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ARTICLE

Project Baby Bear: Rapid precision care incorporating
rWGS in 5 California children’s hospitals demonstrates
improved clinical outcomes and reduced costs of care

David Dimmock,1,* Sara Caylor,1 Bryce Waldman,1 Wendy Benson,1 Christina Ashburner,2

Jason L. Carmichael,2 Jeanne Carroll,1,5 Elaine Cham,3 Shimul Chowdhury,1 John Cleary,4

Arthur D’Harlingue,3 A. Doshi,1,5 Katarzyna Ellsworth,1 Carolina I. Galarreta,2 Charlotte Hobbs,1

Kathleen Houtchens,3 Juliette Hunt,4 Priscilla Joe,3 Maries Joseph,2 Robert H. Kaplan,6

Stephen F. Kingsmore,1 Jason Knight,4 Aaina Kochhar,2 Richard G. Kronick,6,7 Jolie Limon,2

Madelena Martin,8 Katherine A. Rauen,8 Adam Schwarz,4 Suma P. Shankar,8 Rosanna Spicer,2

Mario Augusto Rojas,2 Ofelia Vargas-Shiraishi,4 Kristen Wigby,1,5 Neda Zadeh,4 and Lauge Farnaes1
Summary
Genetic disorders are a leading contributor to mortality in neonatal and pediatric intensive care units (ICUs). Rapid whole-genome

sequencing (rWGS)-based rapid precision medicine (RPM) is an intervention that has demonstrated improved clinical outcomes and

reduced costs of care. However, the feasibility of broad clinical deployment has not been established. The objective of this study was

to implement RPM based on rWGS and evaluate the clinical and economic impact of this implementation as a first line diagnostic

test in the California Medicaid (Medi-Cal) program. Project Baby Bear was a payor funded, prospective, real-world quality improvement

project in the regional ICUs of five tertiary care children’s hospitals. Participation was limited to acutely ill Medi-Cal beneficiaries who

were admitted November 2018 to May 2020, were <1 year old and within one week of hospitalization, or had just developed an

abnormal response to therapy. The whole cohort received RPM. There were two prespecified primary outcomes—changes in medical

care reported by physicians and changes in the cost of care. The majority of infants were from underserved populations. Of 184 infants

enrolled, 74 (40%) received a diagnosis by rWGS that explained their admission in a median time of 3 days. In 58 (32%) affected indi-

viduals, rWGS led to changes in medical care. Testing and precision medicine cost $1.7 million and led to $2.2–2.9 million cost savings.

rWGS-based RPM had clinical utility and reduced net health care expenditures for infants in regional ICUs. rWGS should be considered

early in ICU admission when the underlying etiology is unclear.
Introduction

Genetic disorders are a leading contributor to morbidity

and mortality in the neonatal and pediatric intensive

care unit (ICU) in the United States. Approximately 7%

to 10% of the 4 million infants born in the U.S. each

year are admitted to a neonatal intensive care unit

(NICU) for the diagnosis and treatment of an acute

illness.1–4 A recent review of billing data suggests that

approximately 1% of all NICU admissions have one of

116 billing codes suggestive of a genetic disease.5 In other

studies, approximately 15% of babies admitted to high

acuity units appear to have a genetic disorder.6 At one chil-

dren’s hospital, genetic disorders and malformations were

the most common cause of mortality, accounting for

more than one-third of all deaths.7

Our previous work, and that of many other groups, has

demonstrated that early institution of genome-wide

sequencing is associated with both a shorter time to diag-

nosis and an increased diagnostic yield when compared
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with standard-of-care testing that includes gene panels

and chromosome microarrays.8–16

Recently,we andothers have shown that,when common

non-genetic reasons for admission are excluded, rapid

whole-genome sequencing (rWGS) provides a diagnosis

for 21% to 57% of children in intensive care settings,

including those without a high pre-test probability of a ge-

netic disorder.6 The benefit of rWGS has been associated

with high satisfaction and perceived utility among physi-

cians.17 Among parents, rWGS has extremely low levels of

perceivedharmor decisional regret and very highperceived

utility, including when testing does not yield a diagnosis.18

In precision medicine, clinicians incorporate informa-

tion about an individual’s geneticmakeup andother factors

to help determine specific treatment and prevention strate-

gies.19 rWGS, and the system of care that surrounds it, is

sometimes referred to as rapid precision medicine (RPM).

At the timeof theproject initiation, studiesat single-siteac-

ademic centers had demonstrated significant improvement

in clinical outcomes as the result of early genome-wide
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Figure 1. Inclusion and exclusion criteria
Criteria used to identify acutely ill infants
without a clear non-genetic etiology.
sequencing.11,20 Moreover, although currently relatively

expensive, prospective, single-site studies have reported

that early genome-wide sequencing yields substantial reduc-

tions in the cost of carewhen compared to testingwith chro-

mosomemicroarray, the current standard of care.4,21,22

Medicaid and commercial insurers in Wisconsin began

limited coverage of outpatient WGS in 2011.23 More

recently, a commercial insurer has issued specific coverage

criteria for rWGS in critically ill children on the basis of

published studies.24 Nevertheless, despite evidence that

sequencing improves clinical outcomes, reduces net costs

of care, and leads to high provider and parental satisfac-

tion, routine implementation in ICUs and coverage by

payors has remained a challenge.

In 2018, the California state legislature appropriated

funds for Project Baby Bear (PBB) and commissioned this

study to determine whether the economic and clinical

benefits of genome-wide sequencing could be achieved

more widely, outside of single-site research settings, and

whether its accompanying system of care was scalable to

the population covered by the state’s Medicaid program,

known as Medi-Cal.

The objective of this project was to implement and

identify, in the real-world setting, the clinical and eco-

nomic effects of deploying rWGS-informed RPM for crit-

ically ill children who receive care in multiple ICU

settings across California and are insured by the Medi-

Cal program.
Subjects and methods

The institutional review boards at all sites reviewed the project and

determined it to be a quality improvement project. Parents or legal

guardians provided consent for rWGS. Data sharing was per-

formed in adherence with state and federal regulations governing

the sharing of protected health information.

Project design and participants
PBB was a multi-site quality improvement project of the deploy-

ment of rWGS in intensive care settings. Hospitals were selected

that were geographically spread throughout the state with patients

from rural and urban populations aswell as a substantial number of

children covered by Medi-Cal (see Figure S1). Five tertiary care

children’s hospitals that had California Children’s Services-ac-
1232 The American Journal of Human Genetics 108, 1231–1238, July 1, 2021
credited regional neonatal and pediatric

ICUs were selected: Valley Children’s Hos-

pital (VCH); Children’s Hospital of Orange

County (CHOC); University of California–

San Francisco Benioff Children’s Hospital

Oakland (UCSF BCHO); University of Cali-

fornia Davis Children’s Hospital (UCD);

and Rady Children’s Hospital–San Diego

(RCHSD). Rady Children’s Institute for
Genomic Medicine (RCIGM) served as the project’s coordinating

center.

Participation was limited to any Medi-Cal beneficiary admitted

between November 2018 and May 2020 who was acutely ill,

without a clear non-genetic etiology, and less than 1 year old,

and who had been hospitalized 1 week or less or who had devel-

oped an abnormal response to standard therapy for an underlying

condition within the preceding week (Figure 1). Sex was deter-

mined on the basis of clinical examination; race and ethnicity

were derived from parental report.

Genome sequencing and interpretation
Clinical rapid whole-genome sequencing (rWGS) or, in cases

deemed too clinically unstable to wait, ultra-rapid trio WGS

(urWGS)6,14 with targeted phenotype-driven analysis was per-

formed on all patients. The methods have been previously pub-

lished in detail.6,14 In brief, clinical features representative of

each child’s illness were identified by the ordering provider. Po-

lymerase chain reaction free 2 3 101 nt rWGS was performed to

at least 40-fold coverage with instruments developed by Illu-

mina (San Diego, California). Clinical molecular geneticists in-

terpreted variants according to standard clinical guidelines (Ta-

ble S7).25 Genomic sequence interpretation was generally

performed as singleton probands with single-site testing of

available parental DNA. However, because of the reduced time

to diagnosis, urWGS tests were analyzed as familial trios where

possible.6

All reported variants were confirmed by Sanger sequencing,

multiplex-ligation-dependent probe amplification, or chromo-

somal microarray, as appropriate. Secondary findings were not

systematically sought or reported, but medically actionable inci-

dental findings were reported if families consented to receiving

this information. Using the consensus recommendations of the

American College of Medical Genetics and Genomics, a diag-

nosis was considered to be made if pathogenic or likely patho-

genic variants were identified in a genomic locus that the

bedside providers agreed led to the disease causing the critical

illness.25

Outcome measures
There were two prespecified primary outcomes—changes in med-

ical care because of rWGS results and changes in the cost of care

because of rWGS at 4 months, 12 months, and 18 years after re-

turn of results.

Changes in medical care for each patient were reported in

structured self-administered questionnaires completed by the

physician who ordered rWGS. Questionnaire items focused on



Figure 2. Project enrollment and out-
comes
Enrollment and testing outcomes for
Project Baby Bear.
changes in length of stay and surgical, medical, and dietary

changes (see supplemental information). All changes in medical

care reported in questionnaires were reviewed with the primary

treatment group at monthly conferences. Each infant was cate-

gorized into one of three groups: no change in medical care

(group 1); changes in medical care that did not alter long-

term outcomes, length of stay, or major procedures performed

(group 2); or changes in medical care that altered long-term out-

comes, length of stay, and/or major procedures performed

(group 3).

We knew from experience that the babies receiving rWGS diag-

noses would suffer from genetic diseases that are rare, and this

would make it difficult to identify matched controls who were

diagnosed without rWGS. Moreover, there is insufficient informa-

tion in the medical literature to establish routine medical manage-

ment practices for many of these rare diseases.6,8,11 Consequently,

we used amodel-based expert elicitation process to estimate how a

clinician would manage each baby’s rare disease in the absence of

rapid genome sequencing.26

As described in previous work, counterfactual care pathways

were developed to describe what would have happened to babies

in group 3 in the absence of rWGS.9,11 Where possible, this com-

parison pathway was determined by identification of similar his-

torical cases with the same disease or through a literature review

followed by consensus expert opinion from the treating site phy-

sicians. Two physicians with expertise in modeling counterfac-

tual pathways (L.F. and D.D.) reviewed any estimated changes

in length of stay, major procedures performed, or improvements

in outcome in the babies receiving rWGS. The description of

cases and counterfactual pathways are outlined further in the
The American Journal of Human Ge
supplemental notes. Where there was un-

certainty about what value to assign to

changes in length of stay or survival, phy-

sicians at the treating sites estimated a

range. In situations where the RCIGM

physicians disagreed with the treating

team’s estimates, the RCIGM team as-

signed the value that minimized the esti-

mated cost savings. Thus, all cost savings

analysis was based on conservative as-

sumptions. We estimated costs of avoided

procedures, avoided tests, and avoided

hospital days from concurrent billing

data. This modeling and methods for esti-

mating cost savings are further detailed in

the supplemental information.

Changes in the cost of care dependent

on turnaround time of rWGS were deter-

mined in a post hoc analysis. To evaluate

the effect of slower versus faster testing

on utilization and costs, the RCIGM

team estimated how longer turnaround

times (7 days or 14 days versus 3 days)

would have increased inpatient stay for

each of the patients who received signifi-
cant benefit from sequencing. More detailed analytic methods

are described in the supplemental information.
Results

Participant demographics and diagnostic yield of

testing

The project enrolled 184 babies. The provision of rWGS

and support for RPM cost $1.7 million. Enrolled babies

across all sites represented an average of 4% of the Medi-

Cal admissions at these sites (Figure 2). The majority of pa-

tients were from historically underrepresented groups;

55% of children were identified by their parents as ‘‘His-

panic’’ and only 15% as both ‘‘white’’ and ‘‘non-Hispanic’’

(Table 1).

rWGS proved to be a valuable tool in clinical decision-

making. Of the 184 babies sequenced in this project,

rare genetic diseases that explained the infant’s admission

were diagnosed in 74 babies (40%), genetic variants of un-

certain significance (VUSs) were identified in 21 babies

(11%), and no diagnosis was made in 89 babies (48%)

(Figure 2). Most diagnoses were of very rare disorders

that would not be expected to have been seen by the

child’s providers previously in their careers. Although dis-

ease estimates are limited by the availability of molecular

testing, 37 of the 73 diagnosed genetic diseases thought

by the providers to explain the child’s admission to the
netics 108, 1231–1238, July 1, 2021 1233



Table 1. Demographic characteristics of the 184 PBB probands

Race Total (184) Hispanic (101, 55%) Non-Hispanica (83, 45%)

African American 22 (12%) 2 20

Asian 10 (5%) 0 10

White 87 (47%) 59 28

Native Hawaiian or other Pacific Islander 1 (1%) 0 1

Other 54 (29%) 40 14

Unknown 9 (5%) 0 9

Refused 1 (1%) 0 1

Sex

Male 107 (58%)

Female 71 (39%)

Unknown/undetermined/not available 6 (3%)

aIncludes one who identified as ‘‘East Indian,’’ four who identified as ‘‘Middle Eastern,’’ nine who refused to select, and 11 who marked ‘‘other.’’
ICU have a reported incidence of less than one per million

births. Sixty-eight of these 74 primary genetic diseases

were diagnosed in individual patients in the project, and

the other six conditions were diagnosed in two patients

each (Table S5).

Physicians initially reported that rWGS-informed RPM

led to changes in medical care in 61 of the 184 infants

tested (33%). However, with further review, the anticipated

changes did not occur in three infants and so these infants

were classified as having no change inmedical care. Conse-

quently, 58 of 184 babies (32%) sequenced underwent at

least one change in medical care (Figure 2, Table 2). No sig-

nificant differences were seen in diagnostic yield or change

in medical care across racial, ethnic, or sex categories.

Changes in medical care

Precision medicine informed by rWGS of critically ill ba-

bies with unclear etiology of symptoms resulted in at least

one change in the medical care of 58 babies (32%). Specif-

ically, 24 children had changes in surgeries, 23 had

changes in medication, nine had dietary changes, and 14

had other changes in care. No children had changes in pro-

posed organ or tissue transplantation (Table 2).

Except for one baby with malignant hyperthermia,

changes in longer-term outcomes were deemed too specu-

lative to be confident about cost savings or improved qual-

ity of life beyond the initial episode of care. Therefore, we

modeled changes in cost during the initial episode of care

and not at 4 months, 12 months, and 18 years following

return of the rWGS result.

Effects on health care costs

In 27 of the 58 children for whommedical care changed as

a result of rWGS, there was no change in length of stay or

in major procedures performed and, thus, no substantial

effect on health care costs. In the remaining 31 children

whose medical care changed substantially because of

rWGS, a detailed analysis of the effects of rWGS on hospi-
1234 The American Journal of Human Genetics 108, 1231–1238, July
tal costs was performed (See Table S3 and supplemental

notes for more details). In several children, diagnosis led

to interventions that increased the costs of care. For

example, in site one, case 17, the child was identified to

be at risk for thyroid disease and laboratory testing for

this was ordered. These changes in the costs of care were

included in the modeling. In all such children, these costs

were more than offset by avoidance of other costly proced-

ures or reduction in length of hospitalization. In the 30 ba-

bies with a change in length of stay, between 457 and

592 days were avoided because of rWGS results. There

were no babies for whom we estimated an increase in

length of stay or for whom a major procedure was per-

formed that would not have been performed in the

absence of rWGS.

In several cases, a non-diagnostic genome led to cost sav-

ings. For example, in site one, case 2, the child had intrac-

table seizures that required significant respiratory support

and failed to respond to typical anti-seizure medicines.

rWGSwas non-diagnostic and review of the raw data estab-

lished high-confidence coverage of all the genetic etiol-

ogies of neonatal seizures that have specific therapies

beyond standard treatment. The ability to dramatically

reduce the post-test likelihood of a treatable seizure disor-

der provided the parents (and providers) with reassurance

that they were not missing a prognosis altering interven-

tion. This allowed the parents to make the informed deci-

sion to move their baby to comfort care.

Estimated cumulative savings due to rWGS for the 31

children were between a $2.2 million and $2.9 million

reduction in hospital costs and professional fees. Averaged

over the 184 babies in PBB, savings were approximately

$12,041 to $15,786 per child sequenced, more than offset-

ting the $9,492 cost of rWGS and precision medicine per

child (Table 3).

Between 89% and 93% of estimated savings derived

from reduced length of stay and, to a substantially lesser

degree, avoided major procedures, such as tracheostomies
1, 2021



Table 2. Number of infants with a change in care due to an rWGS
result

Intervention type n

Any change 58

Surgical (n ¼ 24)

Surgical procedure added 5

Surgical procedure removed 16

Surgical procedure changed 5

Medication (n ¼23)

Medication added 16

Medication stopped 8

Medication changed 0

Dietary (n ¼ 9)

Diet changed 9

Length of hospital course (n ¼ 30)

Hospital days added 0

Hospital days avoided 30

Please note that children may have experienced more than one change, for
example, a medicine added and a medicine stopped.
and gastrostomy tube insertions (see Table S3 for more de-

tails). Approximately 7% to 11% of estimated savings

derived from avoided diagnostic tests, such as chromo-

somal microarrays (see Tables S2 and S3 for more details

of avoided testing and consequent economic impact).

As reported above, median turnaround time for provi-

sional rWGS results was 3 days. Post hoc sensitivity anal-

ysis of turnaround times from an average of 3 days to 7

or 14 days showed that fewer inpatient days were avoided

and proportionately less cost savings were realized with an

increased time to result (Table 3). More detailed analysis

can be seen in Table S4.
Discussion

With the exception of one non-randomized retrospective

study looking at a longer turnaround time exome test,27

studies performed in the carefully controlled environment

of clinical research have reproducibly found genome-wide

sequencing to be effective for diagnosis and management

of undiagnosed infants in ICUs and to result in reductions

in health care costs.6,8,11,14–16,20–22,28–34 PBB demonstrates

the feasibility of deploying rWGS-informed RPM into

routine care across multiple sites to help vulnerable pa-

tients in a cost-effective manner while achieving diagnosis

and change-in-medical-care rates comparable to previously

published studies. Test results influenced the decisions

physicians and families made about the care of babies

with rare genetic diseases. These decisions, in turn, sub-

stantially reduced the cost of caring for babies receiving

rWGS compared to babies with similar conditions who

did not have access to rWGS. These savings were depen-
The Americ
dent on the speedy return of test results and more than

compensated for the cost of performing rWGS.

An earlier study using similar methods in a cohort of 42

babies estimated cost reductions of approximately

$800,000 in hospital and professional fees, or approxi-

mately $19,000 per baby.11 These savings were slightly

larger than the estimated gross savings of $12,041 to

$15,786 per child sequenced in the current project. Given

that the earlier study and the current project were conduct-

ed on relatively small cohorts of babies and that there was

substantial variation across babies in the effects of rWGS

on resource use and costs, the differences between the

two studies in estimated cost savings per baby sequenced

are relatively small. These results suggest that such cost

savings are scalable across multiple institutions.

Although making a genetic diagnosis may provide

immense lifelong benefits, its greatest utility occurs when

made early in the course of care when more definitive

health care decisions have yet to be made and less irrevers-

ible damage has occurred. This requires early identification

of at-risk children, rapid testing, and prompt intervention.6

Most health care cost savings were due to reductions in

the length of stay. Conclusive diagnosis allowed for more

confident prognosis. In some instances, this empowered

parents to shift to comfort care or to definitively move in-

fants to life-prolonging measures, such as a home venti-

lator and tracheostomy.

This project used inclusion criteria similar to our previous

NSIGHT2 study;6 however, a substantially smaller propor-

tion of children covered by Medi-Cal at PBB sites received

rWGS than we expected at the outset. In NSIGHT2, 43%

of babies admitted to the one study ICU were deemed

eligible for testing. In the current study, enrollment of

Medi-Cal babies ranged from3% to13%of admitted babies.

This, in part, reflects a reduction in enrollment at the

midpointof theproject becauseofuncertainty at sites about

exceeding the prespecified 100-genome mark and aware-

ness that there was a limited number of tests available. Dis-

cussions with colleagues and a review of cases suggested

that this perceived budget limitationmayhave pushed pro-

viders toward selecting cases with a potentially higher diag-

nostic yield. Others perceived a delay in changing their

practice. Specific physicians identified a ‘‘learning curve’’

as they transitioned from genomic testing on those with a

high suspicion of genetic disorder to proactively testing

all children without a clear indication for admission. Inter-

estingly, there is no difference in the change in manage-

ment rate between this study, which had a higher diag-

nostic yield, and NSIGHT2 (see Table S6), suggesting that

rWGS has clinical utility in a larger proportion of ICU in-

fants than tested herein.

Inprevious researchstudies,overhalfof all eligible families

declined enrollment.6,35 By comparison, following explana-

tion of the test, only six families were known to decline clin-

ical consent for genomic sequencing in this project. This

observation suggests that a substantial barrier to consent

for genome sequencing in previous studies was most likely
an Journal of Human Genetics 108, 1231–1238, July 1, 2021 1235



Table 3. Savings of rWGS and hypothetical savings with turnaround times extended to 7 and 14 days

3-day turnarounda 7-day turnaround 14-day turnaround

Lowb Highb Low High Low High

Cost savings for system $2.2 m $2.9 m $1.7 m $2.4 m $1.1 m $1.7 m

Cost savings per child $12,041 $15,786 $9,517 $13,250 $6,216 $9,132

aActual rWGS turnaround time in this study.
bLow and high calculations reflect the lower and upper estimates of changes in care.
more related to resistance to research enrollment and broad

public data sharing than concerns about genomic testing.

This project was further limited by the failure to system-

atically collect physician- and parent-reported measures of

harm and benefit, although the absence of reported harms

is encouraging. The lack of systematic data collection

about perceived harm may mean that harms are underre-

ported; this concern is somewhat allayed by our group’s

prior research.17,18

Further, the methods to estimate cost savings have

intrinsic limitations. Specifically, physicians in the project

may have an unconscious bias to inflate length of stay or

costs in the absence of rWGS. We attempted to mitigate

this by using a second tier of experts who could modify

length-of-stay estimates or cost savings they perceived as

exaggerated. Similarly, we could not accurately project or

measure long-term benefits for most children or their fam-

ilies. Our deliberately conservative approach may lead to a

significant underestimation of the real benefits accrued.

Our choice to use hospital costs, rather than third party

payments, to measure savings carries significant benefits

in generalizability and scaling across health care delivery

systems. However, it is limited by the methods that are

used to calculate costs; it does not, for example, distinguish

between fixed costs (e.g., the building) and marginal costs

(e.g., test reagents or staffing). Further, the benefits of cost

savings are not equally realized betweenhealth care institu-

tions and payors. However, the exact distribution of these

savings is dependent on the reimbursement model.

Finally, the speed with which families move to make

end-of-life decisions based on rWGS results and the degree

of prognostic certainty is not uniform and may not be

consistent across cultures. This may limit generalization

of such findings beyond the U.S. health care context.

In conclusion, the five-site quality improvement project

known as Project Baby Bear developed a real-world system

for the rapid delivery of whole-genome sequencing that

improved outcomes and decreased costs of care. This proj-

ect has demonstrated that hospitals and payors with

similar systems of rapid precision medicine can deploy

rWGS for critically ill children in a cost-effective manner.
Data and code availability

Case report forms, details of all genetic disease diagnoses, and

detailed case level analysis of economic outcomes is provided in

the supplemental information. All reported genomic variants have

been submitted to ClinVar (ClinVar: 506081) (https://www.ncbi.
1236 The American Journal of Human Genetics 108, 1231–1238, July
nlm.nih.gov/clinvar/submitters/506081/). Genomic sequencing

was performed clinically and at the request of the sponsor; permis-

sion was not sought for wider data sharing. Therefore, raw genomic

data will not be made publicly available.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.05.008.
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