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Abstract

'Symmetry‘methédé emp1oyedvih the ab initio polyatomic program HONDO
are extended to the coupled perturbed Hartree-Fock (CPHF) formalism, a
key step in the analytical computation of energy first derivatives. for
configuration.interaction (CI) wavefunctions, and energy second
derivatives for Hartree-Fock (HF) wavefunctions. One possible
computatioha] strategy is to construct Fock-like matrices for each
nuclear coordinate, in whfch the one- and two-electron integrals of the
usual Fock matrix are replaced by the integral first derivatives.
"Skeleton" matrices are constructed from the unique blocks of electron
repulsion integral derivatives. The correct matrices are generated by
applying a symmetrization operator. The analysis is valid for many
wgvernctions, including closed- or open-shell spin restricted and spin
unrestricted HF wavefunctions. Td illustrate the method_we compare the
computer time required for setting up the coupled perturbed HF equations
for eclipsed ethane using D3h symmetry point group and various

subgroups of D3h’ Computational times are roughly inversely

‘proportional to the order of the point group.
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I. Introduction

Osamura, et al.

The coupled perturbed Hartree-Fock (CPHF) theory outlined by Gerratt

1

and Mills® for the calculation of one-electron second-order properties

~is a key step in the analytical computation.of the énergy first deriva-

2’3’0"5'and'o1"”

tives for configuration interéction (CI) wavefunctions
the energy second derivatives for Hartree-Fock. (HF) wavefunctions.5
The CPHF equations provide the derivatiVes of the molecular orbital
coefficients with respect to the nuclear coordinates. The original
formulation of fhe CPHF'formaIism for closed-shell HF'waveanctions1

has been extended to open shell spin unrestricted HF wavefunctions by

| Pople, et a1.5 to open-shell spin restricted HF wavefunctions by

3 and to general multiconfiguration Hartree-Fock (MCHF)

wavefunctions by one of us (-MD).6

A possible and efficient computational strategy for setting up the
CPHF equations involves constructing Fock-]ike.matrices for each nuclear
coordinate. In closed-shell HF cases (extension to open-shell HF cases
is straightforward), these Fock-like matrix elements have the form

2
| Fuv(A,a) = <ulhiv> + ) DDG;

an,a 0,0

5 [2<uv{|po> - <up||vc>]§ (I-1)
qA,a '

th cartesian coordinate (a = 1,2,3) of

where aa represent the a
,a

center A. In Eq. (I-1) <ulhlv> represents the usual bare nucleus

hami]tonianrdperator integral, <uvlipo> the usual two-electron repulsion

integral, and Dpo is an electron density matrix element. The formal

expression of ?;V(A,a) is closely related to the closed-shell Fock

matrix element



Fuv.= <ulhlv> + Z Dpc[2<uvllpo> - <up||vo>]' ' (1-2)
PyT
The one- and two-electron integrals of Eq; (I-2) have havé replaced by
their derivatives with réspect to the cartesiah coordinate 9, a in Eq.
(I-1). Note that there are 3N such matrices, one for each nuc]éarv
coordinate, where N ié the number of nuclei. | ‘
The purpose of this paper is to show fhat the symmetry methods7’8’9'
employed in the gg_igizig'po1yatomic program HONDO can be extended to
- reduce the work required-for the construction of the matrices ?(A,a); In
Section II we present the key equations for the qalculations of the
enerqy firsf and second derivatives along with the CPHF equations. The
reader is referred to refs. (1) and (5) for their derivations. In
Section IIl we define the nomenclature closely fo1lowing the notations of
refs. (7), (8), and (9). In Section IV we define the projection operator
which allows us to take advantage of symmetry in the construction of the
Fock-]ike matrices of Eq. (I-1). In Section V we present some results of
test calculations showing the computational savings. In what follows we
will adhere to the following convention: the pair of indices "A,a"

represents the “ath"

coordinate of center A; u,v,p,0 ... represent
atomic basis functions; i,j,k,1 ... represent molecular orbitals; "q"

stands for any nuclear displacement.
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I1. Enerqy Derivatives and CPHF Equations

a) First and second energy derivatives for HF wavefunctions

Let F denofe the closed-shell HF Fock matrix with

~

-
]

uv

<ul hlv> +:§:: Dpo [2<uvﬂpa> - <uplive> ]',* » (I1-1) -

where the density matrix element is expressed as a function of the

molecular orbitals coefficients {Cui}:

occC

Z 2(:‘,1 S | o (1)
The energy of a closed-shell HF wavefunction has the form

L2
EHF =7 o [Du\) <ulhiv> + Du\)Fu\J] + VNUC s . _ (11-3)

VNUC being the nuclear repulsion energy. EHF may be written

Zo culhlvs + Z [2<uv||po> - <up"\)cr>]+ Ve (11-4)

uvpo

The first derivative of EHF with respect to the nuclear coordinate q is

given by

ZD — <u|h|v> + 5 Z uv oo 3—3- [<2<uv||pc> - <uo||vo>]

uvoao

aq NUC ;Wuv aq <ul\)> ’ ‘ (II-S)
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where wuv is the energy weighted density matrix element
wu\, = Z 2 Gi Cui C\).i s ) (II—6)

<ulv> represents the usual overlap integral, and €; is the energy of-

h

the it molecular orbital. At this point it is convenient to define a

quantity E;v(q) given by

F (q) = =2 culhive + ) 21 ~ ] . 1-7
u\)(q), 39 <u|h|v> s Dpa 5 2<uvllpo> - <upllve> (I1-7)

It can easily be seen that the derivative of Fuv of £q. (II-1) is equal

to .

- | D |
3 F - Fuv(q) *‘jz: 8330. [2<uv"pc> - <up"vo>] . : (11-8)

3Q Wy ~ po

In practice Fuv(q) is used to set up the CPHF equations which in turn

. 3 . . ' 3 .
provide 3q Dpc and make it possible to calculate 33'Fuv‘ For this reason

we will refer to F;v(q) as a "Fock matrix derivative" element.
Using this notation the second derivative of Enp with respect to

nuclear coordinates p and q is

A —Zo 2°_ uihivs + 1 D D 3—2[2<vn o> - < ||vo>]
apaq “HF = uv 3paq M 2 EE: uv- po 3paq HvTe ue
BV Hvpo :
32 32
* 578 e = 2 Yy Torg 1> (11-9)

UV



« ~ .: 3 awuv 3
+'Z Fuo(@) 3 Oy - Z 3 3q V> -
uv - :

uv

‘To calculate the last two terms of Eq. (II-9), one needs to know the

derivatives of the molecular orbital coefficients with respect to the

‘nuclear coordinates. These derivatives are provided by the CPHF

equations.

b) First energy derivatives for CI wavefunctions

The genera] form of'a‘configuration1interéction (CI) energy is

occ ocCC

oy - Z ' <ithl > +-%- Z RALEPEE TS I (11-10)
1,3 ijm -

Following refs. (2) and (6), we have

EX w2 P13 e
7 ECI Z Y 79 <ui hl v> 5 ™ 7q <uvll po>

uv uvpo

v (I1-11)
¥ Z Usd e
isj ’
In Eqs. (II-10) and (II-11) yij and ridhl ape the one- and two-particle
density matrix elements of the CI wavefunction expressed in the molecular

V. and T"VPY9 are the one- and two-particle density

orbital basis, y"
matrix elements expressed in the atomic orbital basis. The matrix u? is
the matrix of molecular orbital coefficient derivatives given by the CPHF

equations.



c) Thé CPHF equations

In the CPHF theory we assume that the molecule with molecular
orbitals @¢(o) is subjected to a small change in nuclear coordinate q.

The matrix U9 is defined in first-order approximation by:
C(q) = Clo) [1+ qu] . o (11-12)

Where € is the matrix of molecular orbital coefficients. For a closed-

shell HF wavefunction the CPHF equations are

q (. _ _F _ 4
Uai (55 = &5) = Fai(a) = Sise,

occ - . o
- E Sgn [2<ai"mn> - <amHin>] (I1-13)
m,n.
occ virt
+ Z Z [4<a1'|| bi> - <abllij> - <ajllb1’>] ugj ,
j b
where Fai(q) is given by
Fai@ = D Ca Fuul@) €y (11-14)
uv
and
59, = Zc 2L ulv>C, . (11-15)
ai ua 3q vi

uv

In ref. (7) we showed how point group symmetry can be used to reduce
the computational task in forming Fuv given by Eq. (II-1). The method

was extended to the second term of Eq. (II-5)8

% E Duvao -5% [2<uv|| pa> - <up|lvo>] .

Uvpo
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and to the second term of Eq. (1I-9)°

lZD D ot [’2<vu >—<v|lv>] |
2 uv po  3paq Hvleg Hviive :

uvpao

In what follows we propose a new extension of the method to deal with the -
‘formation of F(q) given by Eq. (II-7), to be used for HF energy,secdnd :
derivatives in Eq. (II-9), and for CI energy first derivatives in Eq;‘

(I1-13).

III. Basic Functions and Symmetry Transformations -

Let x be a real cartesian basis*functioh

X(Asnonon sr) = (x-A )™ (y—Ay)"Y (z-A)"% g(Ir-Al) o (1r1-1)

where nz; ny, n, are non-negative integers, A is the nuclear center
of the function, and r the argument of the function. The radial factor,
g,bis usually a linear combination of Gaussian functions. We introduce

the "rotational quantum number”

A=n * ny + n, v (I11-2)

and refer to a function as being of type s, p, d, etc., when A equals O,
1, 2, etc., respectively. In what follows we may drop unimportant
indices when it is felt that the meaning is obvious from the context.
Let xa denote the first derivative of X with respect to Ax’ Ay, and

Az when a equals 1, 2, and 3, respectively. Basis functions are
grouped into shells. Functions in the same shell I have the same A and

A, S0 an alternative notation is



X(I9m) = X(A,nxsny?nz;r) ' (III—3)

where I in the shell index.
Let G be the point group of the molecule, and R an element of G.
Operator R maps point r into r', function f(r) into f(r') and shell I

into I'. Shells I and I' have the same A and their centers are related by

Arv = R A | (111-4)

Basis function X(I,m) maps into a linear combination of functions in
shell I' that is given by

o m(1) : .
R X(Im) = 2. %(I',n') R(apsmt,m) | (111-5)
m'=1

where m(a) = (2 + 1)(x *+ 2)/2 since we insist that a shell be closed
under rotation about its own center, and thus include all combinations

(nx, n., nz) consistent with a given r;. In ref. (8) we showed

y
that the effect of a symmetry operation on a basis function derivative

X2 is given by

ﬁ ¥(I,m) = jz: 2{: Xa'(I',m') R(13a',a) R(asm',m) (I1T1-6)
ml al

"Fock matrix derivatives" and symmetry operation

~

Let X be a row vector denoting the molecular basis set and RX = X

A

the set of images of these functions under R. X provides a basis for an

n by n matrix representation of the group



~ ~~

X' =xR | . - (111-7)
In ref. (7) we showed that the density matrix D defined by

o(r) = ngx . _ _ (I11-8)
satisfies the equation

D=RDR" | | : (111-9)

~if the éléctron density o(r) has the symmetry of the molecule. In addie»'

tion the matrix F of the closed-shell HF operator Eq. (II—l)-Satiﬁfies’

the relation
F=R FR | | (111-10)

Similarly one can show (Appendix A) that the Fock matrix derivative

" F(E,e) satisfies the following important property

F(E,e) = D_R(1ze',e) R F(E',e') R, (111-11)
el

where E' is the image of E under the given R.

In ref. (7) we used Eq. (III-10) to show that it is possible to
construct a "skeleton" Fock matrix from the "petite" 1ist of unique
electron repulsion integrals. The true Fock matrix is recovered by a
final symmetrization projection. In the next section we show how to
construct "skeleton" Fock matrix derivatives from the list of unique
electron repulsion integral derivatives. The correct Fock matrix

derivatives are recovered by a final symmetrization projection.
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IV. Fock Matrix Derivatives and Symmetrization

Following closely the approach of ref. (7), we consider the éé grande
1ist of triplets (E;I,J) where E represents a nucleus and I and J
represent shells. éé is the direct product of the grande list G2 and the
Tist of all the nuclei. Similarly Eh is the grande list of quintets
(E;I,J,K,L), the direct product of G4 énd the list of all the nuclei.

Two triplets (E;I,J) and E';1'J') are said equivalent if there exists
an E which maps center E into center E', and if the pair of shells IJ is
equivalent to ['J' under T2 x G. (Tz is the permutation operator of
two labels.) A similar re]ationship can be defined for the elements of
G4. The list of unique elements of Eé and Eh are the corresponding
‘petite lists denoted Eé and Eﬁ.

Let g be the 6rder of the symmetry group, n(E;I,J) the number of
operatfons that maps (E;I,J) into itself and n(E;I,J,K,L) the number of

operations that map (E;I,J,K,L) into itself. We define the contituency

numbers
ap(Es1,3) = 29/n(E;1,9) (Al
a4(Es1,0,K,L) = 8g/n(E;1,3,K,L) (1v-2)

and a symmetrization operator by the following equation: if E' is the

~

image of E under operation R:

M(E,e) —2—12 Z R(1ze',e) R'[M(E',e') + M (E',e" )R . (IV-3)
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Furthermore; to every element of G2 we assign a number ;E'I'J' such that

| 2{: A = EZ(E;I,J) o o (Iv-4)
E',I',Jd | | |

where (E;I,d) is in P2 and the summation is over all three-labels
equiva]ent to (E;1,4). Given a matrix M(E,e), we define a "skeleton"

matrix M*(E,e) using

* ~ -
M (E,e)IJ = AEIJ M(E,e)IJ : (Iv-5) _

An algebraic manipu1ation,(see'Appendix B) similar to the one developed
in ref. (7) shows that the following theorem holds:.

Theorem 1: Given an n by n hermitian matrix M(E,e) with the property

M(E,e) = 2{: R(13e',e) R" M(E',e*)R o (1V-6)
e.l .

for all R in the point group, and given an M*(E,e) which satisfies Egs.

(Iv-4) and (IV-5), it follows that

M(E,e) = M*(E,e)sym . | (1V-7)

We now define VC(E,e;IJKL) and VX(E,e;IJKL) two n by n matrices
for each (E;IJKL) element of éh. The matrix elements in block IJ are

given by

C

13(E,e;1KL) = D 3 (1JikL) (IV-8)

v KL 30 o
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and elements outside this block are zero. Similarly,

Vi (E,e310KL) = Dy 3q;,e (arkl) | (1v-9)
and all other matrix elements are zero. In Eqs. (IV-8) and (IV-9) the
symbol (IJIKL) represents the block of electron repulsion integrals with
indices belonging to shells I,J,K,L. Summation over indices in K and L
she]is is implied in (IV-8), and summation over indices in J and L shells
is implied in (IV-9). 'Again, an algebraic ménipu]ation (see Appendik C)

“similar to the‘one developed in ref. (7) shows that the following theorem
holds:

Theorem 2: If E maps the five label (E;IJKL) into (E';I'J'K'L'), then

VO(E,esTakL) = VOB, o310 akLY) | (1v-10)
sym sym |
VR(E,e;TdKL) = VR(E',e';1'3'K'L") . (IV-11)
sym sym
If we now define an n by n matrix by
V(E,e;TIKL) = VO(E,e;1KL) + VE(E,e;KLIY)
(1V-12)

-~% [VX(E,e;IJKL) + VY, e301KL) + VX(E,e3TaK) + VX(E,e;JILK)] ,

it follows from Theorem 2 that

V(E,e;IJKL)Sym = V(E'?e';I'J'K'L')Sym . (Iv-13)
The Fock matrix derivative F(E,e) is given by
F(E,e) = H (E,e) + 2. [?vc(s,e;IJKL) - VX(E,e;IJKL)] , (1V-14)

G4
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or equivalently

F(E,e) = H (E,e) + Z V(E,e;TKL) . (1V-15)
o = | S
It follows that - - _ -
F(E,e) = Hy(E,e) gy * Z V(E,e319KL) g (1v-16)

G4

- The significance of Eq. (IV-13) is that equivalent members of Eﬁ make
identical contributions to the sum in Eq. (IV-16), so we need to sum only"
" over the petite list of five labels in P4 and weight each contributioh»by

qq- We proceed by constructing a set of skeleton matrices

FY(E,e) = ﬁo(s,e) + Z 54(E;IJKL) V(E,e;TJKL) (1V=17)

~

P4
and then by performing a final symmetrization

F(E,e) = F( (1V-18)

E,e)Sym .

V. Results and Conclusions

We have implemented these ideas into a new version of HONDO10 which
computes the second derivatives of the energy for HF wavefunctions and
the first derivatives of the energy for CI wavefunctions.

The computer code is the same as the one described in ref. (9). As
the unique electron repulsion integrals derivatives are calculated their
contributions are added into the proper skeleton Fock matrix
-derivatives. Once all the integrals derivatives have been processed, the

skeleton matrices are "symmetrized."
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Test calculations have been carriedvout for the C2H6 molecule in
the ec]ipéed cbnformation. We used a minimal basis set augmented with a
set of d functions on the carbon atoms and a set of p functions on the
hydrogen atoms. The energy, first derivatives of the enerqy, and the
Fock matrix derivatives were calculated using the full D3h symmetry and
the entire calculation was then repeated uéing seven different subgroups.
The present algorithm is a combination of similar methods for the
calculation of enefgy derivatives and for the construction of thé Fock
~matrix. In refs. (7), and (8) we pointed out that computation times are
roughly inverse]y proportional to the order of the point group.
Identical ratios were obtained in both cases when comparing computation
times in D3h symmetry, and in lower symmetry. The same ratios are
obtained in this step, as shown in Table I.

In conclusion we have presented an extension of'Symmetry methods
emp]oyed in HONDO to the calculation of Fock matrix derivatives. These
matrices are used to solve the CPHF equations which provide the
derivatives of the molecular orbitals coefficients with respect to fhe
nuclear coordinates. They are also used as a contribution to the energy
second derivative matrix.

In summary similar symmetry methods can be appTied to all the time
consuming steps of energy, energy first derivatives and energy second
derivatives of HF wavefunctions. In all the cases we found that
computation times are approximately inversely proportional to the order

of the symmetry point group.
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 Table I. Ratio of computer time for tonstructing the "Fock matrix

derivatives" for eclipsed ethane.-

Ratios _ Ratios

Point Group ~ Order (Gradient) _ _(FoCk_Derivatives).‘
0y 12 P L0

Gy 6 2.0 | 2.0

Coy 4 2.3 2.4

< 3 2.8 2.6

c, 24l S 40

Cley) 2 4l 3.9

' Cloy) 2 4.5 | 4.5

C

1 8.0 8.2
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~ Appendix A: ,Propertyvof F(E,e)

First we consider the electron-nucleus attraction operator:

we-YE

The deriVativé of h(1) with respeét to coordinate "a" of center A is

given by
VISP i Ui, Y5 B - (A-2)
an,a _ A r1A3/2 :

where qa(l) represehts the "a" cartesian coordinate of electron "1
when a =1, 2, or 3. Let B'be the image of center A under symmetry

operation R. It follows

. z | o

M) = - 2, L (a(1) - Gy ) R(L3b2), (A-3)
,a r
b 1B
or

> ah : ah

R — = R(1;b,a) . (A-4)
3, a Zb: 3, b | -

We now consider the matrix element

3
e <x(Ig>my) [ x(Tg,mg)> (A-5)



18
and substitute Eqs. (III-5), (III-6), and (A-4) into Eq. (A-5). We find

5 3 . =
R a—q-E-—e <X( IA,mA)I hi X(IB,mB)> =

Z Z Z R(1se',e) R+(AIA;mA,m'A.) R(x; 3mg,m's,) (A-6)

mlAl m'Bl el B

X <X(IA|9m AI)IhIX(IBl’m Bl) .

aqE e

Similarly for the electron repulsion contribution of shells IC’ and

ID we get

1./, :

<X(Tyamy ) X( 3y sm M ——I X(T,m.) X(I ,m. )> =

aqu:‘Z,zm: CmCDmD A*TA BBr12 cC D*'D
C

]E: :E: :E: R(1;e',e) ‘+(AI ;mA,m'A.) R(AIB;mB,m'B.) X

m‘A. m' B! A

Z Z D; I X _ (A-7)

m' C m' D C' C' D' D'

——. 3 ' 1 1 ' .
aquel <X(IA|am AI)X(IBl’m B')‘_Y:i—z-l)((IC',m C')X(ID”m D')>

after using

+
D :E: :E: R(AI sm! craMe ) DI I R (AI ;mD;m'D.). (A-8)

Iem'ciIpum'n,” me c¢"cIp™p D

Egs. (A-6) and (A-7) are the basis of the property of Eq. (III-11) of
F(E,e).
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‘Appendix B: Proof of Theorem 1

sym

L D02 Rl RIE e+ N E )R (8
R e '

‘Let us consider N(E,e) = M*(E,e)' , or

which means. that

N(E,e) (B-2)

I3 ° ]
g Z Z ZR 1;e',e) RII'[M (Et,e') + M ( "el)v]I'J'RJ'J .
R . '

II l el

The b1ocked'form of R (see ref. 7) implies that for each R in Eq. (A-2)
the summation over I' .and J' reduces to a single non—vanﬁshing term, .
namely the image of IJ under the given R.

Eq. (IV-6) implies that if a given R maps (E;IJ) into (E',I'J*) then

M(Eae)IJ = Z R(1se',e) M(E'se')Iqu RI‘I RJ;J . (B-3)
el ) .

The hermitian property of M(E,e) together with Eq. (IV-5) implies that

~ ~

* , . *+ . 1 _ 1 [ -
[M (E ’e ) + M (E ’e )]IIJI - (AEIIIJI + lEl‘]lI') M(E ’e )IIJ' . (B 4)
Substitution of Eqs. (B-4) and (B-3) into Eq. (B-2) yields
N(E,e);; = == M(E,e) Z : x (B-5)
el1y = 79 MEselyy ErI'd

(E'1'3")



20
where (E';I'J') in the image of (E;IJ) under an element of T2 x G, and
the sum runs over the direct product group. In the sum of Eq. (A-5) each
member of the subset is repeatéd n(E;1J) times. Thus Egs. (IV-1), (Iv-5),
and (B—S) combine to give (Q.E.D.)

N(E,e)IJ = M(E,e)IJ . ' (B-6)
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Appendix C: Proof of Theorem 2

Let us operate R and VC(E,e;JIKL) defined by Eq. (IV-8). According

to Eqs. (A-7) and (A-8), we have

VI (E,esTKL) = i | o | (C-1)
. t + | | + a ] ] ] ]
EE: R{Liete) Dy RypRyng Reok Ruur 3qg, o, (110MIK°L)
e! . ‘ s :

which can be written

v (€, es1aKL) =
:E:: R(1:e',e) Ri., [0 —2  (rvaukeLy)] R (C=2)
, €580 Ry [ K'L' 300, .. ] J'J -
e E',e
or
Ve (E,e;TKL) =
IJ ] L] -
> o |
R(l;e',e) RII' VI.J|(E',G';I'J'K'L') RJ'\] ('R (C-3)
e' g A

Since all other blocks of VC are zero, Eq. (C-3) can be restated as a

matrix equation

V(E,e;TKL) = :E:tz(l;e'e) RY VO(EY, et ;T 'K LR (C-4)
e' ‘
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Substituting Eq. (C-4) into Eq. (IV-3) leads to

C . . _ .
V(E,e3TKL) o = - (C-5)
%_Z: ZR(l;E',e) R” ZR'(I;e",e') R VO (E", ey TrguKeLY) +
9 R e » e
VC+(E",e";I"J"K"L")] RI} R

which‘can be rewritten

C . - : _
v (E’e?IJKL)sym = _ (C-6

ZZZ(R(I se',e) (1;e",e')> R+R'+[VC(E",e";I"J"K"L") *

1 ell
vc+(Ellell;IllJllKllLll)] RIR

The closure property of the symmetry group yields

C . _ -

v (Efe,IJKL)Sym = (C-7)
21 Z Z n 1 eu e Rn+ [VC(E",E";I"J"K"L") +
g R en
VC+(E"e" : I"J"K"L") ] R"

or
C . C n e JUEN| u '
V¥(E,e; IJKL) = V7(E",e"; I"J"K"L") Q.E.D. (C-8)

sym sym
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