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Abstract

Due to recent increases in chip complexity, behavioral synthesis has become an impor
tant area of research and company interest. However, there has been market resistance
to the automatic behavioral synthesis approach for two reasons. It often produces re
sults inferior to manual designs, and it allows only minimal user control. To overcome
these hurdles, we present a design methodologyfor human interaction in design synthe
sis, which, in contrast to the automatic synthesis approach, gives the human designer
fine-grain control over synthesis tasks, and continually supplies feedback in the form
of quality measures so that the user can make informed design-related decisions. To
confirm the feasibility of the proposed design methodology and to demonstrate its power
and flexibility, we also present the Interactive Synthesis Environment (ISE), a working
software environment comprising design views, quality measure feedback, and synthesis
algorithms.
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1 Introduction

Recent advances in VLSI technology have allowed companies to build complex designs

containing over one million transistors on a single chip. As the complexity of chips increases,

so will the need for designing from the behavioral abstraction level where functionality and

tradeoffs are easier to understand and control.

Behavioral synthesis is a process of synthesizing a design from a given behavioral descrip

tion to a register-transfer-level (RTL) structure. Behavioral descriptions can be programs,

algorithms, flowcharts, dataflow graphs, instruction sets or generalized flnite-state machines.

The RTL structure is a set of interconnected components described as a netlist. Compo

nents in the netlist can be (a) functional units such as ALUs, multipliers, (b) storage units

such as memories, register files, and (c) interconnection units such as miixes and buses. In

general, behavioral synthesis involves three major tasks: allocation of physical resources

(i.e., functional units, storage units and interconnection units) to be used in the design,

scheduling of behavioral tasks into time intervals, and binding of behavioral operations

and variables to physical resources.

Many years of research have been devoted to the development of automatic behavioral

synthesis systems [2][3][6][10]. In these systems, designs are obtained with minimal user

interaction in that the only means of controlling the desired output is via the input descrip

tion and via constraints expressed in terms of area and/or performance. Figure 1 shows

the typical design methodology of an automatic behavioral synthesis system. Note that the

order in which synthesis tasks are performed may vary.

Automatic behavior synthesis suffers from a number of complex issues.

• The synthesis tasks are all NP-complete problems and heuristics must be employed

when brute-force approaches would take too much time to complete.

• The order in which synthesis tasks are performed has an impact on both the efficiency

and quality of results. Automatic systems usually have one fixed order of tasks.

• The behavioral synthesis tasks are always done before the physical level tasks, such

as placement and routing. Yet, these low level tasks contribute significantly to the

delay and area of the design and such effects are very difficult to estimate at the

behavior level. Hence, resulting designs sometimes cannot satisfy the performance or



area demands of real-world constraints.

Although it certainly cannot be denied that considerable progress has been made in this

research area, a practical solution to automating behavioral synthesis is still distant.

Specify design behavior

Set constraints for synthesis system

Scheduling

Placement & Routing

Constraints
\ met? /

Automatic

Behavioral

Synthesis

Figure 1: A typical design methodology of an automatic behavioral synthesis system

When the design produced by automatic behavioral synthesis is not a good one, the

user is presented with the following dilemma. She may either modify the input description

or constraints, which may result in yet another design which does not satisfy constraints, or

modify the synthesized design manually, which requires considerable effort to understand,

to manipulate and to verify that the changes made resulted in a correct design.

To develop a feasible approach to behavioral synthesis, we have substituted the goal

of a completely automated, "push-button" synthesis system with one which attempts to

maximally utilize the human designer's insights. Using interactive behavioral synthesis,



the user can control the design process, observe the effects of design decisions, and manually

override synthesis algorithms at will. This interactivity will allow a synthesis system to

generate complex designs of acceptable quality in the immediate future instead of waiting

the many years before current automatic synthesis techniques reach a similar level of quality.

With this goal in mind, we have implemented a system called the Interactive Synthesis

Environment (ISE) to demonstrate the feasibility of such methodology

In the next section, we describe previous and comparable work in the area of interactive

synthesis. Following that, we offer the proposed design methodology as a superior alter

native to automatic synthesis methodology. We then introduce the interactive synthesis

system ISE in Section 4 as a testable instantiation of our design methodology. Finally we

present a walk-through design synthesis example and present our conclusions.

2 Previous Work

There are several previous papers that address the importance of user-interaction with

synthesis systems. In this section, we wiU differentiate our approach from previous research.

The ACE graphical interface [1] is intended to function between the user and the syn

thesis system. It allows the user to place and connect functional nodes to create graphs

that specify the desired behavior, thereby precluding the need for an initial textual input

description. After the initial graphical specification is obtained, and before synthesis tasks

such as allocation, scheduling and binding start, transformation techniques can be applied

by the user to the specification to change it into a better, more efficient input description of

the synthesis system. ACE allows the user to interact with the synthesis system by giving

the user the final say in accepting or rejecting the system's transformation decisions. An

experienced user can also specify transformations manually. Nevertheless, ACE does not

allow the user to interact directly with the synthesis tasks.

RLEXT [8] [9] is an interactive tool which allows a user to manually reschedule a design's

behavior or modify a design's structure by adding or deleting components and interconnects.

The unique aspect of RLEXT is that, if the user makes changes in the datapath design or

the behavior's schedule that would impair the datapath's ability to carry out the desired

schedule, RLEXT will automatically repair the datapath so that it is once again able to

execute the specified schedule. However, RLEXT does not provide the user with feedback

as to the current design's quality to assist the user in making subsequent design decisions.



The system AMICAL [7] allows the user to mix automatic and manual design. The

user may start a design manually and ask AMICAL to finish it. Alternatively, the user can

execute the synthesis tasks step by step. At each step, the user has the choice to continue

the synthesis automatically or manually. However, AMICAL requires the user to follow a

fixed order of synthesis tasks.

A unique aspect of our approach is that it allows the user to start floorplanning early

in the design process. None of the previous research addresses physical design issues with

behavioral synthesis, that is, generating feedbacks from the physical level to help the user

making design decisions at behavioral and structural levels. Hence, the proposed design

methodology supports interactive behavioral synthesis to a degree not presently seen in this

research area.

3 Interactive Design Methodology

Figure 2 shows the proposed design methodology for interactive behavioral synthesis. The

user first captures the design specification using textual or graphical input. Then the user

chooses between a number of tasks and degrees of interactivity within those tasks to advance

the design closer to the desired finished result. The user may choose to do the task entirely

without input from the system (manual), interact with the system throughout the task

(interactive), or let the system do the entire task without supervision.

Upon the completion of a task, the design may or may not conform to desired constraints.

If the latter case, the system provides quality metrics and design hints which indicate

problem areas or bottlenecks within the design. To remove the bottlenecks and thus improve

the cost or performance of the design, the user returns to the synthesis tasks and modifies

the design at any level of abstraction, behavioral, structural or physical.

There are three important contrasts between the methodology for automatic behavioral

synthesis, shown in Figure 1, and the proposed methodology for interactive behavioral

synthesis. First of all, the proposed methodology allows user decisions and user control in

every task and at every level of the design process. This provides the user with complete

control over the synthesis system. Secondly, there is no forced ordering of synthesis tasks;

the user can perform any synthesis task at any time during the design process, where

possible. Third, the system allows the user to start floorplanning early in the design process.

By doing so, the system can provide rapid feedback of useful physical design characteristics
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Figure 2: A design methodology for interactive behavioral synthesis

and quality metrics to every level of design abstraction. Thus, the user can take into account

the physical level floorplaa while making design decisions at the behavioral or structural

levels, and the time-consuming tasks of placement and routing need be done only once,

when the design is completed.

4 The Interactive Synthesis Environment: ISE

We have implemented an interactive behavioral synthesis system called ISE. ISE provides

graphical design views that allow the user to enter and/or modify the design, and perceive

the consequences of design decisions. Decisions made by the user generate immediate feed

back as to the quality of the resulting design. To give the user easier control over design

tasks, ISE often divides individual tasks into smaller steps. For example, scheduling is

divided into splitting and merging states. Figure 3 summerizes the design views, quality

metrics and tasks supported in ISE for design at the behavioral, structural and physical

levels. We will give a brief description of each of these views, quality metrics and tasks in

the following section. The detailed discussion can be found in [5].
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add/delete components
change component implementations
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change component placements
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and I/O ports
route/unroute interconnections

Figure 3: The design view, quality metrics, and tasks supported in ISE

4.1 Behavioral Level

Design View

At the behavioral level, ISE provides the state-actions table view (SAT) to the user
for capturing adesign's behavior, as shown in Figure 4, where PS is the present state; NS-
COND gives the condition for a next-state transition; NS is the next state; AC shows the
assignment condition for each action; ACT/CA lists aU operations in the behavior. Note
that when a behavior is completely non-scheduled, it can be specified using a single state.

Using this view, the user can specify a new behavior, modify an existing behavior, or
schedule a behavior. Before the user finalizes the design, the schedule represented in the
state-actions table view is considered "partial" and reflects only the user's conceptualization
of the flow of the behavior.

Qu€ility Metrics

Since the state-actions table view is used for behavioral capture and scheduling, sev
eral scheduling metrics are available to help the user decide how to partition a behavioral
description into control steps.

• Operator occurrences shows the number of operators of each type used in each
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Figure 4: The state-actions table view

state. The maximum number of occurrences of a certain operator type over all states

determines the required minimum number of functional units to perform that type of

operation.

• Variable lifetime identifies states in which a variable holds a useful value. The

maximum number of variables with overlapped lifetimes over all states determines

the required minimum number of storage units.

• State delay gives the time needed to execute all operations in a state. In addition

to the delay time, the metric can also show the register transfer path that causes the

longest delay, or critical path, in the state. By shortening the critical path, the user

can reduce the clock period.

• Average and Maximum execution times show the average and longest execution

times required by the behavior from start to finish, considering all possible state

branching. The maximum execution time is computed as the product of the maximum

state delay and the total number of states on the longest execution path.

• Clock slack represents the portion of the clock cycle for which components are idle,

computed as the difference between the state delay and the clock period. This metric

is used to pinpoint critical states.



Tasks

ISE allows the user to capture and modify the SAT. With the assistance of quality

metrics, a user can locate the critical portion of the design at the behavioral abstraction

and perform operations such as re-ordering statements and merging and splitting states to

improve the quality of the design.

4.2 Structural Level

Design View

Maetlon [ d«no MniLudr

U_ji

n Na-CDRO MS AC

Figure 5: The component selection and binding view

At the structural level, the user needs to be able to determine the type and number of

resources needed to implement the design and assign operators and variables to functional

and storage units, respectively. In order to allow the user to perform these design tasks, a

view of behavior and a view of available physical components are required. In ISE, these



tasks can be done in the component selection and binding view.

The component selection and binding view consists of four displays: unit selection,

component capture, allocation table and state-actions table. Figure 5 shows an example of

different displays in the component selection and binding view.

The unit selection display and component capture display allow the user to select com

ponents from a component library and add instances of those components to the current

design's component set. The unit selection display shows the available component cate

gories and the parameters for each component. The user must select parameters values,

such as bitwidth, style and functions performed, in order to specify a unique component

type. These parameters are a requirement of the behavior shown in the state-actions table

display since the components selected must be able to perform the operations defined in

the behavior. Moreover, the number of components of each type is also derived from the

behavior because there must be enough components allocated to perform the scheduled

behavior. Once a component type is selected, the user may choose among a list of available

implementations of that component having different areas and maximum pin-to-pin delays.

Quality Metrics

The following quality metrics are used as hints to the user to suggest the next operator

or variable to be bound, or to suggest binding configurations that can improve design cost

and/or performance.

• Bitwidth closeness measures the differences between bitwidth of a selected compo

nent and unbound operators in the design. A high value of bitwidth closeness indicates

a low component utilization if that operator were to be bound to the component. On

the other hand, if the closeness value is negative it means that component cannot be

used to fully execute the operation. Thus, the best binding for operations is indicated

by the smallest non-negative bitwidth closeness measure.

• • Sources/Sinks closeness measures the commonality between the sources and sinks

of unbound operators/variables in the design and the sources and sinks of opera

tors/variables that are bound to a selected component. The higher the closeness

value for an operator, the better the chance that a binding will not require additional

interconnect units.

• Dependency closeness measures the number of dependency edges between an op-



erator/variable and operators/variables that are bound to the selected component.

Tasks

ISE supports interactive allocation by providing the minimum set of operations for this

task: adding components to the allocation table, deleting components from the

allocation table, and changing component implementations.

The user may interactively bind operators/variables to components by selecting

an operator or a variable and a component from the allocation table and requesting that the

system perform a binding between them. The task of unbinding a component/behavior

pair is also available so that the user can correct bindings that result in unsatisfactory

performance or cost.

4.3 Physical Level

Design View

Figure 6: The floorplan view

At the physical level, ISE allows the user to perform floorplanning as soon as any



hardware components are chosen to implement the design. Figure 6 shows an example of

the floorplan view.

Quality Metrics

Available floorplan metrics to facilitate area optimization include the following.

• Total area gives the estimated chip area of the design.

• Functional unit area, storage unit area and routing area show the area in

square microns as well as the percentage of the entire chip area being occupied by

functional units, storage units and routing, respectively.

• Wasted area describes the amount of "white space'' in the floorplan, calculated by

subtracting the sum of component areas and routing area from the total area of the

current design.

• Wire length indicates the length of the selected wire in microns.

• Total wire length show the sum of the lengths of all wires in the floorplan.

• Critical path identification helps the user to identify interconnect hot-spots.

Tasks

The floorplan view in ISE allows the user to perform interactive placement and routing

by: changing the placement of components, altering the positions of module pins

and I/O ports, and routing interconnections.

5 An Example

To illustrate the application of the proposed methodology in Figure 2, weshall walk through

a simple design and annotate the key decision points.

Figure 7 shows a specification designed to compute the square-root approximation

(SRA) [4] of two signed integers, a and 6, by the following formula:

y/a^ -f 62 Rs maa:((0.875x -|- 0.5t/), x)

where x = max(|o|, |6|), and p = min(|a|, |6|). According to Figure 7(a), this design has



two input ports, Inl and In2, which are used to read integers a and 6, and one output port

Out. As shown in the flow-chart in Figure 7(b), the design reads the input ports and starts

the computation whenever the input control signal Start becomes equal to 1. After the

computation is done, it makes the result available through the Out port for one clock cycle.

At the same time, it sets the control signal Done to 1, in order to signal to the environment

that the data that has appeared at the Out port is a valid result. Figure 7(c) shows the

component library that will be used in implementing this design. This component library is

based on the VLSI Technology, Inc. 1.0 micron CMOS VDP370 datapath cell library [11].

The constraints for the design are a total area smaller than 2,500,000 and maximum

execution time no longer than 350 ns.

In1 ln2

componeni function* dolayfns) area(um'^2)

add +

+, -

18.4 110,880

aub 17.5 118,808

alu 18.8 160,416

min min 23.2 ! 149.472

max max 26.5 162,432

max_min max, min 30.9 180,576

absolute
23.3 149,472

25.5 123,886

2-1 mux

3-1 mux

re^sler

2 to 1 mux

3 to 1 mux

i3.5(selup)
5.4(holdi

5.7

6.0

49,824

29,664

49,536

t1 ' abs(a)
12 - abs(b)
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14 z y » 1
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Dcxie = "1"
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Figure 7: The specification of the SRA example

Figure 8 shows the state-actions table representation of the design, obtained from Fig-
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Figure 8: The state-actions table of the SRA example

ure 7(b). Also shown in this figure are the quality metrics,operator occurrences (OP. OCC)

and state delay (ST Delay). From the operator occurrences metric, it is obvious that the

current schedule requires at least two components for the computation of absolute value,

two components for the computation of maximums, and one component each for the com

putation of minimum, addition, and subtraction. Note that the two shift operations can be

implemented by signal rearrangement and do not require any logic. Therefore, the func

tional unit area is estimated to be 1,002,411 which is the sum of the areas of all the

required components. At the same time, the state delay metric shows that the longest state

delay is 119 ns; therefore, the clock period is 119 ns. Since the longest execution path

consists of three states (STO ^ STl —»• ST2), the maximum execution time would be 119

X 3 = 357 ns, which clearly violates the performance constraint. To help the user identify

the performajice bottleneck, ISE highlights the operators on the critical path, as shown in

Figure 8. To shorten the critical path, STl is split into two states, STl and ST3, as shown

in the state-actions table in Figure 9(b). After splitting STl, the longest state is now ST3

with a delay of 69.3 ns. Hence, the clock period is reduced from 119 to 69.3 ns and the

maximum execution time is now 277.2 ns, which satisfies the performance constraint. At

this point, we can switch our attention to the area constraints of the design.

From the operator occurrences metric shown in Figure 9(b), we can see that the max

imum operator occurrence of the maximum computations decreases to one after STl was
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Figure 9: The design of the SRA example after splitting STl and allocation

split. Therefore, the current schedule requires two components for the computation of ab

solute value, one component each for the maximum and minimum computation, one adder

and one subtractor. The aJIocation is shown in Figure 9(a). After the components are allo

cated, floorplanning can begin. Figure 9(c) shows a possible floorplan. The total area metric

estimates that the current design requires 1,485,000 Note that this does not include

the storage unit area, interconnection unit area, routing area, or the controller. Knowing

that the storage units, interconnection units and the controller, may very well occupy more

than half of the final design area, we should see whether it is possible to further reduce the

functional unit area.

In the component library, there is an ALU which can perform both addition and sub

traction. Replacing the adder and subtractor by that ALU, a new allocation is obtained and

shown in Figure 10(a). After modifying the floorplan, the total area is now approximately

1,265,000 well within our constraint. However, since the addition and subtraction are

both executed in ST3, ST3 needs to be split into two states so that one ALU can be used to
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Figure 10: The design of the SRA example after the first re-allocation

execute the addition in one state and the subtraction in the other. The state-actions table

after splitting ST3 is shown in Figure 10(b). The longest state delay, and the clock period

in turn, is now 58.6 ns and the maximum execution time has increased from 277.2 to 293

ns.

Although the estimated maximum execution time satisfies the performance constraint,

the execution time utilization quality metric shows that components are only being utilized

52.3% of the time. That means that if we split states to reduce clock slack, the maximum

execution time will be improved. Noticing that states STl and ST4 are approximately

twice as long as ST3, we split STl and ST4 and the resulting state-actions table is shown

in Figure 11. The execution time utilization has improved from 52.3% to 69.1% and the

maximum execution time has been reduced from 293 to 247.8 ns.

Now that both the performance and the area constraints are satisfied, we can proceed

with the binding task. The operator binding is straight-forward since there is one component

each for maximum, minimum, addition and subtraction, and two identical components for
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Figure 11: The design of the SRA example after splitting STl and ST4

the computation of absolute value. The operator binding is shown in Figure 12(a). Variable

binding requires us to know the lifetimes of each variable since a register can be shared only

by those variables with non-overlapping lifetimes. Figure 11 shows the variable lifetime

metric (Var. LT) of the current schedule. Figure 12(a) shows an acceptable variable binding

which requires only four registers.

After the operator and variable bindings are done, interconnections between components

and registers are automatically determined. Multiplexers are automatically inserted at the

input ports of the components and registers whenever multiple sources are encountered.

The controller is also generated at this point. Figure 12(c) shows a complete netlist and

fioorplan of the design. After including the wiring delay and multiplexer delay the maximum

execution time is estimated to be 329.7 ns, which satisfies the performance constraint.

However, the total area of the design has increased tremendously and the area constraint

is now violated. (Notice that floorplanning at this early stage enabled us to discover that

the area constraint was being violated. Without this ability, the total area would likely be

determined by summing up the functional, storage and interconnect unit areas, giving us

an estimate of 1,565,239 fim^, which is only 58.8% of the total area.)

To reduce the area, we need to go back to the component selection phase. We observe
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Figure 12: The design of the SRA example after binding

that there exists one component which can perform both maximum and minimum. In

addition, there exists a slower but smaller implementation of the components ABSl and

ABS2. The resulting selection is shown in Figure 13(a). However, the computation of

minimum in ST5 needs to be moved to ST3 so that the component MAX_MIN can be

used to execute both maximum and minimum sequentially. Figure 13(b) shows the state-

actions table after the computation of minimum is moved to ST3. After re-allocation and

re-scheduling, some of the operator and variable bindings need to be modified and the

controller re-generated. The final floorplan is shown in Figure 13(c) and the design of

this SRA example is finally complete with a total area of 2,240,000 and a maximum

execution time of 329.7 ns.
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Figure 13: The design of the SRA example after the second re-allocation

6 Conclusion

This paper has detailed a design methodology for interactive behavioral synthesis. In con

trast to the typical design methodology for automatic behavioral synthesis systems, the

proposed methodology allows user decisions and user control in every task and at every

level of the design process. Moreover, it gives the user the unique ability to begin floor-

planning early in the design process. To demonstrate the design methodology, we have

presented a walk-through square-root approximation example. During the design process

of this example, we utilized different quality metrics and made design improvements while

working at behavioral, structural and even physical levels at the same time.

To confirm the feasibility of the proposed design methodology and to demonstrate its

power and flexibility, we have presented the Interactive Synthesis Environment (ISE), a
working environment comprising design views, quality measure feedback, and synthesis



algorithms.
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