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A Note on Adaptive Estimation
Douglas G. Steigerwald

Adaptive Estimation
An adaptive estimator is an efficient estimator for a model that is only partially
specified.
For example, consider estimating a parameter that describes a sample of observa-
tions drawn from a distribution F . One natural question is: Is it possible that
an estimator of the parameter constructed without knowledge of F could be as
efficient (asymptotically) as any well-behaved estimator that relies on knowledge
of F? For some problems the answer is yes, and the estimator that is efficient is
termed an adaptive estimator.
Consider the familiar scalar linear regression model

Yt = β0 + β1Xt + Ut,

where the regressor is exogenous and {Ut} is a sequence of n independent and
identically distributed random variables with distribution F . The parameter
vector β = (β0, β1)

0 is often of interest rather than the distribution of the error, F .
If we assume that F is described by a parameter vector α (that is, we parameterize
the distribution), then the resultant (maximum likelihood or ML) estimator of β
is parametric. If we assume only that F belongs to a family of distributions, then
the resultant estimator of β is semiparametric. Because the OLS estimator does
not require that we parameterize F , the OLS estimator is semiparametric. If
the population error distribution is Gaussian, we know that the OLS estimator is
equivalent to the ML estimator, and so is efficient. Although the OLS estimator
is generally inefficient if F is not Gaussian, it may be possible to construct an
alternative (semiparametric) estimator that retains asymptotic efficiency if F is
not Gaussian. If we find that, for a family of distributions that includes the
Gaussian this estimator is asymptotically equivalent to the ML estimator, then
this estimator is adaptive for that family.
The question then is: How can we verify that an estimator is adaptive? As

there will generally be an arbitrarily large number of distributions in the family, it
is not feasible to algebraically verify asymptotic equivalence for each distribution.
In a creative paper, Stein (1956) first proposed a solution to this problem. Let
Fα define a set of distributions parameterized by a value of α (each member of
this family must satisfy certain technical conditions, such as differentiability with
respect to β, which will not be explicitly defined). Although primary interest



centers on β, the full set of parameters includes α. The information matrix,
evaluated at the population parameter values, is

I =
µ I11 I12
I21 I22

¶
,

where I11 corresponds to the elements of β. Estimators of β (again, the estimators
must satisfy technical conditions, such as

√
n consistency, which are also not

explicitly defined) will have covariance matrix that is at least as large as I11,
which is the upper left component of I−1. If the partial derivative of the log-
likelihood with respect to β (the score for β) is orthogonal to the score for α,
then I12 = 0 and I11 = I−111 . Because I11 corresponds only to the parameter β,
the asymptotically efficient estimator of β can be constructed without knowledge
of α. Stein argued that if the condition I12 = 0 holds for all the sets Fα that
comprise a family of distributions F , then β is adaptively estimable within the
family F .
While Stein’s condition holds intuitive appeal, it is not straightforward how to

use the condition to define estimators that are adaptive. In an invited lecture,
Bickel (1982) laid out a simpler condition that does yield a straightforward link
to the construction of adaptive estimators. To understand the condition, let
EF denote expectation with respect to the population error distribution and let
EF̃ denote expectation with respect to an arbitrary distribution F̃ ∈ F . Let
l be the log-likelihood for the regression model with data z = (y, x) and let
l̇ (z, β, F ) denote the score for β, constructed from the model in which F is the
error distribution. A familiar condition that arises in the context of likelihood
estimation is that the expected population score EF

h
l̇ (z, β, F )

i
equal 0. Bickel’s

condition is simply that the population score must have expectation zero over the
entire family F , that is, for any F̃ ∈ F ,

EF̃

h
l̇ (z, β, F )

i
= 0.

The two conditions are linked: If F is a convex family, then Stein’s condition
is implied by Bickel’s condition. For the linear regression model, an adaptive
estimator of β exists for the family F that consists of all distributions that are
symmetric about the origin (and several other technical conditions). If interest
centers on the slope coefficient alone, then one need not restrict attention to
distributions that are symmetric about the origin, as an adaptive estimator of β1
can exist even if β0 is not identified.



Bickel’s score condition leads naturally to estimators that contain nonpara-
metric estimators of the distribution, F̂ . In consequence, adaptive estimation
requires a second condition: the nonparametric estimator of the score must con-
verge in quadratic mean to the population score. The resulting estimators of β
are two-step estimators. The estimators require, as the first step, a

√
n-consistent

estimator such as the OLS estimator. To understand the estimator’s form, note
that if the distribution were known, then the two-step (linearized likelihood) es-
timator is

BOLS + n−1
nX
t=1

s (Zt, BOLS, F ) ,

with s (Zt, BOLS, F ) = I11 (BOLS, F ) l̇ (Zt, BOLS, F ). The linearized likelihood
estimator is asymptotically efficient. To form an adaptive estimator of β, we
must replace F with a nonparametric estimator F̂ . If F̂ is constructed so that
s
³
Zt, BOLS, F̂

´
converges in quadratic mean to s (Zt, BOLS, F ), then

BAD = BOLS + n−1
nX
t=1

s
³
Zt, BOLS, F̂

´
is an adaptive estimator of β for the family F .
For the linear regression model, as for numerous other models, nonparametric

estimation of F entails nonparametric estimation of the density f . One popular
nonparametric density estimator is the kernel estimator, which is employed by
Portnoy and Koenker (1989) in their proof that semiparametric quantile estima-

tors are also adaptive for β. If
n
Ût

o
denotes the OLS residuals, then a kernel

density estimator is defined for all u in a small neighborhood of each value of Ût

as

f̂t (u) = (n− 1)−1
nX

s=1
s6=t

ξσ

³
u− Ûs

´
,

where ξσ is a weight function that depends on the smoothing parameter σ. In
Steigerwald (1992), ξσ corresponds to a Gaussian density with mean 0 and vari-
ance σ2. The variance controls the amount of smoothing, as σ2 declines the
weight given to residuals that lie some distance from Ût tends to zero. Of course,
there are many other ways to form the nonparametric score estimator. Newey
(1988) approximates the score by a series of moment conditions, which arise from
exogeneity of the regressor and symmetry of F . Faraway (1992) uses a series of



spline functions to approximate the score. Chicken and Cai (2005) use wavelets
to form the basis for nonparametric estimation of f .
Recent results in adaptive estimation have focused on problems in which the

error distribution is known, but other features are modeled nonparametrically.
Some of the most intriguing results concern the type of stochastic differential
equation often encountered in financial models. The price of an asset that is
measured continuously over time, Pt, is often modeled as

dPt = ftdt+ υtdBt.

The presence of standard Brownian motion, Bt, makes the model of price a sto-
chastic differential equation. The function ft captures the deterministic movement
or drift while υt is the potentially time-varying scale of the random component.
Lepski and Spokoiny (1997) study the model in which υt is constant and ft is
unknown. They establish that a nonparametric estimator of f is pointwise adap-
tive. Yet an estimator that is pointwise adaptive, that is for a given point t0
the nonparametric estimator of f (t0) is asymptotically efficient, may not perform
well for all values within the range of the function f . Such an idea is intuitive,
without knowledge of the smoothness of f , estimators designed to be optimal for
one value of t may be very different from optimal estimators for another value of
t. Cai and Low (2005) study efficient estimation of f over neighborhoods of t0
and show that an estimator constructed from wavelets is adaptive. The restric-
tion that the scale is constant is often difficult to support with financial data. A
more realistic model, which Mercurio and Spokoiny (2004) study, models the asset
return as a stochastic differential equation with drift 0 and νt varying over time.
The time-varying scale is assumed to be constant over (short) intervals of time,
but is otherwise unspecified. They construct a nonparametric estimator of the
volatility from a kernel that performs local averaging and show that the resultant
estimator is adaptive.

Douglas G. Steigerwald
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