3, market games, i.e., models of exchange economies, are formulated as concave positively homogeneous 
functions that are not typically polyhedral; and, their subdifferentiability properties are characterized as Walrasian equilibria. 
Differences between the cores of market games and their Walrasian equilibria are attributed to differences in the generators 
of the positively homogeneous functions defining them. The absence of a difference distinguishes Shapley and Shubik’s 
(1969) direct markets, where the linear spaces of individuals and commodities coincide, from market games. Extensions of 
these constructions to market games with non-transferable utility are introduced as preparation for demonstrating existence 
of Walrasian equilibria in assignment models without transfers.

In Section 4, the assignment model is regarded as a transferable utility exchange economy, but with indivisible com-
modities. Along with direct markets, the assignment model is also defined by a finite number of generators and is such that 
Walrasian equilibria coincide with the core. This feature allows an elementary proof of the existence of Walrasian equilibria 
without transfers for the assignment model, i.e., for two-sided matching.

In Section 5, an individual in a transferable utility exchange economy is defined as perfectly substitutable if there is price 
for that individual (derived from perturbing the population constraint) achieving the upper bound of an inequality associated 
with the subdifferential. The utility received by an individual who is perfectly substitutable is shown to be such that efforts 
to gain by misrepresentation would be counterproductive. All individuals are perfectly substitutable in an economy with 
a finite number of individuals if and only if the prices of individuals exhibit discrete differentiability. Differentiability is an 
asymptotic property defined by limiting ratios, ensuring that if infinitesimal individuals are perfect substitutes, there are 
finite approximations that are nearly so.

The prices corresponding to differentiability with respect to individuals, discrete or infinitesimal, are consistent with the 
rewards individuals receive in Walrasian equilibrium, and with the more stringent requirement that the core and Walrasian 
equilibrium coincide, but not conversely: neither the existence of Walrasian equilibrium, nor its equivalence with the core, 
implies differentiability. In the exchange economies with large numbers (where individuals are infinitesimal) considered, 
below, “typically” — but not universally — all individuals are perfectly substitutable.

Typically, no individual is perfectly substitutable in an exchange economy with finite numbers. A distinctive feature of 
the assignment model with transfers is that, even with finite numbers, there are prices at which some individuals, if not all, 
can be perfectly substitutable. Again, large numbers typically implies differentiability, but not because replication shrinks 
the size of the core. In the finite assignment model without transfers, the qualification to guarantee existence of Walrasian 
equilibria (equivalent to the existence of stable matches) requires strict preference. Strict preference precludes the possibility 
of indifference required for perfect substitutability. Section 5.4 outlines how perfect substitutability can be approximated in 
the assignment model with large numbers without transfers. Section 6 contains a concluding comment.

2. Preliminaries

2.1. Subdifferentiability and the core

A transferable utility game in characteristic function form is defined by a function v on the non-empty subsets S ⊆ I =
{1, 2, . . . , n}, where v(S) ≥ 0, and v(∅) = 0. To exploit its connections to convex analysis, v is restated as a function on RI . 
Throughout the following, S ⊆ I will refer to non-empty sets and the empty set will be replaced by 0, the zero element of RI .

Defining RS = {r = 〈ri〉 : ri = 0, ∀i /∈ S ⊆ I}, let eS ∈ R
S be the indicator of S , i.e., ri = 1, i ∈ S . Rewrite the set function v

as v :RI → R+ ∪ {−∞}, where

dom v := {r : v(r) > −∞} = {eS : S ⊆ I} ∪ {0}
v(eS) = v(S), S ⊆ I, v(0) = 0.

Denoting 
∑

{S:S⊆I} by 
∑

S throughout, two extensions of v are:

• the balanced cover v B of v has dom v B = dom v and

v B(eT ) = sup
{∑

S

αS v(eS) :
∑

S

αS eS = eT ,αS ≥ 0
}
, T ⊆ I;

• the smallest positively homogeneous concave function v∞ ≥ v:

v∞(r) = sup
{∑

S

αS v(eS) :
∑

S

αS eS = r,αS ≥ 0
}
.
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The first is due to Bondareva (1963) and Shapley (1967) and the second is taken from convex analysis (Rockafellar, 1970). 
By construction, dom v(= dom v B) ⊂ dom v∞ = R

I+; and

v∞ ≥ v B ≥ v and v∞ = v B on dom v.

The inequality v B(eT ) ≥ v(eT ), T ⊆ I , means that v B(eT ) = v(eT ) is a statement of integral optimality: there are no gains to 
making fractional assignments of eT . The construction of v∞ says that it is polyhedral: {eS , S ⊆ I} are the generators, i.e., the 
basis for positive linear combinations defining v∞ .

Denoting the inner product of q, r ∈ R
I by q · r, the concave version of the subdifferential of v at r ∈ dom v , also known as 

the superdifferential, is

∂v(r) := {q : q · r − v(r) ≥ q · r − v(r),∀r}. (1)

A similar definition applies to ∂v∞(r). However, because v∞ is positively homogeneous, it is readily established that it can 
be written as

∂v∞(r) = {q : q · r − v∞(r) ≥ q · r − v∞(r) = 0,∀r}. (2)

Another well-known feature is that ∂v∞ is homogeneous of degree zero:

∂v∞(αr) = ∂v(r), ∀α > 0. (3)

Without further qualification ∂v(eS ), S ⊆ I , may be empty, but ∂v∞(r), r ∈R
I+ , is not.

Throughout the following, when S = I , abbreviate eI as e. The core of the game v is the set of q, if any, such that

q · eS − v(eS) ≥ 0, ∀S and q · e − v(e) = 0. (4)

The core of v combines the subdifferential inequalities for ∂v(e) with the added requirement q · e − v(e) = 0. Hence, (4) can 
be rewritten as

∂C v(e) := ∂v(e) ∩ {q : q · e = v(e)}.
The Bondareva–Shapley characterization for a non-empty core is that v should exhibit integral optimality at e; i.e.,

∂C v(e) �= ∅ ⇐⇒ v(e) = v B(e).

By construction, v B(e) = v∞(e). Another characterization of the core is:

Proposition 1. ∂C v(e) �= ∅ ⇐⇒ ∂C v(e) = ∂v∞(e).

Proof. Replacing r with e in (2), it follows that ∂v∞(e) ⊆ ∂C v(e), since the former must satisfy a superset of the restrictions 
defining the latter, i.e., in (4).

For the converse, if q ∈ ∂C v(e), then q · eS ≥ v(eS ), ∀S ⊂ I and q · e = v(e); hence αSq · eS ≥ αS v(eS ) for all αS ≥ 0. 
Therefore, if r = ∑

S αS eS , then 
∑

S αSq · eS ≥ ∑
S αS v(eS ); so, q · r ≥ v∞(r). Hence, q ∈ ∂C v B(e) implies q ∈ ∂v∞(e). �

The definition of balance at e can be extended to eS as v(eS ) = v B(eS ). A similar restriction can be applied to

∂C v(eS) := {
q : q · eT − v(eT ) ≥ q · eS − v(eS) = 0,∀T ⊂ S

}
,

as the core of the (sub-)game on subsets of S . Then, as defined by Shapley, v is totally balanced if v B(eS) = v(eS ), S ⊆ I . 
Extending Proposition 1, if v is totally balanced,

∂C v(eS) = ∂v∞(eS).

2.2. Local properties and differentiability

To introduce further properties of functions appealed to, below, let g : Rm → R ∪ {−∞} be a concave and Lipschitz 
continuous function on dom g that is not necessarily polyhedral. Assuming x, x + d ∈ dom g , discrete differences are

�g(x;k−1d) := g(x + k−1d) − g(x), k = 1,2, . . . .
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Facts (Rockafellar, 1970, Section 23):

(i) k�g(x; k−1d) is non-decreasing in k.
(ii) Dg(x; d) := limk→∞ k�g(x; k−1d) is the directional derivative of g at x in the direction d.

(iii) x∗ ∈ ∂ g(x) implies −k�g(x; −k−1d) ≥ x∗ · d ≥ k�g(x; k−1d).

Summary Comparison: For x∗ ∈ ∂ g(x), Facts (i)–(iii) imply

−�g(x;−d) ≥ −Dg(x : −d) ≥ x∗ · d ≥ Dg(x : d) ≥ �g(x;d). (5)

Infinitesimal changes are captured by the subdifferential in the sense that

(iv) −Dg(x; −d) = max
{

x∗ · d : x∗ ∈ ∂ g(x)
}

and Dg(x : d) = min
{

x∗ · d : x∗ ∈ ∂ g(x)
}

.

If g is also positively homogeneous,

(v) limk→∞ �g(kx; d) = limk→∞ k[g(x; k−1d) − g(x)] = Dg(x; d).

Fact (v) says that with positive homogeneity, the consequences of the (infinitesimal) directional derivative d at x can be 
reproduced by holding (the non-infinitesimal) d fixed while scaling up x. This will be interpreted, below, as: a discrete 
change in a finite population can be translated into a directional derivative in a population with large numbers.

Denote by eh ∈R
m+ , h = 1, . . . , m, the hth coordinate vector and assume x = 〈xh〉 ∈R

m++ belongs to the interior of dom g . 
Existence of a partial derivative of g at x is ∂ g(x)

∂xh
:= −Dg(x; −eh) = Dg(x; eh): g is differentiable when there is equality for 

all h.

(vi) A concave function g is differentiable almost everywhere in the interior of dom g .

If g is also positively homogeneous, it suffices for g to be differentiable at x that there exist x∗ = 〈x∗
h〉 ∈ ∂ g(x) such that

(vii) x∗
h = −Dg(x; −eh), ∀h ⇐⇒ x∗ · x = ∑

h −Dg(x; −eh)xh = g(x).

It is discretely differentiable at x if there exist x∗ = 〈x∗
h〉 ∈ ∂ g(x) such that

(viii) x∗
h = −�g(x; −eh), ∀h ⇐⇒ x∗ · x = ∑

h −�g(x; −eh)xh = g(x).

3. Market games: prices of individuals from prices of commodities

3.1. Transferable utility

A market game in Shapley and Shubik (1969) is formulated as a family of models that vary in their populations of a 
fixed finite set of types of individuals and their aggregate resource constraints. Perturbations within this family are used to 
derive the connections between the pricing of individuals and the pricing commodities in general equilibrium models with 
transfers, i.e., with quasilinear utility, that highlights the role of positive homogeneity.

The set I is as above. The characteristics of i ∈ I are now defined by the utility function for (non-money) commodities, 
νi : R� → R ∪ {−∞}. The zero element of R� will also be denoted by 0. The characteristics include the set of trades i can 
feasibly make, defined by

domνi := {zi : νi(zi) > −∞} ⊂R
�.

Assume throughout this Section that:

• 0 ∈ domνi , νi(0) = 0, and dom νi is compact
• νi is concave and Lipschitz continuous on domνi .

These properties guarantee that for every zi ∈ domνi , there exists p ∈R
� such that

ν∗
i (p) = p · zi − νi(zi) = inf

yi

{
p · yi − νi(yi)

}
= − sup

yi

{νi(yi) − p · yi}
= − sup {νi(yi) + mi : p · yi + mi = 0}.

(6)
(yi ,mi)
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Thus, −ν∗
i (p) = supyi

{νi(yi) − p · yi} is the indirect utility function (the negative of the concave conjugate function of νi ) 
associated with maximization of νi(yi) + mi subject to the budget constraint p · yi + mi = 0. Since the money commodity, 
with a normalized price of unity, enters each individual’s utility in the same way, the data of quasilinear exchange economy 
can be summarized as E = 〈νi〉 := (ν1, ν2, . . . , νn).

Based on E , when the population of individuals is r = 〈ri〉 ∈ R
I+ and the aggregate resource constraint is z ∈ R

� , the 
maximum gains in the quasilinear model is

�E (r, z) = sup
{∑

i

riνi(yi) :
∑

i

riei = r,
∑

i

ri yi = z, ri ≥ 0
}
,

a positively homogeneous concave function on dom �E . Pricing of individuals and commodities at (r, z) ∈ dom �E is deter-
mined by (q, p) ∈ ∂�E (r, z) as

q · r + p · z − �E (r, z) ≥ q · r + p · z − �E (r, z) = 0, ∀(r, z) ∈R
I+ ×R

�.

When qi = −ν∗
i (p) = νi(zi) − p · zi , 

∑
i riei = r and 

∑
i ri zi = z,

−
∑

i

riν
∗
i (p) + p · z =

∑
i

ri[νi(zi) − p · zi] + p · z = �E (r, z).

Fixing z = 0, the gains from varying the population is the positively homogeneous concave function

w∞
E (r) = �E (r,0) = max

{∑
i

riνi(yi) :
∑

i

riei = r,
∑

i

ri yi = 0, ri ≥ 0
}
. (7)

[The superscript ∞ emphasizes that w∞
E considers any population r ∈ R

I+ along with its aggregate resource constraint, ∑
i ri yi = 0.] Letting ZI+ denote the integer-valued vectors in RI+ , the concavity of νi implies integral optimality: if r ∈ Z

I+ , 
the maximum in (7) can be achieved when each ri is an integer.

Fixing r, the gains from varying the aggregate resource constraint is the concave function

fE (z | r) := �E (r, z); (8)

so

w∞
E (r) = �E (r,0) = fE (0 | r)

measures the total gains either in terms of the commodity resource constraint or the population constraint. Pricing of 
individuals at r is defined by

∂ w∞
E (r) = {q : q · r′ − w∞

E (r′) ≥ q · r − w∞
E (r) = 0,∀r′}.

When the commodity resource constraint is 0, pricing of commodities at r is

∂ fE (0 | r) = {p : p · z ≥ fE (z | r) − fE (0 | r),∀z}.
[Note: Positive homogeneity of w∞

E implies ∂ w∞
E (αr) = ∂ w∞

E (r), α > 0. Similarly, α fE (0 | r) = fE (0 | αr) implies 
∂ fE (0 | αr) = ∂ fE (0 | r).]

Definition 1. A Walrasian equilibrium for the quasilinear exchange economy E when the population is r is a pair (p, 〈zi〉) satis-
fying 

∑
i∈I ri zi = 0 [market clearance] and −ν∗

i (p) = νi(zi) − p · zi , ∀i [utility maximization].

Proposition 2 (Characterization of Walrasian Equilibrium). (p, 〈zi〉) is a Walrasian equilibrium for E at r if and only if 
∑

i ri zi = 0, ∑
i νi(zi) = w∞

E (e) = − 
∑

i ν
∗
i (p), where p ∈ ∂ fE (0; r), and

∂ w∞
E (r) = {q = 〈qi = −ν∗

i (p)〉 : p ∈ ∂ fE (0 | r)}. (9)

The equality in (9) says that the pricing of individuals at r, i.e., q ∈ ∂ w∞
E (r), is derived from the pricing of commodities, 

p ∈ ∂ fE (0 | r). The main population points of reference will be r = ke, k = 1, 2, . . . , with r �= ke as points of comparison.
E defines a market game in characteristic function form: for S ⊆ I ,

vE (eS) := max
{∑

i∈S

νi(yS
i ) :

∑
i∈S

yS
i = 0

}
.

The function vE on {eS : S ⊆ I} is extended to the positively homogeneous and superadditive, therefore concave, function 
on RI+ exactly as v is extended to v∞ in Section 2.1:
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v∞
E (r) := max

{∑
S

αS vE (eS) :
∑

S

αS eS = r,αS ≥ 0
}
.

When νi is concave, Shapley and Shubik show that vE is totally balanced. Consequently,

w∞
E (eS) = v∞

E (eS) = v B
E (eS) = vE (eS).

And, by Proposition 1,

∂C vE (e) = ∂v∞
E (e).

A well-known difference between w∞
E and v∞

E is

∂ w∞
E (e) ⊆ ∂C vE (e). (10)

I.e., the prices of individuals defined by (9) is contained in the prices defined by the core, and the containment is typically 
strict.

The difference in (10) arises from the fact that while v∞
E is defined by the finite generators {eS : S ⊆ I}, the generators of 

w∞
E are a superset that need not be finite. To demonstrate, define the game vE (· | ke) based on the integer-valued coalitions

dom vE (· |ke) := {r ∈ Z
I+ : r ≤ ke}, k = 1,2, . . .

The value for each coalition is the maximum gains it can achieve on its own,

vE (r |ke) := w∞
E (r), r ∈ dom vE (· |ke).

Therefore, while

vE (ke |ke) = w∞
E (ke) = v∞

E (ke), k = 1,2, . . . ,

the gains in vE (· | ke) are bounded below by v∞
E (defined by the generators {eS : S ⊆ I}),

vE (r |ke) ≥ v∞
E (r), ∀r ∈ dom vE (· |ke);

and bounded above by w∞
E ,

w∞
E (r) ≥ vE (r |ke), ∀r.

Definition 2. The core of vE (· | ke) is

∂C vE (ke |ke) := {
q : q · r − vE (r |ke) ≥ q · ke − vE (ke |ke) = 0,∀r

}
.

Letting v∞
E (· | ke) be the smallest concave positively homogeneous function such that v∞

E (· | ke) ≥ vE (· | ke): its generators 
are dom vE (· | ke). A direct extension of Proposition 1 implies

∂C vE (ke |ke) = ∂v∞
E (ke |ke).

As k increases the generators of v∞
E (· | ke) expand to fill out the generators of w∞

E .
Convergence of the core to Walrasian equilibrium can be expressed as

lim
k→∞

∂C vE (ke |ke) = ∂ w∞
E (e). (11)

If the equality in (11) is achieved for k, it is readily seen that ∂C vE (ke | ke) = ∂ w∞
E (e), k > k. Also, (11) may occur 

whether or not it satisfies a differentiability condition, below. When that differentiability condition is satisfied, Proposition 5
in Section 5 describes a more parsimonious way to achieve (11) than the conditions defining the core.

3.1.1. Direct markets: a market game version of Proposition 1
Shapley and Shubik (1969) define a direct market in which the individuals are, in effect, also the commodities. In a direct 

market, (11) is achieved when k = 1.
The commodity space is R� = R

I . Denote by U : R�+ → R+ a positively homogeneous concave function, with the inter-
pretation that U is a utility function on commodities. A direct market ED = 〈νD

i 〉 is an exchange economy where

domνD
i = {yi : yi + ei ∈ R

I+},
and
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νD
i (yi) = U (yi + ei).

In ED individuals differ only with respect to their endowments, ei . [Unlike the convention νi(0) = 0 in E , νD
i (0) = U (ei) ≥ 0.]

The analog for ED of the indirect utility function (6) for E is

−(νD
i )∗(p) = sup {νD

i (yi) − p · yi}
= sup {U (yi + ei) − p · yi}.

A Walrasian equilibrium for ED at e is a (p, 〈zi〉) such that 
∑

i zi = 0 and

−(νD
i )∗(p) = U (zi + ei) − p · zi, ∀i.

As in E , the maximum total gains for ED at (e, 0) is

w∞
ED

(e) = �ED (e,0) = fED (0),

where

�ED (e,0) = sup
{∑

i

riν
D
i (yi) :

∑
i

riei = e,
∑

i

ri yi = 0, ri ≥ 0
}

= sup
{∑

i

ri U (yi + ei) :
∑

i

riei = e,
∑

i

ri yi = 0, ri ≥ 0
}

= U (e).

I.e., the population e having total resources e achieves a maximum utility when zi + ei = λie, λi ≥ 0, 
∑

i λi = 1, and ∑
i λi U (zi + ei) = U (

∑
i λi[zi + ei]) = U (e).

As a choice for U , let U = v∞ , the positively homogeneous concave functions defined in Section 2.1 by the generators 
{eS : S ⊆ I}. Therefore,

w∞
ED

= U = v∞
ED

. (12)

The core of ED at e is

∂U (e) = ∂v∞
ED

(e) = {q : q · r − v∞
ED

(r) ≥ q · e − v∞
ED

(e) = 0,∀r}.
Consequently, the core coincides with Walrasian equilibria

∂ w∞
ED

(e) = ∂v∞
ED

(e).

In ED , the prices of individuals, q ∈ ∂ w∞
ED

(e), are also the prices of commodities, p ∈ ∂U (e) = ∂ fED (0).

3.2. Non-transferable utility

The characteristic function of a game with non-transferable utility is described by sets of vector-valued utilities V :RI →
2R

I
, where

dom V = {r : V (r) �= ∅} = {eS : S ⊆ I} ∪ {0},
where V (eS ) is a closed set, bounded above, and

R
S− ⊂ V (eS) ⊂ R

S and V (0) = 0.

A q ∈ V (e) is in the core of the non-transferable utility game V if

V (eS) − {qS} ∩R
S++ = ∅, ∀S ⊆ I,

i.e., there is no S ⊆ I and uS ∈ V (eS ) such that uS � qS .
To construct a non-transferable utility V from the data of E , let

VE (eS) = {
uS = 〈νi(zi)〉 :

∑
i∈S

zi = 0
} +R

S−, S ⊆ I.

(Concavity of νi implies VE (eS) is convex, but not necessarily polyhedral.) As vE is the basis for the positively homogeneous 
extensions, v∞ and w∞ , VE can also be extended in two ways as:
E E
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V ∞
E (r) =

{∑
S

αS〈νi(zS
i )〉 :

∑
S

αS eS = r,
∑
i∈S

zS
i = 0,αS ≥ 0

}
,

W ∞
E (r) =

{∑
i

ri〈νi(zi)〉 :
∑

i

riei = r,
∑

i

ri zi = 0, ri ≥ 0
}
,

with the vector-valued comparison

V ∞
E (r) ⊆ W ∞

E (r), (13)

similar to the scalar-valued comparison in (10).
For λ = 〈λi〉 � 0, let E[λ] = 〈λiνi〉. From the non-quasilinear, i.e., non-transferable utility, perspective λiνi is equivalent to 

νi . However, when E[λ] is regarded as a model with transferable utility, different (relative) weights lead to different optimal 
allocations and prices because λiνi(zi) changes the tradeoff between non-money commodities and the money commodity. 
A transferable utility representation suitable for defining a Walrasian equilibrium for E[λ] is

∂ w∞
E[λ](r) := sup{λ · W ∞

E (r)}.
Extending (9) from E to E[λ],

q = {〈qi = −λiν
∗
i (p[λ])〉} ∈ ∂ w∞

E[λ](e), (14)

where (p[λ], 〈zi[λ]〉) is a Walrasian equilibrium for E[λ].
To demonstrate existence of Walrasian equilibrium without transfers for the non-quasilinear E , it would suffice to show 

the existence of a λ � 0 satisfying (14) that also has the property

q = 〈qi = λiνi(zi)〉 ∈ ∂ w∞
E[λ](e), (15)

because in that case p[λ] · zi[λ] = 0, for all i. More formally stated,

Proposition 3 (Characterization of Walrasian Equilibrium without Transfers). If there exists λ � 0 such that

q = 〈qi = λi vi(zi[λ])〉 ∈ ∂ w∞
E[λ](e),

where 
∑

i zi[λ] = 0 and 
∑

i λiνi(zi) = w∞
E[λ](e), then there exists p[λ] such that

q = 〈qi = −λi v∗
i (p[λ] = λi vi(zi[λ])〉 ∈ ∂ w∞

E[λ](e), hence, p[λ] · zi[λ] = 0, ∀i,

i.e., (p[λ], 〈zi[λ]〉) is a Walrasian without transfers for the non-quasilinear version of E[λ].

With the qualification that the underlying convex preferences can be represented by concave utilities, this construction 
shows how the more elementary problem of demonstrating existence of Walrasian equilibrium for a family of quasilin-
ear models E[λ] is related to the existence of its non-quasilinear counterpart. However, the decisive step of showing the 
existence of a λ � 0 for which transfers are zero requires a fixed-point argument. In the assignment model, a duality 
demonstration suffices.

4. The assignment model

4.1. Transferable utility

In the assignment model individuals exchange with each other, one-on-one. I = A ∪ B is divided into two disjoint groups, 
individual members of A to be matched with individual members of B . The data of the model is defined by V : A × B →R+ , 
where V(a, b) is the value of matching a ∈ A with b ∈ B .

Denote by EA = 〈νi〉 an exchange economy description of an assignment model. A commodity space compatible with 
transferable and non-transferable utility versions of the assignment model is R� := R

A×B . For (a, b) ∈ A × B , eab is the unit 
vector in RA×B . The restrictions on domνi are:

domνi =
{

{−eab : b ∈ B} ∪ {0} i = a ∈ A,

{eab : a ∈ A} ∪ {0} i = b ∈ B .
(16)

Individuals in A supply themselves to some individual in B , or do not trade; and individuals in B buy themselves from 
someone in A, or do not trade.

The same conditions on z = 〈zi〉, i.e., 
∑

i νi(zi) > −∞ and 
∑

i zi = 0 defining a feasible allocation in E , i.e., when the 
population is e and the aggregate resource constraint is 0, also apply to EA . However, in EA aggregate balance is superseded 
by bilateral balance: if za �= 0, there exists a b such that
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za[= −eab] + zb[= eab] = 0.

Therefore, max{νa(za) + νb(zb), 0} = V(a, b) reproduces the data of a transferable utility/quasilinear version of the assign-
ment model.

Prices have the same dimension as the commodity space, i.e., p ∈ R
A×B . The definition of Walrasian equilibrium from E

and its characterization in Proposition 2 also applies to EA . If (p, 〈zi〉) is a Walrasian equilibrium at e, let qi = −ν∗
i (p) =

νi(zi) − p · zi . If a and b are paired in EA , then za = −zb . Hence, p · (za + zb) = 0 and

qa + qb = −[ν∗
a (p) + ν∗

a (p)] = [νa(za) − p · za] + [νb(zb) − p · zb]
= νa(za) + νb(zb) = V(a,b).

Existence of money transfers allows the division of the joint gains V(a, b) according to −p · za = p · zb; e.g., if −p · za =
−p · [−eab] > 0, then in addition to va(−eab), individual a receives mi = −p · za from b. [Note: Proposition 3 also applies 
to EA[λ], λ � 0. If (p[λ], 〈zi[λ]〉) is a Walrasian without transfers for the non-quasilinear version of EA[λ], and a and b are 
paired, −p[λ] · za = −p[λ] · zb = 0.]

A key difference between E and EA is the indivisibility of commodities in (16). The absence of concavity means that 
maximization of total gains may require that individuals of same type i are not necessarily given the same allocation, zi . 
This changes the description of �E to

�EA(r, z) = sup
{∑

i

∑
h

rh
i νi(zh

i ) :
∑

i

∑
h

rh
i ei = r,

∑
i

∑
h

rh
i zh

i = z, rh
i ≥ 0

}
,

where zh
i denotes the allocation to an individual with utility νi and zh

i �= zh′
i , h �= h′ . However, the well-known integer 

optimality properties of the assignment model implies the non-concavity of νi has especially benign consequences.
Recall the definition of vE (· | ke) in Section 3.1 and its extension to v∞

E (· | ke). The source of the difference between w∞
E

and v∞
E — and therefore Walrasian equilibria (∂ w∞

E ) and the core (∂C v∞
E ) — is the fact that the generators of v∞

E (· | ke) are 
increasing with k. The generators of the analogous constructions v∞

EA
(· | ke) do not vary. They are limited to those r = eS

that are singletons, i.e., ei , i ∈ I , and the pairs ea + eb , a ∈ A, b ∈ B . Since the generators do not vary,

v∞
EA(r) = max

{∑
S

αS
(∑

i∈S

νi(zS
i )

) :
∑

S

αS eS = r,
∑
i∈S

zS
i = 0,αS ≥ 0

}
= max

{∑
i

∑
h

rh
i νi(zh

i ) :
∑

i

∑
h

rh
i ei = r,

∑
i

rh
i zh

i = 0, rh
i ≥ 0

}
= w∞

EA(r).

(17)

The equality in (17) is similar to the equality in (12) for a direct market, ED . But the generators of v∞
EA

= w∞
EA

are 
a restricted subset of {eS : S ⊆ I}, the generators of the direct market yielding v∞

ED
= w∞

ED
. Consequences of this added 

restriction are examined in Section 5.2.

4.2. Non-transferable utility

Whether quasilinear or not, Walrasian equilibrium requires that individuals with the same tastes and trading opportu-
nities are such that the utility received by one will not be different from the utility received by the other. The following 
example exploits this property to illustrate that without quasilinearity pricing equilibrium need not exist.

Example 1 (Non-existence in the Assignment Model without Transfers). Assume A = {a} and B = {b1, b2}: a prefers trade to no 
trade, but is indifferent between b1 and b2; and both b’s prefer to trade with a. I.e.,

νa(−eab1) = νa(−eab2) > νa(0) = 0, νbk (eabk ) > νbk (0) = 0, k = 1,2.

In terms of preferences, b1 and b2 have the same tastes and are regarded by a as perfect substitutes. If a were to trade with 
b1 and money transfers were required to cancel, then pab1 = 0 and

λaν
∗
a (p) = λaνa(−eab1) + pab1 = λaνa(−eab1)

λb1ν
∗
b1

(p) = λb1νb1(eab1) − pab1 = λb1νb1(eab1).

For prices to discourage trade by b2, pab2 ≥ λb2νb2(eab2 ) > 0. But at a positive pab2 , a would prefer to trade with b2. A similar 
contradiction would occur if a were to trade with b2.
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Example 2 (Existence with strict preference). Eliminate indifference by assuming a prefers trade with b1 compared to b2; 
specifically, νa(−eab1 ) = 1 and νa(−eab2 ) = 1 − ε , 0 < ε < 1. Now, each of the three individuals is a different type. With 
prices such that a wants to supply b1, and b1 wants to buy a without transfers, i.e., pab1 = 0,

λaν
∗
a (p) = λaνa(−eab1) + pab1 = λaνa(−eab1) = λa

≥ λaνa(−eab2) + pab2 = λa(1 − ε) + pab2 .

Again, b2 does not gain from trade when pab2 ≥ λb2 vb2 (eab2) > 0. For any ε > 0, the inequalities are satisfied if

ελa

λb2

≥ pab2

λb2

≥ νb2(eab2) > 0.

However, as ε → 0, λa → ∞, i.e., the relative weight of λb2 compared to λa (and λb1 ) must be going to 0, confirming that 
as νa approaches indifference, there are, equivalently, no prices and no strictly positive weights to sustain an equilibrium 
without transfers. The limiting failure of prices to exist without transfers when there is indifference in EA is similar to what 
may occur in E when νi does not satisfy a Lipschitz condition, leading to a failure of subdifferentiability.

4.2.1. Stable matchings

Definition 3. z = 〈zi〉 is a stable matching for EA if 
∑

i νi(zi) > −∞, 
∑

i zi = 0 and there does not exist ya + yb = 0 such 
that

(νa(ya), νb(yb)) − (νa(za), νb(za)) ∈R
2++.

Gale and Shapley (1962) formulated the problem and demonstrated, via a simple algorithm, the existence of stable 
matchings assuming:

Definition 4. Preferences are strict in EA if for each i and zi, yi ∈ domνi , νi(zi) = νi(yi) only if zi = yi .

With strict preferences — the default hypothesis in two-sided matching (Roth and Sotomayor, 1990), the pricing proper-
ties of the transferable utility version of EA can be translated, via Shapley’s λ-transfer method, to show that a Walrasian 
equilibrium without transfers exists for any stable matching.

Proposition 4 (Walrasian Equilibrium for EA without Transfers). If preferences are strict in EA, then for any stable matching z = 〈zi〉
there exists a λ � 0 and p[λ] such that (p[λ], 〈zi[λ] = zi〉) is a Walrasian equilibrium and p[λ] · zi[λ] = 0, ∀i.

Proof. Vector-valued utilities in the non-transferable version of the assignment model are

VEA(eS) = {uS = 〈νi(zS
i )〉 :

∑
i∈S

zS
i = 0} +R

S−.

As a feasible allocation, the stability of z implies that setting

q∗ = 〈q∗
i = νi(zi)〉,

q∗ is in the core of VEA , i.e., VEA(eS ) −{q∗
S } ∩R

I++ = ∅, S ⊆ I . Moreover, as illustrated in Example 2, with strict preferences,

VEA(eS) − {q∗
S} ∩R

I+\{0} = ∅, S ⊆ I.

To demonstrate, suppose the contrary that there exist S ⊆ I such that uS ∈ VEA(eS), uS − q∗
S ∈ R

S+\{0}. Assume a gainer is 
an a ∈ A ∩ S . Then a must trade with some b ∈ B ∩ S , i.e., b must leave his current trading partner in the stable matching 
(where he is possibly not trading) and go with a. But strict preference implies that, by trading, b changed his utility. And if 
it does not go down, it must go up, which contradicts the hypothesis that z is a stable matching. Consequently,

αS
(

VEA(eS) − {q∗
S}

) ∩R
I+\{0} = ∅, ∀αS ≥ 0, S ⊆ I. (†)

Also, if z is a stable matching, and S, T ⊆ I , there is the following additivity condition:

V (eS) − {q∗
S} + V (eT ) − {q∗

T } ∩R
I+\{0} = ∅. (‡)

Again, supposing the contrary, since gains can only be achieved by pairs, there must exist a, b ∈ S ∪ T and ya + yb = 0 such 
that
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(
νa(ya), νb(yb)

) − (
q∗

a = νa(za),q∗
b = νb(zb)

) ∈R
I+\{0}.

But, as above, this would also contradict the hypothesis that the utilities q∗ represent a stable matching.
Properties (†) (scalar multiplicity) and (‡) (additivity) imply that the convex cone

K (VEA ,q∗) =
{∑

S

αS
[
VEA(eS) − {q∗

S}
] : αS ≥ 0, S ⊆ I

}
∩R

I+\{0} = ∅,

with polar K 0(VEA , q∗) = {
λ : λ · K (VEA , q∗) ≤ 0

}
has the property that

K 0(VEA ,q∗) ∩R
I++ �= ∅.

From Proposition 2,

q = 〈λiq
∗
i 〉 = 〈λiνi(zi)〉 ∈ ∂v∞

EA[λ](e)

for λ � 0 ∈ K 0(VEA , q∗).
From (25), v∞

EA[λ](e) = w∞
EA[λ](e). Hence, there exists p[λ] ∈R

A×B such that

q = 〈qi = −λiν
∗(p[λ])〉 ∈ ∂ w∞

EA[λ](e).

Therefore,

qi = −λiν
∗(p[λ]) = λiνi(zi) − p[λ] · zi = λiνi(zi),

or p[λ] · zi = 0, ∀i. This fulfills the conditions of Proposition 3 characterizing Walrasian equilibrium without transfers. �
5. Differentiability with respect to individuals

5.1. Differentiability as perfect substitutability

Pricing has, so far, been described as subdifferentiability. Subdifferentiability is defined for all perturbations which, as-
suming the effective domain of the function is convex, includes its infinitesimal counterparts. The emphasis, below, is on 
differentiability, i.e., on infinitesimal perturbations. Hence, differentiability with respect to individuals is more immediately 
interpreted in the infinite case when each individual is infinitesimal. To emphasize the meaning of differentiability with re-
spect to individuals, a discrete version can be defined that is applicable to models with finite numbers. The relation between 
discrete differences and directional derivatives describes the sense in which increasing the number of individuals may, or 
may not, lead to differentiability.

Restricting attention to r = ke, k = 1, 2, . . . , concavity and positive homogeneity of w∞
E and Fact (v) imply

w∞
E (ke) − w∞

E (ke − ei) ≡ −�w∞
E (ke;−ei) ≥ max

{
q · ei : q = ∂ w∞

E (ke) = ∂ w∞
E (e)

}
. (18)

The inequality says that for any q ∈ ∂ w∞
E (ke) the maximum value of q · ei = qi cannot exceed the extra gains that i’s 

participation adds to the total gains. When the inequality is strict, prices are such that i is always contributing more to 
ke − ei than they can achieve on their own.

Definition: Individual i is perfectly substitutable at ke if

−�w∞
E (ke;−ei) = max {q · ei : q = ∂ w∞

E (ke)}.
Equivalently, i is perfectly substitutable when

∂ w∞
E (ke) ∩ ∂ w∞

E (ke − ei) �= ∅. (19)

The non-empty intersection in (19) says there is a q ∈ ∂ w∞
E (ke −ei) such that there is no need to change qi to accommodate 

an additional i. Geometrically, (19) implies that w∞
E is “flat” along [ke − ei, ke]. When k = 1, there are no individuals of 

type i in e − ei . Then q ∈ ∂ w∞
E (e − ei) means that q · ei = qi is the reservation price for i, i.e., the price such that individuals 

in e − ei are indifferent between trading or not trading with i. The same statement also applies for perfect substitutability 
when k > 1. [As the assignment model will illustrate when k = 1, (19) can hold for a subset of individuals.]

From (9) in Proposition 2, ∂ w∞
E (ke) is derived from ∂ fE (0 | ke) via qi = −ν∗

i (p). To elaborate on that dependence, the 
value w∞

E (ke) can be obtained by maximizing the incremental gains to �E (ke − ei, ·) = fE (· | ke − ei) from trading with i as

w∞
E (ke) = sup {νi(yi) + fE (−yi |ke − ei)}.

Recalling that fE (0 | ke − ei) = w∞(ke − ei), a restatement of (18) is
E
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w∞
E (ke) − w∞

E (ke − ei) = sup
{
νi(yi) + [ fE (−yi |ke − ei) − fE (0 |ke − ei)]

}
≥ sup

{ − ν∗
i (p) : p ∈ ∂ fE (0 |ke)

} = max
{

q · ei : q ∈ ∂ w∞
E (ke)

}
.

Proposition 2 says that elements of ∂ fE (0 | ke −ei) are Walrasian equilibrium prices for ke −ei and elements of ∂ fE (0 | ke)

are Walrasian equilibrium prices for ke. Therefore, if

∂ fE (0 |ke) ∩ ∂ fE (0 |ke − ei) �= ∅, (20)

then p belonging to the intersection means there is no need for a change in commodity prices at ke − ei to accommodate 
a utility maximizing trade at p when ei is added. I.e., fE (· | ke − ei) is “flat” along [0, −zi] for −ν∗

i (p) = νi(zi) − p · zi . 
Evidently, (20) implies (19) since there exists p such that

sup {νi(yi) + [ fE (−yi |ke − ei)} − fE (0 |ke − ei)] = νi(zi) + p · zi .

[The converse can also be shown.]
When all individuals are perfectly substitutable at ke, the function w∞

E is discretely differentiable at ke, i.e.,

∂ w∞
E (ke)

⋂
i∈I

∂ w∞
E (ke − ei) �= ∅. (21)

(21) says that the gains from w∞
E (ke) can be distributed so that each i receives the amount its participation adds to the 

total: there is a q ∈ ∂ w∞
E (ke) such that

k
∑

i

q · ei = k
∑

i

−�w∞
E (ke;−ei) = w∞

E (ke).

The commodity pricing analog of (21) is

∂ fE (0 |ke)
⋂

i

∂ fE (0 |ke − ei) �= ∅. (22)

I.e., there are Walrasian equilibrium commodity prices p for ke that are also Walrasian equilibrium prices for all ke − ei .
The discrete connections, above, are readily extended to their (more standard) infinitesimal counterparts. The discrete 

difference −�w∞
E (ke; −ei) is non-increasing in k (Fact (i) Section 2). Moreover, the definition of a directional derivative 

(Fact (ii)) and its relation to the subdifferential (Fact (v)) implies that for any i, there is always a q such that any one i is 
asymptotically perfectly substitutable, i.e.,

lim
k→∞

−�w∞
E (ke;−ei) = −D w∞

E (e;−ei) = max {q · ei : q = ∂ w∞
E (ke) = ∂ w∞

E (e)}.

The asymptotic extension of (21) is the differentiability of w∞
E at e: the existence of a q such that

qi = lim
k→∞

−�w∞
E (ke;−ei) = −D w∞

E (e;−ei), ∀i. (23)

Then, {q} = ∂ w∞
E (ke), k = 1, 2, . . . .

As in the discrete case, differentiability with respect to the pricing of individuals is based on differentiability with respect 
to the pricing of commodities. From positive homogeneity, fE (z | ke) − fE (0 | ke) = k[ fE (k−1z | e) − fE (0 | e)]. Therefore,

lim
k→∞

[ fE (z |ke) − fE (z |ke)] = lim
k→∞

k[ fE (k−1z |e) − fE (z |e)]
= D fE (0; z |e) = max {p · z : p ∈ ∂ fE (0 |e)}.

Hence, there are commodity prices at which a trade by an infinitesimal individual can be regarded as perfectly substitutable. 
When, in addition, fE (· | e) is differentiable at 0, then ∂ fE (0 | e) = {p} and the continuity of the derivative at 0 implies the 
asymptotic analog of (22),

lim
k→∞

∂ fE (0 |ke − ei) = lim
k→∞

∂ fE (0 |e − k−1ei) = p, ∀i. (24)

Hence, all utility maximizing trades at p are perfectly substitutable.
Discrete differentiability is defined by equalities with respect to “marginal” conditions on individuals compared to the 

marginal and infra-marginal inequalities with respect to coalitions defining the core. Differentiability is similarly defined 
by asymptotic marginal equalities on individuals. Nevertheless, these marginal conditions defining perfect substitutability 
suffice to conclude:
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Proposition 5 (Differentiable Core). (I): If w∞
E is discretely differentiable at ke (all individuals in ke are perfectly substitutable), then 

q ∈ ∂C vE (ke | ke) if and only if

qi = vE (ke |ke) − vE (ke − ei |ke) = w∞
E (ke) − w∞

E (ke − ei), ∀i.

(II): If w∞
E is differentiable at e (all infinitesimal individuals in e are perfectly substitutable), then q ∈ limk→∞ ∂C vE (ke | ke) =

∂ w∞
E (e) if and only if

qi = lim
k→∞

w∞
E (ke) − w∞

E (ke − ei) = lim
k→∞

−�w∞
E (ke;−ei), ∀i.

When the subdifferential exhibits differentiability it has the following desirable property. Applied to w∞
E , if r ∈ R

I++
and ∂ w∞

E (r) = {q}, then for any ε > 0, there is a k such that if k ≥ k and q′ ∈ ∂ w∞
E (kr − ei), then ‖q′ − q‖ < ε . I.e., 

differentiability implies that the larger the number of individuals, the closer an individual is to being perfectly substitutable. 
Without differentiability, continuity fails: If q ∈ ∂ w∞

E (r), but ∂ w∞
E (r) is not a singleton, there is a qk and ik such that 

qk ∈ ∂ w∞
E (kr − eik ) and ‖q − qk‖ > ε , k = 1, 2, . . . . Without differentiability, an individual’s ability to change prices does not 

vanish as the number of individuals increases.
The definition of perfect substitutability for models with transferable utility was originally formulated for models with 

ordinal preferences, called no-surplus (Ostroy, 1980; Makowski, 1980). An ordinal characterization of differentiability as 
asymptotically no-surplus is given in Ostroy (1981) for a sequence of exchange economies where both the number of 
individuals and the number of commodities in increasing.

5.2. Perfect substitutability precludes favorable manipulation

The subdifferentials of the optimal value functions associated with E = 〈νi〉 measure how those function vary as the 
commodity constraints, fE (z | r) = �E (r, z), or population constraints, w∞

E (r) = �E (r, 0), vary. A change in utility is an-
other kind of perturbation that changes the way the constraints are valued. This Section shows the implications of perfect 
substitutability for individual perturbations of utilities.

Let ν0 be a concave function satisfying the same restrictions as the utility functions, above, and having the same trading 
possibilities as νi , i.e., domν0 = domνi . Denote by (ke − ei + e0) the perturbation of ke in which one individual with utility 
νi is replaced by another with utility ν0; i.e., a model having k individuals with utilities ν j , j �= i, (k − 1) individuals with 
utilities νi , and one individual with utility ν0. The linear space of populations is now RI+1, where the added dimension 
accommodates the introduction of ν0.

The maximum gains for that model is denoted w∞
E (ke −ei +e0). An element of ∂ w∞

E (ke −ei +e0) is a ̃q = (〈̃q j〉 j �=i, ̃qi, ̃q0). 
(As above, when k = 1 there are no individuals with utility νi ; hence, ̃qi is a reservation price, a price at which it would not 
be profitable to introduce anyone with utility νi .)

By construction, the trading opportunities underlying w∞
E (ke −ei +e0) and w∞

E (ke) are identical. Let w∞
E (ke −ei +e0 | νi)

represent the utility gains of the allocation maximizing w∞
E (ke − ei + e0) when the allocation to ν0 is evaluated using νi . 

Evidently,

w∞
E (ke) ≥ w∞

E (ke − ei + e0 |νi).

If i (having νi ) is perfectly substitutable at q in w∞
E (ke),

qi = −�w∞
E (ke;−ei) = w∞

E (ke) − w∞
E (ke − ei).

For any ν0,

q̃ · (ke − ei + e0 − e0) = q̃ · (ke − ei) ≥ w∞
E (ke − ei + e0 − e0) = w∞

E (ke − ei).

Since qi allows i to obtain w∞
E (ke) − w∞

E (ke − ei) while ̃qi allows i at most w∞
E (ke − ei + e0 | νi) − w∞

E (ke − ei),

Proposition 6. If there is a q such that i is perfectly substitutable at ke, i cannot improve its payoff by claiming to be ν0.

Proposition 6 is a sufficient condition for non-manipulability of utilities. When the set of possible misrepresentations ν0
for each i is sufficiently large, perfect substitutability for all individuals is also necessary for efficient incentive compatible 
mechanism design for both transferable and non-transferable utility (Makowski et al., 1999). Hence, the robust possibility of 
perfect substitutability requires large numbers where differentiability with respect to individuals can be a robust conclusion.
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5.3. Perfect substitutability in the transferable utility assignment model

The equality w∞
EA

= v∞
EA

in (17) means ∂ w∞
EA

(ke) = ∂v∞
EA

(ke). Shapley and Shubik (1972) point out that replication 
does not change the size of the core in the assignment model. This can be expressed as

∂ w∞
EA(ke) = ∂C vEA(e),k = 1,2, . . . .

Core equivalence was essential to the demonstration of Proposition 4, above.
The special properties of EA also admit perfect substitutability. To highlight that feature, its failure in E arises from the 

inequality in (18),

w∞
E (ke) − w∞

E (ke − ei) ≥ max {q · ei : q ∈ ∂ w∞
E (ke) = ∂ w∞

E (e)},
that is non-increasing in k. Hence, the failure of perfect substitutability, i.e., when the inequality is strict, occurs when 
−�w∞

E (ke; −ei) = w∞
E (ke) − w∞

E (ke − ei) is decreasing in k, a consequence of the strict superadditivity

w∞
EA(ke − ei) > w∞

EA([k − 1]e) + w∞
EA(e − ei).

In EA , where the generators consist of single individuals and matched pairs, the indivisibility of the unit amounts an 
individual can contribute implies that

w∞
EA(ke − ei) = w∞

EA([k − 1]e) + w∞
EA(e − ei), ∀k.

Therefore,

w∞
EA(ke) − w∞

EA(ke − ei) = w∞
EA(e) − w∞

EA(e − ei)

= max {q · ei : q ∈ ∂ w∞
E (ke) = ∂ w∞

E (e)}. (25)

From the characterization of Walrasian equilibrium in (9) (Proposition 2) applied to EA , for any q ∈ ∂ w∞
EA

(e) there exists 
p such that for all i, qi = −ν∗

i (p) = νi(zi) − p · zi . To elaborate on its implications, let 〈zi〉 be any optimal assignment for e. 
Then there are prices such that (p, 〈zi〉) is a Walrasian equilibrium. If a and b are matched in 〈zi〉,

p · za = −p · eab = −pab = p · (−eab) = p · zb.

Since

qa = νa(za) − [−pab],
the greater is pab , the greater is the gain to a. Holding z = 〈zi〉 fixed and assuming pab > 0, raise pab to the maximum value, 
and pba(= −pab) to the minimum value such a would be perfectly substitutable, i.e., b could find partners in e − ea such 
that together they could achieve the total gains available in wEA (e − ea) = vEA(e − ea).

The equalities in (25) imply that there exist prices pa ∈R
A×B and qa = 〈−ν∗

i (pa)〉 ∈ ∂ w∞
EA

(e) such that

qa · ea = qa
a = −D w∞

EA(e;−ea) = −�w∞
E (e;−ea).

The gains a receives at pa is the highest pab consistent with an optimal assignment. It achieves the upper bound on what 
a can hope to obtain in the core since it makes the individuals in e − ei just indifferent between trading and not trading 
with a: a achieves the highest value in a match with b by reducing the value to b to the lowest such that b is just indifferent 
between pairing with b or matching with a′ �= a (or not being matched). This does not interfere with a′ �= a also achieving 
the highest value in its optimally assigned match with b′ �= b. I.e., there exists Walrasian prices p A such that all members 
of A receive their upper bounds. Therefore, there exists qA = 〈−ν∗

i (p A)〉 ∈ ∂ w∞
EA

(e),

qA
a = −D w∞

EA(e;−ea) = −�w∞
E (e;−ea), ∀a ∈ A.

Analogous conditions hold for the existence of pB and qB
b . This feature of the assignment model is equivalent to Shapley 

and Shubik’s (1972) characterization of pricing in EA as exhibiting a lattice property.
Evidently, qA

a ≥ qB
a , ∀a and qB

b ≥ qA
b , ∀b. The condition that duplicates in EA what replication typically achieves for E

is that all individuals simultaneously receive their highest payoffs, i.e., q A = q = qB ; hence, the highest payoff for each 
individual is also the lowest. In that case, {q} = ∂ w∞

EA
, and

qi = −�w∞
EA(e;−ei) = −D w∞

EA(e;−ei), ∀i. (26)

[Note: Example 1 in Section 4.2 illustrated non-existence without transfers. With transfers, it illustrates (26). To elabo-
rate, assume b1 and b2 have the same utilities, νb1 (eab1 ) = νb (eab ) = α > 0 (the utility of no trade is normalized to 0). 
2 2
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Equilibrium prices are pab1 = pab2 = α, leaving b1 and b2 indifferent between buying or not buying, although one b trades 
and the other does not. The same prices would also describe an equilibrium if any two of the three were present. (Without 
individual a, pab1 = pab2 = α are reservation prices for the commodities available to e − ea .)

As an assignment model with transfers, the uniqueness of prices in Example 1 is not typical; and populations ke, k =
1, 2, . . . , in EA with the same number of each type are typically incompatible with perfect substitutability for all i. However, 
the (polyhedral) concavity of w∞

EA
means that instances of non-differentiability are exceptional, and since differentiability 

implies discrete differentiability in the assignment model, most large (finite) populations with unequal numbers of types 
will satisfy (26). Hence, unequal numbers of types in EA serves as a substitute for replicating e in E .]

5.4. Approximating perfect substitutability in the non-transferable utility assignment model

The best outcome for any i ∈ I in the quasilinear version of EA can be obtained from any optimal matching by varying 
prices, i.e., money payments. Such adjustments are precluded in the non-quasilinear version. Substitution possibilities are, 
therefore, limited to variations in the “dual,” i.e., stable matchings in the assignment model without transfers can incorporate 
the role of prices when there are transfers. For example, if ∂ w∞

EA
(e) = {q} in the transferable utility model, no individual 

has an incentive to manipulate his utility. If there is a unique stable matching in the non-transferable version, the same 
conclusion holds (Gale and Sotomayor, 1985). Relatedly, the lattice property of ∂ w∞

EA
(e) with transferable utility, allowing 

each of the individuals of one side of the market to be perfectly substitutable, is analogous to the lattice property for stable 
matches without transfers, at which there is also no gain from preference manipulation (see Roth and Sotomayor, 1990).

The parallels are incomplete. Replication, which plays a central role with transfers, is inconsistent with strict preferences: 
if ke, k > 1, an a ∈ A would be indifferent between being matched with two individuals of the same type in B . Nevertheless, 
if differences among individuals were small, there would be a meaningful sense in which substitution possibilities could be 
almost perfect, with conclusions that are approximately similar to the ideal limiting case. To this end, a sequence EA(ek), 
where ek refers to Ik , below, representing assignment models in which preferences are strict while the number of distinct 
types is increasing, allows individuals to become increasingly closer substitutes.

Represent the set Ik = Ak ∪ Bk , where Ak and Bk are k equally spaced points in separate unit intervals, [0, 1], 
1/k, 2/k, . . . , k/k. For each a ∈ Ak , νk

a (−eab) can be abbreviated as νk
a (b) to designate the unique b ∈ Bk ∪ {0} with whom 

a could be matched. Preferences are strict if νk
a : Bk ∪ {0} → R is invertible. Similar statements apply to νk

b : Ak ∪ {0} → R. 
For example, the condition for assortative matching is: for each a ∈ Ak and b, b′ ∈ Bk , νk

a (b) > νk
a (b′) if b > b′; and for each 

b ∈ Bk and a, a ∈ Ak , νk
b(a) > νk

b(a′) if a > a′ (0 is the least preferred choice). If the uniformly kth ranked b by the a’s were 
paired with the uniformly kth ranked a by the b’s, that would constitute a stable matching.

From Proposition 4, a stable matching for EA(ek) can be represented as a pricing equilibrium (pk, zk) without transfers 
for some (λk

i ν
k
i ), λk

i > 0. A condition that “nearby” individuals, in the sense of their assigned locations in [0, 1], are becoming 
closer substitutes is the following equi-continuity condition on the preferences of individuals in the sequence EA(ek): For 
any δ > 0, there exists k such that if k > k, b, b′ ∈ Bk and |b − b′| < k

−1
, then

max
a∈Ak

|νk
a (b) − νk

a (b′)| < δ;

and similarly for a, a′ ∈ Ak and maxb∈Bk |νk
b(a) − νk

b(a′)|. If λk : Ak ∪ Bk → R++ is similarly equicontinuous, the property of 
pricing equilibrium without transfers that

(λk
i ν

k
i )∗(pk) = max {λk

i ν
k
i (yk

i ) − pk · yk
i } = λk

i ν
k
i (zk

i ),

implies that prices of nearby commodities are nearly equal. In the quasilinear version of the assignment model with equi-
continuity, the genericity of perfect competition (and the meaning of ‘genericity’) is established in Gretsky et al. (1999).

6. Concluding remark

Differentiability of Walrasian equilibrium with respect to individuals yields a description of the competitive pricing of in-
dividuals as exhibiting perfect substitutability that subsumes competitive pricing of commodities. This description builds 
on Shapley’s contributions: the definition of differentiability requires that the general equilibrium model of economic inter-
dependence be viewed from the perspective of a game in characteristic function form, i.e., as a market game; and on the 
subdifferentiability of the prices of individuals that characterizes the core. In those settings with large numbers of individuals 
where differentiability is likely to hold, differentiability is a generic feature of subdifferentiability.
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