UC Davis

Geriatrics

Title

Geriatric Traumatic Brain Injury: Risk Factors of Morbidity and Mortality

Permalink

https://escholarship.org/uc/item/94t167qb

Authors

Rivera, Ernesto Martin, Ryan

Publication Date

2021

Data Availability

The data associated with this publication are not available for this reason: N/A

Geriatric Traumatic Brain Injury: Risk Factors of Morbidity and Mortality

Ernesto Rivera,¹ & Ryan Martin^{2,3}

¹ UC Davis School of Medicine, ² Neurosurgery, UC Davis, ² Neurology, UC Davis

Background

- Older adults have the highest incidence of traumatic brain injury (TBI) of any age-group.¹
- Patients aged 65 and older comprise 15% of the population and account for 50% of TBI deaths²
- Few studies have examined risk factors of morbidity and mortality in elderly, TBI patients

Aim

 Determine risk factors of severe disability and mortality in elderly patients with severe traumatic brain injury.

Methods

- Study Design: A retrospective analysis of 127 elderly patients, aged 65 and older, presenting to the UC Davis Medical Center with a severe traumatic brain injury (Glasgow Coma Scale of 3-8)
- Patient/injury characteristics: See Table 1.
- 6-month outcomes: Glasgow Outcome Scale-Extended (GOSE) was used to assess severe disability, which was defined as a GOSE score≤4
- Analysis: Univariate logistical regression was performed to identify predictors that were statistically significant. Multivariable logistical regression was then performed at 6 Months with the predictors considered statistically significant.

Results

Table 1. Demographics & Injury Characteristics

Demographics and Injury Characteristics	TBI Cohort
Number of patients	127
Age, y, mean ± SD	77.7±9.2
Gender (% male)	56.7
Race, n (%)	
African American	8 (6.3)
White	88 (69.3)
Other	31 (24.4)
Glasgow Coma Scale, n (%)	
3	41 (32.3)
4	14 (11.0)
5	4 (3.2)
6	19 (15.0)
7	29 (22.8)
8	20 (15.7)
Mechanism of Injury, n (%)	
Assault	3 (2.4)
Auto vs. Pedestrian	16 (12.6)
Fall	68 (53.5)
Found Down	18 (14.2)
MVC	16 (12.6)
Other	6 (4.7)

Table 2. Univariate Logistical Regression of Mortality & Morbidity at Hospital Discharge and 6 Months After Injury

	In-Hospital Death		Death at 6 months		Severe Disability at 6 Months	
	p- value	OR (95% CI)	p- value	OR (95% CI)	p-value	OR (95% CI)
Contusion	0.593	1.36 (0.44-4.26)	0.764	1.21 (0.36-4.07)	1.000	1.00 (0.20-4.91)
Traumatic Subarachnoid	0.082	1.90 (0.92-3.91)	0.524	1.29 (0.59-2.82)	0.886	1.08 (0.38-3.09)
Intraparenchymal Hemorrhage	0.481	1.31 (0.62-2.78)	0.709	1.17 (0.51-2.66)	0.881	0.92 (0.31-2.73)
Subdural	0.002	4.05 (1.68-9.72)	0.010	3.18 (1.32-7.69)	0.010	4.2 (1.41-12.55)
Epidural	0.445	0.63 (0.19-2.07)	0.121	0.38 (0.11-1.29)	0.721	0.74 (0.15-3.76)
Cistern (absent or compression)	0.004	3.04 (1.43-6.48)	0.008	3.15 (1.35-7.34)	0.007	16.84 (2.14-132.17
Midline Shift	0.017	2.43 (1.17-5.05)	0.030	2.43 (1.09-5.41)	0.018	4.26 (1.29- 14.09)
Fracture	0.300	1.63 (0.65-4.10)	0.806	1.13 (0.43-3.00)	0.660	0.76 (0.22-2.59)
Intracranial Surgery	0.240	0.64 (0.30-1.35)	0.241	0.62 (0.28-1.38)	0.181	2.46 (0.66-9.17)
Intracranial pressure monitor	0.377	1.49 (0.61-3.63)	0.531	1.36 (0.52- 3.56)	0.656	1.35 (0.36-5.14)
Positive Toxicology	0.192	0.57 (0.25-1.33)	0.354	0.65 (0.26-1.61)	0.858	0.89 (0.26-3.07)
Positive EtOH	0.498	1.77 (0.34-9.24)	0.748	1.31 (0.25-6.91)	0.360	0.45 (0.08- 2.49)
Platelets	0.153	1.00 (0.99-1.00)	0.242	1.00 (0.99-1.00)	0.555	1.00 (0.99-1.00)
Partial Thromboplastin Time (PTT)	0.006	1.13 (1.03-1.23)	0.019	1.12 (1.02-1.22)	0.032	1.19 (1.01-1.39)
Admission Age	0.002	1.07 (1.02- 1.11)	0.004	1.07 (1.02- 1.12)	0.096	1.06 (0.99- 1.13)
GCS	0.000	0.59 (0.47- 0.73)	0.000	0.66 (0.52- 0.82)	0.001	0.52 (0.35-0.77)

 Univariate logistical regression demonstrates subdural hemorrhage, cistern effacement, midline shift, PTT, age and GCS as statistically significant predictors of morbidity and mortality at hospital discharge and 6 Mo (Table 2)

Table 3. Multivariate Logistical Regression at Hospital Discharge and 6 Months

Multivariable logistical regression	Hospital Death		
	p-value	OR (95% CI)	
Cistern (absent or compression), y	0.212	1. 87 (0.70-5.03)	
Subdural	0.102	2.74 (0.82-9.20)	
PTT	0.042	1.11 (1.00- 1.23)	
Admission age	0.001	1.10 (1.04- 1.16)	
GCS	0.009	0.71 (0.55-0.92)	

Multivariable logistical regression	Death at 6 Months			
	p-value	OR (95% CI)		
Subdural	0.042	3.75 (1.04-8.17)		
PTT	0.106	1.15 (0.98-1.20)		
GCS	0.054	1.08 (0.60-1.00)		

• Multivariate analysis demonstrates PTT, subdural, GCS, and age as statistically significant predictors of mortality at different timepoints (Table 3)

Conclusions

- Reconfirmed that age and GCS are strong predictors of mortality after traumatic brain injury.
- Subdural hemorrhage and prolonged PTT are strong predictors of morbidity and mortality in elderly patients with severe TBI.
- Future studies should examine the effects of CT pathology and coagulopathy on mortality and morbidity of elderly patients with mild and moderate TBI.

References

- . Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths United States, 2007 and 2013. MMWR Surveill Summ 2017.
- 2. Garza N, Toussi A, Wilson M, Shahlaie K, Martin R. The Increasing Age of TBI Patients at a Single Level 1 Trauma Center and the Discordance Between GCS and CT Rotterdam Scores in the Elderly. *Front Neurol*. 2020;11:112. Published 2020 Feb 20. doi:10.3389/fneur.2020.00112

Funding/Disclosures

Funding was provided by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant No. UL1 TR001860