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Introduction 
 
Abstract 
 

Habitat loss and fragmentation is currently the primary driver of biodiversity decline. 

Community forest management and wildlife crossing structures are two common 

conservation strategies applied to mitigate habitat loss and fragmentation. Community 

forest management is an approach that enables local communities to participate in forest 

management in order to reduce deforestation, and crossing structures are intended to 

mitigate the negative impacts of roads in fragmenting the landscape. To implement efficient 

design, their effectiveness needs to be examined using rigorous and appropriate methods. 

Herein, I assess the efficacy of each in the context of counterfactual assessments and 

baseline conditions. Using Pemba Island, Tanzania, as a case study, I monitor Community 

forest management, and use unprotected areas as the baseline. For wildlife crossing 

structures I examine structures along California highways, and use adjacent wildland areas 

absent of roads as the baseline. I employ methods such as remote sensing and hierarchical 

modeling to decipher forest cover change, wildlife movement, and behavioral responses 

within a fragmented habitat. I focus on particular anthropogenic stressors that may 

contribute to the efficacy of Community forest management and wildlife crossing 

structures, such as human population density, and light and noise pollution. The results 

offer solutions to the broader conservation community in how to evaluate the conservation 

tools we are currently utilizing. Furthermore, results guide the decision-making process for 

wildlife managers, practitioners, and agencies specific to these case studies and future 

conservation projects.  

 



 vii 

In my first chapter, I evaluate the Reduced Emissions in Deforestation and Degradation 

(REDD+) program, that uses payments for ecosystem services as incentives to communities 

managing and protecting forests. Given the relatively recent addition of REDD+ to the 

conservation toolkit, evaluation of outcomes from ongoing REDD+ projects is important. I 

examined whether the REDD+ program on Pemba, Tanzania, impacted forest cover change 

between 2001 – 2018. I controlled for confounding variables and the non-random selection 

of REDD+ areas by using a statistical matching procedure. The Pemba REDD+ program had 

no discernible effect on forest cover change during the eight years after initiation. Likewise, 

I did not detect an effect of environmental or sociological covariates on forest cover. 

However, REDD+ areas that did better than predicted consisted of small islands accessible 

only by boat. My findings suggest reducing deforestation through REDD+ is not certain, yet 

patterns of success at the local level must be recognized, and affordable monitoring should 

continue as replanting efforts take time to manifest. In addition, examining forest outcomes 

of REDD+ using high-quality data and appropriate statistical methods is necessary. 

 

In my second and third chapters, I evaluate crossing structures that provide a safe route for 

wildlife to navigate across roads. The efficacy of wildlife crossing structures might be 

affected by the exposure of animals to increased noise and artificial light at night produced 

by vehicles. Therefore, I tested two hypotheses as to how wildlife perceives noise and light, 

1) as a risk, contributing to a ‘Landscape of Fear’, or 2) as a refuge, or ‘Human Shield’. 

Wildlife can respond to fearful stimuli in four ways; spatial avoidance, temporal avoidance, 

increased anti-predator behavior and altered group sizes. In chapter 2, I examine alterations 

to spatial and temporal patterns in response to traffic noise and light pollution. I examined 

species richness (spatial response) and visitation rates (spatial response) of mule deer 
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(prey), bobcats (predator) and coyotes (predator), as well as increased nocturnality 

(temporal response) in mule deer, bobcats, and coyotes at 26 crossing structures across 

California, USA, using camera traps. At higher levels of noise pollution, I found that species 

richness declined, mule deer and bobcat visitations declined, and mule deer nocturnality 

increased. In response to light pollution, I observed spatial avoidance by bobcats and 

coyotes and greater nocturnality for all three species. These results suggest that 

anthropogenic noise and light disturbance contribute to a Landscape of Fear across different 

trophic levels. However, species richness and deer visitations increased at high levels of light 

pollution, suggesting a Human Shield of light. These findings indicate wildlife are avoiding 

anthropogenic noise and light pollution via altering spatiotemporal patterns, and that a 

Landscape of Fear and Human Shield are non-mutually exclusive mechanisms used to lower 

predation risk. Species-level differences are likely attributed to trophic level and sensory 

systems. Using these results, I make recommendations for transportation sectors to better 

equip crossing structures with appropriate mitigation features. 

 

In chapter 3, I examine the third and fourth response to fearful stimuli - altered anti-

predator behavior and group sizes, and incorporate a multi-scale framework to identify 

differences in fear responses across spatiotemporal scales. Anthropogenic noise pollution is 

pervasive across the landscape and can be present at three temporal scales; instantaneous, 

(occurring sporadically over the shortest time scales e.g. milliseconds), acute (more 

persistent than instantaneous e.g. minutes), and chronic (weeks, years). Instantaneous 

noise could induce a startle response, whereas acute and chronic noise could alter anti-

predator behavior such as vigilance and group size. We examined whether these three 

levels of anthropogenic noise pollution invoke a Landscape of Fear, ‘habituation’, or Human 
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Shield response in mule deer (Odocoileus hemionus) and coyotes (Canis latrans) at highway 

crossing structures. We placed six camera traps at crossing structure entrances for a period 

of ~ two months across California to monitor decision-making (flight away from crossing 

structure or entry into crossing structure) and anti-predator behavior (vigilance, running, 

foraging, group size). Mule deer and coyotes demonstrated a Landscape of Fear response to 

instantaneous (2 seconds of noise) and chronic noise (1 week). For acute noise (~20 

seconds), mule deer responded positively, most likely using crossing structures as a Human 

Shield, and coyotes demonstrated no alteration in response, thus likely habituating to 

localized noise. Our results are the first to demonstrate variations in fear response to 

anthropogenic noise disturbance across spatiotemporal scales. This dynamic response to 

fear could alter natural predator-prey interactions and scale up to ecosystem-level 

consequences such as trophic cascades. 

 

  



 x 

Table of Contents 

Chapter 1: Determining the efficacy of community-based forest management in Pemba, 

Tanzania………………………………………………………………………………………………………………………………1 

 

Chapter 2: Evidence that the landscape of fear and human shield are mutually inclusive: 

Differential spatiotemporal responses of wildlife to sensory pollution on roads…………………52 

 

Chapter 3: Fear responses to anthropogenic noise vary across temporal scales…………………96 

 



 1 

Chapter 1: Determining the efficacy of community-based forest management 

in Pemba, Tanzania 

Amy C. Collins, Monique Borgerhoff Mulder, Mark N. Grote, Aniruddha Ghosh, James 

Thorne, Tim Caro 

 

1. Introduction  

Globally, approximately 5 million ha of forest are lost annually to human activity (Curtis et 

al. 2018), with consequences for biodiversity, ecosystem services, and community 

livelihoods (Barraclough and Ghimire 1995, Thompson et al. 2012). To reduce forest loss and 

avoid a ‘tragedy of the commons’, decentralization initiatives such as Community Forest 

Management (CFM) have been implemented (Ostrom 2015). For developing countries in 

particular, CFM offers a solution to the high financial cost to governments of patrolling 

protected areas, lowers animosity between villagers and park managers, and benefits from 

locally acquired ecological and technological knowledge (Blaikie 2006, Hayes 2006). Yet case 

studies have shown that some community-managed areas are underperforming, for reasons 

such as outside organizations bypassing local governance and community leaders 

profiteering (Roe et al. 2009). 

 

A subset of the CFM initiative is the Reduced Emissions in Deforestation and Degradation 

(REDD+) program, which uses payments for ecosystem services, such as carbon credits, as 

incentive structures to communities managing and protecting forests. REDD+ projects have 

been in progress since the program’s introduction in 2007 at the 13
th

 Conference of Parties. 

From 2010 to 2015, $796 million USD have been received annually in funding pledges 
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(Norman and Nakhooda 2015, Simonet et al. 2015). As a program that has attracted a lot of 

funding (90% of which comes from the public sector), it has also attracted its share of 

scrutiny (Sunderlin et al. 2015). Given the relatively recent addition of REDD+ to the 

conservation toolkit, evaluation of outcomes from ongoing REDD+ projects is important to 

enable such projects to alter management approaches if needed, and to prioritize future 

direction of funding and REDD+ project design. 

 

Prior research addressing the efficacy of CFM, including some REDD+ examples, did not 

include the time period before the CFM project had commenced, nor include comparisons  

with outcomes at unmanaged sites, and meta analyses were based on studies that varied in 

methodologies (Hayes 2006, Eklund et al. 2016). In the last several years, efforts to assess 

efficacy of CFM projects have emphasized standardizing methods and quantifying the 

baseline condition for the potential outcome(s) of interest. The baseline condition includes 

I) a temporal baseline of condition, obtained by collecting data leading up to 

implementation of REDD+; and II) a spatial baseline of condition, obtained by comparing 

formal REDD+ sites to unmanaged or informally managed control sites using a matching 

procedure (Pressey et al. 2015). Obtaining a spatiotemporal baseline of condition adjusts for 

any regional-scale factors, such as shifts in the market price of timber, that would influence 

the outcome(s) in question. Knowledge of the spatiotemporal baseline of condition also 

enables us to account for forest areas that were strategically selected for inclusion in the 

REDD+ program. For example, areas with pre-existing low levels of anthropogenic 

disturbance are often chosen for protection, and become recognized as ‘residual reserves’ 

(Margules and Pressey 2000). Such non-random selection of low-disturbance areas has the 
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potential for community-managed areas to exhibit an inflated success rate (Margules and 

Pressey 2000).  

 

Forest cover change has been used as an ecological metric of performance when assessing 

REDD+, in part as this is required to calculate carbon credit payments. Quantifying forest 

cover change also enables REDD+ projects to causally link the project outcome to factors 

that may be driving forest cover change, such as biological characteristics (e.g. rainfall or soil 

type), or sociological processes (e.g. land tenure rights or human density) (Sunderlin et al. 

2015). Although quantifying forest cover change using satellite imagery enables us to 

capture a spatiotemporal baseline of condition with relative ease, studies evaluating forest 

cover change in REDD+ projects via satellite imagery are still lacking (Bowler et al. 2012, 

Hajjar and Oldekop 2018).  

 

On Pemba Island, Tanzania, a REDD+ program was launched in 2010 with the goal of 

reducing carbon emissions, poverty, and gender inequality. Eighteen of the 121 

administrative units or “wards” on Pemba agreed to participate, and they signed 

Community Forest Management Agreements (CoFMAs; Figure 1.1). Studies have examined 

the socioeconomic and political elements of the REDD+ program on Pemba via household 

surveys (Sunderlin et al. 2015, Andrews et al. 2020) and elucidated the proximate causes 

that drive forest removal: extraction for fuelwood, construction materials, and medicine, 

and land conversion to agriculture and salt ponds (Siex 2011, Fagerholm 2012, Terra Global 

Capital 2014). However, the extent of forest cover change on Pemba, and ultimate factors 

that potentially drive forest cover change, have not been examined. 
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Here, we use satellite imagery to generate a spatiotemporal baseline of forest condition for 

all wards across Pemba from 2001 to 2010 and examine the efficacy of CoFMA status from 

2010 to 2018 under the program of REDD+. We first determine to what extent forest cover 

has altered on Pemba from 2001-2010 and from 2010-2018. Second, we ask whether socio-

ecological factors other than CoFMA status may affect forest cover change. Third, we test 

for the possibility of the ‘residual reserve’ phenomenon by examining the statistical 

evidence for non-random selection of wards for participation in the REDD+ program. Finally, 

using a matching procedure to create statistical quasi-controls for CoFMAs, we examine 

whether CoFMA status under the REDD+ program has had an effect on forest cover change 

at the ward level.  

 

2. Methods 

2.1. REDD+ in Pemba 

Pemba is a 920-km
2
 island that has experienced roughly 95% forest loss in the last 200 years 

owing to the human extraction of trees, and more recently to climate change (Siex 2011, 

Punwong et al. 2013). The island contains a number of isolated forest patches recognized as 

forming part of the threatened Coastal Forests of Eastern Africa Hotspot (CEPF 2010). The 

forest types on Pemba vary from coral rag forest, to mangrove forest and high forest (Siex 

2011). Pemba also contains three long-standing government-owned Forest Protected areas 

in the northern region. 

 

The REDD+ program on Pemba, referred to locally as HIMA (Hifadhi ya Misitu ya Asili ya 

jamii), was achieved collaboratively by the Tanzanian Department of Forestry and Non-

Renewable Natural Resources (DFNRNR), Royal Norwegian Embassy, JUMIJAZA (Jumuiya ya 
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Uhifadhi wa Misitu Asili-Zanzibar), and Care International. The 18 wards that agreed to 

participate received an initial start-up fund from REDD+, which communities invested into 

replanting programs, ecotourism, environmental education, monitoring, and enforcement. 

However, no ward has received carbon payments since project inception (Andrews and 

Borgerhoff Mulder 2018, Andrews et al. 2020). As the CoFMAs are designated following the 

approximate boundaries of wards, the ward is the appropriate unit of analysis for this study. 

 

2.2 Forest Cover Change 

i) Satellite imagery 

To quantify forest cover change within each ward between 2001 and 2018, corresponding 

to nine years before through eight years after initiation of the Pemba REDD+ program, we 

analyzed a collection of Landsat 5, Landsat 7, and Landsat 8 satellite images. Landsat 

imagery was used because it is open source, spans the entire temporal period of the study, 

has a high spatial resolution (30 m)
2
, and has bi-weekly data availability (Cohen and Goward, 

2004). A two-year composite image was produced to represent three time periods of 

interest: 2001 (May 2000 – May 2002) and 2010 (October 2009 – October 2011) from a 

combination of Landsat 5 and 7 ETM+ imagery, and 2018 (January 2017 - January 2019) 

from Landsat 8 OLI imagery. All images were top-of-atmosphere reflectance, orthorectified, 

and had water, cloud, and shadow pixels removed via the mask CFMASK in Google Earth 

Engine version 7.3.2 (Foga et al. 2017, Gorelick et al. 2017). Each pixel in the resulting 

composite image represented the median, minimum, maximum, and standard deviation 

value for visible, Near Infrared (NIR), and Normalized Difference Vegetation Index (Near 

Infrared and Red) bands computed from the input imagery.  
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ii) Training data 

To provide training data for the classification of forest and non-forest cover on Pemba, 440 

training data locations were identified through visual inspection of Google Earth Imagery 

from Pemba for the years 2001, 2010 and 2018. We purposefully selected 440 training data 

locations using the following criteria: i) each location represented either forest (mangrove; 

coral rag forest; high forest) or non-forest (agriculture; urban development; bare land; coral 

rag shrub land; agroforestry) within a 60-m radius buffer ii) forest and non-forest classes 

were proportionally represented across all training data locations, and iii) locations were 

evenly distributed across the island. Land cover class at each of the 440 training data 

locations was determined for 2001, 2010, and 2018 imagery to account for any changes 

occurring over that period.  

To inform visual inspection, prior to obtaining the 440 training data locations, we collected 

waypoints via a GPS device (Garmin eTrex 20 GPS handheld unit; n = 460) from a field survey 

in June – July 2015, and classified each one as forest or non-forest. We then cross-

referenced 2015 Google Earth Imagery with each waypoint. Many of these waypoints 

represented locations that were not homogenous for one land use class within a satellite 

image pixel, and were clustered near villages as a result of limited accessibility in the field; 

therefore, we opted to exclude the waypoints obtained in the field survey from being used 

as training data locations in the subsequent landcover classification. 

iii) Landcover classification 

Images were classified as forest or non-forest for 2001, 2010, and 2018 using a Random 

Forest supervised classification in Google Earth Engine (Gorelick et al. 2017). We randomly 

assigned 70% of the training data locations to train the Landsat 5, 7 (2001; 2010) and 
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Landsat 8 (2018) composite data, and used the remaining 30% for post-classification 

accuracy assessment (Stehman 1997, Hijmans and van Etten 2012). Overall accuracy 

reported in the confusion matrix of the classified images was >90% for all images and 

demonstrated excellent agreement with the kappa coefficient (Table S1.1), supporting the 

suitability of this approach. Potential sources of error in classifications may be attributed to 

cloud cover distorting satellite imagery and a Scan Line Corrector error on Landsat 7.  

 

To reduce noise (unclassified pixels) generated by the cloud mask, we applied a post-

classification 15-m
2
 smoothing function, focal_median, to each image via Google Earth 

Engine (Meng et al. 2009, Fuentes et al. 2019). The classified images were clipped to the 121 

wards across Pemba, including the 18 CoFMAs. Shapefiles of ward areas were obtained 

from Global Administration Areas V3.6 (GADM 2018). Shapefiles of government forest 

protected areas were obtained from the National Bureau of Statistics (United Republic of 

Tanzania). Due to the different protection status of forests within the government forest 

protected areas, these areas were excluded from spatial analysis. Within each ward, total 

area (m
2
) of forest and non-forest was quantified for the three years of interest (2001, 2010, 

2018) by zonal statistics in QGIS (QGIS Development Team, 2018). As a result of the number 

of cloudy pixels differing for each year of imagery, forest area was divided by total area 

(forest + non-forest) to obtain a percent of the ward that was forest for each year (Table 

S1.2).  

 

To calculate the ward-level annual rate of forest change before (2001-2010) and after 

(2010-2018) the implementation of COFMAs, we used the Compound Interest Law, as per 
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the Food and Agriculture Organization of the United Nations (FAO: MacDicken et al. 2016). 

Calculations are completed within RStudio V1.1.3 (RStudio Team 2015). 

 

2.3 Socio-ecological factors 

To test whether factors other than REDD+ participation could influence the rate and/or 

direction of forest cover change on all Pemba wards, we collected data associated with i) 

productivity potential and ii) remoteness and opportunity cost at the ward level. We posited 

that areas that are highly productive and fertile could impact forest cover change either 

positively, by promoting tree growth and regeneration, or negatively, by encouraging 

farmers to remove native forest and plant crops. Remote areas may incur high travel costs 

(opportunity costs) by vehicle or boat for distribution of illegally harvested timber, which 

could disincentivize local communities to extract resources, with positive implications for 

forest cover change. Conversely, remote areas may lack, or be perceived to lack, 

enforcement and patrolling, with negative implications for forest cover change.  

 

i) Productivity Potential Covariates 

We examined precipitation, elevation, slope, and soil type as geographic variables that have 

the potential to influence vegetation productivity in Pemba (Figure 1.2a - d). We obtained 

precipitation (mm) for the wettest month (April) from the WorldClim version 2 database 

(Fick and Hijmans 2017). WorldClim contains the median precipitation from 1970-2000 for 

30 seconds (~1km
2
) spatial resolution. We acquired data for digital elevation and derived 

slope from the NASA Shuttle Radar Topographic Mission at a resolution of 1 arc-second 

(30m
2
) through Google Earth Engine (Farr et al. 2007). We obtained soil data from the Soil 

and Terrain database for Southern Africa (SOTERSAF version 1.0), compiled by the 
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International Soil Reference and Information Centre (ISRIC; www.isric.org). The spatial 

resolution of the SOTERSAF data is 1 km, and the temporal coverage is 1950 - 2000. The 

three soil types that span Pemba are Hypoluvic Arenosols, Eutri-humic Regosols, and 

Ferralic Cambisols. Using these data, in QGIS we extracted the ward-level median 

precipitation for April, elevation, slope, and modal soil type.  

 

ii) Remoteness or Opportunity Cost Covariates 

We examined ward area, human population density (2012), human population growth rate 

for 2002 - 2010, distance to road, distance to coast, distance to the city of Wete (the central 

location for Pemba’s government offices and law enforcement), and proportion of ward 

area that had intact forest prior to REDD+ implementation in 2010 as variables that would 

potentially affect remoteness or opportunity cost of deforesting within a ward (Figure 1.2e - 

i). Ward boundary and size were obtained from Global Administration Areas V3.6 (GADM 

2018). Ward-level human population density (people/km
2
) for 2012, and population growth 

rate (% annual increase) for 2002-2010, were obtained from the 2002 and 2012 Tanzania 

Population and Housing Census, Tanzania National Bureau of Statistics (Salerno et al. 2014). 

We used a combination of primary and secondary road maps compiled by Zansea (Zansea; 

www.suza.ac.tz/zansea-website) to calculate the per-pixel Euclidean distance to road (km), 

a map of the Pemba boundary (GADM) to calculate the per-pixel Euclidean distance to coast 

(km), and the location of Wete to calculate the per-pixel Euclidean distance to Wete using 

the proximity tool in QGIS. For each ward, we then calculated the median Euclidean 

distance.  

 

http://www.isric.org/
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To investigate the relationship between forest cover change after CoFMA establishment 

(2010-2018) and covariates measuring remoteness or productivity, we fit a robust spatial 

autoregressive model using the stsls function in the spdep package (Bivand and Wong 2018). 

We opted to use a spatially explicit model due to the spatial structure in the units of 

analysis, and the susceptibility of wards to leakage – when resource extraction is prohibited 

in one ward, the extraction pressure shifts to the nearest ward (Bowler et al. 2012). A list of 

wards and their associated neighboring wards can be found in Table S1.3. 

 

2.4 Evidence of non-random selection of CoFMA wards and matching analysis 

To examine the statistical evidence for non-random selection of CoFMA wards, which could 

inflate estimates of success - and to enable an appropriate match of CoFMA wards to 

control wards, we conducted covariate matching using all socio-ecological covariates listed 

above. We first removed control wards that contained zero forest in 2010 (n=2). The 

resulting dataset had 119 wards total, of which 98 were control wards, which served as a 

pool of possible matches for the 18 CoFMA wards (Table S1.2).  

 

We then matched each CoFMA ward to five control wards on their covariate similarity 

(“covariate matching”) using Mahalanobis Distances via the matchIt package (Ho et al. 

2017). The Mahalanobis Distance is a standard distance metric for multivariate continuous 

observations accommodating covariates of different scales as well as pairwise correlations 

between the covariates. Propensity score matching is an alternative to covariate matching, 

but the small number of CoFMA wards in the present sample made fitting a logistic model, 

which is typically part of the propensity score matching procedure, undesirable. 
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Furthermore, a bootstrapping method of Otsu and Rai (2017) based on covariate matching 

is applicable and readily available to our data structure.  

 

For the categorical covariate soil type, the matching procedure required an exact match 

between CoFMA wards and control wards. Once wards were matched based on one of 

three soil categories, within each soil category, Mahalanobis distances were calculated for 

each continuous covariate (precipitation, distance to coast, distance to road, distance to 

Wete, elevation, slope, population density in 2002, population growth rate in 2012, area of 

ward, forest area in 2002, forest change 2002-2010). The closest five control wards to each 

CoFMA ward were then identified using a nearest neighbor method. Matching was 

performed with replacement, therefore a given control ward may be matched to more than 

one CoFMA ward (Table S1.4). 

 

2.5 Average effect of CoFMA status 

To examine whether CoFMA status had an effect on forest cover change, we used matched 

CoFMA and control wards to estimate the average treatment effect on the treated (ATET) 

(Jones and Lewis 2015). The ATET could be formed by contrasting the forest cover change 

(2010 – 2018) in the CoFMA wards with the average forest cover change of their matched 

controls, then subsequently averaging these contrasts over all CoFMA wards. However, this 

simple matching estimator has been shown to contain a conditional bias term (Abadie and 

Imbens 2006). Therefore, we corrected for this bias by fitting a predictive model trained on 

the controls, and by subsequent use of a difference in differences estimator (details below) 

(Abadie and Imbens 2011, Otsu and Rai 2017). By using a bias-corrected matching 
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estimator, we produced an alternative outcome for forest cover change (2010 – 2018) in 

each CoFMA ward under the scenario of an absence of REDD+ management. 

 

To make predictions based on the controls, we fit a robust spatial autoregressive model for 

the rate of forest cover change for 2010 - 2018 as a function of the socio-ecological 

covariates listed above using the stsls function in the spdep package (Bivand and Wong 

2018). We then estimated the bias corrected ATET. We defined N as the total number of 

wards, Nt as the number of treated CoFMA wards, and M as the number of control wards 

matched to each CoFMA ward. For each ward n = 1,…N, we defined Dn = 1, if ward n was a 

CoFMA ward, Dn = 0 if ward n was a control ward. Finally, Yn is the dependent variable 

(forest cover change, 2010-2018) for ward n and 𝑌̂𝑛 is the predicted value for ward n from 

the robust spatial model trained on the controls. The bias corrected estimator of ATET is 

then:  

 

𝜏̂ =  
1

𝑁𝑡
 ∑ 𝐷𝑛

𝑁

𝑛=1

 [𝑌𝑛 − 𝑌̂𝑛 − 
1
𝑀 ∑ (𝑌𝑗 − 𝑌̂𝑗)

𝑗𝜖𝐽𝑀(𝑛)

 ], 

 

where the internal sum is over the set of wards 𝐽𝑀(𝑛) matched to ward n. Multiplication by 

the indicator Dn implies that only CoFMA wards and their matched control wards contribute 

to the estimator. 𝜏̂ is a difference in differences statistic: 𝑌𝑛 −  𝑌̂𝑛 is the difference between 

the observed and predicted forest cover change for CoFMA  ward n, and 
1
𝑀

 ∑ (𝑌𝑗 −𝑗𝜖𝐽𝑀(𝑛)

 𝑌̂𝑗) is the average difference between the observed and predicted forest cover change for 

control wards matched to CoFMA ward n. 
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𝜏̂ quantifies the average effect of treatment on CoFMA wards, i.e., it contrasts average rates 

of forest cover change of CoFMAs with average rates that potentially would have occurred, 

had they remained untreated. The null value, 𝜏 = 0, would imply that the treatment had no 

effect on CoFMA wards; although 𝜏̂ alone is not enough to assess the statistical support for 

the null or alternative hypotheses. Abadie and Imbens (2012) provide an expression for the 

variance of 𝜏̂, which can be used to test hypotheses about 𝜏, but our small dataset of 18 

CoFMA wards makes use of this expression unadvisable. Otsu and Rai (2017) describe a valid 

bootstrapping procedure which we adopted here to obtain upper and lower confidence 

limits for 𝜏. 

 

We defined the sample elements to be bootstrapped as follows: for each n = 1,…N, 𝑒𝑛 =

 𝑌𝑛 − 𝑌̂𝑛 , and 𝐾𝑀(𝑛) is the number of times ward n is used as a match. Subsequently,  

 

𝑒𝑛
∗ =  {

𝑒𝑛;  if ward 𝑛 is treated 
−𝐾𝑀(𝑛)

𝑀  𝑒𝑛;  if ward 𝑛 is a control.
 

 

The bias corrected estimator of ATET can be written as the average 
1

𝑁𝑡
 ∑ 𝑒𝑛

∗𝑁
𝑛=1 . A valid 

bootstrap confidence interval for 𝜏 can then be obtained by resampling 𝑒1
∗, … 𝑒𝑁

∗
 (Otsu and 

Rai 2017). 

 

3. Results 

3.1 Forest cover change 
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Overall forest extent on Pemba (excluding the Forest Protected Areas) was 260 km
2
 in 2001 

(25% of the area analyzed), 190 km
2
 in 2010 (18%), and 154 km

2 
in 2018 (15%) (Figure 1.3). 

Median forest cover change was -3.1 %/yr for 2001 – 2010, and -3.4%/yr for 2010 – 2018. 

Ward-level rates of forest cover change were generally negative, with 89% of wards 

experiencing a reduction in forest area during 2001 - 2010 and 75% during 2010 – 2018. 

Table S1.2 provides the percent change for each ward.  

 

3.2 Socio-ecological factors 

We found no evidence that factors associated with remoteness (ward area; human density; 

human growth rate; distance to road; distance to coast; distance to Wete; proportion of 

area with prior intact forest) had an impact on forest cover change for 2010-2018 across all 

wards on Pemba. Likewise, we were unable to detect an effect of productivity potential 

(precipitation; elevation; slope; soil type) on forest cover change. The estimated effects of 

these covariates are reported in Table S1.5. 

 
3.3 Evidence of non-random selection of CoFMA wards and matching analysis 

Prior to matching, the standardized mean difference of CoFMA wards versus control wards 

was large for certain covariates: in particular, the ratio of forest to ward area (Figure 1.4). 

CoFMA wards had a larger proportion of ward containing forest than control wards, 

suggesting that CoFMA selection was biased towards wards containing a larger proportion 

of forest. Compared to the controls, areas chosen for CoFMAs had more forest relative to 

ward area in 2010, higher precipitation, and greater total ward area (Figure 1.4). In contrast, 

areas chosen for CoFMAs tended to be closer to the sea and have lower population density 

(Figure 1.4). The post-match differences showed that selection of matches brought the 
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standardized mean difference closer to zero, and therefore brought the explanatory 

variables of the matched controls into greater concordance with those of the CoFMA wards.  

 

3.4 Average effect of CoFMA status 

Finally, our analysis suggests that CoFMA wards had a slight positive effect on average, but 

uncertainty about the estimated effect is large compared to its magnitude (𝜏̂ = 0.07 %/yr, 

bootstrap 95% CI = - 2.2, 2.6). Although the average difference in forest cover change 

between treated wards and their matched controls is 0.07 %/yr, the bootstrap interval 

contains the value zero, therefore we were unable to rule out the possibility that control 

and CoFMA wards were equivalent in their rates of forest change, or that CoFMAs were 

doing slightly worse than controls (Figure 1.5).  

 

4. Discussion 

Our results imply that Community Forest Management Agreements (CoFMAs) had no 

demonstrable effect on forest cover change in Pemba wards during the eight years after 

initiation (Figure 1.5). These findings add to the growing evidence that reducing 

deforestation through community forest management (CFM) is not certain, and efficacy 

varies within and between projects (Somanathan et al. 2009, Urech et al. 2013, Pollini et al. 

2014, Oldekop et al. 2019). 

 

4.1 Factors contributing to the average effect of CoFMAs 

Spatiotemporal factors likely contribute to our finding that CoFMA status does not have an 

effect on forest cover change. The spatial extent of Pemba is small – the island is 

approximately the size of Manhattan, NY. The amount of forest on Pemba is also small - in 
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2001, 25% of Pemba was forested, which was reduced to 15% by 2018 (Figure 1.3). 

Furthermore, the island is divided into >100 wards, which we use as the unit of analysis in 

our study (Figure 1.1). This reduced spatial scale is important in two ways. First, the buffer 

zone for reducing the likelihood of leakage (the spatial shift in extraction to a location 

outside the boundary) is small; thus, it is relatively easy for people to travel across ward 

boundaries and extract unsanctioned resources from another ward’s forest. Second, 

relatively small levels of unregulated take or land use change have a large influence on the 

percent of forest cover within that ward. Other studies have also reported on the high 

variability of forest cover change between communities (Blackman et al. 2017, Santika et al. 

2017), and the ability for larger forests to withstand deforestation pressure more effectively 

(Chhatre and Agrawal 2009, Oldekop et al. 2019).  

 

When considering temporal scale, we focused on change across time, creating a simple 

before-after CoFMA scenario, and accounting for years with few satellite images – a 

common issue given Pemba’s particular geographic location and cloud cover (Van Den Hoek 

et al. 2014). However, the eight years that elapsed between CoFMA initiation and the 

completion of our study may not have been long enough to detect the positive benefits of 

replanting programs through our satellite imagery. Studies that have demonstrated reduced 

deforestation in CFMs have had the benefit of a longer time frame and show that CFMs that 

have been in place for more than a decade are more likely to have reduced deforestation 

(Rasolofoson et al. 2015, Oldekop et al. 2019). To that end, we contend that REDD+ on 

Pemba remains promising, and we encourage localized forest monitoring to continue on 

Pemba in addition to remote sensing analyses, to be able to capture the future extent of 

reforestation efforts.  
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We focused on factors that represented productivity potential and opportunity cost.  

However, processes not measured in our study may have influenced forest removal. We 

used ward-level human population growth following the 2002 and 2012 population census, 

but growth rates since 2012 may have influenced forest cover change patterns we 

witnessed for 2010 – 2018. For example, anecdotal evidence suggests that four wards that 

experienced the greatest reversal from a positive rate of forest change (2002-2010) to a 

negative rate of forest change (2010-2018) had rapid rates of human population increase in 

recent years (M. Borgerhoff Mulder, unpublished). Likewise, Euclidean distance measures 

may have underestimated the remoteness of some areas. For instance, the three CoFMAs 

that had the most improved rate of forest cover change in comparison to the predicted 

were comprised of small islands accessible only by boat (Mtambwe Kusini; Kisiwa Panza, 

Shumba Mjini). Leakage associated with forest protected areas is a commonly cited 

phenomenon in the literature (Ewers and Rodrigues 2008, Wunder 2008). The five wards in 

proximity to the Ngezi Vumawimbi Nature Reserve exhibited worse rates of forest cover 

change relative to that predicted. Linkages between forest protected areas and the CFM 

approach warrant further exploration (Porter-Bolland et al. 2012, Sims and Alix-Garcia 

2017). Finally, incentive structures have altered over time; CoFMA wards on Pemba have 

benefitted from an initial community payment in return for REDD+ inclusion and from 

strong land tenure rights. Accordingly, several wards that were not initially included have 

vocalized a desire to become REDD+ certified (Andrews et al. 2020). Conversely, additional 

carbon-based payments to communities have not appeared, due to the unreliable voluntary 

cap and trade system (Norman and Nakhooda 2015, Sunderlin et al. 2015); as such one of 

the 18 CoFMA wards has indicated they intend to renounce their status. Understanding 
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factors influencing forest cover change may require examining specific cases in more detail 

in addition to examining the average effect. Accordingly, other studies have discussed that 

reporting the average treatment effect alone can mask the idiosyncratic spatiotemporal 

variation in forest cover change (Chhatre and Agrawal 2009, Fernandes et al. 2016, Lund et 

al. 2018).  

 

4.2 Techniques for assessing CFMs 

As expected, our results indicated that wards on Pemba were non-randomly selected as 

CoFMAs (Figure 1.4). As such, we accounted for non-random selection of CoFMAs by using a 

spatiotemporal baseline of condition and a high number of appropriate socio-ecological 

covariates. We also implemented a bias-corrected matching procedure with bootstrapping; 

a particularly effective protocol for estimating the average effect of CoFMAs when the 

number of designated CoFMA areas is low (Abadie and Imbens 2006, 2011). Our method 

satisfies recent calls for more rigorous experimental designs when assessing outcomes of 

REDD+ and other CFM projects (Andam et al. 2008, Bowler et al. 2012, Borner et al. 2016, 

Hajjar et al. 2016, Hajjar and Oldekop 2018, Schleicher et al. 2019).  

 

4.3 Forest cover change  

Our results demonstrate that yearly rate of forest loss for all wards across Pemba was 

slightly higher in the time period after CoFMA implementation (2001-2010 = -3.1%/yr vs 

2010 – 2018 = -3.4%/yr; Figure 1.3). This scale of deforestation is seen across other islands 

such as Madagascar and Hawaii (Harper et al. 2007, Asner et al. 2016) and is in keeping with 

the notion that oceanic islands are particularly vulnerable regions (Hansen et al. 2006, 

Gilman et al. 2008, Ward et al. 2016). Although we were unable to identify specific ward-
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level drivers of forest cover change, Pemba’s forests remain vulnerable to human 

extraction, pollutants, and land conversion, and Pemba’s mangroves face additional climate 

change related stressors such as salt inundation resulting from sea level rise (Ngoile and 

Shunula 1992, Punwong, Marchant, and Selby 2013, Hamad, Mchenga, and Hamisi 2014; 

Mchenga and Ali 2015). These stressors on Pemba’s forests need to be considered when 

assessing the future designation of sites on Pemba and future potential outcomes of REDD+. 

In addition, other REDD+ projects should factor in a sites’ capability as a refuge area from 

climate-related pressures (Santika et al. 2017, Maharaj et al. 2019). 

 

4.4 The future of REDD+ and CFMs 

Since REDD+ came into existence following the Kyoto Protocol in 2012, REDD+ projects have 

been under intense scrutiny. Although the debate surrounding the efficacy of the REDD+ 

global strategy continues (Redford and Padoch 2013, Fletcher et al. 2016, 2017), it is also 

recognized that due to the complexities and unique settings of REDD+ projects, each project 

can offer new insights and potential lessons to be learnt (Simonet et al. 2015, Andrews et al. 

2020). Therefore, it is important to assess local projects systematically and individually.  

 

Our study supports the concept that “decentralization is not a panacea” (Paulson Priebe et 

al. 2015); there was no overall effect on forest cover change of ward participation in REDD+, 

though CoFMA wards that did better than expected are highlighted and should be examined 

in closer detail. In addition, enough time needs to elapse for the benefits of replanting 

projects to manifest, and our results demonstrate the importance of considering 

spatiotemporal scale when examining forest cover change as an outcome of CFM. These 

lessons learnt from Pemba can be applied to REDD+ and CFM globally, and future work 
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should continue to monitor forest cover change using high-quality data and appropriate 

methodology. Given our new understanding of forest cover change on Pemba, attention 

should also be directed to linking these rates to additional outcomes of REDD+ projects, in 

the form of biodiversity, poverty alleviation improved livelihoods (Ellis and Freeman 2006, 

Strassburg et al. 2010, Panfil and Harvey 2016, Rasolofoson et al. 2017, Sollmann et al. 

2017).  
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Figures 

Figure 1.1. Location of Pemba Island, Tanzania, and the 18 wards that signed Community 

Forest Management Agreements (green). 
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Figure 1.2. Heat map of covariates used for matching analysis on Pemba Island, Tanzania: (a) 

median April precipitation mm (1970-2000) (b) elevation (mm) (c) slope (d) soil type; 

Hypoluvic Arenosols, Eutri-humic Regosols, and Ferralic Cambisols (e) human density per 

km
2
 per ward in 2002 (f) human population growth rate for 2002-2012 (g) distance to road 

(h) distance to coast (i) distance  to Wete. 
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Figure 1.3. Forest cover on Pemba Island, Tanzania, for (a) 2001 (b) 2010 and (c) 2018. 

Forest protected areas in the North were excluded from analysis (grey shading). 
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Figure 1.4. Love plot demonstrating the standardized mean difference between CoFMA 

treated wards and control wards on Pemba Island, Tanzania. Control wards prior to 

matching include all 98 controls, post-matching include the 48 selected. Negative 

standardized mean difference indicates treated CoFMAs had a lower mean covariate value 

than the controls, and positive values indicate a higher mean. 

  Standardized Mean Differences 
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Figure 1.5. A comparison of predicted and observed forest change from 2010 - 2018 for 

treated CoFMA wards (red circles) and matched control wards (grey circles) on Pemba 

Island, Tanzania. Predicted forest change is based on the spatial autoregressive model 

derived from control wards. The line of equality (grey line) depicts wards that would have an 

equal predicted to observed value. 
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Supplement 

Table S1.1. Confusion matrices of the classification map resulting from the Landsat 5 

composite image for 2001, Landsat 7 composite for 2010, and Landsat 8 composite for 

2018. User and producer accuracy was calculated as per Congalton (Congalton 1991).  

 

2001 Non-forest Forest Row Total  User 
Accuracy 

Non-forest 86 5 91 94.51% 

Forest 3 46 49 93.88% 

Column Total 89 51 140   

Producer 

Accuracy 

96.63% 90.20%     

Kappa Coefficient 0.88 

 

2010 Non-forest Forest Row Total  User 
Accuracy 

Non-forest 79 3 82 96.34% 

Forest 2 41 43 95.35% 

Column Total 81 44 125   

Producer 

Accuracy 

97.53% 93.18%     

Kappa Coefficient 0.91 

 

2018 Non-forest Forest Row Total  User 
Accuracy 

Non-forest 82 0 82 100.00% 

Forest 5 38 43 88.37% 

Column Total 87 38 125   

Producer 

Accuracy 

94.25% 100.00%     

Kappa Coefficient 0.91 

 

  



 32 

Table S1.2. Ward-level forest cover (%) for the three years of analysis, and the annual rate of 

forest cover change for 2001-2010 (time period 1) and 2010-2018 (time period 2). Treated 

CoFMA wards are printed in red italicized bold font. Foot notes indicate wards that were 

removed from analysis due to zero forest. Wards classed as urban were removed from the 

matching procedure. 

Ward  2001 
forest 
cover (%) 

2010 
forest 
cover (%) 

2018 
forest 
cover (%) 

Annual rate 
of change 
period 1 

Annual 
rate of 
change 
period 2 

Urban 
status 

Bopwe 2.77 3.06 4.62 1 5.8 Urban 

Chachani
1
 0.00 0.00 0.00 - - Urban 

Chambani 17.33 12.42 8.96 -3.4 -4.4 Rural 

Changaweni 51.92 31.14 21.43 -5.2 -5 Mixed 

Chanjaani 23.67 17.49 15.55 -3.1 -1.6 Mixed 

Chimba 3.18 1.15 4.67 -10.1 21.3 Rural 

Chokocho 20.02 12.20 9.17 -5.1 -3.9 Rural 

Chonga 34.65 20.33 14.12 -5.5 -4.9 Rural 

Chumbageni 47.21 28.67 20.72 -5.1 -4.4 Rural 

Chwale 13.32 10.11 5.22 -2.9 -8.7 Rural 

Dodo 13.77 10.34 8.23 -3 -3.1 Rural 

Finya 9.43 3.55 3.36 -9.8 -0.8 Rural 

Fundo 31.72 22.27 13.44 -3.7 -6.7 Rural 

Gando 40.37 33.17 28.92 -2 -1.9 Rural 

Jadida 26.23 27.77 27.92 0.6 0.1 Urban 

Jombwe 12.46 11.40 8.13 -0.9 -4.6 Rural 

Junguni 42.11 29.28 19.73 -3.8 -5.3 Rural 

Kambini 10.64 9.78 5.93 -0.9 -6.7 Rural 

Kangagani 15.24 12.18 9.26 -2.3 -3.7 Rural 

Kangani 24.46 18.23 15.53 -3 -2.2 Rural 

Kendwa 12.32 8.40 9.10 -4 1.1 Rural 

Kengeja 31.13 22.87 18.51 -3.2 -2.9 Mixed 

Kibokoni 9.91 8.01 7.08 -2.2 -1.7 Rural 

Kichungwani 54.12 69.54 50.11 2.7 -4.4 Urban 

Kifundi 27.27 22.72 17.83 -1.9 -3.3 Rural 

Kilindi 45.86 42.43 36.55 -0.8 -2 Rural 

Kinowe 24.77 21.21 18.73 -1.6 -1.7 Rural 

 

1 Removed from analysis for having zero forest cover 
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Kinyasini 29.81 9.52 10.72 -11.3 1.6 Rural 

Kinyikani 2.08 1.31 2.21 -4.7 7.5 Rural 

Kipangani 34.65 30.42 25.35 -1.4 -2.5 Urban 

Kisiwa Panza 60.89 59.45 47.88 -0.3 -2.9 Rural 

Kisiwani 22.85 15.81 16.73 -3.8 0.8 Rural 

Kiungoni 5.59 5.52 3.18 -0.1 -7.3 Rural 

Kiuyu 

Kigongoni 

0.75 0.32 0.56 -8.5 8 Rural 

Kiuyu 

Mbuyuni 

9.21 8.58 5.06 -0.7 -7 Rural 

Kiuyu 

Minungwini 

19.00 13.56 14.58 -3.5 1 Rural 

Kiwani 29.48 24.17 17.45 -2.1 -4.4 Rural 

Kizimbani 1.27 0.88 7.34 -3.8 33.9 Urban 

Kojani 24.01 21.83 14.98 -1 -5.1 Rural 

Konde 2.00 0.87 0.99 -8.5 1.9 Mixed 

Kuukuu 48.34 47.10 34.31 -0.3 -4.3 Rural 

Kwale 13.39 9.58 10.14 -3.5 0.8 Rural 

Limbani 33.38 17.36 22.52 -6.7 3.7 Urban 

Madungu 7.98 10.53 4.23 3 -11.8 Urban 

Majenzi 38.11 36.29 31.94 -0.5 -1.7 Urban 

Makangale 25.48 25.98 5.83 0.2 -18.6 Rural 

Makombeni 39.71 33.37 22.72 -1.8 -5.2 Rural 

Makoongwe 33.84 33.44 10.36 -0.1 -14.9 Rural 

Matale 5.27 2.75 2.51 -6.6 -1.3 Rural 

Maziwa 

Ng'ombe 

2.91 2.70 0.40 -0.8 -23 Rural 

Maziwani 3.39 2.89 2.49 -1.7 -2 Rural 

Mbuguani 54.83 39.12 27.36 -3.5 -4.8 Mixed 

Mbuyuni 42.53 38.65 23.80 -1 -6.5 Urban 

Mbuzini 3.82 2.17 2.03 -5.8 -0.9 Rural 

Mchanga 

Mdogo 

6.35 6.67 4.06 0.5 -6.6 Rural 

Mfikiwa 6.58 3.25 3.12 -7.2 -0.5 Rural 

Mgagadu 23.52 18.35 13.84 -2.6 -3.8 Rural 

Mgelema 57.43 36.52 30.80 -4.7 -2.3 Rural 

Mgogoni 26.73 11.63 7.12 -8.4 -6.5 Rural 

Mgogoni 

South 

5.12 10.56 2.80 7.9 -16.7 Rural 

Michenzani 23.34 20.34 15.98 -1.4 -3.3 Rural 

Micheweni 9.05 7.06 9.77 -2.6 4.6 Mixed 

Michungwani 18.20 9.75 9.96 -6.4 0.3 Rural 

Mihogoni 3.45 1.41 3.19 -9 12 Rural 
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Minazini 18.40 11.06 8.41 -5.2 -3.7 Rural 

Mizingani 48.53 23.02 24.08 -7.6 0.6 Rural 

Mjimbini 30.32 16.37 9.53 -6.3 -7.2 Rural 

Mjini Ole 5.60 3.05 2.33 -6.2 -3.6 Rural 

Mjini Wingwi 26.09 21.42 14.86 -2.1 -4.9 Rural 

Mkanyageni 33.63 11.74 10.07 -10.5 -2.1 Rural 

Mkoroshoni 5.84 0.89 2.22 -18 13.5 Urban 

Mkungu 25.54 9.82 10.09 -9.6 0.4 Rural 

Mlindo 2.14 4.27 1.06 7.6 -17.5 Rural 

Mpambani 39.29 39.09 20.88 -0.1 -8.3 Rural 

Msingini 2.09 3.95 1.16 6.9 -15.5 Urban 

Msuka 
Magharibi 

7.89 5.27 3.14 -4.2 -6.9 Rural 

Msuka 

Mashariki 

12.74 8.29 6.45 -4.4 -3.4 Rural 

Mtambile 29.74 8.82 6.80 -12 -3.5 Mixed 

Mtambwe 
Kaskazini 

44.07 29.80 29.98 -4 0.1 Rural 

Mtambwe 
Kusini 

55.01 39.34 39.51 -3.5 0.1 Rural 

Mtangani 16.88 13.14 11.32 -2.6 -2 Rural 

Mtemani 15.54 13.24 6.86 -1.7 -8.7 Rural 

Muambe 10.56 9.28 6.83 -1.4 -4.1 Rural 

Mvumoni 18.73 15.67 7.69 -1.9 -9.4 Rural 

Mzambaraun

i Takao 

25.17 7.96 13.33 -11.4 7.4 Rural 

Ndagoni 30.33 27.67 18.44 -1 -5.4 Rural 

Ng'ambwa 3.91 0.54 1.11 -18.8 10.4 Mixed 

Ng'ombeni 12.87 10.87 6.73 -1.8 -6.4 Urban 

Ngwachani 26.33 9.87 7.26 -9.8 -4.1 Rural 

Ole 5.24 2.38 1.66 -8 -4.9 Rural 

Pandani 6.29 2.94 6.52 -7.7 11.6 Rural 

Pembeni 8.89 8.26 7.14 -0.8 -2 Rural 

Piki 33.22 12.94 15.33 -9.4 2.4 Rural 

Pujini 5.48 3.20 1.80 -5.5 -7.6 Rural 

Selem 23.78 15.99 27.36 -4.1 7.7 Urban 

Shamiani 35.02 27.91 15.09 -2.4 -8.1 Rural 

Shengejuu 16.79 14.43 11.57 -1.6 -3 Rural 

Shidi 46.55 29.06 22.16 -4.8 -3.7 Rural 

Shumba 
Mjini 

52.48 44.60 35.84 -1.7 -3 Rural 

Shumba 

Viamboni 

5.58 1.35 5.17 -13.8 20.3 Rural 
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Shungi 39.20 28.97 16.29 -3.1 -7.6 Rural 

Sizini 16.57 15.55 13.07 -0.7 -2.4 Rural 

Stahabu 16.18 11.13 8.63 -3.9 -3.4 Rural 

Tibirinzi 38.50 26.52 26.95 -3.8 0.2 Urban 

Tondooni 24.76 20.99 16.08 -1.7 -3.6 Rural 

Tumbe 
Magharibi 

18.47 12.64 9.58 -3.9 -3.7 Rural 

Tumbe 

Mashariki 

30.76 29.74 17.86 -0.4 -6.8 Rural 

Ukunjwi 42.85 31.63 27.12 -3.1 -2.1 Rural 

Ukutini 10.85 7.01 5.09 -4.5 -4.3 Rural 

Utaani
2
 0.00 0.00 2.37 - - Urban 

Uwandani 2.79 2.35 0.64 -1.8 -16.3 Rural 

Uweleni 47.05 23.86 16.79 -6.9 -4.7 Urban 

Vitongoji 2.22 2.49 0.38 1.2 -22.8 Rural 

Wambaa 37.53 24.81 17.76 -4.3 -4.5 Rural 

Wara 1.34 3.43 0.51 10.5 -23.2 Urban 

Wawi 0.61 1.97 3.25 13.1 7.1 Rural 

Wesha 32.94 21.90 21.07 -4.2 -0.5 Rural 

Wingwi 

Mapofu 

9.01 8.00 7.38 -1.2 -1.1 Rural 

Wingwi 

Mjananza 

31.93 28.73 20.54 -1.1 -4.5 Rural 

Wingwi 

Njuguni 

0.45 0.91 0.36 7.6 -11.9 Rural 

Ziwani 23.77 20.40 17.30 -1.6 -2.2 Rural 

 

 

 

2 Removed from analysis for having zero forest cover 
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Table S1.3. All wards on Pemba and their associated neighboring wards. 
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Table S1.4. The CoFMA treated wards and their respective five matched control wards. 
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Table S1.5. The mean of each covariate used for the matching procedure for treated and 

control wards before and after matching. 

Ward-level covariates Means 
Treated  
 

Means 
control 
Pre-match 

Means 
control 
post-match 

Annual deforestation rate (2010-
2018) 

-0.033 -0.037 -0.034 

Growth rate (2002-2012) 0.933 0.962 1.2 

Median elevation 20.6 22.4 20 

Median slope 4.7 4 4.3 

Ward area 16.2 15.9 16 

Population density 5.7 6 5.9 

Forest relative to total area 2010 -1.5 -2.4 -1.9 

Median April precipitation 6 5.8 5.9 

Median distance to coast 1 1.7 1.2 

Median distance to nearest major 
road 

2.6 1.8 2 

Median distance to Wete 11.6 12.8 12.6 
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Table S1.6. The coefficients and SE in parentheses of the two spatial autoregressive (SAR) 

models; Ordinary lagged SAR and two-stage robust lagged SAR, performed to make 

predictions for treated wards based on the controls (average effect of CoFMA status), along 

with models fitted by the same methods for the combined dataset of treated and controls 

(socioecological factors). A covariate for which | estimate/SE | ≥ 2.91 can be considered a 

significant predictor of forest cover change under the Bonferroni multiple-testing rule. 

 Lagged SAR 2-stage Robust SAR 

Variable Controls only 
Bias-corrected 
ATET 

All Observations 
Treated & 
controls 

Controls only 
Bias-corrected 
ATET 

All Observations 
Treated & controls 

Annual 
deforestation 
rate in time 
period 1 

-0.756 (0.163) -0.704 (0.419) -0.656 (0.364) -0.661 (0.332) 

Growth rate 0.002 (0.004) 0.002 (0.004) 0.003 (0.003) 0.003 (0.003) 

Median elevation 0.001 (0.001) 0.00 (0.001) 0.001 (0.002) 0.001 (0.001) 

Median slope -0.008 (0.009) -0.01 (0.008) -0.004 (0.009) -0.008 (0.007) 

Ward area -0.008 (0.017) 0.004 (0.015) 0.001 (0.021) 0.008 (0.017) 

Population 
density 

0.006 (0.015) 0.01 (0.014) 0.013 (0.017) 0.015 (0.014) 

Area of forest in 
2012 

-0.01 (0.009) -0.007 (0.008) -0.01 (0.012) -0.009 (0.012) 

Median April 
precipitation 

0.028 (0.045) 0.038 (0.041) 0.014 (0.052) 0.032 (0.046) 

Median distance 
to coast 

-0.003 (0.012) -0.003 (0.011) -0.005 (0.012) -0.005 (0.01) 

Median distance 
to nearest major 
road 

0.003 (0.006) 0.0002 

(0.005) 

0.002 (0.008) 0.00009 (0.005) 

Soil (CMo) 0.003 (0.025) 0.013 (0.021) -0.003 (0.023) 0.01 (0.018) 

Soil (RGe) -0.034 (0.022) -0.025 (0.019) -0.021 (0.025) -0.021 (0.02) 

Median distance 
to Wete 

-0.003 (0.002) -0.002 (0.001) -0.002 (0.002) -0.001 (0.001) 

CoFMA status - -0.003 (0.015) - -0.006 (0.011) 
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Chapter 2: Evidence that the landscape of fear and human shield are 

mutually inclusive: Differential spatiotemporal responses of wildlife to 

sensory pollution on roads 

Amy C. Collins, Travis Longcore, T. Winston Vickers, Fraser M. Shilling 

 

1. Introduction 

Roads are ubiquitous features of the modern landscape, with a network of 6.2 million km in 

the United States (Forman and Alexander 1998, Forman 2000). Though road networks 

increase connectivity and mobility of humans, roads can and do have detrimental effects on 

both humans and wildlife. Collisions between wildlife and vehicles on roads are a common 

source of human-wildlife conflict, and often result in high financial losses, injury, and 

mortality; in the United States, over 59,000 human injuries and 440 human fatalities occur 

annually (Nyhus 2016, Conover 2019). Roads also cause habitat loss and fragmentation for 

wildlife by creating barriers across the landscape that can be impervious to wildlife 

movement (Ree et al. 2015).  

 

Crossing structures (CS) provide a safe route for wildlife to navigate across roads, 

simultaneously reconnecting habitat and promoting human-wildlife coexistence by lowering 

collision rates (Clevenger and Waltho 2000, Rytwinski et al. 2016, Claireau et al. 2019).  

Many studies have demonstrated wildlife use of a diverse set of CS such as underpasses, 

overpasses, bridges, and culverts (Ree et al. 2007), but documentation of use is distinct from 

an assessment of CS efficacy (van der Grift et al. 2013, Rytwinski et al. 2015). CS efficacy can 

be influenced by factors such as structural design and pedestrian activity by humans 
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(Clevenger and Waltho 2000, Brunen et al. 2020). Further, the efficacy of CS might be 

affected by the exposure of animals to increased noise and artificial light at night produced 

by vehicles and the surrounding environment (Clevenger and Waltho 2005, Kintsch and 

Cramer 2011, Gaston and Holt 2018).  

 

The effects of anthropogenic noise and light at night on wildlife, collectively referred to as 

sensory pollution, are widespread and now at the forefront of conservation biology 

(Madliger 2012, Dominoni et al. 2020, Owens et al. 2020). Noise and light pollution can 

impact wildlife near roads in multiple ways. For instance, noise pollution from vehicles has 

caused declines in population density and species richness of birds, and experimental 

additions of noise to undisturbed areas, known as ‘phantom roads’, has negatively impacted 

bird distributions, and foraging-vigilance behavioral trade-offs (Goodwin and Shriver 2011, 

Blickley et al. 2012, McClure et al. 2013, Ware et al. 2015, Konstantopoulos, Moustakas, and 

Vogiatzakis 2020). Static sources of light pollution such as streetlights at or within CS can 

reduce use by herpetofauna and some mammals (Woltz et al. 2008, Bliss-ketchum et al. 

2016). At night, vehicles are a source of noise and light pollution simultaneously, with 

exposure being irregular and unpredictable during periods of lower traffic volume (Halfwerk 

and Slabbekoorn 2015). 

 

Few studies have examined the effect of the two pollutants together. Those that have 

revealed mixed results; either negative synergistic effects on host-parasite interactions, bird 

activity and reproductive success (McMahon, Rohr, and Bernal 2017, Dominoni et al. 2020, 

Ferraro, Le, and Francis 2020), or a singular negative effect of noise pollution on bird 

physiology (Raap et al. 2017). Consequently, there is an urgent need to understand the 
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effects of both noise and light pollution on mammals. Furthermore, species-level responses 

to sensory pollution are differential, and are determined by species’ sensory systems, 

behavioral plasticity, and community assemblage (Swaddle et al. 2015, Da Silva, Valcu, and 

Kempenaers 2016, Dominoni et al. 2020). Therefore, responses to combined sensory 

pollutants need to be considered at the species and community level. 

 

Decisions made by wildlife when moving across the landscape are thought to be influenced 

by the risk of predation. Alterations in behavior or distribution of wildlife in response to 

perceived predation risk can be classified as consequences of the ‘Landscape of Fear’ 

(Laundré et al. 2001, Laundre et al. 2010), and this concept is now being applied to 

anthropogenic disturbances (Darimont et al. 2015). Sensory pollution, as a type of 

anthropogenic disturbance, may be considered a predation risk by wildlife and could induce 

behavioral changes associated with minimizing predation risk (Francis and Barber 2013). 

Two common behavioral responses to heightened risk in a LOF are temporal and spatial 

avoidance (Oriol-cotterill et al. 2015). ‘Road avoidance zones’ have been documented for a 

number of mammal species (Forman 2000, 2003), and such spatial avoidance likely is costly 

for wildlife. Individuals consistently avoiding CS will lose access to, and benefits of, 

otherwise-viable habitat and associated resources, and because CS are expensive and 

consequently rare within the landscape, alternative passages for wildlife usually are 

unavailable (Gill et al. 2001). Temporal avoidance may be an alternate or additional 

response by wildlife to noise and light pollution at CS; some mammal species have altered 

their diurnal activity patterns to avoid human interactions (Gaynor et al. 2018). Increased 

nocturnality can have costs, such as altered trophic interactions and decreased physiological 
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health from sleep deprivation and stress (Patten, Burger, and Mitrovich 2019, Dominoni et 

al. 2020). 

 

In contrast to avoiding CS because of increased risk, some wildlife species may perceive CS 

as having relatively low predation risk. CS with high levels of light pollution may facilitate 

detection of predators by prey species. Further, avoidance of noise or light pollution by 

predators may create a predator-free space near CS, thus offering a ‘Human Shield’ against 

predators for the potential prey (Shultz and Noe 2002, Berger 2007, Francis et al. 2009). For 

example, some prey species have been observed spatially redistributing to human-

frequented features such as roads and railroads in order to seek refuge from predators 

(Berger 2007). Under this scenario, whether actively utilized for this reason or not, it would 

be beneficial for prey species to increase their association with CS. 

 

Our objective was to evaluate the impact of vehicular noise and light pollution from vehicles 

and streetlights on the mammal community at 26 wildlife CS across northern, central, and 

southern California. We tested two alternative hypotheses regarding how noise and light 

conditions impacts spatiotemporal distributions of mammals at CS; the Landscape of Fear, 

which predicts mammals will spatiotemporally avoid the CS, and the Human Shield, which 

predicts prey species will be attracted to the CS. Using camera trap methods, we 

determined spatial avoidance by quantifying effects on species richness of mammals and by 

examining changes in the number of visitations to the CS in a subset of species from two 

trophic levels: two mesopredators, bobcat (Lynx rufus) and coyote (Canis latrans), and one 

prey species, mule deer (Odocoileus hemionus). In addition, we determined whether noise 
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and light pollution affect the time of day (i.e. temporal response) at which these focal 

species are present at CS by investigating diel activity patterns.  

 

2. Methods  

2.1 Study Area 

The study was conducted July 2017 through October 2019 and included five regions of 

California: Shasta Cascades, San Francisco Bay Area, Central Valley, Eastern Sierras, and 

Southern California (Figure 2.1). Across the five regions, we selected 26 CS that were 

underpasses and box culverts built with the intention of facilitating wildlife crossings, or 

were underpasses, bridges, and culverts primarily constructed for road conveyance over 

watercourses. To encompass a broad spectrum of levels of exposure to noise and light, we 

selected CS that crossed state or federal highways ranging from one to five lanes of traffic, 

and that represented a range of traffic volume (910 – 253,000 Average Annual Daily Traffic; 

California Department of Transportation 2015a, 2015b). CS in southern California and the 

Bay Area were predominantly located in urban habitats, with some CS located in coastal 

sage scrub or riparian habitats. CS in the Shasta Cascades, Central Valley, and Eastern Sierras 

were surrounded by a mix of urban habitats, conifer forest, oak woodland, riparian 

woodland, or annual grassland.   

 

2.2 Camera trapping 

To detect wildlife presence and diel activity at CS, we deployed four camera trap stations at 

each CS for an average of 44 days (range = 21 – 117 days). One camera was placed near 

each side of both entrances of the CS, facing toward the inside of the structure, at a 45-

degree angle to the entrance. We positioned cameras (Bushnell Trophy Cam HD Aggressor) 
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approximately 0.5 m above the ground (Meek et al. 2014) using available mounting surfaces 

such as trees or boulders. Cameras were set to a minimum of 3 seconds between trigger 

events, with one trigger event at a time.  

 

To establish a baseline for species richness and diel activity in the vicinity of the CS, we 

identified a reference region 0.7 – 3.0 km (mean = 1.8 km) from the CS, in a direction 

perpendicular to the highway. Each reference region was chosen based on the following 

criteria: 1) undeveloped habitat, i.e. conifer forest, oak woodland, or coastal sage scrub ; 2) 

accessibility, i.e. public forest land, public recreational areas, or private ranch land with 

granted access; 3) exposure to only ambient noise levels, identified as  ~ 1 km from the 

highway (Francis and Barber 2013); and 4) close enough to be within the home range of 

resident wildlife, to ensure observations of individuals that also have access to the CS. We 

deployed an eight-camera array in the reference region for the same duration as was used 

at the CS. Camera stations were >100 m apart, positioned along wildlife trails, disused 

access roads, and openings in vegetation. Four of the eight reference stations were left as 

non-baited and were used to inform us of species richness and diel activity patterns. We 

collected additional information on species richness using two reference stations that were 

baited for herbivores (corn, peanut butter, and dried fruit), and two reference stations that 

were baited for carnivores (raw chicken meat, cat food, and commercial Lynx© spray, a 

carnivore lure) to ensure we captured as diverse an array of species as possible. Cameras 

were set to have a 10-second delay between trigger events due to the high occurrence of 

false triggers caused by wind-induced vegetation movement.  
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Wildlife images were uploaded to an online database “Wildlife Observer Net” developed by 

the UC Davis Road Ecology Center. A trained observer identified species present in each 

image, and each identification was then verified by a second trained observer. We classed a 

unique detection event of the same species as two images ≥ 1 hour apart, as per Sollmann 

(2018). One hour was chosen to accommodate long feeding bouts observed at the baited 

camera trap stations. All domestic animals were eliminated from the dataset. 

 

2.3 Measurements of noise and light pollution 

To quantify vehicular noise, we sampled sound pressure levels after the camera trapping 

period was complete for each CS, beginning early 2019. Two digital sound level meters 

(TENMA 72-947 and PCE-322; 30-130 range, slow setting) were placed at the entrance of 

the CS closest to the reference region, on a tripod 0.5 m in height. Sound pressure levels 

were measured in 59-second increments over a 7-day period. We chose the maximum 

length of incremental measurements (59 seconds) to allow for a week-long period of data 

collection without exceeding the data storage capacity of the sound meter. Sound meters 

measured noise in decibels, one meter used a C-weighting filter (dBC) and the other an A-

weighting filter (dBA). After data collection, we extracted the median noise (L50) for each CS. 

Due to an equipment failure on the A-weighted meter at one site, we focus on dBC data 

hereafter, and provide site-level data for L50 dBC and dBA in the supplemental (Table S2.1). 

We also identified 24-hour profiles of traffic noise at sites at which each species was 

recorded. 

 

To measure night-time illuminance emitted by vehicle headlights, skyglow, and streetlight 

sources at the CS, we followed methods outlined in Simons, Yin and Longcore (2020). We 
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recorded a still, 180° image of the night sky at the same CS entrance where sound 

measurements were taken, using a digital camera (Canon Rebel T6; ISO 1600, aperture 

f/2.8) with a circular fisheye lens (Sigma 4.5 mm F
−2

.8 EX DC). For each location, the camera 

was adjusted to face 0 degrees N, levelled horizontally to 0 degrees inclination, with the 

fisheye lens oriented upwards. Camera exposure time was manually chosen to reduce the 

level of image saturation. Exposure time varied between 0.5 – 127.6 seconds. To avoid 

capturing moonlight, images were taken during the new moon phase. Scalar illuminance (SI) 

was then extracted from the raw images using image processing software (Sky Quality 

Camera, Euromix Ltd, V1.9) and the following equation (Duriscoe 2016, Jechow et al. 2017, 

Simons et al. 2020): 

 

SI = ∫2π0 ∫π20 L(θ,φ)sin(θ)dθdφ        (1) 

Where θ represents the zenith angle, φ the azimuthal angle, and L(θ,φ) the function for 

night sky luminosity.  

2.4 Measurements of covariates 

In addition to noise and light pollution, we quantified attributes of CS architecture and 

environmental characteristics surrounding the CS that may influence spatiotemporal 

patterns. We determined elevation using a handheld GPS device (Garmin eTrex 20x) at the 

point of the CS entrance. We measured CS width and length with a handheld digital laser 

rangefinder (Suaoki PRO 600m). CS that were too long to measure manually were measured 

using Google Earth Pro and its ruler function. We recorded whether flowing water or 

fencing was present at the CS. Water was classified as present or absent, and fencing was 

classified as: 1) fencing absent; 2) fencing present but partial (not extended all the way to 
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the entrance, and < 2 m height); or 3) fencing present and complete (extending all the way 

to the CS entrance, > 2 m height). 

 

Because surrounding habitat might influence occurrence of wildlife at CS, we used the 2016 

National Land Cover Database (NLCD; Dewitz 2016), a raster dataset based on Landsat 

satellite imagery, to determine the percentage of the various types of habitats and ground 

coverages at each CS. Each 30-m cell is categorized into 20 different land cover 

classifications, based on relative density and type. The locations of each of the CS, initially 

represented as points, were buffered by 100 m to make associated polygons. We used the 

tool Quantum GIS (Version 2.18; Team 2018) to load and analyze the data, using the raster 

library functions Zonal Histogram and Zonal Statistics. Within the buffer region of each CS, 

the associated raster cells were counted (by type) and summary statistics performed to get 

the dominant (majority) land cover type for each CS. Sites that had the dominant land cover 

type ‘Developed – open space’, ‘Developed – low intensity’, and ‘Developed – medium 

intensity’ were aggregated into one group defined as ‘Developed’ for analysis.  

 

We obtained records of daily minimum temperature from the National Oceanic and 

Atmosphere Administration online climate data (Version V01r00; Young et al. 2018) for 

every camera station at each CS and reference region using measurements from the closest 

weather station. We then calculated the mean daily minimum temperature for the duration 

of each camera station’s sampling period.  

 

Finally, the frequency of daily visitations by human pedestrians to each CS was quantified 

using images that had been tagged as humans present in the “Wildlife Observer Net” 
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database. All images that contained humans within the online database were rendered 

publicly inaccessible. All analyses described below were performed in RStudio (R v. 3.6.1; 

RStudio Team 2015).  

 

2.5 Statistical analyses 

2.5.1 Spatial displacement 

Species richness 

We evaluated whether traffic noise (dBC L50) and scalar illuminance (mlx) of the night sky 

would negatively impact species richness of mammals by employing a Poisson regression 

with a logit link (glmmADMB package; Bolker et al. 2012) We included covariates in the 

model representative of CS architecture and environmental characteristics: CS length, CS 

width, elevation, dominant NLCD category within 100 m buffer region of CS (developed; 

shrub/scrub; evergreen forest), water presence/absence, fencing type, daily minimum 

temperature, frequency of human daily visitation, and sampling year (2017; 2018; 2019). To 

account for variation in the sampling period between sites, sampling period was declared an 

offset. Site and individual camera were introduced as nested random effects. We fit three 

separate models: 1) a base model that included random effects, camera location (CS or 

reference region), baited or non-baited condition, sample year, and the offset; 2) the base 

model plus covariates, with traffic noise and light excluded; 3) the full model with all 

covariates, plus noise and light metrics. The model with the lowest AIC value was selected 

as the best model. We performed regression diagnostics on the best model using Pearson’s 

residuals.  
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To visualize the relationship of the response variable, species richness, with noise and light 

pollution, we simulated data using the ‘predict.glmmadmb’ function and the link scale for 

the full model (glmmadmb package; Bolker et al. 2012). We fixed each continuous covariate 

at the median value, and each categorical covariate as the level that had the best fit to the 

observed data. Because we were interested in the effect on species richness specifically at 

the crossing structure as opposed to the reference region, we set the covariates to non-

baited, CS cameras. Random effects were set to zero. Using the range of observed values for 

noise and light, we generated values of equal increments for each in turn (Table S2.1).  

 

Frequency of daily visitations  

To test for the effect of traffic noise and light on a second measure of spatial displacement, 

we examined daily visitation rates of three focal species that had an adequate number of 

observations: mule deer, bobcats, and coyotes. Due to differences in the distribution of 

count data for mule deer, a negative binomial model resulted in a better fit than the Poisson 

model. Subsequently, we employed a negative binomial with a logit link for mule deer 

observations. We employed a Poisson model with a logit link for bobcat and coyote 

observations. Covariates and methods for model selection and data simulation that were 

applied to species richness models were also applied to this analysis. 

 

2.5.2 Temporal displacement 

To test for effects of noise or light pollution on temporal displacement, we examined diel 

activity patterns of mule deer, bobcats, and coyotes in turn across three groups: the 

reference region; at CS exposed to low levels of noise or light pollution; at CS exposed to 

high levels of noise or light pollution. We defined the threshold for low/high noise pollution 



 63 

to be -/+ the median l50, > 59.7 dBC, and we defined the threshold for low/high light as 10 

mlx. Due to activity potentially being altered at baited cameras in the reference region, we 

used only non-baited cameras for analysis of temporal displacement.  

 

To account for variation in the time of year of sampling (Nouvellet et al. 2012), we 

converted the clock time of each detection into sun time using the ‘sunTime‘ function, 

overlap package (Ridout and Linkie 2009, Meredith and Ridout 2017). For each species, we 

then generated activity curves by kernel density estimation (overlap package). For noise and 

light pollution in turn, we calculated the coefficients of overlap Δ (0 – 1, with 1 representing 

complete overlap) for activity curves in the reference region vs low-pollution CS, reference 

region vs high-pollution CS, and low-pollution vs high-pollution CS. The overlap coefficient 

estimator was Δ̂4, unless number of observations was < 75, in which case Δ̂1 was used 

(Ridout and Linkie 2009).  

 

We examined whether there was a difference in diel activity pattern between two groups in 

turn: reference vs low-pollution; reference vs high-pollution; low-pollution vs high-pollution, 

using the Mardia-Watson-Wheeler test for homogeneity in the circular package (Lund et al. 

2017). This test considers differences in the mean and variance of the two samples, while 

taking into consideration the circular nature of the data.  

 

For noise and light pollution in turn, we also summed the percent of diel activity that 

occurred during night-time hours (18:00 – 06:00 h), referred to as nocturnality, for the 

activity curves in the reference region vs CS classed as low pollution, reference region vs CS 

classed as high pollution, and low- pollution vs high- pollution. Light pollution from vehicle 
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headlights can peak at specific times, generating short-term responses that single 

illuminance values overlook. Hence, for activity curves associated with light pollution, we 

additionally calculated the mean density estimation of activity for the two periods 

associated with peak headlight exposure, 04:00 – 06:00 h and - 18:00 – 20:00 h. Peak 

headlight exposure was estimated based off of peak traffic-noise measures during the hours 

of darkness (18:00 – 06:00 h).   

 

3. Results  

3.1 Spatial displacement 

Cameras were operational for 8,226 trap nights across the 26 sites, each with four cameras 

(218 camera stations). We identified 15 native and one non-native mammal species of 

medium or large body size: American badger (Taxidea taxus); American marten (Martes 

americana); black bear (Ursus americanus); bobcat; coyote; gray fox (Urocyon 

cinereoargenteus); long-tailed weasel (Mustela frenata); mountain lion (Puma concolor); 

mule deer and Columbian black-tailed deer (O. h. columbianus); North American river otter 

(Lontra canadensis); raccoon (Procyon lotor); striped skunk (Mephitis mephitis); Virginia 

opossum (Didelphis virginiana); western spotted skunk (Spilogale gracilis); and yellow-

bellied marmot (Marmota flaviventer) (See Table S2 for a list of species observed at each 

camera station). Mammals that were detected at the reference regions but absent from all 

CS were the American marten and the western spotted skunk. Species detected only at CS 

were the long-tailed weasel and the North American river otter. Levels of both noise and 

light varied considerably among CS, although three CS (SR 79 Arroyo Seco, SR 89 Indian 

Creek, US 97 PM6) did not have vehicle headlights present in the night-time illuminance 

image due to low levels of night-time vehicular traffic.  
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The best-fit model for assessment of species richness and frequency of visitations was the 

full model, which included light and noise metrics (AIC; Table 2.1). Fewer species were 

documented at CS that had higher levels of noise (p < 0.002; Figure 2.2A). However, 

contrary to predictions, fewer species were present at CS with lower levels of light pollution 

(p = 0.012; Figure 2.2B). Examining the three focal species’ responses to the impact of noise 

and light, mule deer showed the same direction of response as did species richness: fewer 

visitations at CS with higher levels of noise, but lower levels of light pollution (noise p < 

0.001; light p < 0.001; Figure 2.3A, 2.3B). Mesopredators demonstrated a differential 

response to noise pollution; bobcat visits were highest at intermediate levels (p = 0.019; 

Figure 2.3C), and coyote visits remained unaffected (p = 0.065; Figure 2.3E). Yet both bobcat 

and coyote visitations were highest at intermediate levels of light (bobcat: p < 0.001; 

coyote: p < 0.001; Figure 2.3D, 2.3F).  

 

Species richness was higher at longer CS, CS with no fencing, lower average annual daily 

traffic, higher temperatures, and for the sampling years 2017 and 2019 (no vs full fencing: p 

= 0.005; length p = 0.003; no water vs water, daily traffic, minimum temperature, 2018 

sampling p = < 0.001; Table 2.1). Species richness was not influenced by human presence, 

the NLCD landcover category, and CS width (human p = 0.224; developed vs evergreen 

forest NLCD p = 0.281 and developed vs shrub/scrub NLCD p = 0.169; width p = 0.725; Table 

2.1). Examining the effect of additional covariates on all three focal species, two factors had 

effects on mule deer visits that opposed those on coyotes and bobcats. Visitation rates 

increased with temperature for mule deer but decreased for bobcats and coyotes (mule 

deer: p = 0.029; bobcat p = 0.049; coyote p = 0.042; Table 2.1), and visitation rates were 
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lower for mule deer during the sample year 2018, but higher for bobcats and coyotes that 

year (mule deer: p < 0.001; bobcat p = 0.012; coyote p = 0.009; Table 2.1). Additionally, mule 

deer visits were greater at CS with no fencing, CS with no water, and CS in evergreen forest 

(no vs partial fencing p = 0.007; no vs complete fencing p = 0.051; no water vs water p = 

0.002; forest p = 0.002; Table 2.1). Bobcats had fewer visits to CS that had partial fencing (p 

= 0.013; Table 2.1). Coyotes had fewer visits to CS that were wider and that had lower 

human activity (width p = 0.019; human activity p = 0.042; Table 2.1). 

 

3.2 Temporal displacement 

Peaks in traffic noise occurred during the daytime at 08:20 and 16:10 h (Figure 2.4A-C). 

Mule deer, bobcats and coyotes responded differentially to noise pollution. Activity patterns 

of mule deer differed between CS with high and low noise levels (p < 0.001, w = 23.62; 

Figure 2.4D), and between CS with high noise levels and the reference region (p = 0.007, w = 

9.97; Figure 2.4G). A comparison of percent nocturnality suggests this difference is due to a 

44% increase in nocturnality from low to high-noise CS, and a 19% increase in nocturnality 

from reference region to high-noise CS (Figure 2.5A). On the other hand, activity patterns 

for bobcats did not alter (Figure 2.4E, 2.4H, 2.5B). Interestingly, coyote activity at the high-

noise CS was no different than activity at the reference region (p = 0.226, w = 2.98; Figure 

2.4I). However, coyote activity differed at the low-noise CS when compared to activity in the 

reference region (p  < 0.001, w = 32.46; Figure 2.4F, 2.4I) and the high-noise CS (p  < 0.001, 

w = 29.52; Figure 2.4F), with the greatest percent nocturnality at the low-noise CS (Figure 

2.5C).  
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All species demonstrated a shift in activity at high-light CS in comparison to the reference 

region (deer p < 0.001, w = 23.78; bobcat p = 0.002, w = 12.63; coyote p = 0.018, w = 8.02; 

Figure 2.6B, 2.6D, 2.6F); mule deer and bobcats increased nocturnality by 21% and 24% 

respectively at high-light CS, whereas coyote nocturnal activity doubled at high-light CS 

(Figure 2.5A-C). Mule deer and bobcat activity also differed between low-light CS and high-

light CS (deer p < 0.001, w = 30.34; bobcat p < 0.001, w = 18.94; Figure 2.6A, 2.6C). Similar to 

coyote activity at high-light CS, coyote activity at low-light CS altered and percent 

nocturnality doubled when compared to the reference region (p = 0.003, w = 11.09; Figure 

2.5C, 2.6D, 2.6F), demonstrating that coyotes had the highest sensitivity to light of the three 

species. 

 

All focal species responded to estimated peaks in vehicular light pollution, but responses 

differed. For mule deer, mean density estimation of activity during the morning peak (04:00 

– 06:00 h) was greater at high-light CS relative to activity at low-light CS and reference 

region activity (Figure 2.6A-B). However, for bobcats and coyotes the reverse was true, with 

greater activity in the evening peak (18:00 – 20:00 h) at high-light CS (Figure 2.6C-F). 

 

4. Discussion 

4.1 Sensory pollution and the Landscape of Fear 

Our results indicate that spatiotemporal displacement of wildlife arises from noise and light 

pollution. At the community level, the response to noise was largely one of avoidance, with 

fewer species being detected at noisier CS (Figure 2.2A). At the species-level, mule deer 

were the most responsive to traffic noise, by reducing visitation rates and shifting to a 

higher degree of nocturnality (Figure 2.3A; Figure 2.4A; 2.4D). Bobcats too demonstrated 
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spatial avoidance to intermediate levels of traffic noise (Figure 2.3C), and coyotes 

demonstrated temporal shifts to intermediate levels of noise (Figure 2.4F; 2.4I; 2.5C). In 

response to light pollution, bobcats and coyotes reduced daily visitations to CS (Figure 2.3D; 

2.3F), and all three species displayed greater levels of nocturnality (Figure 2.5-6). This 

aversion to noise and light at CS is likely attributable to the Landscape of Fear, whereby 

species alter spatial and temporal patterns due to the risk affects associated from vehicular 

noise (Laundré et al. 2001, Bleicher 2017). 

 

4.2 Light pollution and the Human Shield 

An unexpected and important finding from our study is a preference toward brighter CS at 

the community level (species detections), which was exemplified at the species level by 

visitation rates of mule deer (Figure 2.2B; 2.3B). CS that are brightly lit may facilitate the 

detection of predators and/or may result in predator avoidance of the area, and thus 

provide a safer condition for movement of prey species through the CS (Haikonen and 

Summala 2001). Accordingly, we found the reverse pattern for mesopredators (bobcats and 

coyotes) in our study, whose visitation rates decreased at brighter CS (Figure 2.3D; 2.3F). 

This differential response of prey and predators suggests that light exposure at the CS is 

acting as a Human Shield rather than contributing to a Landscape of Fear for prey species 

and potentially altering predator-prey dynamics (Longcore and Rich 2004). A similar 

increase in prey and decrease in predator presence from exposure to street lighting has 

been documented using mammal roadkill data (Kreling et al. 2019). 

 

4.3 Implications of spatial & temporal avoidance 
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Species richness declined at noisier CS. This avoidance is likely detrimental, as failure to use 

these wildlife CS could result in otherwise-available habitat no longer being accessible. 

Habitat inaccessibility could be exacerbated if the highway has infrequent CS or is part of an 

expansive network of roads. Further, for CS built with the intentional purpose of facilitating 

wildlife movement, species absence at the CS is an undesirable conservation outcome, 

particularly if the species absent from CS are the target species, and/or species of 

conservation concern. Louder and brighter CS that were visited by the three focal species 

demonstrated lower visitation rates; deer and bobcats reduced visits at louder CS and 

bobcats and coyotes at brighter CS. This form of spatial avoidance indicates a lower 

likelihood of the species crossing and suggests a barrier effect of noise and light pollution. 

 

Species that use CS exposed to sensory pollution might still avoid high levels of exposure 

through a shift in activity. At louder CS we observed greater percent nocturnality in mule 

deer, and at brighter CS we observed an increase in percent nocturnality for all focal 

species. Although altered activity patterns imply potential costs such as increased predation 

(Gaynor et al. 2018), it enables use of the CS, hence access to potential habitat. For CS, 

temporal avoidance can offer additional benefits, such as reducing the risk of collision if 

wildlife arrive at the roadside as opposed to the CS entrance, or avoidance of human-

wildlife conflict with pedestrians. Other studies have shown that temporal shifts to 

nocturnality can provide benefits through reducing human-wildlife conflict in the daytime or 

increasing food and water intake (Gaynor et al. 2018, Levy et al. 2019, Dominoni et al. 

2020). 

   

4.4 Differential responses among species 
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Species richness at CS was reduced, but not eliminated, by sensory pollution, and 

accordingly our three focal species showed differential responses to sensory pollution. 

Differential responses have been reported for other taxa; for example Da Silva et al. (2016) 

detected differences between bird species’ ability to adjust the onset of dawn singing in 

response to artificial light at night. Species-level differences in response to noise and light 

are likely driven by differences among species in the sensory system (Swaddle et al. 2015). 

For example, coyotes avoided light pollution more than noise pollution, whereas mule deer 

showed the reverse pattern (Figure 2.3A, 2.3B, 2.3E, 2.3F; 2.5). Coyotes use visual cues 

when hunting (Wells 1978, Darrow and Shivik 2009, Kreling et al. 2019), whereas mule deer 

are better able to hear than see; thus mule deer primarily draw on auditory or olfactory 

cues for predator detection (Ditchkoff 2011, Lashley et al. 2014).  

 

Species-level differences in response to sensory pollution could also be linked to other 

factors that were explored in this study. For instance, deer visitations were lower at CS with 

water present. Natural noise produced by flowing streams or creeks might inhibit predator 

detection for deer, which rely on auditory cues (Siemers and Schaub 2011a). We also found 

the highest rate of visitations during intermediate levels of light and noise pollution for 

bobcats and light pollution for coyotes (Figure 2.3C; 2.3D; 2.3F). This quadratic response 

could be a result of traffic at the low-pollution CS being so infrequent that individuals 

preferentially cross the road instead of navigating through the CS. Roadkill data have 

exhibited a similar pattern, with peak mortality at intermediate levels of traffic volume 

(Clarke, White, and Harris 1998, Seiler 2005, Farmer and Brooks 2012, Jacobson et al. 2016). 

In contrast, we observed a linear as opposed to quadratic response in mule deer, potentially 

due to deer-proof fencing funneling mule deer to the CS and blocking highway access; 
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bobcat and coyote visitations were less impacted by fencing (Table 2.1). We also observed a 

positive relationship between coyote activity and human visitation. This may be due to the 

ability of coyotes to tolerate human presence, as indicated by the prevalence of coyotes in 

urban environments (Crooks 2002, Bateman and Fleming 2012). Finally, coyote visits at CS 

decreased at wider CS. Differential preferences by species toward CS structural design have 

been documented (Ree et al. 2015), and these responses make planning for CS design 

problematic.  

 

4.5 Avoidance among trophic levels 

Our study suggests that trophic interactions may also feature in decisions about navigating 

CS. In addition to trophic-level differences that indicate a Landscape of Fear and Human 

Shield acting simultaneously, bobcats and coyotes decreased activity during the morning 

period of vehicular light pollution (04:00 – 06:00; Figure 2.6C-F), whereas mule deer 

decreased activity during the evening period (18:00 – 20:00 h; Figure 2.6A-B). This 

differential activity suggests a short-term avoidance of the unpredictable timing of 

headlights (Landscape of Fear, or risky places hypothesis), while simultaneously avoiding 

species of higher trophic levels that are moving through the landscape – a phenomenon 

known as the risky times hypothesis (Brown et al. 1999, Creel et al. 2008). For example, 

prior research has shown female white-tailed deer with fawns temporally avoid coyotes, 

while coyotes and bobcats co-occur temporally (Thornton et al. 2004, Higdon et al. 2019). 

Studies are emerging that show species-level differential responses to anthropogenic 

disturbance, and that increased nocturnal activity in apex predators may result in a 

‘behavioral release’ of mesocarnivores on the landscape (Frey et al. 2020). Further research 
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should be directed towards disentangling how responses to noise and light affect temporal 

niche partitioning and predator-prey interactions (Gaston and Holt 2018).  

 

5. Management recommendations 

 

We recommend both noise and light pollution be considered when planning, constructing, 

or retrofitting CS. Structural modifications to consider include noise and light barriers, 

vegetation, or ‘furniture’ (rock boulders) that provides material for sound and light to be 

absorbed (Ree et al. 2007). Temporal zoning is a tool already implemented at certain CS; 

temporary road closures or reduced speed limits during critical periods of the day or year 

(e.g. annual mass migration) can alleviate exposure to noise and light pollution during 

particularly high periods of wildlife activity (e.g. 23:00 – 01:00 h for mule deer; Figure 2.4D; 

2.4G). We also recommend consideration of the impacts of vehicle design on wildlife use of 

CS. Halogen bulbs are now being replaced by light-emitting diode, xenon, and high intensity 

discharge bulbs, which create higher levels of light pollution (Schubert and Kim 2005, 

Gaston and Holt 2018). Simultaneously, research is being directed toward understanding 

how much light exposure is safe for wildlife, and which light colors are less intrusive (van 

Grunsven et al. 2014, Contín et al. 2016, Spoelstra et al. 2017). This research could be 

applied to vehicle headlights, to identify light bulbs that both improve driver visibility and 

lower impact on wildlife vision. Finally, future research should further ascertain whether 

noise and light pollutants combined are additive, antagonistic, or synergistic for mammals, 

and identify tolerance thresholds for individual species. 
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Tables 

Table 2.1. Relationships among attributes included in the full model and response variables.  

Attribute 
examined 

Species 
richness 

Deer visitation Bobcat 
visitation 

Coyote 
visitation 

AIC of full 
model 

792.1 964 630.1 614.5 

ΔAIC from base 
model 

-13.9 -11 -34.8 -54.8 

ΔAIC from 
partial model 

-10.5 -15.6 -169.9 -42.6 

NLCD N/S Evergreen forest 

= 0.002 

N/S N/S 

Water present < 0.001 0.002 N/S N/S 

Fencing present 0.005  Complete 0.051 

Partial 0.007  

Partial 0.013 N/S 

CS width N/S N/S N/S 0.019 

CS length 0.003 N/S N/S N/S 

Minimum daily 
temperature 

< 0.001 0.029 0.049 0.042 

Sampling year 
(2018) 

< 0.001 < 0.001 0.012 0.009 

Human activity N/S N/S N/S 0.042 

Daily vehicle 
traffic 

< 0.001 N/S N/S N/S 

Background or 
underpass 
camera 

N/S N/S 0.009 N/S 

Baited cameras N/S N/S 0.019 N/S 
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Figures 

Figure 2.1. Locations of the 26 crossing structures across California, USA (pink circles).   
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Figure 2.2. Results from the ‘predict’ function executed for the model testing species 

richness in response to A) noise pollution and B) light pollution at crossing structures. Black 

circles represent observations, with the line of best fit (noise = purple, light = orange) and 

confidence intervals derived from the predicted data.  
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Figure 2.3. Results from the ‘predict’ function executed for the model testing visitations of 

A-B) mule deer, C-D) bobcat and E-F) coyote in response to noise pollution and light 

pollution at crossing structures. Black circles represent observations, with the line of best fit 

(noise = purple, light = orange) and confidence intervals derived from the model predicted 

values. 
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Figure 2.4. Daily profile of week-long traffic recordings (A-C) for all sites at which each 

species was detected. Below the traffic profiles, diel activity curves and temporal overlap 

between loud (purple line) versus quiet (green dashed line) CS for D) mule deer (Nloud = 324, 

Nquiet = 80), E) bobcat (Nloud = 152, Nquiet = 192) and F) coyote (Nloud = 66, Nquiet = 109), and 

activity curves and temporal overlap between loud CS versus reference regions (black 

dashed line) for G) mule deer (Nbackground = 239), H) bobcat (Nbackground = 80) and I) coyote 

(Nbackground = 84). Activity overlap is represented by the coefficient of overlap, Δ̂ (grey shaded 

area); 1 denotes complete overlap. 
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Figure 2.5. Percent of nocturnal activity (18:00 – 06:00 h) under different exposure levels of 

noise and light disturbance for A) mule deer, B) bobcat and C) coyote. The three exposure 

levels are RR = reference region (orange), CS low = low levels of pollution (yellow) and CS 

high = high levels of pollution (blue). We include a 50% threshold (dashed black line) to 

represent the point at which diurnal (< 50%) or nocturnal (> 50%) activity is dominant. 
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Figure 2.6. Diel activity curves and temporal overlap for mule deer (A-B; Nlight = 125, Ndark = 

297, Nbackground = 239), bobcat (C-D; Nlight = 144, Ndark = 200, Nbackground = 80) and coyote (E-F; 

Nlight = 40, Ndark = 135, Nbackground = 84) between low (blue dashed line) versus high (black 

solid line) levels of light pollution at CS (A, C, E), and high levels of light pollution at CS 

versus unbaited cameras in the reference region (blue dashed line) (B, D, F). Sunrise and 

sunset (yellow vertical lines) occur at 06:00 & 18:00. Activity overlap is represented by the 

coefficient of overlap, Δ̂ (grey shaded area); 1 denotes complete overlap. 
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Supplement 
 

Table S2.1. Noise and light metrics measured at each crossing structure. Noise 

measurements for C-weighting (dBC) were used for analysis. 

 

Site Highway Noise 
(median 
dBC) 

Noise 
(Median 
dBA)  

Light 
(Illuminance 
mlx) 

Agua Tibia SR 76 56.2 46 1.92 

Andrade I-680 75.5 52.8 10.98 

Arroyo Seco SR 79 60.9 51.5 2.72 

Auburn I-80 65 51.9 0.65 

Casa Loma Alta I-80 73.2 61.9 1.41 

Coal Canyon SR 91 80 65.4 26.38 

Coal Canyon Culvert SR 91 74.7 61.2 29.75 

Edgewood I-280 74.3 56.2 6.97 

Frey SR 76 56.8 46.1 2.07 

Hirschdale I-80 67.5 56.5 1.07 

Hwy 79 Round SR 79 63.9 54.4 3.88 

Indian Creek SR 89 49.5 39.9 0.88 

Jackass Gulch SR 4 48.2 39 0.77 

Kirkwood SR 88 53.3 43.3 1.96 

Marion Creek SR 76 56.2 43.3 0.62 

Mesa 1 SR 74 59.7 48.7 5.30 

Mesa 2 SR 74 59.6 49.1 4.59 

PM24 I-80 67.7 59.5 1.06 

PM6 US 97 54.2 43 0.72 

SAFR US 50 63.5 53.6 28.93 

Santiago Canyon Box 
Culvert 

Santiago 

57.1 49.5 27.55 

Santiago Canyon 
Underpass 

Santiago 

56.8 47.8 17.44 

Sheep Rock US 97 55.4 - 0.82 

Soda Springs I-80 75.3 61.8 0.42 

Unknown Bridge I-80 76.3 64.3 1.08 

White Bridge SR 74 58.1 50.5 11.72 
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Table S2.2. Species detected at each camera station during the sampling period of camera 

trapping for each site location. Treatment distinguished between reference region (R) and 

crossing structure (U). 

 

Site Treat-
ment 

Bait type ID N  Species Common Name 

Agua Tibia R Bait 114 1 Mule (or Black tailed) Deer 

Agua Tibia R Bait 605 1 Virginia Opossum 

Agua Tibia R Bait 702 2 Mountain Lion, Mule (or 

Black tailed) Deer 

Agua Tibia R No_bait 604 5 Mountain Lion, Gray Fox, 

Raccoon, Coyote, Virginia 

Opossum 

Agua Tibia R No_bait 703 2 Bobcat, Mountain Lion 

Agua Tibia U NA 119 1 Gray Fox 

Agua Tibia U NA 601 1 Coyote 

Andrade R Bait 13 6 Virginia Opossum, Raccoon, 

Striped Skunk, Mule (or Black 

tailed) Deer, Bobcat, 

American Badger 

Andrade R Bait 14 4 Raccoon, Mule (or Black 

tailed) Deer, Virginia 

Opossum, Striped Skunk 

Andrade R Bait 16 2 Virginia Opossum, Mule (or 

Black tailed) Deer 

Andrade R Bait 20 6 Virginia Opossum, Bobcat, 

Gray Fox, Mule (or Black 

tailed) Deer, Striped Skunk, 

Raccoon 

Andrade R No_bait 17 4 Mule (or Black tailed) Deer, 

Raccoon, Striped Skunk, 

Virginia Opossum 

Andrade R No_bait 18 6 Bobcat, Mule (or Black tailed) 

Deer, Striped Skunk, Coyote, 

Virginia Opossum, Gray Fox 

Andrade R No_bait 23 4 Virginia Opossum, Mule (or 

Black tailed) Deer, Striped 

Skunk, Bobcat 

Andrade R No_bait 24 4 Raccoon, Mule (or Black 

tailed) Deer, Coyote, Gray 

Fox 

Andrade U NA 15 1 Mule (or Black tailed) Deer 
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Andrade U NA 19 7 Mule (or Black tailed) Deer, 

Gray Fox, Striped Skunk, 

Raccoon, Bobcat, Virginia 

Opossum, Mountain Lion 

Andrade U NA 21 6 Mule (or Black tailed) Deer, 

Striped Skunk, Raccoon, 

Bobcat, Gray Fox, Virginia 

Opossum 

Andrade U NA 22 7 Mule (or Black tailed) Deer, 

Striped Skunk, Bobcat, 

Virginia Opossum, Raccoon, 

Gray Fox, American Badger 

Arroyo Seco U NA 701 3 Mule (or Black tailed) Deer, 

Raccoon, Coyote 

Arroyo Seco U NA 702 2 Mule (or Black tailed) Deer, 

Coyote 

Arroyo Seco U NA 804 1 Mule (or Black tailed) Deer 

Auburn R Bait 1 4 Mule (or Black tailed) Deer, 

Striped Skunk, Raccoon, Gray 

Fox 

Auburn R Bait 3 5 Raccoon, Mule (or Black 

tailed) Deer, Coyote, Virginia 

Opossum, Gray Fox 

Auburn R Bait 5 2 Mule (or Black tailed) Deer, 

Raccoon 

Auburn R No_bait 2 3 Mule (or Black tailed) Deer, 

Raccoon, Coyote 

Auburn R No_bait 4 2 Mule (or Black tailed) Deer, 

Raccoon 

Auburn R No_bait 6 2 Mule (or Black tailed) Deer, 

Coyote 

Auburn U NA 100 4 Mule (or Black tailed) Deer, 

Raccoon, Striped Skunk, 

Bobcat 

Auburn U NA NA 5 Mule (or Black tailed) Deer, 

Gray Fox, Raccoon, Striped 

Skunk, Virginia Opossum 

Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R Bait 101 1 Virginia Opossum 

Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R Bait 131 2 Mule (or Black tailed) Deer, 

Coyote 

Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R Bait 602 2 Coyote, Mule (or Black tailed) 

Deer 
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Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R Bait 605 3 Striped Skunk, Coyote, 

Mountain Lion 

Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R No_bait 4 4 Mule (or Black tailed) Deer, 

Gray Fox, Coyote, Bobcat 

Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R No_bait 124 4 Coyote, Bobcat, Mule (or 

Black tailed) Deer, Mountain 

Lion 

Caspers (Mesa 
1; Mesa 2; 
White Bridge) 

R No_bait 130 1 Mule (or Black tailed) Deer 

Casa Loma Alta R Bait 1 3 Black Bear, Striped Skunk, 

Gray Fox 

Casa Loma Alta R Bait 5 1 Black Bear 

Casa Loma Alta R Bait 7 2 Gray Fox, Black Bear 

Casa Loma Alta R No_bait 2 3 Virginia Opossum, Striped 

Skunk, Mule (or Black tailed) 

Deer 

Casa Loma Alta R No_bait 4 3 Black Bear, Striped Skunk, 

Mule (or Black tailed) Deer 

Casa Loma Alta R No_bait 6 2 Black Bear, Gray Fox 

Casa Loma Alta R No_bait 8 2 Black Bear, Gray Fox 

Casa Loma Alta U No_bait NA 1 Mule (or Black tailed) Deer 

Casa Loma Alta U No_bait NA 2 Black Bear, Mule (or Black 

tailed) Deer 

Coal Canyon R Bait 4 1 Gray Fox 

Coal Canyon R Bait 131 2 Mountain Lion, Gray Fox 

Coal Canyon R Bait 600 1 Gray Fox 

Coal Canyon R Bait 602 2 Gray Fox, Striped Skunk 

Coal Canyon R No_bait 125 2 Bobcat, Gray Fox 

Coal Canyon R No_bait 609 2 Mule (or Black tailed) Deer, 

Gray Fox 

Coal Canyon U NA 100 1 Bobcat 

Coal Canyon U NA 202 1 Coyote 

Coal Canyon 
Culvert 

U NA 117 2 Coyote, Bobcat 

Coal Canyon 
Culvert 

U NA 651 3 Bobcat, Coyote, Long-Tailed 

Weasel 

Coal Canyon 
Culvert 

U NA 652 3 Bobcat, Coyote, Virginia 

Opossum 

Edgewood R Bait 4 1 Mule (or Black tailed) Deer 

Edgewood R Bait 5 3 Mule (or Black tailed) Deer, 

Coyote, Virginia Opossum 
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Edgewood R Bait 7 3 Mule (or Black tailed) Deer, 

Virginia Opossum, Mountain 

Lion 

Edgewood R No_bait 1 1 Bobcat 

Edgewood R No_bait 6 2 Mule (or Black tailed) Deer, 

Virginia Opossum 

Edgewood R No_bait 8 2 Mule (or Black tailed) Deer, 

Mountain Lion 

Edgewood U NA 9 2 Mule (or Black tailed) Deer, 

Coyote 

Edgewood U NA 10 4 Mule (or Black tailed) Deer, 

Coyote, Mountain Lion, 

Raccoon 

Edgewood U NA 11 2 Mule (or Black tailed) Deer, 

Coyote 

Edgewood U NA 12 2 Mule (or Black tailed) Deer, 

Coyote 

Frey U NA 10 2 Coyote, Virginia Opossum 

Frey U NA 110 3 Bobcat, Mule (or Black tailed) 

Deer, Mountain Lion 

Frey U NA 603 4 Mountain Lion, Bobcat, 

Coyote, Mule (or Black tailed) 

Deer 

Hirschdale R Bait 1 3 Mule (or Black tailed) Deer, 

Mountain Lion, Black Bear 

Hirschdale R Bait 3 1 Black Bear 

Hirschdale R Bait 6 4 Black Bear, Mule (or Black 

tailed) Deer, Western 

Spotted Skunk, Bobcat 

Hirschdale R Bait 8 3 Mule (or Black tailed) Deer, 

Western Spotted Skunk, 

Striped Skunk 

Hirschdale R No_bait 2 1 Black Bear 

Hirschdale R No_bait 4 1 Bobcat 

Hirschdale U NA 1 4 Coyote, Mule (or Black tailed) 

Deer, Bobcat, Black Bear 

Hirschdale U NA 2 2 Mule (or Black tailed) Deer, 

Coyote 

Hwy 79 (Arroyo 
Seco; Hwy79 
round) 

R Bait 800 2 Gray Fox, Western Spotted 

Skunk 

Hwy 79 (Arroyo 
Seco; Hwy79 
round) 

R Bait 801 3 Gray Fox, Bobcat, Coyote 
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Hwy 79 (Arroyo 
Seco; Hwy79 
round) 

R Bait 802 4 Gray Fox, Striped Skunk, 

Mule (or Black tailed) Deer, 

Coyote 

Hwy 79 (Arroyo 
Seco; Hwy79 
round) 

R No_bait 803 4 Gray Fox, Bobcat, Mule (or 

Black tailed) Deer, Coyote 

Hwy 79 (Arroyo 
Seco; Hwy79 
round) 

R No_bait 805 3 Gray Fox, Mountain Lion, 

Bobcat 

Hwy 79 (Arroyo 
Seco; Hwy79 
round) 

R No_bait 806 1 Gray Fox 

hwy79 round U NA 604 3 Raccoon, Bobcat, Gray Fox 

hwy79 round U NA 710 3 Raccoon, Coyote, Bobcat 

Indian Creek R Bait 4 1 Black Bear 

Indian Creek R Bait 103 3 Gray Fox, Black Bear, 

Western Spotted Skunk 

Indian Creek R Bait 105 1 Black Bear 

Indian Creek R Bait 116 2 Black Bear, Western Spotted 

Skunk 

Indian Creek R No_bait 121 3 Gray Fox, Mule (or Black 

tailed) Deer, Black Bear 

Indian Creek R No_bait 125 2 Black Bear, Gray Fox 

Indian Creek U NA 126 3 Black Bear, Coyote, Mountain 

Lion 

Indian Creek U NA 129 5 Black Bear, Striped Skunk, 

Mule (or Black tailed) Deer, 

Coyote, Mountain Lion 

Jackass Gulch R Bait 602 2 Mule (or Black tailed) Deer, 

American Marten 

Jackass Gulch R Bait 603 2 American Marten, Black Bear 

Jackass Gulch R Bait 605 3 American Marten, Black 

Bear, Mule (or Black tailed) 

Deer 

Jackass Gulch R Bait 609 3 American Marten, Mule (or 

Black tailed) Deer, Black Bear 

Jackass Gulch R No_bait 127 2 Mule (or Black tailed) Deer, 

Black Bear 

Jackass Gulch U NA 301 1 Mule (or Black tailed) Deer 

Jackass Gulch U NA 303 1 Mule (or Black tailed) Deer 

Jackass Gulch U NA 601 1 Mule (or Black tailed) Deer 

Jackass Gulch U NA 604 1 Mule (or Black tailed) Deer 

Kirkwood R Bait 101 3 Yellow-Bellied Marmot, 

Coyote, Mule (or Black tailed) 

Deer 



 92 

Kirkwood R Bait 110 2 Mule (or Black tailed) Deer, 

Coyote 

Kirkwood R Bait 120 2 Mule (or Black tailed) Deer, 

Coyote 

Kirkwood R No_bait 111 5 Mule (or Black tailed) Deer, 

Yellow-Bellied Marmot, 

Coyote, Black Bear, Bobcat 

Kirkwood R No_bait 112 2 Mule (or Black tailed) Deer, 

Coyote 

Kirkwood R No_bait 124 2 Mule (or Black tailed) Deer, 

Coyote 

Kirkwood U NA 106 2 Raccoon, Yellow-Bellied 

Marmot 

Kirkwood U NA 108 3 Raccoon, Bobcat, Northern 

River Otter 

Kirkwood U NA 201 1 Raccoon 

Kirkwood U NA 202 2 Raccoon, Bobcat 

Marion Creek U NA 103 1 Coyote 

Marion Creek U NA 121 2 Bobcat, Coyote 

Mesa 1 U NA 103 2 Bobcat, Coyote 

Mesa 1 U NA 127 4 Bobcat, Coyote, Mountain 

Lion, Mule (or Black tailed) 

Deer 

Mesa 1 U NA 701 4 Coyote, Bobcat, Mountain 

Lion, Mule (or Black tailed) 

Deer 

Mesa 2 U NA 26 3 Bobcat, Coyote, Mule (or 

Black tailed) Deer 

Mesa 2 U NA 107 3 Coyote, Bobcat, Gray Fox 

Mesa 2 U NA 700 3 Bobcat, Coyote, Mule (or 

Black tailed) Deer 

Mesa 2 U NA 710 3 Gray Fox, Bobcat, Coyote 

PM24 R Bait 13 1 Mule (or Black tailed) Deer 

PM24 R Bait 16 2 Mule (or Black tailed) Deer, 

Coyote 

PM24 R Bait 24 2 Black Bear, Bobcat 

PM24 R No_bait 14 1 Mule (or Black tailed) Deer 

PM24 R No_bait 17 1 Mule (or Black tailed) Deer 

PM24 R No_bait 20 1 Mule (or Black tailed) Deer 

PM24 R No_bait 23 2 Striped Skunk, Mule (or Black 

tailed) Deer 

PM24 U NA 11 4 Bobcat, Mule (or Black tailed) 

Deer, Coyote, Black Bear 

PM24 U NA 12 4 Mule (or Black tailed) Deer, 

Bobcat, Black Bear, Coyote 
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PM6 R Bait 602 3 Gray Fox, Coyote, Western 

Spotted Skunk 

PM6 R Bait 603 3 Mule (or Black tailed) Deer, 

Black Bear, Coyote 

PM6 R Bait 604 3 Black Bear, Mule (or Black 

tailed) Deer, Coyote 

PM6 R Bait 609 3 Mule (or Black tailed) Deer, 

Black Bear, Gray Fox 

PM6 R No_bait 601 6 Gray Fox, Mule (or Black 

tailed) Deer, Coyote, Bobcat, 

Striped Skunk, Black Bear 

PM6 R No_bait 605 5 Gray Fox, Coyote, Black Bear, 

Mule (or Black tailed) Deer, 

Striped Skunk 

PM6 R No_bait 608 6 Mule (or Black tailed) Deer, 

Striped Skunk, Coyote, 

Bobcat, Gray Fox, Black Bear 

PM6 U NA 116 2 Mule (or Black tailed) Deer, 

Bobcat 

PM6 U NA 121 2 Mule (or Black tailed) Deer, 

Bobcat 

PM6 U NA 129 2 Mule (or Black tailed) Deer, 

Bobcat 

SAFR R Bait 110 2 Mule (or Black tailed) Deer, 

Gray Fox 

SAFR R Bait 115 3 Gray Fox, Mule (or Black 

tailed) Deer, Striped Skunk 

SAFR R Bait 121 3 Black Bear, Mule (or Black 

tailed) Deer, Gray Fox 

SAFR R No_bait 105 5 Mule (or Black tailed) Deer, 

Gray Fox, Bobcat, Black Bear, 

Striped Skunk 

SAFR R No_bait 125 2 Black Bear, Gray Fox 

SAFR R NA 112 3 Mule (or Black tailed) Deer, 

Gray Fox, Striped Skunk 

SAFR U NA 100 1 Mule (or Black tailed) Deer 

SAFR U NA 111 1 Mule (or Black tailed) Deer 

SAFR U NA 131 1 Mule (or Black tailed) Deer 

Santiago 
Canyon 

R Bait 118 5 Bobcat, Gray Fox, Coyote, 

Mule (or Black tailed) Deer, 

Striped Skunk 

Santiago 
Canyon 

R Bait 126 4 Bobcat, Coyote, Gray Fox, 

Striped Skunk 

Santiago 
Canyon 

R Bait 250 1 Bobcat 
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Santiago 
Canyon 

R Bait 603 3 Bobcat, Gray Fox, Striped 

Skunk 

Santiago 
Canyon 

R No_bait 116 3 Coyote, Bobcat, Gray Fox 

Santiago 
Canyon 

R No_bait 251 2 Bobcat, Coyote 

Santiago 
Canyon 

R No_bait 252 3 Gray Fox, Bobcat, Mule (or 

Black tailed) Deer 

Santiago 
Canyon 

R No_bait 607 1 Bobcat 

Santiago 
Canyon Box 
Culvert 

U NA 110 4 Gray Fox, Mule (or Black 

tailed) Deer, Raccoon, 

Virginia Opossum 

Santiago 
Canyon Box 
Culvert 

U NA 111 7 Bobcat, Virginia Opossum, 

Gray Fox, Raccoon, Mule (or 

Black tailed) Deer, Mountain 

Lion, Coyote 

Santiago 
Canyon Box 
Culvert 

U NA 115 3 Raccoon, Virginia Opossum, 

Mountain Lion 

Santiago 
Canyon Box 
Culvert 

U NA 601 5 Virginia Opossum, Gray Fox, 

Mule (or Black tailed) Deer, 

Bobcat, Mountain Lion 

Santiago 
Canyon 
Underpass 

U NA 125 4 Bobcat, Coyote, Mule (or 

Black tailed) Deer, Gray Fox 

Sheep Rock R Bait 103 2 Coyote, Mule (or Black tailed) 

Deer 

Sheep Rock R Bait 121 1 Coyote 

Sheep Rock R No_bait 107 3 Mule (or Black tailed) Deer, 

Coyote, Bobcat 

Sheep Rock R No_bait 113 2 Coyote, Bobcat 

Sheep Rock R No_bait 128 1 Coyote 

Sheep Rock U NA 0 1 Mule (or Black tailed) Deer 

Sheep Rock U NA 4 4 Mule (or Black tailed) Deer, 

Bobcat, Mountain Lion, Black 

Bear 

Sheep Rock U NA 301 4 Mule (or Black tailed) Deer, 

Bobcat, Black Bear, Mountain 

Lion 

Soda Springs R Bait 40 1 Mule (or Black tailed) Deer 

Soda Springs R Bait 44 2 Black Bear, Mule (or Black 

tailed) Deer 

Soda Springs R No_bait 2 1 Mule (or Black tailed) Deer 

Soda Springs R No_bait 4 2 Mule (or Black tailed) Deer, 

Black Bear 
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Soda Springs R No_bait 8 1 Mule (or Black tailed) Deer 

Soda Springs U NA 35 3 Raccoon, Bobcat, Coyote 

Soda Springs U NA 37 3 Bobcat, Coyote, Mule (or 

Black tailed) Deer 

Soda Springs U NA 38 2 Bobcat, Coyote 

Soda Springs U NA 39 1 Bobcat 

Unknown 
Bridge 

R Bait 28 2 Black Bear, Mule (or Black 

tailed) Deer 

Unknown 
Bridge 

R Bait 29 3 Gray Fox, Mule (or Black 

tailed) Deer, Black Bear 

Unknown 
Bridge 

R Bait 30 5 Black Bear, Mule (or Black 

tailed) Deer, Coyote, Striped 

Skunk, Bobcat 

Unknown 
Bridge 

R Bait 32 3 Mule (or Black tailed) Deer, 

Gray Fox, Black Bear 

Unknown 
Bridge 

R No_bait 25 2 Black Bear, Mule (or Black 

tailed) Deer 

Unknown 
Bridge 

R No_bait 26 4 Gray Fox, Mule (or Black 

tailed) Deer, Bobcat, Black 

Bear 

Unknown 
Bridge 

R No_bait 27 2 Black Bear, Mule (or Black 

tailed) Deer 

Unknown 
Bridge 

U NA 34 1 Mule (or Black tailed) Deer 

Unknown 
Bridge 

U NA 43 2 Mule (or Black tailed) Deer, 

Gray Fox 

White Bridge U NA 10 2 Bobcat, Gray Fox 

White Bridge U NA 120 1 Gray Fox 

White Bridge U NA 604 2 Bobcat, Gray Fox 

White Bridge U NA 702 4 Gray Fox, Coyote, Mule (or 

Black tailed) Deer, Bobcat 

 

 

 
  



 96 

Chapter 3: Fear responses to anthropogenic noise vary across temporal scales 

Amy C. Collins, T. Winston Vickers, Fraser M. Shilling 

 

1. Introduction 

 

Humans have modified the majority of the Earth’s ecosystems, and occupy approximately 

50% of the global surface (Strano et al. 2020). Within human dominated ecosystems, 

humans have adopted the trophic position of ‘super predator’, being the dominant cause of 

wildlife mortality (Darimont et al. 2015). Given the threat that humans pose to wildlife, non-

lethal human activity can elicit fear responses from organisms on the landscape by altering 

stress physiology, spatiotemporal habitat use, and behavior (Støen et al. 2015, Hammond et 

al. 2020). These anthropogenic stressors may result in modification to predator-prey 

interactions, and lead to trophic cascading effects, ultimately altering ecosystem structure 

and function (Kuijper et al. 2016, Schmitz et al. 2018, Zanette and Clinchy 2019).  

 

Anthropogenic stressors that influence fear responses exist across multiple scales, for 

example heterogenous space use by humans, which leads to alterations in the movement 

decisions and distribution of predators at a fine-scale and across a landscape (Suraci et al. 

2019, 2020). As such, the spatiotemporal scale that anthropogenic stressors occupy likely is 

related to fear responses (Dröge et al. 2017, Moll et al. 2017). Moll et al. (2017) and Prugh 

et al. (2019) recently noted the urgent need for multi-scale frameworks to disentangle the 

behavioral impacts of fear across scales, demonstrating that prior work examining fear 

responses has largely focused at a single scale, and inconsistent use of metrics preclude 

cross-study comparisons. 
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One anthropogenic stressor that varies across temporal scales is noise pollution. 

Anthropogenic noise pollution is pervasive across urban and wildland areas, and has been 

linked to behavioral shifts in migration, communication, prey detection, and predator 

avoidance among wildlife species (Francis et al. 2012, Buxton et al. 2017, Dominoni et al. 

2020a). Fear is a commonly reported response to noise pollution, as wildlife perceive noise 

pollution as a predation threat (risk disturbance hypothesis: Frid and Dill 2002). However, 

fear-inducing responses appear to vary, with some species demonstrating habituation over 

time from repeated exposure (Nedelec et al. 2016, Neo et al. 2018, Walthers and Barber 

2020). Under certain conditions, the response can be positive. Carnivores can be highly 

sensitive to anthropogenic noise (Smith et al. 2017), hence some ungulate and small 

mammal species use anthropogenic noise as a ‘Human Shield’ to seek shelter from 

predators (Berger 2007, Shannon et al. 2014b, Suraci et al. 2019).  

 

To examine whether a fear response, habituation, or Human Shields occur when exposed to 

anthropogenic noise pollution, we need to consider the temporal scale and characteristics 

of the noise pollutant. Instantaneous noise (milliseconds) could startle the animal (acoustic 

startle response: Koch and Schnitzler 1997, Francis and Barber 2013) and induce a flight 

response. Longer timeframes, such as acute (seconds, minutes) and chronic (weeks, years) 

could alter anti-predator behavior such as vigilance (predator surveillance) and alterations 

to group size (many-eyes effect: Bednekoff and Lima 1998, Creel and Winnie 2005). It is 

important to parse out which type or types of noise pollution, instantaneous, acute, or 

chronic, is driving fear responses among wildlife. 
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Understanding fear responses can have beneficial implications for the management of 

applied conservation projects (Prugh et al. 2019, Gaynor et al. 2020). Crossing structures 

that are built under or over highways aim to mitigate habitat fragmentation, by reducing the 

barrier effect and road-related mortality (Clevenger and Waltho 2005, Rytwinski et al. 

2016). However, the success of crossing structures depends on specific aspects of animal 

behavior, especially the likelihood of approaching the structure and entering the structure. 

Traffic-induced noise pollution that is persistent at a crossing structure could increase the 

perception of risk, thereby increasing anti-predator behavior and leading to suboptimal 

decision-making regarding entry into the crossing structure (Quinn et al. 2006, Shannon et 

al. 2014a, Owen et al. 2017). Avoiding fear responses at crossing structures will be 

particularly critical if there is no alternative route available to connect the habitat (Gill et al. 

2001).  

 

Many studies in birds have tested acoustic impacts of road noise on behavioral responses, 

such as predator avoidance behavior in house sparrows (Passer domesticus) (Meillère et al. 

2015) and avoidance of ‘phantom roads’ (the experimental introduction of traffic noise to 

roadless areas) by migrating birds (McClure et al. 2013, Ware et al. 2015). Among mammals, 

activity patterns of white-tailed deer (Odocoileus virginianus), mule deer, and coyotes have 

been shown to shift during exposure to vehicular noise, and mule deer and bobcat visitation 

rates are lower at noisier crossing structures (Buxton et al. 2020, Chapter 2). Predation 

efficiency by bats and vigilance in prairie dogs (Cynomys ludovicianus) are known to be 

altered in response to noise, as is vigilance in impalas (Aepyceros melampus) alongside 

roads (Siemers and Schaub 2011, Mtui 2014, Shannon et al. 2014). However, little is yet 

known regarding the impact of traffic-related noise pollution on anti-predator behavior 
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within mammals. Understanding these impacts is of particular importance given that large, 

mobile species are vulnerable to road mortality (Rytwinski and Fahrig 2015). 

 

Using a multi-scale approach, we tested whether fear, habituation, or Human Shields exist 

at crossing structures exposed to traffic noise. We first tested the hypothesis that 

instantaneous noise levels affect the utilization of crossing structures, predicting that as 

noise levels rise, focal species will be more likely to flee rather than use the crossing 

structure. Secondly, we tested the hypothesis that acute noise will affect anti-predator 

behaviors, predicting that increased noise will be associated with increases in vigilance, 

running, and group size, and decreases in foraging. Finally, we examined whether 

differences in use of crossing structure or anti-predator behavior exist across crossing 

structures of varying chronic noise. We focused on two species, coyotes (Canis latrans) and 

mule deer (Odocoileus hemionus) which allowed us to examine the response of a predator 

and prey species to noise. 

 

2. Methods 

2.1 Study area 

Our study was conducted from November 2018 through November 2019 at 10 crossing 

structures in California, USA: eight culverts and two bridges (Figure 3.1). Crossing structures 

were located along Interstate 80, Interstate 680, and U.S. Route 50 in central California, 

Interstate 5 and U.S. Route 97 in northern California, and State Route 74 in Southern 

California. Crossing structures were located under highways consisting of one to three lanes 

of traffic in each direction, in areas classed as low- or medium-intensity development, 

evergreen forest, or shrub/scrub.  
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2.2 Camera trapping 

Behavior of coyotes and mule deer was assessed using camera traps. We placed six camera 

traps (Brownings Dark Ops Pro) at each crossing structure set to record high-quality video 

and audio, triggered by motion and infrared (no-glow). Once triggered, cameras recorded 

videos for 20 seconds, with a 5-second delay between triggers. Cameras were equipped 

with the ‘smart IR setting’; videos during the daytime were recorded past 20 seconds if the 

camera continued to detect wildlife movement. We placed one camera at each of the two 

entrances of the crossing structure, ca. 5 m (range: 0 – 10 m) from the entrance. We also 

placed two cameras at each of the two ‘approach zones’, the area ca. 50 m from the 

crossing structure entry from which wildlife approach the crossing structure (range: 11 - 84 

m). Cameras remained operational at each site for an average of 45 days (range: 1 – 106). 

We captured the location of each camera station and the crossing structure entrance via a 

handheld GPS device (Garmin eTrex 20x) and calculated the Euclidean distance of each 

camera station to the entrance of the crossing structure via Google Maps. 

 

2.3 Flight and entry response, anti-predator behavior 

We extracted activity from each camera trap video that included mule deer and coyotes 

using the Behavioral Observation Research Interactive Software (BORIS; Friard and Gamba 

2016). To analyze flight and entry responses, videos from cameras positioned at the crossing 

structure entrance (ca. 5 m from entrance) were checked for observations in which animals 

were facing the direction of the crossing structure entryway or walking toward the crossing 

structure entryway. Within these observations, we scored each time a decision-making 

event occurred: 1. Entry, defined as stepping across the concrete edge of the crossing 
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structure entrance; and 2. Flight, defined as an alteration in body direction and movement 

away from the crossing structure.  

 

To analyze anti-predator behavior, we also scored activity of individual mule deer and 

coyotes for all videos. We focused on three categories of behavior associated with fear 

responses: 1. vigilance, defined as an individual standing or sitting upright, 2. foraging, 

defined as feeding or drinking, and 3. Running, defined as any movement faster than a walk. 

For each of these behaviors, we assigned a start and stop time within each video and 

calculated time as a proportion of total time the individual was present in the video. The 

BORIS software enabled analysis of multiple behaviors recorded simultaneously. To 

distinguish between individuals within one video, we assigned each conspecific a unique 

identification based on order of appearance or distance from the camera. For each video, 

we documented whether the video was taken in day (color) or night (black and white) 

mode, the temperature listed for each video collected by the camera’s internal 

thermometer, and the maximum group size observed. We recorded the number of humans 

present in each video, and quantified the frequency of daily visitations by humans for each 

camera station. Research technicians who scored behaviors received extensive training in 

the recognition of behaviors across species and the BORIS software before classifying 

observations.  

 

2.4 Noise indices  

We considered noise pollution at multiple spatiotemporal scales; we quantified traffic-

related noise pollution during each decision-making event, for the duration of wildlife 

presence in each video, and at each crossing structure site. Temporal scale varied across 
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three levels: during the 2-second interval encompassing a decision-making event, during the 

~20-second duration of the video, and over a 7-day period at the crossing structure. The 2-

second interval represented “instantaneous”, the ~20-second represented “acute” and 7-

day intervals represented “chronic” scales. Two spatial scales were represented: variation in 

behaviors among the six cameras at each crossing structure, and variation among the 10 

crossing structures.   

 

Instantaneous & acute noise 

Audio waveform data recorded by the camera trap during each video were exported using 

BORIS software. Using the R function ‘cut_sels’ (warbleR; Araya‐Salas and Smith‐Vidaurre 

2017) we cut selections of each audio file for 1) a 1-second period before and after each 

decision-making event (flight or entry) and 2) the start and stop time that we observed an 

individual animal in each video. For each cut audio file, we then produced an amplitude 

envelope of the waveform signal derived from the Hilbert transform using the ‘env’ function 

(seewave; Sueur et al. 2020). Using this envelope, we then extracted the relative maximum 

amplitude for each 2-second audio file, representing instantaneous noise, and the relative 

median amplitude for each ~20-second audio file, representing acute noise.    

 

Chronic noise 

To quantify the overall level of traffic-induced noise pollution associated with each crossing 

structure, during July – November 2019 we sampled sound pressure levels at each crossing 

structure for a 7-day period after removal of camera traps using TENMA 72-947 and PCE-

322 sound pressure meters, which detect in the 30-130dB range and were set at the slow 

setting. We placed two sound meters at one entrance of the crossing structure facing 
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inwards on a tripod 0.5 m above the ground. Sound pressure levels were measured in 59-

second increments in decibels, set to a C-weighted filter (dBC), and an A-weighted filter 

(dBA). For each crossing structure, we then extracted L50 (median noise) measures. Owing to 

an equipment failure of the A-weighted sound meter at one crossing structure, we report 

findings on dBC hereafter, and provide comparative L50 dBA measure in the supplemental 

(Table S3.1). 

 

2.5 Statistical analysis 

We analyzed the effect of instantaneous, acute, and chronic noise on decision-making at the 

entrance of the crossing structure (entry or flight response), anti-predator behavior 

(proportion of time being vigilant, running, or foraging), and group size.  

 

Decision-making events: flight and entry response 

To examine the impact of instantaneous noise and chronic noise on whether coyote and 

mule deer entered or fled from the crossing structure entrance, we employed a hierarchical 

generalized linear (glm) model using the ‘glm’ function in R. Crossing structure and camera 

were specified as random effects, and a binomial distribution was selected based on the 

binary structure of the response variable. We included additional predictors for each 

observation that represented group size, time of day (binary; day/night), temperature 

recorded on each video for each camera, rate of human daily visitations, distance to 

crossing structure, and structure length. We performed step-wise removal of non-significant 

variables, and selected the best fit model based on the lowest AIC score.  

 

Activity budgets: vigilance, running, and foraging 
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To test for the impact of acute and chronic noise on anti-predator behavior, we again 

employed hierarchical glms for proportion of time coyotes spent being vigilant and foraging, 

and time mule deer spent being vigilant, foraging and running, using crossing structure and 

camera as random effects. As we recorded no foraging by coyotes, a model for coyote 

foraging was not employed. Due to the response variable being proportional and to account 

for overdispersion in the data, we used a quasibinomial distribution.  

 

Group size 

To test for the impact of acute and chronic noise on group size, we employed negative 

binomial glms to deer and coyote observations separately. Site and camera were random 

effects, and temperature, time of day, crossing structure length, distance to crossing 

structure, and human visitation rate were used as additional predictors. We performed 

step-wise removal of non-significant variables, and selected the best fit model based on the 

lowest AIC score. 

 

We checked for model robustness by comparing all models to the respective base model 

using ANOVA and plotting Pearson’s residuals. All analyses were carried out in RStudio (R v. 

3.6.1; RStudio Team 2015). 

 

3. Results 

3.1 Decision-making events: flight and entry response 

We collected a total of 10 hours and 13 minutes of mule deer observations and 50 minutes 

of coyote observations throughout the study period. Within coyotes, we observed 50 

decision-making events, nine that resulted in a flight response and 41 that resulted in an 
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entry. Within mule deer, we observed 192 decision-making events, 35 that resulted in a 

flight response and 157 in an entry. For coyotes, flight responses were more likely to occur 

as levels of instantaneous noise increased; for mule deer, there was a trend in the same 

direction (Table 3.1; Figure 3.2A, coyote p = 0.018; Figure 3.2B, deer p = 0.056). We 

detected no effect of chronic noise on decision-making events (coyote p = 0.829; deer p = 

0.592). The best fit model also demonstrated warmer temperatures increased the likelihood 

of coyotes entering the crossing structure (p = 0.016).  

 

3.2 Activity budgets: vigilance, running and mule deer foraging 

For mule deer, foraging rates increased during greater levels of acute noise (Figure 3.3), but 

decreased during greater levels of chronic noise (Table 3.2; acute and chronic noise p < 

0.001). In response to greater levels of chronic noise, coyotes demonstrated a decrease in 

vigilance and an increase in running (vigilance and running p < 0.001; Figure 3.4). Acute and 

chronic noise had no effect on mule deer vigilance or running (vigilance acute noise p = 

0.316, chronic noise p = 0.484; running acute noise p = 0.235, chronic noise p = 0.969).  

 

Longer crossing structures caused a decrease in coyote vigilance and a decrease in vigilance 

and foraging for mule deer (coyote p = 0.031; deer foraging and vigilance p < 0.001). 

Coyotes increased their time spent vigilant during warmer periods, whereas for mule deer, 

vigilance decreased and foraging increased (coyote p < 0.001; deer vigilance p = 0.003; deer 

foraging p < 0.001). Additionally, mule deer demonstrated decreased levels of vigilance and 

greater levels of foraging in large groups (vigilance and group size of seven p = 0.026; 

foraging and group size of five p = 0.007), and decreased levels of vigilance during nighttime 

hours (p < 0.001). Proportion of time spent running for coyotes and mule deer increased 



 106 

during daylight hours (coyote p = 0.004; deer p < 0.001). The likelihood of coyotes running 

increased with distance from the crossing structure (p < 0.001), whereas mule deer ran less 

and foraged more with increasing distance from the crossing structure (vigilance p = 0.004; 

foraging p < 0.001). Additionally, mule deer ran more and foraged less at crossing structures 

with heavier human visitation (running and foraging p < 0.001).  

 

3.3 Group size 

For both mule deer and coyotes, neither acute nor chronic noise affected group size. 

Smaller group sizes were associated with longer crossing structures and higher human 

visitations and groups were smaller at the crossing structure entrance as opposed to the 

approach zone (length p < 0.001; humans p = 0.047; distance to crossing structure p < 

0.001).  

 

4. Discussion 

We found that at crossing structures exposed to higher levels of instantaneous noise from 

vehicles, coyotes and mule deer were more likely to initiate a flight response than they were 

to use the crossing. Further, we detected greater levels of coyote running and mule deer 

foraging at crossing structures with more chronic noise. These behavioral changes are in 

accordance with the risk disturbance hypothesis, and suggest that both instantaneous and 

chronic noise induce a ‘Landscape of Fear’ in predator and prey species (Laundré et al. 

2001). Though instantaneous and chronic noise elicited a fear response, noise examined at 

an intermediate level – acute noise – elicited a neutral or positive effect in anti-predator 

behavior, which suggest habituation and the Human Shield, respectively. Hence, wildlife 

response to noise pollution can vary according to temporal scale. 
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4.1 Instantaneous and chronic noise: fine-scale patch of fear and landscape of fear  

We found support for our hypothesis that instantaneous noise from vehicles invokes a flight 

response (Figure 3.2) and provides additional support to prior findings that a fear response 

can be induced by fine-scale noise associated with land or sea transportation. For example, 

playbacks of ship noise under a lab setting prompted higher startle responses in two fish 

species (Voellmy et al. 2014), and playbacks of traffic noise prompted black-tailed prairie 

dogs (Cynomys ludovicianus) to flee more quickly (Shannon et al. 2016). Responses to 

instantaneous noise can add physiological stress and impact body condition, as 

demonstrated by an increase in heart rate and alarm behavior of mule deer and mountain 

sheep (Ovis canadensis) when exposed to aircraft noise (Weisenberger et al. 1996). Further, 

through invoking a flight response rather than an entry response, instantaneous noise 

pollution resulted in a suboptimal decision. Noise-altered decision-making has also been 

demonstrated in choice of optimal shell size by hermit crabs (Pagurus bernhardus) (Walsh et 

al. 2017, Tidau and Briffa 2019). Detrimental effects of noise pollution on decision-making 

could have consequences beyond the individual level. Failure to use the crossing structure 

could reduce habitat connectivity, and ultimately reduce gene flow, which could have long-

term implications for the viability of populations (van der Ree et al. 2009). Reductions in 

habitat connectivity will be a particular issue in urban areas where the carrying capacity of 

subpopulations is already low. Similar types of population bottlenecks from artificial wildlife 

passages have been documented in fish ladders (Agostinho et al. 2007). Our work suggests 

that to ensure the viability of crossing, noise pollution should be considered during the 

design phase of crossing structures.  
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We also found that in response to crossing structures that were exposed to higher levels of 

chronic (one week) noise, coyotes decreased vigilance, but increased running (Figure 3.4), 

and mule deer decreased foraging rates. These alterations to anti-predator behavior expand 

upon findings that mule deer show spatiotemporal avoidance of louder crossing structures, 

and coyotes show temporal avoidance to intermediate noise levels (Chapter 2). Our findings 

also support other work that has identified alterations to anti-predator and feeding 

behavior upon exposure to noise pollution. Exposure to transportation noise has caused a 

decrease in foraging for terrestrial mammals (Shannon et al. 2014, Smith et al. 2017), 

marine mammals (Blair et al. 2016, Wisniewska et al. 2018) and other taxa (Wale et al. 2013, 

Castaneda et al. 2020). At the individual level, reduced foraging and/or increased levels of 

vigilance may lead to reduced body condition and fitness (Bachman 1993). At the landscape 

level, heterogeneous levels of noise pollution, and thus differences in fear responses, 

creates a Landscape of Fear, and could lead to altered natural predator-prey interactions, 

and ecosystem function (Gaynor et al. 2019, Zanette and Clinchy 2019). 

 

4.2 Intermediate scale of acute noise: human shield and habituation 

Our finding that high levels of acute noise coincided with increased mule deer foraging 

(Figure 3.3) suggests high traffic noise can provide a refuge from predation. Ungulates have 

displayed similar increases in foraging in response to anthropogenic stressors within U.S. 

National Parks (Berger 2007, Brown et al. 2012, Shannon et al. 2014). Carnivores display 

strong fear responses to noise pollution from the human ‘super predator’ (Smith et al. 

2017). Large-bodied carnivores may also be particularly deterred from areas of high 

anthrophony (anthropogenic sounds) due to the low-frequency energy overlapping strongly 

with the frequencies in which carnivores communicate, or because of an inability to detect 
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prey as a result of cue masking (Warren et al. 2006, Cardoso et al. 2018). Therefore, 

predation risk could be lower for ungulates during periods of higher noise pollution. 

Another explanation for increased foraging during acute periods of noise can be taken from 

the risk allocation hypothesis (Lima and Bednekoff 1999), which states that wildlife exposed 

to long-term, continuous pollutants are unable to sustain anti-predator behavior, and that 

anti-predator responses are used only when exposed to unpredictable stimuli. Though we 

did document a fear response in mule deer to instantaneous traffic noise, we also detected 

a fear response in mule deer from landscape-scale chronic noise, rendering the risk 

allocation hypothesis an unlikely explanation.  

 

Acute noise showed no effect on coyote vigilance or running behavior. The most 

parsimonious explanation for this result is that coyotes are habituated to louder noise levels 

experienced within short timescales (Bejder et al. 2009). Habituation to motorboat noise 

has also been demonstrated in foraging fish, and fallow deer (Dama dama) were shown to 

habituate to playbacks of sound from road markings (strips of sound-producing material) 

after 10 nights (Ujvári et al. 2004, Magnhagen et al. 2017).  

 

4.3 Consequences across spatial and temporal scale 

Our results indicate a differential effect of noise pollution across spatial and temporal scales 

(Figure 3.5). Previous studies have recommended examining responses to fear across 

multiple spatiotemporal scales to capture variation in response (Creel and Christianson 

2008, Moll et al. 2017, Prugh et al. 2019). Here, we sampled vehicular noise across different 

spatial and temporal dimensions. In doing so, we were able to identify that risk effects differ 

across temporal scales; fear responses occur at fine (instantaneous) and coarse (chronic) 



 110 

scales, while habituation and Human Shields occur at intermediate scales (acute) of noise 

pollution. Further, mechanisms driving fear responses differed spatially, at the fine scale of 

the camera and the coarse scale of the crossing structure. Our results further demonstrate 

that a Landscape of Fear and Human Shields are not mutually exclusive, and that prey and 

predators assess risk at various spatial and temporal scales concurrently. Much of our 

current knowledge surrounding the relation of risk to spatiotemporal scale is based upon 

herbivore-carnivore interactions. For example patch- and landscape-level fear occur in red 

deer (Cervus elaphus) when inhabiting wolf territories in Poland, and African ungulates 

increase vigilance during times of concurrent short-term and long-term risk (Kuijper et al. 

2015, Dröge et al. 2017). Here we add to the ecology of fear and demonstrate 

anthropogenic stressors also mediate fear responses of wildlife across multiple scales. 

 

Our primary goal was to assess the effect of noise pollution on anthropogenic, behaviorally-

mediated effects; however, we also examined several covariates which could alter the fear 

response. Though we detected no alterations to group size at louder crossing structures in 

response to patch and landscape interference, we did detect an increase in foraging and a 

decrease in vigilance among mule deer when in large groups (five and seven). Similar 

findings for the effect of group size on foraging have been reported for white-tailed deer 

(Lashley et al. 2014). The well-documented trade-off between vigilance and group size is 

likely due to individuals requiring less time to scan for predators (many eyes hypothesis) in 

larger groups, and individuals benefiting from a lowered predation risk through dilution 

effects (Roberts 1996). Accordingly, vigilance of California ground squirrels 

(Otospermophilus beecheyi) only increased when small groups, but not large groups, were 

exposed to loud playbacks of natural sounds (e.g. rivers) (Le et al. 2019). As expected, the 
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higher number of humans present at the crossing structure decreased foraging of deer, and 

vigilance was reduced for both species at night. This supports previous findings 

demonstrating that wildlife fear human presence, and wildlife shift to more nocturnal 

activity as a way to avoid humans (Stankowich 2008, Ciuti et al. 2012, Gaynor et al. 2018, 

Chapter 2).  

 

Coyotes increased vigilance further from the crossing structure, a response similar to  

pronghorn (Antilocapra americana) at crossing structures (Seidler et al. 2018). Foraging 

behavior of mule deer increased at camera stations further away from the crossing 

structure, and during warmer periods, which could be a result of higher densities of 

vegetation during warmer seasons and in locations further from the concrete crossing 

structure. In contrast, coyote vigilance increased during warmer temperatures, potentially 

due to activity of their predators being greater. For example, black bears (Ursus americanus) 

are only a predation risk for coyotes during the spring and summer months when they are 

not hibernating (Rogers 1992). Longer crossing structures were associated with decreased 

mule deer and coyote vigilance behavior, which could mean longer crossing structures are 

perceived as less risky (Clevenger and Waltho 2005).  

 

Our study detected a fear response to vehicular noise that led to alterations in anti-predator 

behavior, however vigilance and running responses in deer, and a running response in 

coyotes decreased during nighttime hours. During nighttime hours, wildlife experience 

additional exposure to artificial light from headlights. Previous work has shown that wildlife 

respond differently to vehicular light pollution than to noise pollution, with deer 

demonstrating an affinity to brightly lit crossing structures (Chapter 2). Future research 
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needs to include experimental playbacks to disentangle the relationship between noise and 

visual disturbances. Finally, to determine the impact alterations in behavior can have on 

individual fitness and whether unsuccessful crossings have a population-level impact, future 

research should examine whether flight is the consistent response of certain individuals, or 

a proportion of decisions made by all individuals. Individuals could be monitored through 

GPS telemetry data or software that enables individual recognition from data collected by 

camera traps. Monitoring individual responses could also shed light on whether fear 

responses are characteristic of certain personalities. For instance, Eastcott et al. (2020) 

found among-individual behavioral differences in vigilance behavior to traffic noise 

playbacks. 

 

4.4 Conclusions 

Road networks are expanding globally, with the addition of 25 million km predicted by 2050 

(Dulac 2013, Laurance et al. 2014). With this expansion comes increased interactions 

between wildlife and the human ‘super predator’. Our work demonstrates that a fear 

response of wildlife to anthropogenic noise stressors is likely to differ depending on 

spatiotemporal scale and characteristics of the stressor. This dynamic response to fear could 

alter natural predator-prey interactions and scale up to ecosystem-level consequences such 

as trophic cascades (Smith et al. 2017, Zanette and Clinchy 2019). To ensure a landscape of 

coexistence, additional research is needed to understand what anthropogenic stressors 

drive fear responses in wildlife and how spatiotemporal scale plays a role. 
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Tables  

Table 3.1. The relationship (coefficient estimate, standard error and z-value) between the 

decision-making event response variable (flight or entry) and the variables from the top 

models (lowest AIC) for mule deer and coyotes at highway crossing structures in response to 

noise pollution. Difference in AIC (∆AIC) reported for the full model and top model. 

 

Decision-
making 
event 

Parameter Coefficient 
estimate 

Standard 
error 

z value AIC 
(∆AIC) 

Mule deer Instantaneous noise 

(2 seconds) 

-0.531 0.278 -1.912 

 

123.23 

(0) 

 Chronic noise -1.115 2.082 -0.535  

 Group size     

 Time of day 0.128 0.538 0.239  

 Length of crossing 

structure 

0.112 0.113 0.010 

 

 

 Human visitation 

rate 

-2.114 1.932 -1.095 

 

 

      

Coyote Instantaneous noise 

(2 seconds) 

8.77415 3.354 2.616 43.20  

(-6.55) 

 Temperature -1.231 0.518 -2.377  
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Table 3.2. The relationship (coefficient estimate, standard error and t-value) between each 

response variable and the variables from the simplified models following step-wise removal 

of non-significant variables for mule deer and coyotes at highway crossing structures in 

response to noise pollution. 

 

Deer  Parameter Coefficient 
estimate 

Standard 
error 

t value 

Foraging Acute noise  

(~20 seconds) 

0.115 0.033 3.479 

  Chronic noise -0.033 0.007 -4.889 

  Group size       

  Temperature 0.046 0.003 14.860 

  Length of crossing 

structure 

-0.307 0.087 -3.539 

  Distance of camera 

from crossing structure 

0.489 0.034 14.220 

  Human visitation rate -2.759 0.320 -8.617 

          

Vigilance Group size       

  Temperature -0.006 0.002 -2.933 

  Time of day -0.213 0.060 -3.541 

  Length of crossing 

structure 

-0.477 0.057 -8.336 

          

Running Group size       

  Temperature -0.023 0.008 -2.934 

  Time of day -1.180 0.212 -5.578 

  Distance of camera 

from crossing structure 

-0.225 0.077 -2.919 

  Human visitation rate 1.831 0.483 3.790 

          

Coyote         

Vigilance Chronic noise -0.096 0.026 -3.714 

  Temperature 0.035 0.009 3.853 
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  Length of crossing 

structure 

-0.690 0.319 -2.165 

  Distance of camera 

from crossing structure 

-0.203 0.117 -1.731 

          

Running Chronic noise 0.122 0.020 6.026 

  Time of day -0.654 0.225 -2.911 

  Distance of camera 

from crossing structure 

0.512 0.141 3.630 
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Figures 

Figure 3.1. Map showing locations of crossing structures used in the study (purple dots), 

labelled with the intersecting highway and site name. 
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Figure 3.2. Landscape of fear response: Likelihood of A) coyotes and B) deer entering the 

crossing structure (1 = enter, 0 = repel) in response to instantaneous noise (-/+1 second) at 

time of decision-making event. 
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Figure 3.3. Human Shield response: mule deer foraging when exposed to acute noise (20-

second duration) at highway crossing structures.  
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Figure 3.4. Landscape of Fear response: coyote A) vigilance and B) running when exposed to 

various levels of chronic noise at highway crossing structures (“site-level noise”). 
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Figure 3.5. Schematic representing the various spatiotemporal levels of noise sampled at 

crossing structures: instantaneous noise (two seconds, camera station; yellow), acute noise 

(~20 seconds, camera station; dark blue) and chronic noise (one week, crossing structure; 

purple), and the mechanism driving responses detected at each level.  
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Supplement 
 

Table S3.1. Noise levels measured at each crossing structure. C-weighting (dBC) noise 

measurements were used for analysis. 

 

Site Highway Noise (median 
dBC) 

Noise 
(Median 
dBA)  

Andrade I-680 75.5 52.8 

Deer Crossing Structure US 50 65.2 48.9 

Gibson Road I-5 66.2 58.1 

Hirschdale I-80 67.5 56.5 

Mesa 2 SR 74 59.6 49.1 

PM24 I-80 67.7 59.5 

PM6 US 97 54.2 43 

Sheep Rock US 97 55.4 - 

Soda Springs I-80 75.3 61.8 

Unknown Bridge I-80 76.3 64.3 
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