
UC Irvine
ICS Technical Reports

Title
Analysis of concurrent software by cooperative application of static and dynamic 
techniques

Permalink
https://escholarship.org/uc/item/94x451pk

Author
Taylor, Richard N.

Publication Date
1983-04-07
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/94x451pk
https://escholarship.org
http://www.cdlib.org/


Notice: This Materia;
may be protected
by Copyright Law
(Title 17 U.S.r

i'^alysis.of Concurrent Software by
Cooperative A.pplication of Static and

Dynamic Techniqiies,

Richard N. Taylor

T?echnical Report ^196

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717

April 7, 1983

•



Analysis of Concurrent Software by
Cooperative Application of Static and

Dynamic Techniques

Richard N. Taylor

Programming Environment Project
Department of Information and Computer Science

University of California, Irvine

Abstract

Stand-alone techniques for the analysis and testing of the synchronization
structure of concurrent programs have recently been developed. These tech
niques are able to detect, for example, task blockage, including deadlock. Static
analysis provides firm results, but has limited applicability and is potentially ex
pensive. Dynamic analysis makes fewer assumptions, but its assurances are not
as strong. This paper presents strategies whereby the two can be employed joint
ly to advantage. Dynamic analysis can be used to further investigate results
from static analysis, and vice versa. Their joint use can be facilitated by an ap
propriate implementation, some principles for which are outlined.

1. Introduction

It seems almost universally accepted that developing concurrent software is
more difficult than developing sequential software. This difficulty manifests itself
particularly in the verification and testing process. Execution of a sequentia,l pro
gram can be viewed as the process of stepping through linear text, branching as
necessary. Understanding (and thus verifying) concurrent execution is more
difficult as several texts are simultaneously involved. Moreover, transitions
between program states are determined not only by traditional semantics, but:
also by notions of synchronization, speed of physical processors, and the external
real-time environment. It seems most appropriate, therefore, to develop
verification and testing (V&T) tools and techniques that aid in examining these
additional program characteristics, and the consequences of their presence. The
techniques considered in this paper focus specifically on questions of synchroniza-;
tion, deadlock, and determination of activities that may occur in parallel. More
general aspects of functional correctness are not considered.

1 -



Recently, relevant V&T techniques have been advanced in two areas: static
analysis and dynamic analysis. Particularly, useful in examining concurrent
software is static analysis, as it does not require execution of the code. A suitably
constructed analyzer is able to examine all possible sequences of events, under all
circumstances. If it is able to demonstrate the required (structural) properties of
a program, then one may have strong confidence in the program indeed. This
confidence is independent of changing real-time conditions and the actions of an
unpredictable scheduler.

Dynamic analysis presents a contrast: a single test can only demonstrate the
correctness of a single path for a single set of test data, under a specific set of
external conditions (real-time environment, physical processors, scheduling algo
rithm, and the like). What is more, with sequential software instrumentation
may be used during repeated tests to progressively isolate the source of an error.
With concurrent software, however, instrumenting the code may upset the timing
such that new errors are introduced or old ones eliminated.

Unfortunately dynamic analysis cannot be dismissed so lightly. Static
analysis makes several assumptions and often has several limitations, any of
which may lessen its utility. (Not to mention the obvious fact that static
analysis cannot even begin to address functional correctness: it is only concerned
with "shallower" structural properties). Dynamic anUysis is therefore a neces
sary adjunct to static analysis, seeking to make up for these deficiencies.

The purpose of this paper is to briefly overview the developments in these
two areas, then proceed to indicate the desirability and possibility of their in
tegration. Their combined application would be synergistic, exceeding the
benefits resulting from a stand-alone application of the tools.

To give the discussion a specific reference, attention will be restricted to
analysis of programs written in Ada* [Ichb82]. It should be kept in mind, howev
er, that the results achieved, as well as the problems encountered, are equally
pertinent to many other concurrent programming languages, such as HAL/S
[Mart77] or CSP [Hoar78].

The following section will detail some of the capabilities of both static and
dynamic analyzers of concurrent software. Section 3 then explores some of the
possibilities for conceptually integrating the techniques. A few implementation
issues associated'with the physical integration of the techniques are considered in
Section 4. Section 5 is the conclusion.

2. Stand-alone Capabilities

2.1. Analysis Objectives

Programs written in Ada may consist of an arbitrary number of simultane-,
ously executing asynchronous tasks. Tasks may be synchronized, wherever;;
desired, by means of rendezvous. If, at any time, requests for several rendezvous

*Ada is a trademark of the U.S. Department of Defense (AJPO).

2-



are pending, "non-deterministic" choice of one is possible through use of the
select statement. Task termination occurs upon reaching the end of a task,
through task abortion, or upon execution of the terminate statement.

Some key analysis questions associated with concurrent Ada programs are
easy to see. Since the rendezvous is the only mechanism for synchronization, do
the "desired" rendezvous, and only the desired rendezvous, always occur? Are
the rendezvous points correctly positioned such that no activities may execute in
parallel that should not? Is the structure of the program such that it will never
deadlock? Is the synchronization structure of the program overconstrained such
that performance bottlenecks result?

These are the topics addressed by the techniques below.

2.2. Static Analysis

The static analysis technique that is the object of our discussion is described
in detail in {Tayl83]. The technique presented there provides information regard
ing three aspects of an Ada program's synchronization structure: identification of
all the rendezvous that are possible, detection of any task blockages (deadlocks)
that may occur, and a listing of all program activities that may occur in parallel.

Described first are the limitations of the technique. As with several other
static analysis tools, the technique is defined with respect to a graph model of
programs. In particular each Ada program unit (subprogram, task, package, or
generic) defines a flowgraph: each statement in the unit is represented by a node
in the graph; each transfer of control is represented by a directed edge. A path
through the graph represents a sequence of statements. Not all paths through
the graph correspond to executable sequences of statements, of course. Determi
nation of the possible (or impossible) paths requires examination of the program
logic - the semantics of the branch conditions, etc. This determination is in the
realm of symbolic execution or formal verification. Since the domain of this dis
cussion is static analysis, it therefore has an inherent inaccuracy: namely, all
paths through a flowgraph are assumed executable.

Three other limitations on the analysis quality exist. First, static analysis is.
only accurate when individual program objects (like tasks or entries) can be
identified statically; program features potentially causing dynamic identification,
such as access values (pointers) and subscripts, are inadequately handled, and are
therefore excluded from further discussion in this subsection.

Second, because of the specific techniques used, the number of tasks created
during execution must be bounded. Third, since the analysis conducted is in
dependent (ignorant) of the target execution environment, the implications of de
lay statements, non-zero execution times, and scheduler algorithms are not taken'
into account. (This restriction may be viewed as an asset, of course: the results;
produced do not rely oh any possibly erroneous assumptions about the target en
vironment.)

One of the issues addressed later in this paper is how the effect of these res-
• trictions can be mitigated.

- 3-



Turning now to the analysis technique itself, its central notion is the con
currency state. The algorithm of [Tayl83] determines all the concurrency states a
program can possibly enter. Each state displays the next synchronization-related
activity to occur in each of a system's tasks. A. ^legal) sequence ofstates presents
a history of synchronization activities for a class of program executions. These
states contain or infer the desired information regarding rendezvous, deadlock,
and parallel activities.

Concurrency states are defined in terms of state nodes.
Definition

A state node Cj in a fiowgraph is a node that corresponds to any of the fol
lowing statements: entry call, accept, select, delay, abort, task begin, task
end, and subprogram begin, subprogram end, subprogram call, block begin,
block end, but only where the subprogram or block may directly or indirect
ly perform a tasking activity.

A finer degree of statement granularity is actually required than indicated by this
definition, but that detail is not necessary for this discussion.

The successors of a state node are defined as follows. Let G be a fiowgraph
for a unit of program S.

Definition

The set of successor nodes of state node Cj, denoted succ(c;), is the set of all
state nodes for which there exists a path p from Cj to c^ in G such that there
is no state node c' on p between the first node of the path, which is Cj, and
the last node on the path, Cj.
These definitions present an abstraction of a sequential unit of an Ada pro

gram. The model retains specification of the possible sequences of tasking related
activities. Other details are omitted. Succ(cj) represents the set of all tasking ac
tivities that may possibly follow execution of Cj. Note that many activities unre
lated to tasking may intervene between Cj and any one of its successors: assign
ments, procedure calls, branches, etc.. These are omitted from the model: only-
the constraints they impose on the possible orderings of tasking activities are re
tained. (This omission is a tacit assumption of zero execution time for these
statements.)

Concurrency states can now be defined. Let T be the number of tasks oc
curring during execution of program S.
Definition

A concurrency state C is an ordered T-tuple (Cj, C2, ..., c.p) where each Cj,
is a state node in some fiowgraph of a unit of S, or else Cj is the:

marker "inactive".' Each Cj denotes either the next state node to be execut
ed in task i, or that task i is inactive.

A successor relationship exists between concurrency states. Let C= (cj, ...,
•c^) and C = (c '̂, ..., c.j.') be two concurrency states for program S.

-4-



Definition

The set of successor states of concurrency state C, denoted succ(C), is the
set of all C such that

1) for all i, l<i<T, either
i) Cj' is an element of succ(cj)
ii) Cj' = c.
iii) Cj = "inactive" and Cj' = begin task i

or iv) Cj = end task i and Cj' = "inactive"
2) there exists at least one Cj', l<j<T, which

represents application of case i), iii), or iv) above,
3) adherence to the tasking semantics of Ada is reflected

in the application of the four cases above to the
definition of each Cj', including selection of
Cj' from succ(cj).

If succ(C) is the empty set, then C is said to be a terminal state. The
third part of the definition informally expresses the requirement that the suc
cessor relationship preserves the meaning of the rendezvous concept, the
select mechanism, task termination in the presence of dependency relation
ships, and so forth. This is done subject to the general limitations of the
static analysis model. (As used by the analysis algorithm some components
of concurrency states have annotations to aid fulfillment of this requirement.)

Informally, the successors of a concurrency state are all those concurren
cy states which may follow occurrence of C in some execution. Let C be a
member of succ(C). If state C arises during execution of program S, then,
with respect to synchronization activities, it is possible for S to directly pro
gress to state C. At least one task in the system must advance to a succes
sor node; no task may advance further than that. Advancement to C may
involve the activation or termination of a task.

Last some concepts related to sequences of concurrency states are
defined. A concurrency history is a sequence of concurrency states, where
each element of the sequence Cj^ is a member of succ(Cj^ j), for all k > 1. A
history begins with the "initial" state of a system S, (begin <<main pro-
gram>>, "inactive", ..., "inactive"). A. history is thus a sequence of
snapshots of the execution of S, starting with system invocation. A proper
history is a finite history of which all elements are unique, save possibly the
final element of the sequence. That is, "loops" in the concurrency history are
prohibited. A complete history of a program S is the set of all proper histories
of S. .

The analysis technique of [Tayl83] can, in. effect, produce the complete
history for a program. Subject to the accuracy limitations described earlier,
this complete history provides the information desired about the program's
synchronization structure. When the complete history is generated the

5 -



analysis describes all possible program actions, under all possible external
(real-time and implementation) conditions. Any possible deadlocks appear
immediately as terminal states that have at least one active task. The com
plete set of all possible rendezvous can be determined from a single scan of
the complete history, as can the set of possible parallel actions. Moreover,
since the algorithm generates histories, the sequence of tasking activities lead
ing to any state (such as a deadlock) can be readily seen. This history infor
mation can be used as a vital part of further investigation into the nature of
the anomaly. (Such as investigation to ensure that the history does not in
volve an unexecutable path.)

Perhaps not so obvious, however, is the performance information deriv
able from the complete history. Performance bottlenecks can be detected, for
instance, by scanning the history for states in which many tasks are all
blocked on the same entry call. Alternatively, the history could be scanned
for sequences of states in which one task is consistently found to be waiting
through several state transitions before its service request is satisfied. Exami
nation of history subsequences may also yield performance estimates. The
number and type of synchronization activities occurring between states A and
B could be noted. This information could be used, with other environmental
information, as the basis for a performance estimate. Examination of
different subsequences from A to B would yield upper and lower bounds on
the number of interactions or delays occurring.

A final note concerning this static, analysis technique is in order. As if
the limitations on the applicability and accuracy of the analysis, weren't
enough, the algorithm is O(n^), where T is the number of tasks in the sys
tem, and n is the number of state nodes. Potentially a very large number of
states may be generated, and such generation may take considerable time.
This represents a further drawback which motivates the integrated approach
described in Section 3.

2.3. Dynamic Analysis
Sophisticated dynamic analysis techniques for sequential software ap

peared in the late 1960's. Techniques applicable to concurrent software have
only recently appeared, however, perhaps indicating again the additional
complexities associated with concurrent systems.

Dynamic analysis techniques can be classified, somewhat arbitrarily, into
schemes for aiding in documentation of run-time events, error monitoring, de
bugging, and testing. Different implementation techniques are appropriate for
the different schemes. Referring for the moment to sequential software, the
first category typically includes techniques for such things as tracing variable
values and maintaining execution frequency counts. The second category, er
ror monitoring, includes techniques that monitor lor violation of implicit
specifications of intent, e.g. array bounds violations or division by zero. De
bugging refers to the process of isolating the source of an observed error.

0-



Techniques for aiding this process typically include breakpoint and program
state modification facilities. Testing, as used here, refers to the process of
dynamically comparing a program to explicit specifications of intent, such as
embedded program assertions.

The analysis objectives indicated in Section 2.1 cover topics in three of
these four areas: only debugging is omitted. We will therefore describe ad
vances in dynamic ana,lysis techniques for concurrent software in the three
remaining categories. .

Substantial results have recently been achieved with respect to error
monitoring. These results were originally presented in [Germ82], and most
recently, in an updated form, in [Helm82]. These papers describe a technique
for monitoring for deadness errors in Ada tasking. Using the terminology of
static analysis, a deadness error is a terminal concurrency state having at
least one active task.

The basic idea of the technique is to transform an Ada program P into
another Ada program P' such that P and P' have the same set of possible
deadness errors, but, during execution, P' will detect the. imminency of a
deadness error, report the condition, and allow the possibility of evasive ac
tion. The transformation accomplishes this by adding a monitor task to P
which maintains, essentially, the current concurrency state. Each task in the
system updates the monitor, telling it the task's next tasking activity, such as
entry call, accept completion, or task completion. By doing a one state look-
ahead the monitor can detect a deadness error "just before it happens" and
can thus raise an exception in the offending task, again "just before" the er
ror would occur.

The concepts used in the definition of the deadness monitoring technique
are quite similar to those used above for static analysis and will not be shown
here. The dynamic technique is not beset by, the same restrictions as the
static technique however. The dynamic technique functions correctly in the
presence of nearly all Ada82 tasking constructs. The use of access values and
subscripts presents no problems. (One of the more interesting aspects of the
implementation is in the unique identification of each task.) Furthermore no
spurious errors are reported.

The instrumentation process itself is potentially efficient; some parts of
the monitor task do not even require recompilation with each new program to
be monitored.

Some interesting issues arise with regard to run-time efficiency though.
Since dynamic analysis is being discussed it is clear that the impact of the
real-time environment is felt, including the effect of delay statements. Unfor
tunately the error monitoring instrumentation imposes a potentially substan
tial amount of overhead. Not only is another task included in the program
(the monitor) but the number of entry calls occurring leaps by a factor of
three or more. Sensitive timing criteria may therefore be unsatisfiable. Then

• too, as mentioned earlier, the overhead induced by the instrumentation may

- 7 -



cause an observed phenomenon to disappear (under the same set of external
conditions) though the potential for that error still remains.

The prime limitation of error monitoring, of course, is that a batch of er
ror free runs does not allow one to infer much about the correctness of the
program, even with respect to the limited scope of deadness errors. A change
in the underlying implementation, such as a new scheduler, may cause a crop
of errors to appear, even when the program is run on the old test data.

The apparatus used to perform this error monitoring can be easily aug
mented to document many run time events of interest. Since the monitor is
notified of all rendezvous, task initiations, terminations, and the like, it is a
simple chore for it to produce a trace listing of these events. The implemen
tation described in [Helm82] in fact allows this. Such tracing is analogous to
the presentation of concurrency histories by the static analyzer.

Clearly there are many simple instrumentation schemes capable of gen
erating other kinds of tracing information. These will not be considered here.

Lastly we briefly mention the subject of testing based on run time com
parison of the code with embedded assertions. From the viewpoint of (only)
being concerned with synchronization structure, it is necessary to express, in
the assertions, the properties desired. Unfortunately an assertion language
capable of expressing the desired properties has not been advanced. A
significant related development, however, is the specification of the Anna
language [Krie82]. Anna is a language for annotating Ada programs.
Sufficient expressive power is provided to allow full specification of a sequen
tial program's intended functionality. Anna currently omits any annotations
for Ada's tasking constructs, but work towards its completion is ongoing.

3. Technique Integration

It should be clear from the foregoing descriptions that the static analysis
and dynamic analysis techniques have complementary characteristics. Static
analysis results can be definitive and informative, accounting for all possible
program actions. But the application of the technique is limited to a subset
of Ada and some of the analysis results require scrutiny to determine if the
reported phenomena are indeed possible. Dynamic analysis has fewer limita
tions, but the meaning of the results obtained is not so clear (unless an error
is discovered).

This complementary character of the individual techniques suggests that
if they are applied in concert, several of their deficiencies may be eliminated.
Several suggestions are made below, indicating the nature of this joint appli
cation. With regard to dynamic analysis the prime focus will be on error
monitoring, though the other aspects will be addressed too.

The most obvious joint use of the techniques is to employ dynamic
analysis in the further investigation of phenomena detected by the static
analyzer. It may be, for example, that the particular scheduler used or the
semantics of the guards on select statements preclude a (statically) reported

- 8-



deadloeik from occurring. Dynamic analysis could monitor these conditions,
"watching for the error during testing.

Certain concurrency states may not be possible for other reasons; the
static analyzer may have assumed the executability of an unexecutable path,
for instance. In this case the concurrency histories may be of use in attempt
ing to develop test data to force execution of the path. More generally the
concurrency histories provide a guide to the development of a battery of test
cases. fOther automated tools, such as symbolic executors, may be useful
aids in this process as well.) In the restricted sense of testing a program's syn
chronization structure, the complete concurrency history can be used as a
yardstick in evaluating the thoroughness of a test regimen. This appears to
be potentially one of the most useful applications of the concurrency history
information.

Furthermore, dynamic analysis could be used to investigate the perfor
mance froperties of a program that were highlighted by the static analyzer.
The qneue length for entries could be monitored to see how often the
bottleiaecks predicted by static analysis occur.

A second obvious use of the joint application is to employ dynamic
analysis in the investigation of aspects of the program inadequately handled
by the static analyzer. That is, it would be appropriate to emphasize test
cases wMch particularly exercise tasks that are objects of access variables, or
entries that are subscripted.

It is also possible for static analysis results to help in reducing the over
head incurred by the dynamic techniques. If a subset of a program's task can
be defiaitely shown to be error free, then the instrumentation used for their
monitoring may be reduced or eliminated.

In a more speculative vein, it seems that the static analysis results could
be used to guide limited instrumentation of timing-sensitive real-time pro
grams. By examining the list of actions that can occur in parallel, for exam
ple, or perhaps a report of rendezvous that are guaranteed to always occur, it
may be possible to identify places where instrumentation can be placed
without upsetting critical timing.

Potentially one of the most significant problems with static analysis is
the large number of concurrency states that a program may have. There may
be so many that it would be infeasible to generate them all. Under such cir-
cumstsBces it may be possible for dynamic analysis to aid in the process of
pruning the static analysis; cutting off exploration of uninteresting (hopefully
unexeeslable) histories.

Two approaches bear examination here. First, unit testing may provide
solid data on . minimal/maximal execution times for program segments.
Further, data may be obtained on the scheduler used for a particular imple
mentation. These could be supplied to the static analyzer such that histories
violating either premise would not be explored.. The results obtained would

9 -



not be general, of course, but they would perhaps be useful.
A second approach is to include assertions in the Ada program indicating

certain desired properties of the synchronization structure. Such assertions
could make statements such as "task. T is terminated" or "tasks Tl and T2
are currently engaged in a rendezvous." The static analyzer would regard
these statements as true, and would not explore histories contradicted by the
assertions. Subsequent dynamic analysis would then monitor the assertions
during testing. Although this again may be a practical approach, it is clear
that the results of this kind of static analysis would not be reliable. Violation
of an assertion during testing (or operation!) would invalidate any assurances
previously produced.

Dynamically produced tracing information may also provide a basis for
cooperation. If the dynamic monitor emits sufficient information to construct
a time-stamped log of concurrency states (or an improved version of them -
we regard the current definition as temporary until some experience is gath
ered), then a variety of useful information could be (statically) derived from
it. Clearly derivable are a graph of clock time versus tasks active, statement
of average entry queue lengths, the relative frequency with which different
select alternatives are chosen, and statement of the actual delay occurring at
delay statements (as compared with the minimum time required). Speculat
ing once more, it seems that capturing the concurrency states during execu
tion could even enable interactive debugging of the synchronization structure.
Each state captures the essential properties of the program: one could "back
up" to a given condition (concurrency state), change the program, then
resume execution based on information in the state. Perhaps more realistical
ly, it would certainly be possible to use static analysis to examine all the pos
sible successors of a concurrency state that had been captured dynamically.
Used in this way the static analyzer would not generate the complete history
for a program, only the the histories rooted at the state supplied by dynamic
analysis.

4. Implementation Issues

Section 3 considered the ways in which the two analysis techniques are
logically related. Some potential also exists for an integrated implementation
of the two.

The framework within which such an implementation should occur is,
obviously, a full Ada programming environment, such as Arcturus [StanSl].
Joint application of these techniques is clearly not sufficient to meet all the
V&T demands of a project. The tools must be applied in a situation where
other techniques can.conveniently be brought to bear as required.

In this context an immediate opportunity for integration is through use
of an intermediate program representation. Neither technique needs to, or
should, deal with source text representations. Reductions of a program (by
the static analyzer) or transformations of a program (by" the dynamic

10-



analyzer) can more efficiently be applied to, say, an attributed parse tree.
This remains true when embedded assertions are used by the techniques.

Potential also exists for directly aiding joint use of the techniques.
Several of the ideas in the preceding section imply a back-and-forth ap

plication of the techniques. Only a few histories or even a partial history
may be produced by the static analyzer before it is appropriate to perform
some dynamic analysis. After that, additional directed use of the static tool
may be desired. This would be promoted by storing the concurrency histories
in a "database" that would allow additions, deletions, and so forth. Further
integration would be aided by using an interface program to hide the con
tents of the database. As particular histories were required, by the user or
the dynamic analyzer, they would be retrieved if currently stored or else au
tomatically generated. The key is that the static tool must not be monolith
ic.

Joint use of the tools would also clearly be promoted by relieving the
user of mechanically transferring information between tools. For example, if
it was desired to automatically generate test data on the basis of a concurren
cy history, then the transfer of the detailed history to the data generator
should not require manual intervention.

Finally, it should be the goal of any implementation to provide a user in
terface such that not only are the detailed mechanisms of the tools hidden,
but the methods as well. . That is, the user should be able to concentrate on
asking questions about the behavior of a program without being concerned
with how the answers can be developed. Though this goal may not be im
mediately achievable, developers should not lose sight of it.

5. Conclusion

Two techniques for analyzing the synchronization structure of concurrent
programs have been overviewed and compared in this paper. Each technique,
static analysis and dynamic analysis, has its own strengths and weaknesses.
Fortunately these characteristics are complementary in several respects.
Joint application of the techniques is therefore both natural and advanta
geous. Some specific ways in which the techniques can operate synergistically
were presented. Finally a few implementation principles were outlined.

We conclude by urging that the techniques be incorporated into an Ada
programming environment such that their joint use is facilitated. Until
better techniques for the V&T of concurrent software come along, the ap
proach presented here is both worthwhile and feasible.

- 11



Acknowledgements

Several of the implementation ideas expressed here originated with the
Toolpack project [Oste82]. This work was sponsored (in part) by the Defense
Advanced Research Projects Agency of the United States Department of De
fense under contract MDA-903-82-C-0039 to the Irvine Programming En
vironment Project. The views and conclusions contained herein are those of
the author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the United States Government.

12-



References

|Germ82]
German, Steven M., David P. Helmbold, and David C. Luckham. Monitor
ing for deadlocks in Ada tasking. Proceedings of the AdaTEC Conf. on
Ada, Arlington, VA (October 4-8, 1982), pp. 10-25.

plelm82]
Helmbold, David P. and David C. Luckham. Techniques for runtime detec
tion of deadness errors in Ada tasking. Preliminary Draft, Computer Sys
tems Laboratory, Stanford University, Stanford California.

pIoar78]
Hoare, C.A.R. Communicating sequential processes. Communications of the
ACM, Vol. 21, No. 8 (August 1978), pp. 666-677.

pchb82]
Ichbiah, Jean D., et.al. Reference Manual for the Ada Programming
Language (Draft Revised MIL-STD 1815). United States Department of De
fense, July 1982.

pCrieSO]
Krieg-Brueckner, Bernd and David C. Luckham. Anna: Towards a
language for annotating Ada programs. Sigplan Notices, Vol. 15, No. 11
(December 1980), pp. 128-138. (Proceedings of the symposium on the Ada
language.)

|Krie82]
Krieg-Brueckner, Bernd, David C. Luckham, Friedrich W. von Henke, Olaf
Owe. Reference manual for Anna, a language for annotating Ada programs
(Draft). Supercedes [Krie80].

|Mart77]
Martin, Fred H. HAL/S - The avionics programming system for shuttle.
Proc. AIAA Conf. Computers in Aerospace, Los Angeles, CA (November
1977), pp. 308-318.

|Oste82]
Osterweil, Leon J. Toolpack - An experimental software development en
vironment. Proc. 6th Intl. Conf. on Software Engineering, Tokyo, Japan
(September 1982), pp. 166-175.

|Stan81]
Standish, Thomas A. Arcturus - An advanced highly integrated program
ming environment. In Software Engineering Environments, H. Hunke, editor.
North Holland, 1981.

|Tayl83]
Taylor, Richard N. Static analysis of concurrent Ada programs. Communi
cations of the ACM, 1983 (to appear). Also Technical Report Number DCS-
10-IR, Department of Computer Science, University of Victoria (May 1981).

13




