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Abstract

Aim: Evaluate cerebrovascular autoregulation (CAR) using near-infrared spectroscopy (NIRS) 

after pediatric cardiac arrest and determine if deviations from CAR-derived optimal mean arterial 

pressure (MAPopt) are associated with outcomes.

Methods: CAR was quantified by a moving, linear correlation between time-synchronized 

mean arterial pressure (MAP) and regional cerebral oxygenation, called cerebral oximetry index 

(COx). MAPopt was calculated using a multi-window weighted algorithm. We calculated burden 

*Corresponding author at: Children’s Hospital of Philadelphia, Department of Critical Care Medicine, 3401 Civic Center Blvd, Wood 
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(magnitude and duration) of MAP less than 5 mmHg below MAPopt (MAPopt - 5), as the 

area between MAP and MAPopt - 5 curves using numerical integration and normalized as 

percentage of monitoring duration. Unfavorable outcome was defined as death or pediatric 

cerebral performance category (PCPC) at hospital discharge ≥3 with ≥1 change from baseline. 

Univariate logistic regression tested association between burden of MAP less than MAPopt - 5 and 

outcome.

Results: Thirty-four children (median age 2.9 [IQR 1.5,13.4] years) were evaluated. Median 

COx in the first 24 h post-cardiac arrest was 0.06 [0,0.20]; patients spent 27% [19,43] of 

monitored time with COx ≥ 0.3. Patients with an unfavorable outcome (n = 24) had a greater 

difference between MAP and MAPopt - 5 (13 [11,19] vs. 9 [8,10] mmHg, p = 0.01) and spent 

more time with MAP below MAPopt - 5 (38% [26,61] vs. 24% [14,28], p = 0.03). Patients 

with unfavorable outcome had a higher burden of MAP less than MAPopt - 5 than patients with 

favorable outcome in the first 24 h post-arrest (187 [107,316] vs. 62 [43,102] mmHg × Min/Hr; 

OR 4.93 [95% CI 1.16–51.78]).

Conclusions: Greater burden of MAP below NIRS-derived MAPopt - 5 during the first 24 h 

after cardiac arrest was associated with unfavorable outcomes.

Keywords

Cardiac arrest; Cerebral autoregulation; Cerebrovascular autoregulation; Hypoxic ischemic brain 
injury; NIRS; Pediatrics

Introduction

Among 20,000 children with cardiac arrests each year in the United States, most do not 

survive to hospital discharge and many survivors sustain new or worsened neurologic 

disability.1–6 The goal of post-cardiac arrest care is to reduce secondary brain injury 

and improve neurologic outcomes.7,8 Hypotension after cardiac arrest can cause cerebral 

hypoperfusion and is associated with worse outcomes.9–13 Thus, the American Heart 

Association (AHA) recommends maintaining a systolic blood pressure greater than the 

5th percentile for age after cardiac arrest14; however, this approach does not account for 

variation in individual patients’ cerebrovascular autoregulatory status that impacts cerebral 

perfusion.

Cerebrovascular autoregulation (CAR) maintains cerebral blood flow over a range of 

arterial blood pressures (ABP).15–17 After cardiac arrest, CAR is impaired, which can 

lead to reduced cerebral perfusion and secondary brain injury.7,8,18–20 CAR integrity can 

be quantified by the correlation between mean arterial pressure (MAP) and a surrogate 

of cerebral blood flow; a positive correlation reflects loss of CAR integrity. The cerebral 

oximetry index (COx) is the correlation of regional cerebral tissue oximetry (StO2) derived 

from near infrared spectroscopy (NIRS) and MAP. The MAP at which a patient’s CAR 

is most intact can be derived using COx, so-called optimal MAP (MAPopt).21,22 To date, 

small adult and pediatric post-cardiac arrest studies have demonstrated associations between 

impaired CAR, CAR-derived MAPopt, and patient outcomes.22–28 However, it is unknown if 
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deviations from CAR-derived MAPopt are associated with outcomes after pediatric cardiac 

arrest and how CAR-derived MAPopt compares to pediatric blood pressure targets.

The primary objective of this study was to determine the association of deviations from 

CAR-derived MAPopt during the first 72 h after cardiac arrest using NIRS-derived StO2 

with outcomes. Secondary objectives were to determine the association of the severity of 

CAR impairment with outcomes and the age-based percentiles that correspond with CAR-

derived MAPopt. We hypothesized that patients with unfavorable outcomes would have a 

larger magnitude and duration of MAP deviation below CAR-derived MAPopt than patients 

with favorable outcomes.

Methods

Study design

This was a retrospective analysis of prospectively collected data on patients ≤18 years old 

who received ≥1 min of cardiopulmonary resuscitation (CPR) for an in- or out-of-hospital 

cardiac arrest between November 2018 and March 2021 and received post-cardiac arrest 

care in the Children’s Hospital of Philadelphia pediatric intensive care unit (PICU). Eligible 

patients had an invasive arterial catheter and either unilateral or bilateral cerebral NIRS 

connected to our integrative multimodality neuromonitoring device (Moberg Research, 

Ambler, PA, USA). Patients were excluded if they received extracorporeal support, had 

unrepaired cyanotic congenital heart disease, had concomitant severe acute brain injury due 

to traumatic brain injury or ruptured vascular malformation, or had formal limitations of care 

at time of eligibility. Additional exclusion criteria were time between ROSC and initiation of 

multimodal recording >24 h or recording duration less than 6 h.

Post-cardiac arrest care was determined by the clinical team, guided by an institutional 

pathway.29 The clinical team was blinded to CAR and MAPopt data. Prospectively defined 

clinical data were abstracted via medical record review and included patient demographics, 

cardiac arrest characteristics, and details regarding post-cardiac arrest care. Research 

coordinators abstracting data were blinded to the primary outcome. The study was approved 

by the Children’s Hospital of Philadelphia Institutional Review Board with a waiver of 

consent.

Clinical outcomes

Clinical outcome was based on Pediatric Cerebral Performance Category (PCPC) scores, a 

6-point scale of global neurologic function: (1) normal; (2) mild disability; (3) moderate 

disability; (4) severe disability; (5) coma or vegetative state; (6) death.30–32 It was assigned 

by trained nurse raters for preadmission baseline and at hospital discharge via medical 

record review and discussions with medical providers. Discrepancies were resolved by 

consensus of an independent internal review committee. Unfavorable outcome was defined 

as death or a change in PCPC ≥ 1 from pre-admission that resulted in PCPC score of 3, 

4, or 5 at hospital discharge or 30 days post-cardiac arrest, whichever came first. Favorable 

outcome was defined as PCPC of 1 or 2 at hospital discharge or 30 days post-cardiac arrest, 
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whichever came first, or no change in PCPC from baseline to hospital discharge or 30 days 

post-cardiac arrest.

Neuromonitoring signal acquisition and processing

Decisions to place an arterial catheter or NIRS device (Nonin SenSmart (Nonin Medical, 

Inc., Plymouth, MN, USA) or Edwards Foresight (Edwards Lifesciences Corporation, 

Irvine, CA, USA)) were made by the clinical team.29 An integrative bedside multimodality 

neuromonitoring device (Moberg Research, Ambler, PA, USA) was deployed by nurses per 

provider request and device availability. The device facilitated time synchronization of ABP 

and StO2 signals.

Artifacts were computationally removed using a semi-automated sliding-window median 

filter with variable window length to account for differences in amount of artifact. Given 

the homogeneous nature of post-cardiac arrest hypoxic-ischemic brain injury, right and left 

cerebral StO2 values were averaged together when both were available. Data obtained from 

the first 72 h after ROSC were divided into post-cardiac arrest Day 1 (0–24 h), Day 2 (24–48 

h), and Day 3 (48–72 h).

Cerebrovascular autoregulation and MAPopt determination

CAR was assessed using NIRS-based cerebral oximetry index (COx), calculated as a 

Pearson correlation coefficient between 10-s averaged values of MAP and corresponding 

NIRS-measured StO2 over a 5-min window.33,34 COx values ranged from −1 to +1; 

negative or near-zero COx values, which result from MAP and StO2 being either negatively 

correlated or not correlated, respectively, indicated intact CAR. In contrast, impaired CAR 

was indicated by positive COx values due to MAP and StO2 being positively correlated. By 

moving the 5-min window by 1 min and repeating the correlation (80% overlap of data), 

COx can be analyzed as a continuous variable.35 A COx ≥ 0.3 was a priori defined as 

impaired CAR.36

To determine each patient’s MAPopt over time, we used a multi-window approach.37 COx 

was calculated using 3, 5, 10, 20, 30, 60, 90, and 120-min windows. Using windows of data 

from the prior 1–24 h (i.e., 1, 2, 4, 6, 8, 12, and 24 h), for each COx window, we plotted 

COx values versus corresponding MAP in 5 mmHg bins (e.g., 50–55 mgHg). We applied 

the Fisher transform to binned COx values to avoid ceiling effects.21 We then applied an 

automated curve fitting algorithm to fit a second-order polynomial representing a convex 

parabola.21,24,37–40 The nadir of the fitted curve (i.e., MAP where COx was most negative) 

represented MAPopt. This process generated up to 51 COx versus MAP parabolic curves that 

were combined using a weighted average to determine MAPopt. Curves with a better convex 

parabolic fit (i.e., greater adjusted r2 value) and those with more negative COx values at the 

nadir were given greater weight to generate MAPopt.37,38,41,42 This process was repeated to 

calculate an updated MAPopt every minute.

We also determined lower and upper limits of autoregulation (LLA and ULA, respectively) 

over time for each patient. The LLA is the MAP at which CBF decreases with decreasing 

MAP. Similarly, ULA is the MAP at which CBF increases with increasing MAP. We defined 

LLA and ULA as MAPs where COx-MAP parabolic curves crossed a COx value of 0.3.38
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Data analyses

We compared each patient’s MAP to their CAR-derived MAPopt ± 5 mmHg to account 

for anticipated clinical variations in MAP and to make the results more clinically 

applicable.24,26 For each subject and for each post-cardiac arrest day, we calculated mean 

magnitude of difference between MAP and MAPopt - 5 mmHg during times when MAP < 

MAPopt - 5 mmHg. Analogously, we calculated mean magnitude of the difference between 

MAP and MAPopt + 5 mmHg during the times when MAP > MAPopt + 5 mmHg. We 

further calculated the percent of time MAP was 1) below MAPopt - 5 mmHg, 2) within 

MAPopt ± 5 mmHg, and 3) above MAPopt + 5 mmHg, for Days 1, 2 and 3 post-cardiac 

arrest. Using numerical integration, the burden (combination of magnitude and duration; 

mmHg × min/hour) of MAP below MAPopt - 5 was defined as the normalized area between 

MAP and MAPopt - 5 waveforms during the times when MAP < MAPopt - 5 (Fig. 1). This 

burden was computed for each post-cardiac arrest day and normalized by the amount of 

time concomitant MAP and MAPopt waveforms were available. Analogous burdens of MAP 

above MAPopt + 5 (i.e., normalized area between MAP and MAPopt + 5 waveforms during 

the times when MAP > MAPopt + 5) were also computed for each post-cardiac arrest day.

In a secondary analysis, we calculated the burden of impaired CAR (i.e., the normalized 

area between the COx waveform and the COx threshold of 0.3 during the times when Cox 

> 0.3 (Fig. 1)), for each post-cardiac arrest day.43,44 We additionally investigated brain 

oxygenation in relation to MAP by computing the mean StO2 for each patient when MAP 

was 1) less than MAPopt - 5, 2) within MAPopt ± 5, and 3) greater than MAPopt + 5 for 

each post-cardiac arrest day. Finally, using published normative values from critically ill 

children,45 we determined age-based MAP percentile equivalent for MAP, MAPopt, LLA, 

and ULA, for each post-cardiac arrest day.

Statistical analysis

Descriptive statistics are reported as median and interquartile ranges (IQR) for continuous 

variables and frequencies with percentages for categorical variables. Chi-squared or Fisher 

exact tests were used to test associations between categorical variables and clinical outcome 

and Wilcoxon rank-sum was used to compare differences in continuous variables between 

outcome groups. All statistical tests were two-sided, and p < 0.05 was considered to 

indicate significance. The primary exposure was the burden of MAP less than MAPopt - 

5. Univariate logistic regression model tested the association between the normalized burden 

of MAP less than MAPopt - 5 and outcome. Analyses were performed using GraphPad 

Prism (v5.03, GraphPad Software Inc., La Jolla, CA, USA), IBM SPSS Statistics (v26.0, 

IBM Corp., Armonk, NY, USA) or MATLAB (vR2018a, The Mathworks, Inc., Natick, MA, 

USA).

3D visualization of the burden of MAP below MAPopt

A customized 3D visualization technique depicted the association between magnitude and 

duration of MAP below MAPopt and outcome.46 Using minute-by-minute MAP and MAPopt 

data, for each pair of a given magnitude (MAP below MAPopt by 0 to 30 mmHg) and 

for a given duration (0–40 min), the ratio between number of patients with an unfavorable 

outcome and total number of patients who experienced at least one such episode was 
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recorded. This ratio, indicating probability of an unfavorable outcome, was displayed on a 

3D color-coded contour plot.

Results

Forty-six patients met inclusion criteria. Twelve patients were excluded due > 24 h from 

ROSC to data recording (n = 3), inadequate recording duration (n = 4), ECMO (n = 2), or 

concomitant non-hypoxic-ischemic severe acute brain injury (n = 3). Data from 34 patients 

were analyzed. The median age was 2.9 [IQR 1.5, 13.4] years and 71% (n = 24) were male. 

Thirty-eight percent had no past medical history and 59% had baseline PCPC of 1. Seventy-

one percent (n = 24) of patients had unfavorable outcomes; 63% (15/24) did not survive to 

hospital discharge. Demographic and cardiac arrest characteristics are summarized in Table 

1.

The median time between ROSC and initiation of data recording was 3 [2,7] h. A median of 

52 [33, 63] h of concomitant MAP and StO2 data were recorded in the first 72 h post-cardiac 

arrest.

Association between deviations from MAPopt and outcome

We were able to calculate MAPopt in 94% [86%, 97%] of recorded time. On post-cardiac 

arrest Day 1, the magnitude of difference between MAP and MAPopt - 5 and percent of 

time MAP was less than MAPopt - 5 were greater for patients with unfavorable compared 

to favorable outcomes (Table 2). Burden of MAP less than MAPopt - 5 was greater for 

patients with unfavorable versus favorable outcomes (187 mmHg*Min/Hr [107, 316] vs. 62 

mmHg*Min/Hr [43, 102], p = 0.01). Odds of unfavorable outcomes were 4.9 times higher 

for each standard deviation increase in burden of MAP less than MAPopt - 5 (OR 4.93 [95% 

CI 1.16 to 51.78]). Fig. 2 demonstrates the impact of magnitude and duration of MAP less 

than MAPopt - 5 on probability of unfavorable outcome.

There were no differences between patients with favorable and unfavorable outcomes for 

magnitude, duration, or burden of MAP less than MAPopt - 5 on Days 2 or 3 post-cardiac 

arrest (Supplementary Table 1). Odds of unfavorable outcomes were not increased based on 

burden of MAP less than MAPopt - 5 for Days 2 (OR 1.60 [0.72 to 4.59]) or 3 (OR 1.21 

[0.58 to 3.08]) post-cardiac arrest. Magnitude, duration, and burden of MAP within MAPopt 

± 5 or greater than MAPopt + 5 were not significantly different between patients with 

favorable or unfavorable outcomes on any post-cardiac arrest day (Supplementary Table 1).

There were no differences in StO2 between patients with unfavorable or favorable outcomes 

on any day after arrest (Table 2 and Supplementary Table 1).

CAR impairment

COx was ≥ 0.3 28% [20%, 35%] of time. Median COx, percent time COx ≥ 0.3, and percent 

burden COx ≥ 0.3 on post-cardiac arrest Days 1, 2, or 3 did not differ between favorable and 

unfavorable outcome groups (Table 2 and Supplemental Table 1).
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Comparing MAPopt, LLA and ULA to age-based MAP percentiles

MAPopt for post-cardiac arrest Days 1, 2, and 3 was equivalent to the 77th [62, 88] percentile 

of MAP for age. The LLA and ULA were equivalent to the 22nd [13,37] and 98th [94, 99] 

percentiles of MAP for age. The range between LLA and ULA was 38 mmHg [29, 44], and 

did not differ between favorable and unfavorable outcome groups (38 mmHg [27, 43] vs 39 

mmHg [29, 44], p = 0.696). There were no differences in percentiles of MAPopt, LLA and 

ULA for age between favorable and unfavorable outcome groups on any post-cardiac arrest 

day (Table 3).

Discussion

In this single center study of CAR following pediatric cardiac arrest, patients whose MAP 

was more than 5 mmHg below their CAR-derived MAPopt in the first 24 h after cardiac 

arrest were more likely to have unfavorable outcomes. Both magnitude and duration of MAP 

deviation from MAPopt were associated with unfavorable outcomes, however the severity 

of CAR impairment, as measured by COx, was not. Notably, CAR-derived MAPopt was 

equivalent to the 77th percentile for age and the difference between the lower and upper 

limits of CAR was 38 mmHg, suggesting that after cardiac arrest the MAP range of intact 

CAR is substantially narrowed and that blood pressures higher than age-based means may 

be required to maintain adequate cerebral perfusion.

The association between magnitude and duration of MAP deviation below CAR-derived 

MAPopt and outcomes implies that cerebral hypoperfusion occurs when MAP is below 

MAPopt and this critical reduction in cerebral blood flow contributes to secondary brain 

injury and unfavorable outcomes. Interestingly, COx, an index of CAR, was not different 

between patients with favorable and unfavorable outcomes and the burden of impaired CAR 

was also not different. Thus, impaired CAR may predispose patients to brain injury, but both 

duration and magnitude of MAP deviation below each patient’s individual MAPopt is a more 

substantial contributor to secondary brain injury.

Our results build upon findings from adults23,24,26,47 and children25 that have examined 

CAR using NIRS after cardiac arrest and found varying associations between impaired 

CAR, deviation of MAP from MAPopt, and outcomes.22 Lee and colleagues found that 

a greater area under the MAPopt curve, similar to the computed burden in the current 

study, on day 2 after cardiac arrest was associated with children receiving tracheostomy or 

gastrostomy tubes but did not find an association with changes in PCPC scores.25 Ameloot 

et al. demonstrated percentage time spent below MAPopt was negatively associated with 

survival.23 A recent multicenter adult study using a similar multi-window approach to 

our study failed to find differences in CAR metrics and deviation from MAPopt between 

outcome groups.24

The AHA guidelines recommend maintaining a systolic blood pressure greater than the 

5th percentile for age during post-cardiac arrest care.14 This threshold was based on 

observational studies that demonstrated worse outcomes, primarily survival, when systolic 

hypotension (below 5th percentile for age and sex) was present following cardiac arrest.7,14 

In our study, CAR-derived MAPopt was approximately the 75th percentile for age. In 
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adults, targeting a higher MAP (80–100 mmHg versus 65–75 mmHg) improved cerebral 

oxygenation, but not biomarkers of brain injury, hypoxic-ischemic injury on MRI, or 

neurologic outcomes.48,49 Our data suggest that active titration of blood pressure to cerebral 

hemodynamic parameters like MAPopt or LLA is a potentially promising approach to 

improve outcomes rather than simply avoiding age-based 5th percentile blood pressures. 

This approach is the subject of an ongoing feasibility study in adults with traumatic brain 

injury.41

This study has several limitations. Although cerebral NIRS is attractive because of non-

invasiveness and feasibility, the NIRS signal can be influenced by sensor placement, ambient 

light, and scalp blood flow, which would tend to skew our results to the null. Nevertheless, 

NIRS-derived CAR parameters were associated with outcomes. Due to small sample size, 

we were unable to control for cardiac arrest characteristics associated with outcomes (e.g., 

arrest location, arrest duration, initial rhythm). Due to small sample size, there was the 

potential for not finding significant differences where they may exist (type II errors). 

Similarly, with multiple comparisons in a small sample there was the potential for type 

I error. Future studies of larger cohorts of patients are necessary to adequately address 

these limitations. As in previous studies, duration of CPR was associated with outcomes.7 

Because CAR impairment after cardiac arrest presumably reflects severity of brain injury, 

it is thus in the causal pathway from injury severity to outcome. Future larger studies are 

needed to evaluate the association of pre-, intra- and post-cardiac arrest features on CAR 

impairment. We used a COx threshold of 0.3 to define impaired CAR, consistent with adult 

post-cardiac arrest studies,24,26 although pediatric trials are needed to more clearly define 

thresholds of impaired CAR that are associated with outcomes. All patients had invasive 

arterial catheters, cerebral NIRS, and multimodality neuromonitoring. Therefore, these data 

may not be generalizable to less severely injured patients without such intensive post-cardiac 

arrest monitoring. While we attempted to enroll consecutive patients, data collection was 

limited by technical considerations or clinical circumstances. Some patients did not have 

data collection through Day 3 after cardiac arrest, mainly due to clinical decisions to remove 

the arterial catheter or stop NIRS monitoring.

Conclusions

A greater burden of MAP below NIRS-derived MAPopt - 5 was associated with unfavorable 

outcomes in children within the first 24 h after cardiac arrest. Further research is needed 

to determine whether active titration of blood pressure to cerebral hemodynamic parameters 

like MAPopt can limit secondary brain injury and improve outcomes after pediatric cardiac 

arrest.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Physiologic data over 12 h of recording from a representative patient. The four rows depict 

(A) mean arterial pressure (MAP, solid line) and regional cerebral tissue oximetry (StO2, 

dotted line) derived from NIRS; (B) cerebral oximetry index (COx), the gray shaded 

region on the COx curve represents the burden of impaired CAR which was defined 

as the area below the COx waveform and COx threshold of 0.3, and normalized as a 

percentage of the monitoring duration; (C) representative COx versus binned MAP parabolic 

curve demonstrating MAPopt at the nadir of the curve and the lower and upper limits of 

autoregulation (LLA and ULA) where parabolic curve crosses 0.3; and (D) MAP (solid 
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line), MAPopt (dotted line), gray shaded region is ±5 mmHg of MAPopt, black region is 

burden of MAP less than MAPopt - 5.
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Fig. 2 –. 
Association between magnitude and duration of MAP less than MAPopt on the probability of 

an unfavorable outcome for Days 1, 2, and 3 after cardiac arrest. Color scale represents 

the probability of an unfavorable outcome. Dark blue indicates low probability of an 

unfavorable outcome and dark red indicates a high probability of an unfavorable outcome.
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