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ARTICLE

Integrated single-cell transcriptome analysis
reveals heterogeneity of esophageal squamous
cell carcinoma microenvironment
Huy Q. Dinh 1,2,10✉, Feng Pan3,4,10, Geng Wang4,5,10, Qing-Feng Huang 3,4,10, Claire E. Olingy2,

Zhi-Yong Wu6, Shao-Hong Wang6, Xin Xu3,4, Xiu-E Xu3,4, Jian-Zhong He3,4, Qian Yang7, Sandra Orsulic 8,

Marcela Haro8, Li-Yan Li3, Guo-Wei Huang3, Joshua J. Breunig 9, H. Phillip Koeffler 7, Catherine C. Hedrick2,

Li-Yan Xu 3,4✉, De-Chen Lin 7✉ & En-Min Li 3,4✉

The tumor microenvironment is a highly complex ecosystem of diverse cell types, which

shape cancer biology and impact the responsiveness to therapy. Here, we analyze the

microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell tran-

scriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor

samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC

stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-

specific subset of CST1+ myofibroblasts with prognostic values and potential biological

significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types.

Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of

myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC

microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors.

This work establishes a rich resource of stromal cell types of the ESCC microenvironment for

further understanding of ESCC biology.

https://doi.org/10.1038/s41467-021-27599-5 OPEN

1McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA. 2Division of
Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA. 3 Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular
Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College,
Shantou, China. 4 Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Shantou, China. 5 Department of Thoracic Surgery, Cancer Hospital
of Shantou University Medical College, Shantou, China. 6 Shantou Central Hospital, Shantou, China. 7 Department of Medicine, Samuel Oschin
Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 8Department of Obstetrics and Gynecology and Samuel Oschin
Comprehensive Cancer Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. 9 Board of Governors
Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA. 10These authors contributed
equally: Huy Q. Dinh, Feng Pan, Geng Wang, Qing-Feng Huang. ✉email: huy.dinh@wisc.edu; lyxu@stu.edu.cn; dchlin11@gmail.com; nmli@stu.edu.cn

NATURE COMMUNICATIONS |         (2021) 12:7335 | https://doi.org/10.1038/s41467-021-27599-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27599-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27599-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27599-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27599-5&domain=pdf
http://orcid.org/0000-0002-3307-1126
http://orcid.org/0000-0002-3307-1126
http://orcid.org/0000-0002-3307-1126
http://orcid.org/0000-0002-3307-1126
http://orcid.org/0000-0002-3307-1126
http://orcid.org/0000-0003-1594-8884
http://orcid.org/0000-0003-1594-8884
http://orcid.org/0000-0003-1594-8884
http://orcid.org/0000-0003-1594-8884
http://orcid.org/0000-0003-1594-8884
http://orcid.org/0000-0001-5119-8721
http://orcid.org/0000-0001-5119-8721
http://orcid.org/0000-0001-5119-8721
http://orcid.org/0000-0001-5119-8721
http://orcid.org/0000-0001-5119-8721
http://orcid.org/0000-0002-3735-3390
http://orcid.org/0000-0002-3735-3390
http://orcid.org/0000-0002-3735-3390
http://orcid.org/0000-0002-3735-3390
http://orcid.org/0000-0002-3735-3390
http://orcid.org/0000-0001-5839-9913
http://orcid.org/0000-0001-5839-9913
http://orcid.org/0000-0001-5839-9913
http://orcid.org/0000-0001-5839-9913
http://orcid.org/0000-0001-5839-9913
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1618-4292
http://orcid.org/0000-0002-1951-367X
http://orcid.org/0000-0002-1951-367X
http://orcid.org/0000-0002-1951-367X
http://orcid.org/0000-0002-1951-367X
http://orcid.org/0000-0002-1951-367X
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
http://orcid.org/0000-0001-6375-3614
mailto:huy.dinh@wisc.edu
mailto:lyxu@stu.edu.cn
mailto:dchlin11@gmail.com
mailto:nmli@stu.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Esophageal squamous cell carcinoma (ESCC) is common
(>400,000 cases per year) and highly aggressive (causing
~300,000 deaths every year) malignancy1; ESCC patients

have a 5-year survival rate lower than 20%1. Recently, immune
checkpoint blockade therapy has shown encouraging efficacy in
ESCC patients2–4. However, as with most solid tumors, only a
minority of ESCC patients (20-30%) benefit from anti-PD-1
therapy2–4, highlighting that the immune system can be exploited
for clinical benefits in ESCC. The variation in treatment efficacy
of immune checkpoint blockade therapy has been associated with
heterogeneity in the immune cell composition of individual
tumors. Clearly, a better understanding of immune cell biology
within the ESCC microenvironment will help identify mechan-
isms underlying cellular responsiveness or resistance to
immunotherapies.

In addition to immune cells, multiple other cell types contribute
to either resistance to immunotherapies or immune evasion, such
as fibroblasts5, endothelial cells6 as well as cancer cells themselves.
Indeed, we7,8 and others9–11 have reported that ESCC exhibits a
high degree of intratumoral heterogeneity, which is notably
associated with patient survival11. These prior results indicate that
within the ESCC microenvironment, both stromal (including
T cells, macrophages, fibroblasts, etc.) and malignant cells are
highly heterogeneous. Moreover, the plethora of cell types and
their distinct cellular states not only influence the immune system
but also contribute to shape the biology of cancer cells, including
their capabilities to survive, proliferate, migrate, metastasize, etc.
However, the extent of cellular heterogeneity, the dynamics of
distinct biological states, as well as their functional impact on the
tumor ecosystem, remain largely uncharacterized in ESCC.

Single-cell transcriptome sequencing (scRNA-Seq) profiles
gene expression network at the single-cell level, enabling high-
resolution characterization of cellular heterogeneity, develop-
ment, and differentiation states in diverse systems. This approach
has been applied to analyze the tumor microenvironment of
multiple cancer types, including breast cancer12, lung cancer13,
hepatocellular cancer14, head and neck cancer15, pancreatic
ductal adenocarcinoma (PDAC)16, etc. We have also recently
revealed cellular heterogeneity using scRNA-Seq in both mouse
and human glioma samples17.

Here, we perform scRNA-Seq to analyze the microenviron-
ment from tumor and adjacent nonmalignant esophageal tissues
from 11 ESCC patients. We reveal profound cellular hetero-
geneity of both lymphoid and myeloid cell lineages, highlighting
an immunosuppressive ecosystem of ESCC tumors. In addition,
we uncover prominent diversity of fibroblast compartment and
identify a subset of CST1+ myofibroblasts with potential biolo-
gical significance and prominent prognostic value. These results
shed insights into esophageal cancer biology and provide
important theoretical basis for advancing the therapeutic inter-
vention for this malignancy.

Results
The cellular microenvironment of ESCC and adjacent non-
malignant esophageal tissues. To explore the cellular hetero-
geneity in ESCC, we performed scRNA-Seq on primary tumors
and matched adjacent nonmalignant esophageal tissues from 11
treatment-naive ESCC patients (Supplementary Table 1) using a
droplet-based system that enables 3′ mRNA counting (10X
Genomics Platform). Peripheral blood mononuclear cells
(PBMCs) from three of the patients were also analyzed by
scRNA-Seq (Fig. 1A). After single-cell capture and sequencing
QC (see Methods), a total of 21,355 cells were obtained from
ESCC tumors, 19,882 from nonmalignant esophagus and 20,924
cells from PBMC samples (Fig. 1A–B).

Because gene expression of tumor and nonmalignant cells is
fundamentally different at the single-cell resolution12,13, we first
analyzed 22 tissues samples (9 nonmalignant esophageal samples
and 13 tumors) using a computational integration method.
Specifically, to harmonize a single reference atlas of single-cell
tumor and nonmalignant tissues, we employed an anchor-based
pairwise integration method18 with each anchor representing a
similar pair of cells from different samples (see Methods). The
integration framework allowed us to account for the potential
batch effect, sample variation, and in particular, to find shared
biological states between nonmalignant and tumor samples while
considering distinct subsets of each cell type. The integrated
expression was used for further downstream analysis including
dimensional reduction and cell type clustering. Cell type
annotation and differential expression analysis were performed
using raw RNA expression values before integration.

Subsequently, we performed enrichment scoring based on
established markers for known cell types (see Methods). Through
this approach, we identified epithelial cells (including both
nonmalignant esophageal epithelial cells and tumor cells, termed
Epithelial/Tumor), immune cells (myeloid, mast, T, and B cells),
fibroblasts, smooth muscle cells, and endothelial cells (Fig. 1C;
Supplementary Fig. 1–2). Most cell types were contributed
comparably by tumor and nonmalignant samples, except for
the “Epithelial/Tumor” compartment which was expectedly
constituted by predominantly tumor samples (Fig. 1D). We also
performed cell clustering using an independent approach (the
CellRanger aggr method from 10X Genomics), and the data were
presented in Supplementary Figs. 3–5.

Fibroblast cell heterogeneity in ESCC. From nonmalignant and
tumor samples, we detected a total of 12,126 fibroblast cells
(Fig. 1B). To better understand fibroblast cell diversity within
ESCC, we performed integrated analysis restricted on this com-
partment across nonmalignant and tumor samples and identified
7 subclusters (Fig. 2A). Common fibroblast markers such as
DCN, FSP1 (also called S100A4), and mesenchymal cell marker
VIM were expressed across all subpopulations (Supplementary
Fig. 6A), confirming their fibroblastic cell identity. Additional
markers were noted, such as SPARCL1 and PDPN (Supplemen-
tary Fig. 6A), both of which were found to be expressed by
fibroblasts in other types of tissues16,19,20. Except for F_3 subset
which was markedly enriched in tumors, all the other subsets had
comparable abundance in both tumor and nonmalignant samples
(Fig. 2B).

We next determined differentially expressed genes for each
fibroblast subset using differential expression analysis of one
subset in comparison to the rest (see Methods). One notable
pattern emerged from the most variable genes was that different
subsets expressed distinct repertoire of extracellular matrix
(ECM) proteins (Fig. 2C–D, Supplementary Fig. 6A, Supplemen-
tary Data 1A), such as MFAP5 (F_0), MMP1, MMP3, MMP10
(F_1), SRGN (F_2 and F_5), COL1A1, COL3A1, POSTN,
MMP11 (F_3), and SPP1 (F_6). Indeed, each subset of fibroblasts
expressed at least one specific ECM gene, except for F_4
(Supplementary Data 1A). One of the most important functions
of fibroblasts is to shape tissue structure by secreting molecules to
remodel ECM, including collagen, MMPs, Laminin, Periostin,
etc5. Thus, these results suggest functional specialization of
different fibroblast populations in ESCC.

Tumor-specific CST1+ myofibroblast is associated with poor
prognosis in ESCC. To gain further insights into the functionality
of different subsets of fibroblasts, we performed Gene Ontology
(GO) analysis based on the differentially expressed genes of each

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27599-5

2 NATURE COMMUNICATIONS |         (2021) 12:7335 | https://doi.org/10.1038/s41467-021-27599-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


subset (see Methods). The most significantly enriched Biological
Process GO terms were “Collagen fibril organization”, “ECM orga-
nization” and “Endodermal cell differentiation” in F_3 subset
(Fig. 2E). Indeed, the majority of the ECM genes were expressed at
the highest levels in F_3 compared with other subsets

(Supplementary Fig. 6A). Furthermore, multiple lines of evidence
together suggest that F_3 subset represents activated myofibroblasts:
i) αSMA (encoded by ACTA2), a well-known myofibroblast marker,
was most robustly expressed in F_3 (Fig. 2D); ii) Hallmark pathway
analysis indicated that F_3 was highly proliferative, displaying the

Fig. 1 Single-cell transcriptomic landscape of esophageal squamous cell carcinoma (ESCC). A A schematic graph showing the study design. B UMAP
(Uniform Manifold Approximation and Projection) visualization of the clustering of 41,237 cells from all 22 nonmalignant and tumor samples, color coded
by either major cell type (left), sample type (middle) or patient origin (right). C Overlay of expression of representative marker genes for each cell type
defined in (B). D The frequency of each cell type in nonmalignant and tumor samples (left), and in each of the 11 patients (right, an analysis restricted
within tumor samples). Source data are provided as a Source Data file.
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highest score of Mitotic spindle (Supplementary Fig. 6B); iii)
F_3 showed the strongest protein secretion pathway (Supplementary
Fig. 6B); iv) both EMT (epithelial-mesenchymal transition) and
TGF-beta signatures had the highest scores in F_3 (Supplementary
Fig. 6B). In several tumor types, myofibroblasts have been shown to
promote cancer development and progression through various
avenues5,16,21. Consistent with our scRNA-Seq analysis that F_3 was

considerably more abundant in ESCC tumor than nonmalignant
samples (Fig. 2B), F_3 gene signature was markedly stronger in
tumors in comparison to nonmalignant samples across large ESCC
cohorts of bulk expression datasets such as TCGA (Fig. 3A).

We next sought to identify specific markers for validation of
this subset of activated myofibroblasts in ESCC. We performed
differential expression analysis between tumor and nonmalignant

Fig. 2 Fibroblast heterogeneity in ESCC. A UMAP visualization of the clustering of 12,126 fibroblast cells from all 22 nonmalignant and tumor samples.
B The fraction of each fibroblast subset in nonmalignant and tumor samples (left), and in each of the 11 patients (right, an analysis restricted within tumor
samples). C Dotplot showing the expression of top 10 most variable genes across each fibroblast subset. D Violin plots of the expression of representative
ECM (extracellular matrix) genes and ACTA2 in each fibroblast subset. E Enrichment of GO (gene ontology) terms of each fibroblast subset (FDR-adjusted
P < 0.001, Fisher exact test with multiple comparisons using topGO). Source data are provided as a Source Data file.
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Fig. 3 CST1+ myofibroblasts are cancer-specific and predict survival outcome in ESCC. A Box plots of the average levels of gene signature defined for
F_3 in the TCGA bulk RNA-Seq and independent microarray datasets of ESCC samples. n= 60 paired tumor and nonmalignant samples in GSE53622,
n= 119 paired tumor and nonmalignant samples in GSE53624, n= 80 tumor and 11 nonmalignant samples in TCGA. P values are calculated by two-tailed
t test. B The expression of CST1 mRNA across myofibroblast (F_3), other fibroblasts and all the other cell types identified in ESCC. C Rank order of DE
(differentially expressed) genes based on average logFC between tumor and nonmalignant samples within myofibroblasts; CST1 was identified as the most
upregulated gene in tumor samples. N, nonmalignant; T, tumor. D Representative images of immunofluorescence double staining of both CST1 and COL1A1
in ESCC tumor and nonmalignant samples. Scale bar = 100 μm. E Quantification of the ratio of CST1+ cells out of COL1A1+ fibroblasts. F Representative
images of IHC (immunohistochemistry) staining of CST1 in ESCC tumor and nonmalignant samples. Scale bar = 50 μm. G Quantification of the percent of
CST1+ fibroblasts out of all stromal cells from IHC staining. H Kaplan-Meier curves of either overall survival or (I) disease-free survival of ESCC patients
stratified by the abundance of CST1+ fibroblasts. J Kaplan-Meier curve of overall survival of ESCC patients stratified by the mRNA level of CST1 in an
independent cohort. K Bar plots of the percentages of cells expressing CST1 mRNA in different scRNA-Seq datasets for different cancer types: ESCC (this
study), lung, colon and head and neck. N.A., no data available from nonmalignant samples. In the box plots (A, E, G), the middle bar represents the median,
and the box represents the interquartile range; whiskers indicate the maximum and minimum values. Dots are all the data points including outliers. P values
are calculated by two-tailed Mann Whitney U test. Source data are provided as a Source Data file.
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samples within F_3 cluster and identified CST1 as the top cancer-
specific gene (average logFC=3.0, Fig. 3C). The upregulation of
CST1 in ESCC tumors was readily validated in bulk expression
datasets (Supplementary Fig. 7A). In addition, CST1 was also
among the top 10 most differentially expressed genes in F_3
compared with other fibroblast subsets (Fig. 2C). Strikingly, CST1
marked specifically F_3 myofibroblast not only across all
fibroblast subsets but also across all the other cell types in our
samples (Fig. 3B).

We next performed immunofluorescence (IF) double-staining
using specific antibodies against CST1 and COL1A1 in 16 tumors
and 16 matched nonmalignant esophagus samples from ESCC
patients. We confirmed that CST1 protein was expressed in a subset
(8.31%) of COL1A1+ fibroblasts in tumor samples, but it was barely
detectable (0.27%) in nonmalignant samples (Fig. 3D–E). In another
9 nonmalignant/tumor paired ESCC cases, immunohistochemistry
(IHC) results validated the prominent CST1 protein expression in
the stroma of tumor-associated fibroblasts (11.95%), while it was
absent in adjacent nonmalignant esophagus (Fig. 3F–G). Extending
the IHC staining to a total of 154 ESCC patients (Supplementary
Table 2), we confirmed the prevalence of CST1+ myofibroblasts in
the tumor stromal of ESCC patients. Importantly, higher abundance
of CST1+ myofibroblasts was strongly correlated with both shorter
overall survival (P= 0.0051, Fig. 3H) and disease-free survival
(P= 0.014, Fig. 3I). Moreover, multivariate Cox regression analysis
identified CST1+ myofibroblasts as an independent prognostic
marker (P= 0.041) for ESCC patients (Supplementary Table 3). In
addition, a significant correlation was observed between CST1
expression and lymph node metastasis (P= 0.023), invasion depth
(P < 0.001) and pTNM-stage (P < 0.001, Supplementary Table 4).
The prognostic value of CST1 expression was verified in another
cohort of ESCC patients using bulk expression data (P= 0.039,
Fig. 3J). These data together highlight the prognostic value of CST1+

myofibroblasts in ESCC and indicate their potential biological
significance.

To explore the presence of CST1+ myofibroblasts in other
cancer types, we re-analyzed publicly-available single-cell tran-
scriptomes which contained fibroblasts. Indeed, we observed
CST1 expression in a subset of fibroblasts from lung, colon, and
head and neck cancers with comparable frequencies (1.22–3.61%,
Fig. 3K). Moreover, consistent with our data in ESCC, CST1+

fibroblasts were only detected in tumor samples from these cancer
types, again confirming their cancer-specificity.

Antigen presentation fibroblasts (ap-Fibro) in ESCC. Another
subset F_2 interestingly exhibited specific enrichment of GO
terms “Antigen processing and presentation” and “Interferon-
gamma signaling pathway” (Fig. 2E). Concordantly, all top dif-
ferentially expressed genes in F_2 belonged to the MHC class II
(e.g., HLA-DRA, CD74, HLA-DRB1, HLA-DPB1, Fig. 2C,
Fig. 4A). These genes are typically restricted to antigen-presenting
cells (APC) such as dendritic cells (DCs) and macrophages, and
therefore, we termed these F_2 cells “antigen-presentation
fibroblasts” (ap-Fibro). Antigen-presentation fibroblast was
identified recently in both pancreatic cancer16 and normal
pancreas22. Consistent with GO enrichment results, Hallmark
pathway analysis showed that APC-related functions, such as
allograft rejection and interferon-gamma response, were enriched
highly in ap-Fibro cells (Supplementary Fig. 6B). Ap-Fibro also
expressed well-defined fibroblast markers (DCN, VIM, FSP1) at
similar levels with other subsets of fibroblasts (Fig. 4A, Supple-
mentary Fig. 6A), confirming that they were cells with fibroblastic
characteristics. In addition to MHC II genes, ap-Fibro also
expressed IL1B (Fig. 2C), a cytokine often secreted by activated
fibroblasts5.

To confirm the presence of ap-Fibro in ESCC tissues, we
performed IF double-staining of both VIM and HLA-DR on
cancerous and matched nonmalignant samples from 16 ESCC
patients. Importantly, HLA-DR was confirmed to be expressed
in a subset of VIM+ cells (Fig. 4B). Moreover, the fraction of
HLA-DR+ fibroblasts determined by IF staining (5.87% in
nonmalignant samples, 6.53% in tumor samples, Fig. 4C) was
comparable to that determined by scRNA-Seq (2.2% in non-
malignant samples and 3.0% in tumors). This result was further
confirmed by multiplexed IF staining using a panel of three
antibodies (CD45, HLA-DR, VIM) on three matched ESCC tumor
and nonmalignant samples (Supplementary Fig. 8).

Immune cell microenvironment of ESCC. We identified a total
of 10,131 and 7,792 immune cells respectively from nonmalignant
and tumor samples (Fig. 1B). Integrative analysis restricted on all
immune cells revealed common references for the distinct
immune population in both the tumor and nonmalignant sam-
ples, including T and NK cells, myeloid and mast cells, B and
plasma cells (Fig. 5A). Further clustering analysis for T cell and
myeloid compartments based on defined markers (see Methods)
led to the identification of four CD4+ and two CD8+ T cell
subsets, eight monocyte/macrophage subsets, and six dendritic
cell (DC) subsets in most of the patients from both tumor and
nonmalignant tissues (Fig. 5A–B, Supplementary Fig. 9).

We identified three clusters of CD4+ T cells, in addition to T
regulatory cells (Treg, based on the expression of FOXP3).
Consistent with other cancers such as PDAC16 and lung cancer13,
Treg cells were more accumulated in ESCC tumors (Supplemen-
tary Fig. 9A, C). To explore the biological features of these CD4+

T cell subsets, we determined gene signatures for each subset. Of
the other three subsets of CD4+ T cells, CD4_1 expressed genes
which are abundant in Follicular helper T (TFH) effectors
(CXCL13, IL2RA, TNFRSF18, TNFRSF, Fig. 5C, Supplementary
Data 1B). CD4_2 subset showed effector memory gene signature,
including IL7R, CXCR6, and Galectin-3 (encoded by LGALS3),
and it was more abundant in nonmalignant samples. Notably,
different CD4+ T cell subsets expressed distinct immune
checkpoint factors in ESCC tumors compared to nonmalignant
samples CD4_1 had upregulated TIGIT expression in tumors,
CD4_2 expressed PD-1 (encoded by PDCD1) exclusively in
tumor samples, CD4_3 showed tumor-specific TIGIT and CD96
expression23. In addition, both CD4_1 and CD4_2 expressed
higher CTLA-4 in tumors (Fig. 5C).

Both subsets of CD8+ T cells from tumor samples expressed
higher effector genes than nonmalignant samples, including
chemokines (e.g., CCL5), cytotoxicity-associated genes (PRF1,
GZMA, GZMB, GZMH), and proinflammatory cytokines (e.g.,
IL-32) (Fig. 5D, Supplementary Data 1C). Both clusters also
exhibited a cancer-specific exhaustive signature characterized by
higher expression of checkpoint molecules (CTLA-4, LAG3,
TIGIT). In addition, CD8_1 and CD8_2 had respectively
increased levels of PD-1 and CD96 in tumor samples (Fig. 5D).
These results suggest that the effector function of CD8+ T cells is
curtailed by co-inhibitory factors in the tumor microenvironment
of ESCC. Moreover, comparing the two CD8+ T cell subsets
revealed distinct gene signatures (Fig. 5E): CD8_1 expressed
higher effector markers, including CCL5, CXCR4, CXCR6, PRF1,
GZMB, GZMH, GZMA, as well as co-stimulatory molecule CD2
(Supplementary Data 1C). On the other hand, CD8_2 were more
enriched in tumor samples (Supplementary Fig. 9A) and uniquely
expressed multiple heat-shock proteins (HSPA1B, HSPA6,
HSPA1A), resembling a specific cluster of dysfunctional CD8+

T cells recently identified in melanoma24.
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The activity and function of T cells are profoundly impacted
by other stromal cells in the microenvironment, particularly
myeloid cells, via extracellular signaling through ligand-receptor
interactions25. To explore this type of cell-cell interaction
between myeloid (DC, monocyte, macrophage) and T cell
subtypes, we applied the CellPhoneDB method26 in ESCC tumor
and nonmalignant samples. Notably, the overall number of
interactions between myeloid and T cells was substantially
higher in tumor than nonmalignant samples (Fig. 5F). Moreover,
a number of tumor-specific interactions such as the CXCL9-
CXCR3 immune activation axis27 between the macrophages and
T cells were identified (Supplementary Data 2). In addition, we
found that key immune-checkpoint inhibitors and their ligands
such as PD1-PDL1 (CD274) and CTLA4-CD80/86 had higher
interaction score in tumor than that in normal samples (Fig. 5G),
in concordant with our above observation that both CD4 and
CD8 T cells were more exhaustive in tumor samples.

Myeloid cellular diversity and activation trajectory in ESCC.
Recent single-cell profiling studies have revealed extensive het-
erogeneity in three major types of myeloid cells (DC, monocyte,

macrophage) with distinct gene signatures observed across mul-
tiple cancer types12,15,28. Conventional DCs (cDC) are classified
into two subsets, cDC1 and cDC2, and their primary function is
to acquire tumor antigen, migrate into lymph nodes, and prime
CD8+ and CD4+ T cells, respectively29,30. In the microenviron-
ment of ESCC, DCs were notably diverse and clustered into five
cDC subsets and a plasmacytoid (pDC) subset that expressed
LILRA4 and IRF7 (Fig. 6A). Of these clusters, DC_1 expressed
classic cDC1 signature genes including CLEC9A, XCR1, IRF8,
BATF3, while DC_5 highly expressed conventional cDC2 mar-
kers, such as FCER1A, CD1C (Fig. 6A, Supplementary Data 1D).
DC_3 was detected to have activated DC markers (CD40, FSCN1,
CCR7), similar to a subset identified in lung tumors that lacks
expression of key cDC1 and cDC2 genes12,15,28. DC_4 expressed
myeloid precursor markers, such as the transcription factor SOX4
(Supplementary Data 1D), indicative of their immature feature.
Given the high diversity of DC subsets in ESCC, further inves-
tigations are required to elucidate their functions in the ESCC
microenvironment.

Across nonmalignant and tumor samples, we identified 3
monocyte and 5 macrophage clusters (Fig. 5A). Among the

Fig. 4 Antigen-presentation fibroblast in ESCC. A Violin plots of the expression of MHC II class genes and selected fibroblast marker genes in each
fibroblast subset. B Representative images of immunofluorescence double staining of both HLA-DR and VIM in ESCC tumor and nonmalignant samples.
Scale bar = 100 μm. C Quantification of the ratio of HLA-DR+ cells out of VIM+ fibroblasts. The middle bar represents the median, and the box represents
the interquartile range; whiskers indicate the maximum and minimum values. Source data are provided as a Source Data file.
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Fig. 5 Myeloid and T cell landscapes of ESCC. A UMAP visualization of 17,923 immune cells extracted in silico from all 22 nonmalignant and tumor
samples. B Dotplot showing the average expression of representative marker genes and percentages of expressed cells in each immune subset. C Violin
plots showing the expression of selected genes for CD4+ T cell subsets or (D) CD8+ T cell subsets across nonmalignant (green) and tumor (blue)
samples. E Volcano plot of the differentially expressed genes between the two CD8+ T cell subsets (CD8_1 and CD8_2 specific genes are highlighted in
blue and red, respectively). F A circos plot showing the higher overall number of significant interacting pairs estimated by CellPhoneDB (P < 0.05) between
myeloid and T cell subsets in tumor (blue) and nonmalignant (green) samples. G Estimated mean interaction scores for specific interactions (PDCD1-
CD274, CTLA4-CD80/CD86) from indicated cell types in tumor and nonmalignant samples. N, nonmalignant; T, tumor. Source data are provided as a
Source Data file.
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Fig. 6 The cellular heterogeneity of myeloid compartment in ESCC. A Violin plots showing expression of representative markers in either DC (dendritic
cell) or (B) monocyte and macrophage subsets. C Dotplot showing the expression of top 10 differentially expressed genes across monocyte and
macrophage subsets. D Scatter plot showing the correlation of M1 and M2 gene signatures in individual macrophage subsets using all myeloid cells as
background. E The expression ratio of M2 over M1 gene signatures. F Histogram of the distribution of myeloid cells along the Diffusion-1 component from
either the PBMC (peripheral blood mononuclear cells), tumor or nonmalignant samples. G Diffusion component analysis of the myeloid compartment
displayed in 3D plot showing the first 3 diffusion components colored by either sample origin or (H) annotated subsets. The 1st diffusion component
reflected a trajectory from blood monocytes to tissue monocytes/macrophages, the 2nd diffusion component reflected the activation of monocyte-derived
macrophages in tissue, and the 3rd diffusion component reflected a trajectory from pDCs (plasmacytoids dendritic cell) to more mature DC subsets.
I–K 3D plots showing the correlation of representative genes with each diffusion component. Source data are provided as a Source Data file.
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monocytic clusters, we found 2 classical CD14+monocyte
subsets, Mon_1 and Mon_3, which expressed conventional
monocytic genes, such as VCAN, THBS1, and CD300E
(Fig. 6B–C). Interestingly, both Mon_1 and Mon_3 also
expressed the matrix metalloproteinase inhibitor TIMP1 and
CXCL5 (the ligand for CXCR2) that promote recruitment of
suppressive granulocytes and enhance tumor growth in mice31. In
addition, Mon_3 highly expressed multiple cytokines (IL1A,
IL1B, IL6)32 and chemokines (CXCL133,34, CCL2034) known to
suppress antitumoral immunity. Mon_3 also expressed exclu-
sively S100A8/9, which were previously considered as monocyte
markers in bulk RNA-Seq data. In line with our results, S100A8/9
expression was observed to be restricted in a subset of monocytes
in lung cancer28. The other monocytic subset Mon_2 expressed
SERPINB1 (Fig. 6C), a cytoplasmic serine protease inhibitor
produced by neutrophils and monocytes to limit both inflamma-
tion and tissue damage35. Mon_2 also expressed CCL22, which
has been shown to contribute to metastasis of head and neck
tumors36. These expression signatures indicate immune-
regulatory and pro-tumoral roles of different monocytic subsets
in the ESCC microenvironment.

Among the five macrophage subsets in ESCC, Mac_1, Mac_2,
and Mac_3 expressed higher anti-inflammatory “M2”-associated
genes, including CCL18, MRC1, CD163, C1QA, APOE, SPP1,
and TREM2 (Fig. 6B–E); most of these genes were also
upregulated in tumors compared with nonmalignant samples
(Supplementary Fig. 10A, Supplementary Data 1E). Nevertheless,
these M2-like cells showed notable differences. Specifically,
Mac_1 expressed multiple chemokines (CCL2, CCL3, CCL4)
with established immunosuppressive roles. Mac_2 expressed
Cathepsin genes (e.g., CSTA, CSTD) in a tumor-specific manner
(Supplementary Fig. 10A), which are important for ECM
remodeling. Indeed, Cathepsin-secreting macrophages have been
characterized to promote tumor cell migration and invasion37.
Mac_3 intriguingly expressed a number of nonclassical mono-
cytic genes such as transcription factors KLF2/4 and NR4A1/2
(Supplementary Data 1E) as well as heat-shock proteins (Fig. 6C).
Mac_5 was characterized by its specific expression of interferon-
stimulated genes such as ISG15, OASL, IFIT2/3 (Fig. 6C). This
suggests that Mac_5 may represent proinflammatory macro-
phages activated by interferon signaling. Indeed, Mac_5 expressed
the lowest M2-like gene signature compared with other macro-
phage subsets (Fig. 6D–E). However, Mac_5 also expressed both
IDO1 (Fig. 6C) and PD-L1 (Supplementary Fig. 10A), suggesting
potential inhibitory activity against CD8+ T cells. In order to
understand the gene expression programming in macrophages,
we performed SCENIC analysis38 and identified 27 candidate
“regulons” across different macrophage subsets (Supplementary
Fig. 10B). Multiple candidates have been reported to play
important roles in tumor-associated macrophages. For example,
ATF3 has been identified as a regulator promoting the
M2 suppressive phenotypes, and ATF3 empowers macrophages
to enhance breast cancer metastasis39. Similarly, c-MYC is a key
player in alternative macrophage activation in the tumor
microenvironment, and contributes to tumor-promoting func-
tions of tumor-associated macrophages40,41. These data together
highlight the immune-suppressive functions by heterogeneous
populations of macrophages in ESCC tumors.

To analyze further the activation and differentiation trajec-
tories of immune cells in ESCC patients, we integrated a total of
20,924 PBMC cells from three matched ESCC patients (Supple-
mentary Fig. 11A). In general, expected patterns of cellular states
were observed comparing immune cells from different sample
types: i) myeloid cells were more abundant in tissue samples,
while B and T cells were more abundant in circulation
(Supplementary Fig. 11A); ii) distinct separation of myeloid and

T cell clusters between blood, nonmalignant and tumor samples,
suggesting tissue-associated modulation of immune cells
(Fig. 6F–G, Supplementary Fig. 11B). We then performed
diffusion component analysis to identify gene expression patterns
associated with the observed variation of cellular states. Focusing
on the myeloid compartment, three major diffusion components
were revealed (Fig. 6G–H). Correlation of the 2,000 most variable
genes identified expression signatures associated with each
diffusion component (Supplementary Fig. 11C, Supplementary
Data 3). Specifically, the first component reflected a trajectory
from blood monocytes to tissue monocytes/macrophages, con-
gruent with a recent finding in breast cancer12. Circulation
monocytic genes (FCN1, S100A4/8/9/12, CD52) were inversely
correlated, while genes abundant in differentiated macrophages
(such as HLA-DR genes and CD74) were positively correlated
with the first diffusion component (Fig. 6H–I). CXCL8, a
chemokine produced by activated macrophages, was also
increased along with the first component (Supplementary
Fig. 11C). The Diffusion-2 component was characterized by
activated macrophage genes, such as APOE, C1Q(s), and IL1B
(Fig. 6H, J), which likely reflected the activation of monocyte-
derived macrophages in tissue, similar to the observed macro-
phage activation pathway in breast12 and head and neck cancer15.
The third diffusion component was associated with DC-related
markers FCER1G and FTL, and upregulated genes in differ-
entiated DCs such as CST7 and DAPP1 (Fig. 6H, K), suggesting a
trajectory from pDCs to more mature DC subsets in ESCC
microenvironment. These analyses together suggest important
transcriptional programs underlying distinct myeloid cellular
trajectories and differentiation in ESCC microenvironment.

Validation of candidate cell subsets by multiplexed IF staining.
We next performed multiplexed 6-color immunofluorescence
staining to extensively characterize the abundance and localiza-
tion between the candidate immuno-suppressive immune cells
(including macrophages and Tregs), CD8+ T cells as well as
CST1+ fibroblasts. Specifically, we used the following two panels
of combinations of antibodies for multiplexed IF assays: Panel-1
(Fig. 7A) consisted of αSMA+ CST1 (for CST1+ fibroblasts),
CD8+CTLA4 (for exhaustive CD8+ T cells), CD163 (for M2-
like macrophages); Panel-2 (Fig. 7B) consisted of αSMA+CST1,
CD4+ FOXP3 (for Treg cells), CD163. Note that we chose αSMA
instead of COL1A1 to further validate the presence of CST1+

fibroblasts.
These multiplexed IF staining were performed on 12 matched

tumor and nonmalignant samples from ESCC patients, and an
average of 10 regions were quantified for each sample. Using
these data, we validated the low presence of CST1+ fibroblasts in
nonmalignant samples (Fig. 7C), increased exhaustive CD8+

T cells (Fig. 7D), Treg cells (Fig. 7E), as well as M2-like
macrophages (Fig. 7F) in tumor compared with nonmalignant
samples. Moreover, the abundance of M2-like macrophages was
modestly but significantly correlated with that of exhaustive
CD8+ T cells in tumor samples (Fig. 7G), indicative of a negative
regulation of CD8+ T cells by M2-like macrophages. In addition,
we observed modest positive correlation between CST1+

fibroblasts and Treg cells in tumor samples (Fig. 7H). No
correlation was noted between CST1+ fibroblasts with either
exhaustive CD8+ T cells or M2-like macrophages, suggesting that
CST1+ fibroblasts may play a more important role in regulating
Treg cells in the ESCC microenvironment. We reason that this
may be because CST1+ fibroblasts have the highest activity of
TGF-beta signature. Indeed, it is well-established that TGF-beta
can strongly promote the growth and activity of Treg cells in the
tumor microenvironment42.
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Discussion
In this study, we unbiasedly reveal prominent heterogeneity in
most of the cell types in ESCC stoma, particularly immune cells
(myeloid and T cells) and fibroblasts. By both confirming recently
identified subsets in other cancer types (e.g., Heat-shock protein-
expressing CD8+ T cells, Cathepsin-secreting macrophages) and
characterizing specific markers (e.g., CST1 for myofibroblast),
this dataset represents a valuable resource for future investigation
of cellular diversity of cancer ecosystem. We further identified
many tumor-specific signals and pathways from ESCC stromal
cells (e.g., inhibitory checkpoints in T cells and macrophages,
EMT and TGF-beta pathways in myofibroblasts), suggesting
cancer-specific regulation of the transcriptional programs of
stromal cells.

Overall, analyses of both myeloid and lymphoid compartments
highlight the immunosuppressive nature of the ESCC micro-
environment: i) Both CD4+ and CD8+ T cell compartments
express various immune checkpoints in a tumor-specific manner;
ii) Treg cells are more enriched in tumor samples; iii) M2-like
macrophages (Mac_1, Mac_2 and Mac_3) express anti-
inflammatory factors, and even the M1-like subset (Mac_5)
expresses PD-L1 specifically in tumor samples; iv) Different
monocyte subsets express immune-regulatory and pro-tumoral
factors.

A specific population of CST1+ myofibroblast is characterized
by high activities in ECM remodeling, protein secretion, EMT,
and TGF-beta pathways. In addition, this subset is fast-growing
and most tumor-specific. CellPhoneDB analysis showed that the
number of ligand-receptor interactions engaging CST1+ fibro-
blasts was generally much higher in tumor than in nonmalignant

samples (Supplementary Data 4). Using orthogonal approaches
including immunostaining, CST1+ myofibroblast is confirmed in
ESCC tumor stromal, and exhibits prominent prognostic values.
Moreover, CST1+ myofibroblast is observed in other types of
cancers but not nonmalignant samples. In agreement with our
data, higher CST1 expression was significantly associated with
worse survival of colon cancer patients in TCGA bulk RNA-Seq
data (Supplementary Fig. 7B). The CST1 gene encodes Cystatin
SN, a secretory protein, which inhibits cysteine proteinases.
Previous studies on the function of CST1 in cancer cells reported
that CST1 contributes to the cell proliferation, survival, and
metastasis of multiple tumors types, including gastric43, breast44,
and colon cancers45,46. However, in one study of ESCC
samples47, the expression of CST1 in tumor cells was associated
with better patient prognosis, which appears to be contradictory.
Nevertheless, these previous works were all focused on the
cancer-intrinsic function of CST1, and its biological role in
fibroblast cells awaits further investigation.

Another notable fibroblast subset is ap-Fibro, which exclusively
expresses MHC class II genes compared with other fibroblasts.
Unlike CST1+ myofibroblast, ap-Fibro is observed in both the
nonmalignant and cancer samples in ESCC. Consistently, MHC
II expressing ap-Fibro was recently identified in both pancreatic
cancer16 and normal pancreas22. In a PDAC mouse model, these
MHC II expressing ap-Fibros were shown to actively present
antigen to CD4+ T cells16. However, similar to the observation in
PDAC, ap-Fibro in ESCC expressed negligible levels of the
costimulatory genes (CD80 and CD86, Supplementary Fig. 12),
suggesting that ap-Fibro has a different function in terms of
antigen presentation compared with professional APCs.

Fig. 7 Validation of candidate cell subsets by multiplexed immunofluorescence (IF) staining. A–B Representative images of multiplexed IF staining of
tumor samples using Panel-1 (A) and Panel-2 (B). Scale bar = 100 μm. C–F Quantification of CST1+ fibroblasts (C), exhaustive CD8+ T cells (D), Treg cells
(E), M2-like macrophages (F) in nonmalignant (green) and tumor (blue) samples. The number of regions quantified are shown in the parentheses. Data
are presented as mean values ± SEM. P values are calculated by two-tailed Mann Whitney U test. G–H Scatter plots showing the positive correlation (G)
between exhaustive CD8+ T cells and M2-like macrophages (n= 120), and (H) between CST1+ fibroblasts and Treg cells (n= 120). Source data are
provided as a Source Data file.
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In addition to the identification of fibroblast subsets, we also
observed metabolic heterogeneity across different fibroblasts. For
example, myofibroblasts show heightened oxidative phosphor-
ylation, glycolysis, and cholesterol homeostasis pathways (Sup-
plementary Fig. 6B), which is in line with their highly
proliferative signature. On the other hand, F_4 has high scores of
both fatty-acid metabolism and hypoxia, and weak oxidative
phosphorylation activity (Supplementary Fig. 6B). Interestingly,
F_4 also shows strong enrichment of GO terms “Response to
unfolded protein” and “Regulation of cellular response to heat”,
indicating that this subset might be under metabolic stress. In
addition, gene regulatory analysis identified a total of 32 candi-
date regulons (Supplementary Fig. 13), including transcription
factors with known functions in fibroblasts from different cancer
types (e.g., TWIST148,49, STAT150, MYLK51, NFATC252). Some
of these factors had reported functions consistent with the gene
signatures established by our scRNA-seq data. For example,
TWIST1 is a recognized driver of cancer-associated myofibro-
blasts, and TWIST1-high myofibroblasts promote the prolifera-
tion, migration, and invasion of cancer cells48,49. Likewise,
increased activity of STAT1 has been found in CAFs which
enhance the proliferation and survival of cancer cells50. Con-
cordantly, both the TWIST1 and STAT1 are highly and specifi-
cally enriched in the F_3 subset which we have annotated as pro-
tumor myofibroblasts.

Finally, cancer-specific alterations of gene expression in ESCC
stroma may suggest the design of immunotherapies. For example,
tumor macrophages increase the expression of inhibitory check-
point molecules while myofibroblasts upregulate oxidative phos-
phorylation and glycolysis pathways, which can be targeted using
small-molecule inhibitors. Moreover, examination of CD8+ T cell
supports current immune checkpoint blockade of PD-1 and
CTLA-4, and further identifies additional inhibitory molecules as
potential targets (e.g., LAG3, TIGIT). Therefore, distinctive bio-
logical characteristics of tumor stroma may indicate cancer-
specific vulnerabilities and provide avenues for the development
of innovative therapies.

Methods
Sample collection and single-cell isolation. Eleven patients who were patholo-
gically diagnosed with ESCC were investigated in this study. None of the patients
was treated with any antitumor therapy prior to tumor resection. The clinical
characteristics of the patients are summarized in Supplementary Table 1. The
adjacent nonmalignant esophageal tissues were obtained at least 5 cm away from
the tumors. Peripheral blood mononuclear cells (PBMCs) were obtained from three
patients prior to their surgical procedures. Clinical samples were collected from
Cancer Hospital of Shantou University Medical College. This study was approved
by the Ethics Committee of Shantou University Medical College. All patients
provided written informed consent for sample collection and data analyses.

Clinical samples were collected immediately after surgery and were dissociated
within 1 h using collagenase (17100017, Thermo Fisher Scientific). Briefly, tissues
were minced into small pieces using a scalpel and transferred into a 15 mL tube
containing HBSS (14025092, Thermo Fisher Scientific) and RPMI-1640 medium
(1:1) supplemented with 200 U/mL collagenase, followed by a 4-hour incubation in
a constant temperature oscillator at 37 °C, 110 rpm. After incubation, suspended
cells were passed through a 40 μm cell strainers (352340, BD Falcon) and
centrifuged at 300 g for 10 min. After washing twice with DPBS (14190144,
Thermo Fisher Scientific), cell pellets were resuspended in DPBS buffer
supplemented with 0.04% BSA. The entire mixed cell population was analyzed
further without sorting or enriching for particular cell types.

PBMCs were isolated using Ficoll-Paque PLUS solution (17-1440-03, GE
Healthcare) according to the manufacturer’s instructions. Briefly, 5 mL of fresh
peripheral blood was collected prior to surgery in an EDTA anticoagulant tube and
subsequently layered onto Ficoll-Paque PLUS. After centrifugation, lymphocytic
cells at the plasma-Ficoll-Paque PLUS interface were carefully transferred to a new
tube and washed twice with DPBS. Lymphocytic cells were resuspended with
sorting buffer.

Library preparation and sequencing. The scRNA-Seq libraries were prepared
from individual cells using the 10X Genomics platform. The Chromium Single Cell
3’ Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3’ Chip kit v2

(PN-120236) and Chromium i7 Multiplex Kit (PN-120262) were used according to
the manufacturer’s instructions. Briefly, for each sample, approximately 9000 cells
were loaded onto the 10X Genomics Chromium Controller machine for Gel Beads-
in-Emulsion (GEM) generation. Reverse transcription was performed using a
C1000 Touch Thermal Cycler with a Deep Well Reaction Module (Bio-Rad) using
the following program: 55 °C for 2 h; 85 °C for 5 min; hold 4 °C. cDNA was
recovered, purified, and amplified to generate sufficient quantities for library
preparation. All single-cell libraries were sequenced on the Illumina Hiseq X
(PE150).

scRNA-Seq analysis
Preprocessing, QC, and data integration. Raw reads were aligned to the hg38
reference genome, UMI (unique molecular identifier) counting was performed
using Cell Ranger v.2.1.1 (10X Genomics) pipeline with default parameters. This
yielded an average of 7523 / 2581 / 1648 cells (1080/1663/2151 genes per cell) for
PBMC, nonmalignant, and tumor samples, respectively. Potential doublets were
detected and filtered using DoubletFinder based on the expression proximity of
each cell to artificial doublets53. After removing cells with high mitochondrial
content (>= 20%), a total of 21,355 nonmalignant, 19,882 tumor and 20,924 PBMC
cells were retained for downstream analysis.

We used Seurat v3 anchoring integration method18 based on canonical
correlation (CC) analysis. By default, 2000 highly variable genes were used for
finding alignment anchors and 30 CC dimensions were used for defining neighbor
search space, with the function FindIntegrationAnchors. The anchors, determined
and scored for all sample pairs, were then integrated together to assemble the
reference to account for batch effect and sample variations using the function
IntegrateData in the Seurat package. No batch effect was observed in the integrated
data (Supplementary Fig. 1). We integrated 9 nonmalignant and 13 tumor samples
and determined the major cell types based on well-defined markers (described in
the next paragraph).

High-dimensional reduction and clustering analysis. Principal Component Analysis
(PCA) was used (Seurat package) with the number of optimal PCA dimensions
being defined using standard deviations saturation plot for further non-linear high-
dimensional reduction method. We used UMAP (Uniform Manifold Approx-
imation and Projection)54 for visualization of cell types and clusters. Clustering was
performed for integrated expression values based on shared-nearest-neighbor
(SNN) graph clustering (Louvain community detection-based method) using
FindClusters in Seurat package. Robustness and further clustering analysis were
evaluated by clustree method at different resolutions from 0.1 to 355 with different
representative markers. Specifically, the following marker genes were used for
global annotation of cell types: Epithelial/Tumor: EPCAM, Keratin genes (KRT7,
KRT8, KRT17), SPRR3; T cells: CD3E, CD3D, TRBC1/2, TRAC; Myeloid cells:
LYZ, CD86, CD68, FCGR3A; B cells and plasma cells: CD79A/B, JCHAIN, IGKC,
IGHG3; Endothelial cells: CLDN5, FLT1, CDH1, RAMP2; Fibroblasts: DCN, C1R,
COL1A1, ACTA2; Smooth muscle cells: TAGLN, CNN1; Mast cells: TPSAB1. First,
we used the clustering results at resolution 3 for all 44,085 cells from both non-
malignant and tumor samples to determine the major cell types based on the above
markers for 53 clusters (Supplementary Fig. 2). Cell type scores, as the average
expression of those known markers, were assigned for each of 53 clusters in order
to determine the initial call of major cell types. Further sub-clustering was per-
formed for immune cells and fibroblasts for in-depth investigation and better
annotation of clusters based on more specific markers within each cell type. Any
cellular subset was required to account for at least 2% of total cells from at least 2
different samples. The PBMC data was separately analyzed and annotated using the
same computational framework, and was then integrated together with immune
cells extracted from the nonmalignant and tumor samples.

Differential expression analysis and gene set enrichment analysis (GSEA).
We used FindAllMarkers and FindMarkers in Seurat package with MAST differ-
entially expression analysis method56,57, one of the leading methods in the
benchmark study, to find gene signatures of one subset versus the rest and to
identify the differentially expressed genes between tumor and nonmalignant
samples within each subset, respectively. It was run with cutoff logfc 0.25 of a
subset compared to the rest (>=15% of cells in the corresponding subset were
required to have expression of the candidate gene).

We used Gene Set Enrichment Analysis (GSEA)58 and top GO59 to determine
the enrichment of cancer hallmark (H dataset) and Biological Process Gene
Ontology (GO, C5 dataset) terms, respectively. Linear regression was used to
compute the enrichment of a specific subset compared with the rest in each cellular
compartment, similar to the method described previously13.

Cell-cell communication analysis using CellPhoneDB. We inferred cell-cell
interactions based on ligands (originating from myeloid cell types) and receptors
(in the T cell subsets) using permutation test as described in CellPhoneDB26.
Statistically significant interacting pairs were identified with adjusted P values <
0.05. We used the signiciant_mean value output from CellPhoneDB as the inter-
action score for each ligand-receptor pair to represent the total mean of average
expression values of the individual partner in each interacting pair. We merged all
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the myeloid subsets into 3 major myeloid cell types (macrophages, monocytes,
dendritic cells) and all the T cell subsets into 3 major T cell types (CD4, CD8 and
Treg) to achieve sufficient statistical power.

Diffusion component analysis. Diffusion component analysis60 was performed to
identify the components representing gene expression variations across different
cellular compartments. We performed destiny R package61 on myeloid cells across
all tumor, nonmalignant and PBMC samples based on the top 2000 most variable
genes identified using the regression method from FindVariableFeatures (vst
parameter) in Seurat package. The first three diffusion components were visualized
using plot3D R package. Spearman rank correlation analysis was performed to
identify both the positively and negatively correlated genes.

Immunohistochemistry (IHC) staining. Formalin-fixed, paraffin-embedded
ESCC specimens were obtained from Shantou Central Hospital. All the specimens
were pathologically confirmed as ESCC and the clinical staging of the tumors were
classified according to the seventh edition of the tumor-node metastasis (TNM)
system of the American Joint Committee on Cancer62. Clinicpathological char-
acteristics of patients are summarized in Supplementary Table 2. Ethical approval
was obtained from the ethical committee of the Medical College of Shantou
University.

IHC staining was performed as described previously63. Briefly, 4 μm thick
sections were dewaxed in xylene, rehydrated in alcohol, and incubated in 3%
hydrogen peroxide for 10 min to block endogenous peroxidase activity. Slides were
incubated with 10% normal goat serum in PBS for 10 min at room temperature to
block nonspecific binding. Then slides were incubated overnight at 4 °C with the
primary antibody for CST1 (1:400, 16025-1-AP, ProteinTech). After rinsing with
PBS, slides were incubated with PV-9000 2-step Polymer Detection System (PV-
9000, ZSGB-BIO) and the primary antibody was detected with Liquid DAB
Substrate Kit (ZLI-9018, ZSGB-BIO). Finally, slides were counterstained with
hematoxylin, dehydrated, and mounted.

Automated image analysis and scoring. An automated quantitative pathology
imaging system (Perkin Elmer)63 was applied. Briefly, we used Vectra 2.0.8 for
automated image acquisition, and obtained 20–40 images from the area containing
the expression of CST1 of the whole slide at 20X magnification. Spectral libraries
were constructed by Nuance 3.0 software and then loaded into InForm 1.2
advanced image analysis software to separate positive from negative cells with a
single threshold. It provided a score showing the number of cells with positive
CST1 expression of each high-power image. The mean value of the scores of each
case was determined. For statistical analysis, the protein expression score was
divided into two subgroups, high-expression and low-expression, on the basis of
X-tile software analysis64.

Immunofluorescence staining. Four μm thick sections were dewaxed in xylene,
rehydrated in alcohol, followed by heat-induced antigen retrieval in 0.1 M 95–99 °C
sodium citrate (pH 6.0) for 10 min. After washing, sections were incubated with 5%
donkey serum in PBS for 60 min at room temperature to block nonspecific binding.
Subsequently, slides were incubated overnight at 4 °C with the first primary anti-
body, and then incubated at room temperature for 60 min in a dark chamber with
the first fluorophore-conjugated secondary antibody diluted in PBS with 5%
donkey serum. Slides were washed with PBS and then incubated with the second
primary antibody, followed by staining with the second fluorophore-conjugated
secondary antibody diluted in PBS with 5% donkey serum. Both of the last two
steps were incubated at room temperature for 60 min in a dark chamber. The
following antibodies were used: polyclonal rabbit antihuman CST1 (1:400, 16025-
1-AP, ProteinTech), Alexa Fluor 647-conjugated Affinipure donkey antirabbit
(1:1000, 711-605-152, Jackson ImmunoResearch), polyclonal rabbit antihuman
COL1A1 (1:100, ab34710, Abcam), Alexa Fluor 488-conjugated Affinipure donkey
antirabbit (1:1000, 711-545-152, Jackson ImmunoResearch) and monoclonal
mouse antihuman HLA-DR (ready to use (no dilutions), ZM-0136, ZSGB-BIO),
Alexa Fluor 647-conjugated Affinipure donkey antimouse (1:1000, 715-605-150,
Jackson ImmunoResearch), monoclonal rabbit antihuman VIM (ready to use (no
dilutions), ZA-0511, ZSGB-BIO), Alexa Fluor 488-conjugated Affinipure donkey
antirabbit (1:1000, 711-545-152, Jackson ImmunoResearch). Finally, slides were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (1:2000, D9564-10MG,
Sigma Aldrich), and mounted.

We used Vectra 2.0.8 for automated image acquisition, and obtained randomly
30 images from the whole slide at 20X magnification. InForm 1.2 advanced image
analysis software was used to separate positive from negative cells with a single
threshold. The average value of the score of each case was calculated.

Multiplexed immunofluorescence staining. Multiplexed immunofluorescence
staining of 4 μm formalin-fixed, paraffin-embedded sections was performed using
the PANO 7-plex IHC kit (cat 0004100100, Panovue, Beijing, China) and the
PANO 4-plex IHC kit (cat 0001100100, Panovue, Beijing, China) according to the
manufacturer’s instruction. Different primary antibodies were sequentially applied,
followed by horseradish peroxidase-conjugated secondary antibody incubation and
tyramide signal amplification. Glass slides were microwave heat-treated following

each round of TyramideSignal Amplification. Nuclei were stained with 4′-6′-dia-
midino-2-phenylindole (DAPI, D9542, Sigma-Aldrich) after all the human anti-
gens were labeled.

The following antibodies were used: CST1 (1:300, 16025-1-AP, ProteinTech),
CTLA4 (1:100, ab237712, Abcam), HLA-DR (1:200, ab92511, Abcam), CD45
(1:300, BX00087, Biolynx), VIM (1:300, #5741, CST), CD163 (1:300, #93498, CST),
CD8A (1:300, #70306, CST), aSMA (1:50, ab7817, Abcam), FOXP3 (1:50,
BLG320202, Biolegend), CD4 (1:200, BX22300130, Biolynx).

To obtain multispectral images, stained slides were scanned using the Polaris
System (PerkinElmer, Massachusetts, USA), which captures the fluorescent spectra
from 420 to 720 nm with identical exposure time. Images were analyzed using
Inform advanced image analysis software (PerkinElmer, Massachusetts, USA). A
spectral library and spectral unmixing algorithm were created by using unstained
and single Opal dye-stained images. Using this spectral library, we reconstructed
images and extracted targeted cells for statistical analyses. 10-15 random high-
power fields (20X magnification) inside the region of interest were analyzed per
sample.

Statistical analysis. Statistical analyses were performed using SPSS 19.0 software
(IBM). Survival analysis was performed by the Kaplan-Meier method with the log-
rank test. Univariate and multivariate analyses were performed based on the Cox
proportional hazards regression model. Associations of CST1 expression with
clinicopathological characteristics were determined by Fisher’s Exact Test. Differ-
ences with a 2-tailed P value less than 0.05 were considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data of scRNA-seq of this study was deposited into National Center for
Biotechnology Information Sequence Read Archive (SRA) under accession number
PRJNA777911. Public microarray RNA expression data of ESCC were retrieved from
GEO database (GSE53624). Public scRNA-seq data from lung cancer, colon cancer and
HNSCC were downloaded from E-MTAB-6149 (lung cancer), E-MTAB-6653 (lung
cancer), GSE81861 (colon cancer) and GSE103322 (HNSCC), respectively. Source data
are provided with this paper.
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