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Abstract

The embedded contact homology of nontrivial circle bundles over Riemann surfaces

by

David Michael Farris
Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Hutchings, Chair

The embedded contact homology (ECH) of a 3-manifold Y is a topological invariant defined
using a contact form on Y which counts certain pseudoholomorphic curves in R × Y . We
compute the ECH of nontrivial circle bundles over Riemann surfaces.
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Chapter 1

Introduction

1.1 Embedded contact homology

Embedded contact homology is a 3-manifold invariant due to Hutchings ([12] and
[27] are good overviews of ECH and its context). ECH is defined in terms of a contact
structure on an oriented 3-manifold Y . Recall that a contact structure ξ on a 3-manifold Y
is a maximally nonintegrable rank two subbundle of TY . We will consider only co-orientable
contact structures, which may be expressed as ξ = ker(α) for some α ∈ Ω1(Y ). In terms of
the contact form α, the bundle ξ is a contact structure iff α∧ dα > 0. Martinet [20] showed
that every 3-manifold has a contact structure. A contact 3-manifold with a contact form
(Y, ξ, α) gives rise to the symplectic 4-manifold (Rt × Y, (.e

tα)), called the symplectization
of Y .

A contact form α on Y uniquely defines a nonvanishing vector field R ≡ Rα by
the conditions iR(dα) = 0 and α(R) = 1. R is the Reeb vector field of α. The closed (not
necessarily embedded) trajectories of R are called Reeb orbits. The Reeb vector field is
closely related to Hamiltonian vector fields on symplectic manifolds, and so it is of great
dynamical interest.

The flow of R preserves α and hence ξ. Thus, given a Reeb orbit a of length
l and p ∈ a, if we integrate R to obtain the time-l map φl, then Dpφl : ξp → ξp is an
isomorphism. We say that a is nondegenerate if 1 is not an eigenvalue of Dpφl, and α is
nondegenerate if all the Reeb orbits of Rα are nondegenerate. Hutchings defined a chain
complex ECC∗(Y, ξ, α) for a nondegenerate contact form whose generators are {(ai, ni)},
where ai is a Reeb orbit, ni is a positive integer, and ni = 1 if ai is a hyperbolic Reeb
orbit. (We will define hyperbolic Reeb orbits in chapter 3.) Such a multiset of Reeb orbits
is an orbit set, and orbit sets satisfying the condition on hyperbolic Reeb orbits are called
admissible orbit sets.

To define the differential of ECC∗, we consider pseudoholomorphic curves in the
symplectization R× Y . First, choose a generic complex structure Jξ on the contact bundle
ξ → Y , i.e. a bundle map Jξ : ξ → ξ such that Jξ ◦Jξ = −Idξ. We can extend this to an R-
invariant almost complex structure J on Rt×Y by setting J( ∂∂t) = R. A pseudoholomorphic
curve in R× Y is a map u : (C, j)→ (R× Y, J), where C is a punctured Riemann surface
and u satisfies the Cauchy-Riemann equation ∂J(u) := du + J ◦ du ◦ j = 0. The simplest
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examples of pseudoholomorphic curves in R×Y are trivial cylinders. A trivial cylinder over
a Reeb orbit a ⊂ Y is a map u : Rs×S1

t → R×Y with u(s, t) = (s, a(t)). If u : C → R×Y is
an arbitrary pseudoholomorphic curve in R×Y , at each of the punctures of the domain C, u
is asymptotic to the trivial cylinder over some Reeb orbit, at either∞ or −∞. We call these
positive or negative ends of u, respectively, and refer to the corresponding punctures of C
as positive or negative punctures. A pseudoholomorphic curve u : C → R × Y thus yields
two collections of asymptotic Reeb orbits, one at ∞, one at −∞. If ai is an embedded Reeb

orbit, u has positive ends at some collection a
qi1
i , ..., a

qiki
i of iterates of ai. If we remember

only the total multiplicity
∑k

j=1 qj of the positive ends at a for each embedded Reeb orbit

ai, we obtain an orbit set a := {(ai,
∑

j q
i
j)}. Similarly, we obtain an orbit set b from the

negative ends of C, and we write ∂C = a− b.
If a is an admissible orbit set, we define the differential ∂ on ECC∗ by ∂a =∑

b〈∂a,b〉b. The sum is taken over admissible orbit sets b, and 〈∂a,b〉b is the signed count
of J-holomorphic curves u : C → R × Y such that I(C) = 1 and ∂C = a − b. I(C) is the
ECH index of C, which is a topological quantity with the property that for generic J , if
I(C) = 1, there are only finitely many curves C with ∂C = a − b, and C is the union of
an embedded J-holomorphic curve C ′ and the branched cover of a union of trivial cylinders
that do not intersect C ′. We will define I(C) in chapter 3. The embedded contact homology
of (Y, ξ, α) is defined as H∗(ECC∗, ∂).

ECH turns out to depend only on Y , and is isomorphic to versions of Heegaard
Floer homology ([9], [4]) and monopole (Seiberg-Witten) Floer homology ([28]). Further-
more, since ECH is generated by Reeb orbits, it can yield existence results for Reeb orbits
in terms of the topology of Y . The first such result is the dimension 3 case of the Weinstein
conjecture: the Reeb vector field for any contact form on a closed contact manifold has a
closed trajectory. [26]. Better lower bounds on the number of embedded Reeb orbits are
known [16], and any computation of ECH for a specific manifold holds the promise of better
bounds.1

1.2 ECH of circle bundles over surfaces

In this paper, we compute the embedded contact homology of nontrivial circle
bundles Y over a Riemann surface Σ. Take the contact form α to be a connection form
with nonvanishing curvature on Y → Σ, viewed as a principal S1 bundle. The contact
structure ξ = ker(α), being an S1-equivariant collection of horizontal 2-plane fields, is a
connection on Y → Σ. The Reeb vector field of α is the derivative ∂

∂θ of the S1 action on
Y . Thus, any iterate of any fiber is a Reeb orbit.

Holomorphic curves in R × Y have a natural interpretation as sections of line
bundles. R× Y may be viewed as an R× S1 ∼= C∗ bundle over Σ. If we choose a complex
structure jΣ on Σ and lift it to ξ, it will be S1-invariant. Extending the complex structure
on ξ to an R×S1-invariant almost complex structure on R×Y by J ∂

∂t = R = ∂
∂θ as before,

1Note that unlike the analogous situation in Morse theory, where the number of critical points of a smooth
function bounds the Betti numbers of a manifold because Morse homology is generated by critical points,
ECH is generated by collections of Reeb orbits, so bounds are less immediate.
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we see that the projection π : R × Y → Σ is holomorphic and its C∗ fibers have complex
structures. If u : (C, j) → (R × Y, J) is a J-holomorphic curve, then at a puncture p of
C, u approaches a trivial cylinder over some Reeb orbit a of Y . But since the Reeb orbit
a is (an iterate of) a fiber P−1(q) of P : Y → Σ, we can extend the map π ◦ u : C → Σ
by mapping p to q. Filling in each puncture in this manner, we obtain a closed Riemann
surface C ⊃ C, and a holomorphic map u : (C, j)→ (Σ, jΣ). We can pull back the bundle
R×Y → Σ by u to obtain a C∗ bundle u∗(R×Y )→ C. J-holomorphic curves u : C → R×Y
correspond exactly to meromorphic sections of u∗(R× Y )→ C. Positive and negative ends
of u correspond to zeros and poles of the section. Finding J-holomorphic curves in R× Y
with given asymptotic orbit sets is thus closely related to finding holomorphic sections of
line bundles on closed Riemann surfaces with zeros and poles of specified degrees.

The results of this paper will not depend upon this interpretation of J-holomorphic
curves in R× Y . However, there is a map U : ECH∗ → ECH∗−2, which is induced by the
chain map on ECC∗ which counts I(C) = 2 curves passing through a generic marked point
in R × Y . U can be (at least partially) computed using the methods of this paper, and
these computations use the complex line bundle structure on R× Y .

The Reeb orbits of the contact form described above are parameterized by Σ.
However, these orbits are degenerate. (Nondegenerate Reeb orbits are isolated, in particu-
lar.) To compute ECH we must perturb α to a nondegenerate contact form α′ = fα, where
f : Y → R is a nonvanishing smooth function. If we choose f to be the pullback of a perfect
Morse function f : Σ → R on the base, α′ and the almost complex structure J defined by
J ∂
∂t = Rα′ are still S1-invariant. This will make our computations tractable. The Reeb

orbits of α′ are (iterates of) the fibers above the critical points of f , along with some “long”
Reeb orbits. By choosing f sufficiently close to 1, we can force the length of the orbits
which are not iterates of a fiber to be arbitrarily long. For nontrivial circle bundles, ECH
turns out to be relatively Z graded, and generators of ECC containing sufficiently long Reeb
orbits have a degree which may be bounded below in terms of the perturbation. Thus, to
compute ECH up to any finite degree N , we can choose f so close to 1 that only Reeb orbits
over critical points of f appear any ECC generator of degree ≤ N . By taking a direct limit
as f approaches 1, we can compute ECH using only these “fiber Reeb orbits”.

Furthermore, because J is S1-invariant, the moduli space M (a,b, J) of J-holomor-
phic curves C with I(C) = 1 and ∂C = a − b inherits an S1 action, which is locally free
so long as the curves C ∈M (a,b, J) themselves are not S1-invariant. (i.e. as long as C is
not a branched cover of a union of cylinders, which we treat separately.) If M (a,b, J) and
hence M (a,b, J)/R (its quotient with respect to R-translation) have an S1 action, then
both of them, if nonempty, must have dimension ≥ 1. But for a generic J , M (a,b, J) is
1-dimensional, so M (a,b, J)/R is 0-dimensional. Thus, M (a,b, J) is empty, ∂ = 0, and
ECC∗(Y, ξ, α) ∼= ECH∗(Y, ξ). Before examining the question of genericity, we state the
main result of this paper:

Theorem 1.2.1 Let Y be the total space of a nontrivial circle bundle over a Riemann
surface Σ with contact structure ξ coming from a connection on the principal bundle Y → Σ.
Then

ECH∗(Y, ξ) ∼= ∧∗(H∗(Σ,Z))
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.

Remark 1.2.2 ECH has a Z2 grading, and the isomorphism stated above is an isomor-
phism of Z2-graded Abelian groups. ECH splits as a direct sum indexed by H1(Y ), and
each summand has a relative Z grading refining the absolute Z2 grading; we explain this in
chapter 3 and give a refined version of the theorem in chapter 5. The splitting over H1(Y )
distinguishes between circle bundles of different Euler classes over Riemann surfaces of the
same genus. Embedded hyperbolic Reeb orbits correspond to index 1 critical points of the
perfect Morse function f : Σ → R and hence to generators of H1(Σ), and elliptic orbits
correspond to generators of H0(Σ) and H2(Σ). So, a generator of ECC corresponds to a
multiset of generators of H∗(Σ). We get the exterior algebra on H∗(Σ) because hyperbolic
orbits can appear with multiplicity at most one and elliptic orbits can appear with any
multiplicity.

Remark 1.2.3 The Seiberg-Witten Floer homology of Seifert fibered 3-manifolds, includ-
ing nontrivial circle bundles over Riemann surfaces, is implicit in [22], which was written
before a proper definition of Seiberg-Witten Floer homology had been given. The Heegard
Floer homology with Z2 coefficients for these three-manifolds, including the U map, is com-
puted in [23]. We expect that the methods used in this paper will suffice to compute the
ECH of Seifert fibered manifolds.

1.3 Regularity and domain-dependent almost complex struc-
tures

The discussion preceding the theorem was predicated on the assumption that J
was regular, i.e. that the linearization D of the Cauchy-Riemann operator ∂J (which we take
to be a Fredholm map between appropriate Banach spaces) is surjective, which implies that
the zero set of ∂J , the moduli space of J-holomorphic curves, is a smooth manifold whose
dimension equals the Fredholm index of the linearized operator. This was necessary to argue
that an index 1 moduli space for an S1-invariant J would have the “wrong” dimension.

However, we cannot in general expect to find a J which is simultaneously S1-
invariant and regular. If we compose the J-holomorphic map u : C → R × Y with the
projection π : R× Y → Σ, we obtain a map π ◦ u : C → Σ which turns out to have a well-
defined nonnegative degree d, because π ◦ u extends to a map of closed surfaces If d = 0 or
1, we can find a regular S1 invariant J . When d > 1, the projection of u : C → R× Y → Y
has intersection number d with a given S1-orbit, and hence at least d intersections (some
of them possibly at the same point, which occurs when the map u is a nontrivial branched
covering of its image). The complex structure cannot be independently perturbed at those
d points by an S1-invariant perturbation, which is the key step in the standard proofs of
transversality. If we drop the requirement that J be S1-invariant, it is known that there
always exists a regular J (because we can do the perturbations independently), but we lose
all hope of actually understanding the moduli spaces.

To resolve this, we employ a more general notion of complex structure in which
we let J(p, q) ∈ Aut(Tq(R × Y )) be a family of almost complex structures parameterized
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by p ∈ C. A J-holomorphic map u : (C, j) → (R × Y, J) for such a domain-dependent J
satisfies a Cauchy-Riemann equation of the form

dup + J(p, u(p)) ◦ dup ◦ jp = 0 (∀p ∈ C)

Here, J = J(p, u(p)) ∈ Aut(Tu(p)(R × Y )) satisfies J ◦ J = −Id. In the usual Cauchy-
Riemann equation, J would depend only on u(p), not on p. If p, p′ ∈ C map by u to the
same S1 orbit in Y , we can perturb J independently at u(p) and u(p′) while preserving its
S1-invariance. We use this to find regular S1-invariant domain-dependent almost complex
structures (DDACS). In this setting, the argument sketched before the theorem works, and
we can conclude that for a generic S1-invariant DDACS J , moduli spaces of J-holomorphic
curves C with I(C) = 1 are empty.

However, ECH is defined for a generic (domain-independent) almost complex struc-
ture, so to conclude anything about ECH, it is necessary to relate the moduli spaces of
I(C) = 1 J0-holomorphic curves with ∂C = a − b, for a regular S1-invariant DDACS J0,
to the moduli space of J1-holomorphic curves with the same I(C) and the same asymptotic
orbit sets, for J1 a regular (S1-dependent, domain-independent) almost complex structure.

To compare these moduli spaces, we take a generic one-parameter family Jt of
domain-dependent almost-complex structures interpolating between J0 and J1. For each
Jt, consider the moduli space Mt ≡M (a,b, Jt) of Jt holomorphic curves C with ∂C = a−b.
Mt is transversely cut out except at finite number of times ti ∈ [0, 1]. At such a nonregular
Jti , ∂ can change by either the creation or destruction of a pair of holomorphic curves of
opposite sign, or by a handleslide. In the former case, the signed numbers of curves in Mti−ε
and Mti+ε are the same. In general, at a handleslide (at which a sequence of Fredholm index
1 curves Ct breaks into a “holomorphic building” consisting of an index 0 curve, an index
1 curve C ′, and some “connectors”, which are Fredholm index 0 branched coverings of
trivial cylinders), ∂ can change. By considering a local version of the (relative) adjunction
formula from [10], we can show that connectors cannot occur at the top or bottom of the
holomorphic building, but only between the index 0 curve and the index 1 curve. This
means that a gluing theorem from [14] and [15] applies, and it describes the change in ∂
for the buildings that arise here. Namely, ∂ changes by a multiple of the signed number
of elements of M (a′,b′, Jti), where ∂C ′ = a′ − b′. At J0, the moduli spaces are empty so
∂ is 0. We show by an inductive argument that #M (a′,b′, Jti) is zero, and hence ∂ does
not change at a handleslide. The induction depends on the fact that when a sequence of
curves Ci degenerates in the limit to a holomorphic building of the type described above,
the degree of the index 1 curve in the building is less than the common degree of the Ci.

1.4 Prospects

As is common for theories involving pseudoholomorphic curves, explicit ECH com-
putations are quite difficult to carry out; besides this paper, the only examples done directly
(i.e. not via the isomorphism with Heegaard Floer or monopole Floer homology) are S3,
T 3 and S1 × S2 in [13], which was generalized in [19] to many T 2-bundles over S1. One
reason to do computations in the ECH framework is that certain structures common to all
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3-manifold Floer homologies are more transparent in ECH. For instance, a choice of con-
tact structure on a 3-manifold specifies an element in the Floer homology of the manifold.
The definition of this “contact element” is complicated in the other two Floer theories, but
in ECH, it is just the homology class of the empty collection of Reeb orbits. Another is
that other structures defined using ECH may not have obvious counterparts in the other
two theories, and a direct calculation of ECH is indispensible in understanding them. For
instance, Hutchings [18] has defined “ECH capacities” which give embedding obstructions
for certain exact symplectic 4-manifolds (X, dα) bounding contact 3-manifolds (Y, α); these
invariants depend nontrivially on the contact form α, so it is not clear if or how these could
be recovered inside Heegaard or monopole Floer homology.

Thus, we can hope that generalizing and using this work will help illuminate the
structure of ECH. A natural extension of these results would be to Seifert fibered spaces.
Also, it would be useful for applications to compute the “U map” for circle bundles. The
author expects that the methods will suffice for both. Furthermore, we might hope that
analyzing this ECH computation may result in a better lower bound on the minimal number
of embedded Reeb orbits for a contact form on a nontrivial circle bundle over a surface.
([16] proves that there are at least 3 embedded Reeb orbits for any Y that is not a lens
space).

1.5 Outline

The plan of this paper is as follows: in section 2, we compute and collect the
topological and geometric facts we need about our contact 3-manifolds Y , and discuss
complex structures and pseudoholomorphic curves in symplectizations. We also introduce
the various kinds of perturbations which we will use. In section 3, we compute I(C) for
holomorphic curves C → R × Y and define the degree d(C). Section 4 works out ECH in
the case where Σ ∼= S2, which is much simpler than g(Σ) > 0. In section 5, we begin the
computation of ECH for higher-genus Σ, and discuss holomorphic cylinders (which must be
treated separately from holomorphic curves with stable domains). In section 6, we define
domain-dependent almost complex structures and prove regularity for generic S1-invariant
DDACS. In section 7, we compare moduli spaces for domain-dependent and -independent
almost complex structures, and ultimately show that ∂ = 0.
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Chapter 2

Nontrivial circle bundles over
Riemann surfaces

2.1 Circle bundles

In this section we introduce the three-manifolds Y to be considered and collect
some facts about their topology.

Let Y be the total space of a principal circle bundle S1 → Y → Σ over a closed
oriented 2-manifold Σ, with negative Euler class e(Y ) = −e < 0. In particular, Y is a
nontrivial bundle. (We will never consider S1 × Σ, so “circle bundle” will be synonymous
with “nontrivial circle bundle of negative Euler class” in this paper.) We warn the reader
that π will generally denote the map Y → Σ, in the course of this paper we will consider
myriad auxiliary bundles, and π will often be hijacked to denote the relevant projection in
context.

H∗(Y,Z) may be computed via the Leray-Serre spectral sequence. The E2 page
is given by H∗(Σ, H∗(S

1;Z)), and the only E2 differential between nonzero groups is de2 :
H2(Σ, H0(S1,Z)) ∼= Z → H0(Σ, H1(S1,Z) ∼= Z. de2 is given by multiplication by e(Y ), so,
ker(de2)
im(de2)

∼= Z/e. Thus, H1(Y ) ∼= Z2g ⊕ Z/e and H2(Y ) ∼= Z2g.

The Z2g factors of H1(Y ) and H2(Y ) come from H1(Σ): the bundle Y restricted
to any loop in Σ is orientable and therefore trivial, so given a loop in Σ whose fundamental
class is a generator of H1(Σ), the fundamental class of a section of the bundle over a loop
yields generator of H1(Σ) and the total space of the bundle yields a generator of H2(Y ).
The torsion in H1(Y ) comes from the fibers of the bundle: remove a small disc D from
Σ and trivialize Y over Σ −D. Take a constant nonvanishing section with respect to this
trivialization, restricted to ∂D, and compare it to a trivialization over D. As you traverse
∂D, the section over Σ −D, winds e(Y ) = −e times around the fiber with respect to the
trivialization over D. Thus, a path wrapping e around a fiber bounds a 2-chain, and the
fundamental class [F ] of a fiber F ∼= S1 generates the Z/e factor.

The map induced on H1 by the projection Y → Σ is onto, and its kernel is the Z/e
factor. The map induced on H2 is zero, as the generators described above map to circles.
The induced map on H2 is similarly zero, which we will use [in section] to show that the
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contact structure on Y we will consider is trivial as a vector bundle.

2.2 Contact three-manifolds and holomorphic curves in sym-
plectizations

We recall the basic definitions of three-dimensional contact geometry. Let Y be
a closed orientable 3-manifold. A (co-orientable) contact structure on Y is a real 2-plane
bundle ξ ⊂ TY which can be defined as the kernel of a contact 1-form α ∈ Ω1(Y ) satisfying
αp ∧ dαp > 0 for every p ∈ Y . α determines the Reeb vector field R ≡ Rα by R ∈ ker(dα)
and α(R) = 1. The closed trajectories of R will be referred to as Reeb orbits. We will
identify Reeb orbits that differ by parameterization, and sometimes use the term “Reeb
orbit” to refer to the image of a Reeb orbit. (But note that a cover of a Reeb orbit is again
a Reeb orbit; the “multiplicity” of a Reeb orbit will mean the multiplicity with which a
Reeb orbit covers the underlying embedded Reeb orbit.) The vector field R is transverse
to ξ, yielding the splitting TY ∼= 〈R〉 ⊕ ξ. Note that α, α′ ∈ Ω1(Y ) determine the same
contact structure ξ iff α = fα′ for some nonvanishing f : Y → R, but Rα and Rα′ , and the
their sets of Reeb orbits, may be quite different.

On the noncompact 4-manifold Rt × Y , the closed 2-form ω := d(etα) satisfies
ω ∧ ω > 0 and so determines a symplectic structure known as the symplectization of Y . We
can pull ξ, α, and R back to R×Y by the projection to Y , and we’ll use the same notation
for the pullbacks. Thus, TR × Y ∼= 〈 ∂∂t〉 ⊕ 〈R〉 ⊕ ξ. Given an almost complex structure j
on the bundle ξ → Y , we can define an R-invariant cylindrical almost complex structure J
on R× Y by letting J |ξ = j and setting J ∂

∂t = R. dα gives ξ the structure of a symplectic
vector bundle, and we say that j, and hence J , are dα-compatible if dα(v, jv) ≥ 0 for any
v ∈ ξp. We will only consider compatible almost complex structures.

A J-holomorphic map (or (pseudo)holomorphic map or curve) is a map

u : (C, jC)→ (R× Y, J)

where C is a punctured Riemann surface with complex structure jC , and u satisfies du◦jC =
J ◦ du. C may be disconnected, and we will always assume that u is nonconstant on each
of its components.1 We will always write C for the closed Riemann surface from which C
is obtained by deleting a finite number of punctures. Note that J ∂

∂t = R implies that if
γ ⊂ Y is a Reeb orbit, the trivial cylinder or orbit cylinder R × γ is J-holomorphic. The
boundary conditions on the holomorphic curves we will consider imply that they have finite
energy (

∫
C u
∗dα < ∞)); by a foundational theorem from [8], for any such curve, at each

puncture of C, u is asymptotic to the trivial cylinder R × γ for some Reeb orbit γ. If the
πR ◦ u(p)→∞ as p ∈ C approaches a puncture p0, we call p0 a positive puncture and the
end a “positive” or “outgoing” end; if πR ◦ u(p) → ∞, p0 is a negative puncture and the
end is “negative” or “incoming”. We will speak of curves as going from their outgoing ends
(each component must have at least one, by applying the maximum principle to πR ◦ u)
to their incoming ends (if there are any). We often will implicitly identify R × Y with
(0, 1) × Y and compactify it to [0, 1] × Y , and view a holomorphic map u as a cobordism

1In chapter 6, we show that the curves under consideration can never have constant components.
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from a collection of Reeb orbits in {1}×Y (corresponding to the positive ends) to a (possibly
empty) collection of Reeb orbits in {0} × Y . Each Reeb orbit is a cover of a fiber, so an
end of u at a Reeb orbit a determines an embedded Reeb orbit and a (positive) covering
multiplicity. For a holomorphic map u : C → R × Y and an embedded Reeb orbit a to
which it is asymptotic at some positive puncture, we form the collection mj of the covering
multiplicities (with repitition) of all the ends asymptotic to a at ∞, which we view as a
partition of the positive integer

∑
jm

j . If we consider all the (fiber) Reeb orbits ai, each

with total multiplicity mi =
∑
mj
i (where mj

i is the multiplicity of the jth end asymptotic
to ai), then we can form the total homology class

∑
mi[ai] ∈ H1(Y ;Z). If u is similarly

asymptotic at −∞ to the Reeb orbit bj with total multiplicity nj , we can similarly form∑
j nj [bj ]. In [0, 1] × Y , ∂u(C) =

∑
miai −

∑
njbj ≡ a − b. This yields the equality

[a] ≡
∑
mi[ai] =

∑
nj [bj ] ≡ [b] of total homology classes for any two collections of Reeb

orbits which are joined by a holomorphic curve.

2.3 A contact structure on nontrivial circle bundles

S1 → Y → Σ may be taken to be a principal S1-bundle of Euler class −e. Given a
connection 1-form α ∈ Ω1(Y ) on Y → Σ, it has curvature given by

∫
Y (α∧dα = −2π(−e) =

2πe. If we choose α to be pointwise non-zero, then α will be a contact 1-form with Reeb
vector field ∂

∂θ , where ∂
∂θ is the derivative of the S1 action on Y . Such an α is S1-invariant,

and the fibers are Reeb orbits of length 2π, and dα is the pullback π∗(ω) of some symplectic
form ω ∈ Ω2(Σ). The n-fold iterate of a fiber is also a Reeb orbit for any n, so the collection
of all Reeb orbits is parameterized by ∪nΣ, a smooth 2-manifold.

The contact structure ξ = ker(α) consists exactly of the S1-equivariant horizontal
subspaces determined by the connection. Thus, a bundle map

ξ −−−−→ TΣy y
Y

π−−−−→ Σ

is obtained by restricting the S1-equivariant map Dπ : TY → TΣ to ξ; i.e. the subbun-
dle ξ ⊂ TY is isomorphic to the pullback bundle π∗TΣ. If we choose an ω-compatible
complex structure jΣ on Σ and pull it back by this diagram, we obtain an S1-invariant, dα-
compatible, complex structure j on ξ, and hence an S1-invariant almost complex structure
J on TR × Y with respect to which the projection π : R × Y → Σ is (J, jΣ)-holomorphic.
If u : (C, jC)→ (R× Y, J) is a J-holomorphic map, the composition π ◦ u is a holomorphic
map of Riemann surfaces. Since at any puncture p of C, u approaches some Reeb orbit
γ ⊂ Y , and any Reeb orbit is a cover of a fiber of Y → Σ, π ◦ u may be extended over p. If
C is a closed Riemann surface such that we can obtain C from C by removing punctures,
we thus obtain a continuous extension of π ◦ u to u : C → Σ which is a holomorphic map
of Riemann surfaces. If u has an end at a Reeb orbit which is a k-fold of the embedded
Reeb orbit π−1(p), then u has a an order k branch point at p. We define d to be the
degree of the map u. If we consider R × Y as an R × S1 ∼= C∗ bundle over Σ, we can pull
it back to the C∗ bundle u∗R × Y over C, and u corresponds to a meromorphic order d
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multisection of u∗T (R×Y ), whose zeros and poles correspond to negative and positive ends
of u. The number of zeroes minus the number of poles (both counted with multiplicity) is
given by the first Chern class of the bundle; since c1(R × Y → Σ is −e, by naturality we
have c1(u∗R × Y = d(−e) < 0. Thus, a holomorphic curve u with n negative ends (with
multiplicity) has m = de+ n positive ends.

This interpretation of holomorphic curves as meromorphic multisections of line
bundles is a useful heuristic, but since we will have to perturb this picture, we do not use it
directly in this paper. However, it will be used in future work in which the ECH “U map”
is computed.

2.4 Perturbations

The contact form described above has a two-dimensional (Morse-Bott) family of
embedded Reeb orbits parameterized by Σ. However, ECH is defined for contact forms with
isolated Reeb orbits. More precisely, if γ is a Reeb orbit of length T , p ∈ γ, and φT is the
time-T map determined by R, then DφT : ξp → ξp, and we say that γ is nondegenerate if 1
is not an eigenvalue of DφT . α is said to be nondegenerate if all the Reeb orbits (including
iterates) of Rα are nondegenerate.

So, we perturb α to α′ = fα, where f = eg is the pullback by π : Y → Σ of a
perfect Morse-Smale function f = eg : Σ → R. By construction, α′ and hence Rα′ are S1

invariant. T
The new Rα′ is given by R′p = 1

f
∂
∂θ + 1

f2
Xf , where Xf is the horizontal lift to ξ

of the Hamiltonian vector field Xf on (Σ, ω). (Xf )p = 0 iff q = π(p) is a critical point of

f . Thus, on the fiber over a critical point π−1(q) ⊂ Y , Rα′ = 1
f(q)

∂
∂θ–the fiber is a closed

orbit of R′α. If df q 6= 0, π−1(q) is no longer a Reeb orbit (because f is Morse and Rα′ is
S1-invariant), so these fiber Reeb orbits are isolated. R′ may have other closed trajectories,
but they are long compared to the fibers; by choosing an arbitrarily small perturbation,
we can bound below the shortest Reeb orbit that is not a fiber. For the manifolds under
consideration, the ECH differential is action decreasing, we can below bound the action of
any Reeb orbits that can contribute to a given ECH chain group. We can thus compute
ECH arbitrarily far by choosing a sufficiently small perturbation of the form described
above, and the entire ECH will be the direct limit as the peturbations shrink to zero. Thus,
to compute ECH, we may ignore Reeb orbits which are not fibers (or covers thereof).

From now on, R = R′α, and the Reeb vector field for the original Morse-Bott
contact form α will be denoted ∂

∂θ . If we need to take a smaller perturbation of α, it will
be of the form ε · egα, ε > 0, so that the fiber Reeb orbits under consideration will be the
same in all situations.

If, as in the Morse-Bott case, we choose a compatible almost complex structure j
on ξ by pulling back a complex structure jΣ on Σ, we can use the same recipe (J ∂

∂t = R)
to extend it to an S1-invariant cylindrical almost complex structure J on R × Y . For this
J , the projection map R × Y → Σ is not (J, jΣ)-holomorphic (for instance, ∂

∂t 7→ 0 but

J ∂
∂tp

= R 7→ 1
f2
Xf , which is nonzero unless π(p) ∈ crit(f)) nor, given a J holomorphic map

(C, jC) → (R × Y, J), is the composition π ◦ u (jC , jΣ)-holomorphic. However, π ◦ u may
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still be completed to a smooth map u : C → Σ as before, and its degree is still well-defined
(as a map of closed oriented surfaces).

We can relate the degree to the number of positive and negative ends. Define the
dα-energy E of such a J-holomorphic map u : (C, j) → (R × Y, J) by E(u) =

∫
C u
∗dα′.

The integrand is pointwise non-negative because jξ is assumed to be dα-compatible, and
it is zero iff Im(Dup) = 〈 ∂∂t , R〉. These spaces coincide at every point iff u is an orbit
cylinder, so we have E(u) ≥ 0, with equality iff u is an orbit cylinder. If as before we view
u as a map C → R × Y ∼= (0, 1) × Y and compactify the target to [0, 1] × Y , and also
compactify the domain to Ĉ by replacing the punctures with circles, then u extends to a
map û which sends the boundary circles to the asymptotic Reeb orbits of their respective
ends. By Stokes’s theorem, E(u) =

∫
C u
∗(dα′) =

∫
∂Ĉ
u∗α = 2π(m − n), where m and

n are the total multiplicities of positive and negative Reeb orbits. But since u∗(dα′) =
u∗(π∗(ω)) = (π ◦u)∗(ω), E(u) = d[ω] = d(−2π(−e) = 2πed, so m−n = ed. Note that since
all the Reeb orbits are (iterates of) fibers, equality of total homology classes of Reeb orbits
at ∞ and −∞ a priori implied that m− n ≡ 0 (mod e).
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Chapter 3

Computation of the ECH index

3.1 ECH

Let (Y, ξ, α) be a contact 3-manifold with nondegenerate contact form α, and
let (R × Y, dα, J) be its symplectization with a generic choice of compatible cylindrical
almost complex structure J . In this section, we will define the embedded contact homology
ECH(Y, ξ, α, J).

The embedded contact homology is the homology of a chain complex generated
by admissible collections of Reeb orbits. A finite multiset a = {(ai,mi)}, where ai is a
Reeb orbit and mi is a positive integer, is called an orbit set. ECC∗ is the abelian group
generated by orbit sets satisfying the following admissibility condition: for any (ai,mi) ∈ a,
mi = 1 if ai is a hyperbolic orbit (See section [3.5] for the definition). We will denote the
total multiplicity

∑
mi of an orbit set by |a| and the total homology class

∑
mi[ai] by [a].

Note that for circle bundles, [a] = |a| mod e ∈ Z/e ⊂ H1(Y ).12

The differential ∂a is defined by a certain count of holomorphic curves u : C →
R× Y whose positive ends asymptotic to the Reeb orbit ai have total multiplicities mi for
each i. Namely,

∂a :=
∑

{C:∂C=a−b,I(C)=1}

b

, where b is a multiset of Reeb orbits and I(C) is the “ECH index” of C. Note that if
we translate a holomorphic curve u : C → R × Y in the R direction, we obtain a different
holomorphic curve with the same asymptotics (unless C is an orbit cylinder); we are actually
summing over R-families of curves.

It is a difficult theorem that ∂2 = 0 ([14],[15]). 3 We define ECH∗(Y, ξ, α) :=
H∗(ECH(Y, ξ, α, ∂). This homology turns out to be independent of the auxiliary choice

1Note that the empty collection of Reeb orbits ∅ is an admissible orbit set. It is a cycle because every
holomorphic curve has a positive end, and its homology class is the “contact element” in ECH.

2Besides the condition on the multiplicities of hyperbolic orbits, ECC orbit sets differ from the generators
of the chain complexes of SFT-type theories in that ECH associates a single multiplicity to a given Reeb
orbit, whereas SFT associates a multiplicity along with a partition of the multiplicity into positive integers.

3This is much simpler in SFT, whose differential preserves the multiplicities of the different ends asymp-
totic to a given Reeb orbit. Broken curves contributing to 〈∂2

ECHa,b〉 have matching total multiplicities but
not matching partitions where they break, so a more difficult gluing theorem is required.
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of J as well as of α. In fact, Taubes has shown ([28] and its four sequels) that ECH is a
topological invariant by showing that it is isomorphic to (Seiberg-Witten) monopole Floer
homology; it is via this isomorphism that J and α invariance are shown.

Before explaining I(C), we note that since if b appears with nonzero coefficient
in ∂a, then there is some curve C with ∂C = a − b, so [a] = [b]. If for h ∈ H1(Y ;Z), we
let ECC∗(Y, ξ, α, J, h) = ECC∗(h) be generated by all admissible orbit sets a with [a] = h,
then ∂ respects the splitting ECC∗ =

⊕
h∈H1(Y )ECC∗(h). We thus obtain homology groups

ECH∗(Y, ξ, J, h) = ECH∗(h). 4

3.2 The ECH index

We now define the ECH index I(C). Let u : C → R×Y be a J-holomorphic curve
with ∂C =

∑
miai −

∑
njbj . If ak denotes a k-fold cover of the Reeb orbit a, then

I(C) = cτ1(ξ) +Qτ (C,C) +
k∑
i=1

mi∑
j=1

µτ (aji )−
l∑

i=1

ni∑
j=1

µτ (bji )

In this formula, cτ1 is the relative first Chern class, Qτ is the self-intersection
number of C. and µτ is the Maslov index. Each term depends on a choice of trivialization
τ of ξ over each embedded Reeb orbit, but their sum I(C) depends only on the relative
second homology class of C. We define each of these and compute them in the circle bundle
case; more details and general properties can be found in [10] and [11]. Note that for the
relative first Chern class and self-intersection terms, there is no need to perturb the contact
form from the Morse-Bott α with which we began, but that µ is defined for non-degenerate
Reeb orbits.

3.3 Trivializations

We can choose a convenient trivialization τ for ξ over each embedded Reeb orbit a
using the S1-action on Y . Namely, choose an isomorphism Tπ(a)Σ ∼= R2, and pull it back to
an isomorphism ξq ∼= R2 for every q ∈ π−1(p), viewing ξ ⊂ TY as the horizontal subbundle.
We will use this trivialization throughout the rest of the paper,and often drop τ from the
notation for c1, Q, µ, and w. [10]contains further discussion and a complete discussion of
how all these quantities transform with respect to a change of trivialization, and we have
mainly hewed to its notation.

3.4 Relative H2(Y )

The ECH index I(C) depends only on the ends of C and the relative second
homology class of C. If we compactify R×Y to [0, 1]×Y and take the circle compactification
Ĉ of C so that it defines a cobordism between orbit sets a and b in [0, 1] × Y , then
Hrel

2 (Y,a,b) is defined as the homology of the complex of 2-chains C ∈ C2([0, 1] × Y,Z)

4This splitting over H1(Y ) corresponds to the splitting of monopole Floer homology over spinc classes.
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such that ∂C = a − b. Hrel
2 is an H2(Y,Z)-torsor. A holomorphic curve C → R × Y

asymptotic to a at ∞ and b at −∞ determines a class [C] ∈ Hrel
2 (Y,a,b) by taking the

circle compactification of C.
It turns out that for circle bundles, cr1el, Q and hence the ECH index I are inde-

pendent of the relatively homology class, and so the ECH index of a holomorphic curve C
depends only on its ends. µ depends on the asymptotic Reeb orbits, but crel1 and Q will
depend only on the total multiplicity of positive and negative ends.

[this is key and i need to use it somewhere...]

3.5 Relative first Chern class

cτ1(C) is the relative first Chern class of the bundle u∗ξ over C, defined as follows:

let Ĉ be the circle compactification of C as before. Over each boundary component of
Ĉ, choose a nonvanishing section s of ξ with winding number zero with respect to to the
trivialization given by τ . Take any generic extension of s to a section of u∗ξ , and count
the signed number of zeros.

cτ1(C) ≡ c1(C) clearly depends only on the class [C] ∈ Hrel
2 . If we have Z,Z ′ ∈

Hrel
2 (Y,a,b), then c1(Z) − c1(Z ′) = 〈c1(ξ), Z − Z ′〉, where Z − Z ′ ∈ H2(Y ). For circle

bundles, c1(ξ) = 0. For, the bundle map

ξ −−−−→ TΣy y
Y

π−−−−→ Σ

implies that c1(ξ) = c1(π∗TΣ). But the induced map π∗ : H2(Σ)→ H2(Y ) is trivial. Thus,
c1(C) depends only on the ends of C.

To compute relative c1 for u : C → R× Y for a circle bundle Y , we use the above
bundle map to obtain that u∗ξ = u∗(π∗TΣ) = (π ◦ u)∗TΣ. For a Reeb orbit a = π−1(q),
Choose a nonzero vector v ∈ TqΣ, and lift it to ξ|a to get a nonvanishing S1-invariant section.
We can thus extend this section to a section of u∗TΣ, which extends u∗ξ to a vector field
on C. which does not vanish at the punctures. c1(C) equals the signed number of zeroes
an extension of this section, which is c1(u∗TΣ). By naturality, this is dc1(TΣ) = dχ(Σ),
where d is the degree of the map u : C → Σ. Because the difference between the total
multiplicities of positive ends and negative ends is de, c1(C) is determined by the number
of positive and negative ends of C.

3.6 Relative self-intersection number

Qτ (C,C) ≡ Q is the relative self-intersection number of C . To define it, con-
sider two classes Z,Z ′ ∈ Hrel

2 (Y,a,b). Take two immersed representatives S, S′ with
∂S = ∂S′ = a − b and [S] = Z, [S′] = Z ′ ∈ Hrel

2 (Y,a,b). We require that S, S′ are
embedded in the interior, and transverse to each other at any interior intersections and the
boundary. Furthermore, require that the ends of S, S′ singly cover Reeb orbits. (So that
self-intersections of C do not “escape to infinity”.) Finally, let the projections of S, S′ to
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[0, 1] and to rxy to be immersions near their boundaries, so that along the boundary Reeb
orbits, they intersect ξ in distinct rays, which we require to have winding number zero with
respect to τ . Then we define Q(Z,Z ′) to be the signed number of interior intersections of
S and S′.

Q(Z,Z ′) is well-defined, and in general if Z,Z ′, Z ′′ ∈ Hrel
2 (Y,a,b), then Q(Z,Z ′′)−

Q(Z ′, Z ′′) = (Z − Z ′) ∩ h, where h = [a] = [b] ∈ H1(Y ). For circle bundles, h is always
e-torsion, so Z − Z ′ ∩ h=0. Hence, Q is independent of relative homology class. We will
exploit this to compute by choosing convenient representatives of [C] to compute Q.

We first compute Q for the simplest S3, and then generalize. View S3 as the total
space of the Hopf fibration S1 → S3 → S2, with Euler class −1. (Recall that changing the
sign of the Euler class reverses the orientation of the three-manifold, so we are on S3 with
orientation given by the volume form α ∧ dα.) It is well known that any two fibers form
a Hopf link, with linking number 1. Equivalently, surfaces (here, they can be taken to be
discs) bounding the two fibers have intersection number 1. A surface S bounding a fiber a
carries the relative homology class [S] = Z ∈ Hrel

2 (Y, a, ∅). To compute Q(Z,Z), we take
two surfaces D,D′ ∈ Z bounding the fiber a and satisfying the conditions in the definition
of Q. Glue D′ to a small tube connecting a to a nearby fiber a′ and intersecting neither D
nor D′, obtaining a new disc D′′ bounding a′. Then D ∩D′ = D ∩D′′, so counting points
with sign, |D ∩D′| = |D ∩D′′| = 1.

We generalize:
Let g(Σ) and e be arbitrary, and let Y be the bundle with base Σ and Euler class

−e < 0. A Reeb orbit wrapping e times around a fiber a = π−1(p) is bounded by by a
surface S ⊂ R × Y whose projection SY to Y is a section of Y → Σ over Σ − {p}. If S′ is
similarly a section over Σ − {q} that wraps e times around b = π−1(q), then S ∩ S′ = e,
because the section SY has an order e intersection with the e-fold cover of the fiber b.
A Reeb orbit wrapping de times around a, d > 0, is bounded by d disjoint sections of
Y → Σ over Σ−{p}; call their union S, and let S′ be the union of d sections over Σ−{q}.
S ∩ S′ = ed2 because in Y , each of the d sections in S intersects b with order de. As in the
S3 case, if we have Z ∈ H2(Y, de · a, ∅), take S and S′, and glue on ends to each so that the
resulting surfaces satisfy the conditions in the definition of Q (in particular, so that they
each bound have de simple ends at a), so that Q(Z,Z) = ed2.

A general Z = [C] arising from a holomorphic curve lies in H2(Y,a,b), where b
has total multiplicity n ≥ 0 and a therefore has total multiplicity n + de, d ≥ 0. We can
represent Z by a surface S ∪ S′ consisting the union S of d surfaces which each bound e
Reeb orbits in a (and have no negative boundary) and S′, the union of n cylinders from an
orbit of a to an orbit of b. For simplicity in computing the number of intersections, , we can
assume the ends of S are distinct fibers (not necessarily Reeb orbits) and that the cylinders
are all trivial cylinders over fibers distinct ∂S; then as before, we glue on ends so that S
and S′ bound the correct Reeb orbits. By the previous computation, the self intersection
of S is ed2. S′ clearly has self-intersection zero. S ∩ S′ = nd, since the n trivial cylinders
has one intersection with each of the d composing S. Thus, Q(C,C) = Q(S ∪ S′, S ∪ S′) =

Q(S, S) +Q(S′, S′) + 2Q(S, S′) = ed2 + 2ne = (ed+n)2−n2

e .
To go from these intersection numbers to Q, recall that Q depends only on the

number of orbits at each end. Given a, b, we can compute Q by taking S ∈ [S] ∈ H2(Y,a,b)
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which has only simply covered ends, and glue on a tube to each orbit

3.7 Conley-Zehnder Indices

The final term is the sum of Conley-Zehnder indices of certain iterates of the Reeb
orbits at the positive end minus the corresponding sum at the negative end. Recall that
a trivialization of ξ over a Reeb orbit α defines a path in Sp2(R). If the Reeb orbit is
nondegenerate, this path it has a Maslov index, and the Conley-Zehnder index of a Reeb
orbit a is defined to be this Maslov index and denoted µτ = µ. A choice of trivialization
determines a path from the identity to Φ(1). Recall that nondegenerate Reeb orbits are
those whose monodromy Φ(1) do not have 1 as an eigenvalue, i.e. det(Φ(1) − I) 6= 0.
The locus det(Φ(1) − I) = 0 is a co-oriented codimension one subvariety known as the
Maslov cycle, and its complement has four components. Two are composed of elliptic
matrices, which have a pair of conjugate complex eigenvalues. The component containing
small positive rotations is the set of positive elliptic matrices, and the one containing small
negative rotations is the set of negative elliptic matrices. The remaining components are
the hyperbolic matrices, which have real eigenvalues–both positive for positive hyperbolic
matrices, and both negative for negative hyperbolic matrices. Before perturbing the contact
form, the path of symplectic matrices associated to a Reeb orbit in our trivialization τ is
the constant path at the identity, and a small perturbation of the contact form ends on
a matrix near the identity, which can only be elliptic or positive hyperbolic. Negative
hyperbolic orbits will never appear in this paper, and “hyperbolic” will from now on always
mean “negative hyperbolic”. The Maslov index of a path from the origin to apoint not
on the Maslov cycle and having only transverse intersections with is defined to be the
signed number of intersections of the path with the Maslov cycle. The sign comes from
comparing the orientation of the path and the co-orientation on the Maslov cycle. The
initial intersection of the path with the origin counts for 1 paths pointing into the positive
elliptic component, −1 for paths into the negative elliptic component, and 0 for those
pointing into the (positive) hyperbolic component. 5.

The iteration of a Reeb orbit ending at A yields a path in Sp2 ending at Ak, k > 0;
in our case, if the perturbation is small enough, so that A is close to the identity, Ak and
the path to it will lie inside the same component as A for k < N (and in particular have no
intersections with the Maslov cycle besides the identity), for some N which we can make
as large as we like by choosing a sufficiently small perturbation. Thus, we will assume that
µ(ak) = µ(a) for any k under consideration.

The Reeb orbits under consideration are fibers over critical points of the Morse
function g :→ R. The Maslov index of α = π−1(p) is one less than the Morse index of the
critical point p. Thus, for a perfect Morse function g, there will be one embedded Reeb orbit
(the fiber above the maximum of g), denoted e+, with Maslov index 1; 2g(Σ) embedded
positive hyperbolic Reeb orbits (the fibers above the saddle points of g), which have Maslov
index 1, denoted h1, ..., h2g; and one embedded negative elliptic Reeb orbits (the fiber above
the minimum of g) with Maslov index −1, denoted e−.

5For a full discussion and the definition and properties of the Maslov index for more general paths, see
xxx
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If a holomorphic curve C has j ends at a Reeb orbit a of multiplicities i1, ..., ij , with
i1 + ...+ ij = m, its contribution to the Maslov term is

∑m
k=1 µ(ak) =

∑m
k=1 µ(a) = mµ(a).

If a = {(ai,mi)} is an orbit set, we denote
∑k

i=1

∑mi
j=1 µ(aji ) by µ(a). The term appearing

in I(C) for ∂C = a− b is therefore µ(a)− µ(b).
Note the contrast with the Maslov index term in the Fredholm index, which is∑j

k=1 µ(aik) for each Reeb orbit a. The Fredholm index is sensitive to the separate multi-
plicities of the various ends at each Reeb orbit, whereas the ECH index sees only their total
multiplicity.

3.8 ECH index depends only on ends; gradings

We conclude from the above discussion that the ECC of nontrivial circle bundles
is generated over Z by ek+e

l
−h

i1
1 ...h

i2g
2g , where k, l ≥ 0 and ij ∈ {0, 1}. ECC splits according

to h, which is given by k + l +
∑
ij(mod e). It will turn out that the ECH differential will

vanish, so that ECH ∼= ECC. Because they have the same Reeb orbits, the total embedded
contact homologies for different e are naturally isomorphic, but the splitting according to
h ∈ H1(Y ) distinguishes 3-manifolds with different Euler classes.

Because I(C) is independent of [C] ∈ Hrel
2 (Y,a,b) for circle bundles, I(C) depends

only on the multiplicity and type of Reeb orbits in the orbit sets a and b. Therefore, unlike
in the general case, there is a well-defined relative Z grading I(a,b) given by I(S) for any
surface S with ∂S = a− b, whether or not the class [S] ∈ Hrel

2 (Y,a,b) (or any other class
in Hrel

2 (Y,a,b), for that matter) is represented by a holomorphic curve. Thus, we can also
speak of d(a,b) = m−n

e , where m and n are the total multiplicities of a and b, and of
d(S) = d(a,b) when ∂S = a−b. For h = 0, we set the degree of the canonical orbit set [∅]
to 0, which gives an absolute Z grading on ECC by |a| ≡ I(a, ∅). This is compatible with
any grading on ECC(Y, ξ, α′, J ′, 0) that also assigns the canonical element [∅] the degree
zero. However, for h 6= 0, we a priori have only a relative Z grading, i.e. there is not an
obvious way to compare the degree of orbit sets for α with orbit sets for some other α′

(which will generally have a totally different set of Reeb orbits). 6

3.9 Hyperbolic Reeb orbits and the parity of ECH

Proposition 3.9.1 Let H be the total multiplicity of all hyperbolic orbits in the union of
a and b. Then I(a,b) ≡ H(mod 2)

Proof.
Let ∂S = a− b. Then I(a,b) = d(a,b)χ(Σ) +Q(S, S) + µ(a)− µ(b).
χ(Σ) ≡2 0. µ(a) ≡2 1 iff a is elliptic, so µ(a) − µ(b) ≡2 E, where E is the total

multiplicity of elliptic orbits in a and b.

Let d = d(a,b). Then |a| − |b| = de, and Q = |a|2−|b|2
e = d(|a| + |b|) = d(de +

2|b|) ≡2 d
2e ≡2 de ≡2 |a|+ |b| = H + E. So, I(C) ≡2 H + E + E ≡2 H.

6Hutchings has defined absolute gradings for ECH using homotopy classes of 2-plane fields. The 2-plane
field corresponding to a is defined by modifying ξ along the Reeb orbits of a; see [11]. However, the relative
grading here is simple enough that we will not consider absolute gradings.
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Chapter 4

ECH Computations: circle bundles
over S2

In this section, we compute ECH for Σ ∼= S2. It is much simpler than the higher-
genus case, because the differential vanishes for formal reasons, and domain-dependent
perturbations are not necessary. 1 The case of Y = S3 was previously computed by
Hutchings ([12]). The ECH of all nontrivial circle bundles over S2 is computed in essentially
the same way as for S3.

Choose a perfect Morse-Smale function g on S2, i.e. a Morse function with one
maximum, one minimum, and no other critical points. Pull eg back to a function π∗(eg) ≡
f : Y → R. If α is the Morse-Bott contact form from the principal S1 bundle, the contact
form fα has two short embedded Reeb orbits e+ and e−. These are fibers above the
maximum and minimum points, which are respectively positive and negative elliptic. Let
N ⊂ Y be the union of two small solid tori containing e+ and e−, and choose a complex
structure on ξ by taking an S1-invariant contact structure on N |ξ and extending generically
over Y . Then, ECC∗(Y ) is generated by the orbit sets ek+e

l
−, with k, l ≥ 0. Because all

Reeb orbits are elliptic, I(C) is even. Because ∂ counts holomorphic curves with I(C) = 1,
it is automatically zero. Thus, ECH(Y, ξ) ∼= ECC∗(Y, ξ, fα) ∼= Z{ea+eb−|a, b ≥ 0}.

For e = −1, Y is S3 (−1 rather than 1 affects the orientation on S3), and H1(S3) =
0. The degree of a generator is given by |ea+eb−| = I(ea+e

b
−, ∅). For any surface S with

boundary ea+e
b
−, we have c1(S) = dχ(Σ) = 2(a + b) and Q(S, S) = (a + b)2. The Conley-

Zehnder term is
∑a

k=1CZ(ek+) +
∑b

k=1CZ(ek−) = a − b. Thus, |ea+eb−| = 2(a + b) + (a +
b)2 + (a− b) = (a+ b)2 + 3a+ b. As observed by Hutchings, this polynomial, restricted to
pairs of nonnegative integers, is a bijection Z≥0 × Z≥0 → 2Z≥0. So,

ECCi(S
3) = ECHi(S

3) =

{
Z, i is even ,

0, i is odd.

For e > 1, h = 0 ∈ H2(Y ), we have ECH(Y ) = Z{ea+eb− : e|(a + b)}. For
any S with ∂S = ea+e

b
−, d = deg(S) = (a + b)/e. So |ea+eb−| = dχ(S2) + ed2 + (a − b) =

1We note that the since once-and twice-punctured holomorphic spheres are not stable, we could not define
domain-dependent perturbations for all the relevant curves in any case.
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2(a+b)/e+e(a+b)2/e2+(a−b). It is straightforward to verify that this expression, restricted
to a, b ∈ Z≥0 with e|(a+b), takes on every nonnegative even integer exactly once. The empty
set of Reeb orbits has degree zero, so we have so ECHi(h = 0) ∼= Z if i is even, and 0 if i is
odd. Similarly, for any other h = 1, 2, 3, ..., e−1 ∈ Z/e ∼= H1, ECH∗(Y, ξ, fα, h) is generated
by {ea+eb−|a + b ∼= h(mod e)}. eh− is the generator of minimal degree, for any even integer
2i, there is a unique generator ea+e

b
− with d(ea+e

b
−, e

h
−) = 2i, i.e. ECH(h) is again a semi-

infinite relatively Z-graded sequence of alternating Z and 0. As before, this can be verified
by calculating that the expression 2(a+b−h)/e+(a+b−h)2/e+2h(a+b−h)/e+a−b−h,
restricted to a, b ∈ Z≥0 such that a + b ∼= h(mod e), attains every nonnegative even value
exactly once. The total ECH is the direct sum of e such sequences of relatively Z-graded
alternating Z and 0, one of which is distinguished by containing [∅]. We note that for every
e, the total ECH is generated by ea+e

b
−; Y corresponding to different e are distinguished by

the splittings they induce on ECH.
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Chapter 5

ECH computations: circle bundles
over surfaces of positive genus

If g(Σ) ≥ 1, a perfect Morse function f = eg on Σ has 2g index 1 critical points, and
thus (using the notation from section [n]), the Reeb vector field R of fα has 2g hyperbolic
Reeb orbits which are fibers of Y → Σ. As a result, nontrivial I = 1 holomorphic curves
are possible. We will show that although such curves occur, we still have ∂ = 0, so ECH∼=
ECC. This holds because of the S1 action on Y ; if we can choose a regular S1-invariant
almost-complex structure, then if a J-holomorphic curve u : C → R× Y is not a cylinder,
and 0 6= θ ∈ S1, then the map θ ·u 6= u is also J-holomorphic. We thus obtain an S1 action
on the moduli spaces M (Y, ξ, α,a,b). (Note that the moduli space consists of (covers of)
trivial cylinders iff a = b. “If” is clear; “only if” holds by applying Stokes’s theorem to
u∗dα.)

However, it is generally impossible to choose a complex structure that is both
regular and S1-invariant. This splits into two cases:

5.1 Holomorphic cylinders

For C ∼= R×S1, a variation of the arguments in [25] show that for sufficiently small
ε > 0, the S1-invariant complex structure determined by an S1-invariant complex structure
on ξ and J ∂

∂t = Reεgα is regular. Also, as ε → 0, J-holomorphic curves C ∈ M (ka, kb)
(where a = π−1(p) and b = π−1(q) are embedded Reeb orbits) approach broken trajectories
of the following form (see [1]): a holomorphic cylinder from a to a′ = π−1(p′) (with respect
to the complex structure determined by α), followed by a trajectory in Σ of the negative
gradient vector field −∇eεg, connecting p′ to some p′′, followed by a holomorphic cylinder
connecting π−1(p′′) to some other Reeb orbit a′′′ = π−1(p′′′), etc. Because the cylinders are
complex with respect to Jα, the extension u : C → Σ is a holomorphic map of Riemann
surfaces, and C ∼= S2. Since Σ ≥ 1, u is a constant map, and thus u must be a trivial
cylinder.

The sum of the indices of the gradient flows equals I(ka, kb). For the case relevant
to computing ECH, I = 1, so the gradient flow part of the broken trajectory must in each
case consist of a single Morse index 1 negative gradient flow. For ε sufficiently small and
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u ∈ M (a,b, Jε), π ◦ u lies in a C0 neighborhood of that gradient flow, and due to this
correspondence, the ECH differential 〈∂a, b〉 agrees with the Morse differential 〈∂p, q〉 = 0,
where the last equality holds because we chose a perfect Morse function.

5.2 Stable curves

The above argument is special to the case C ∼= R×S1. In the remaining cases, it is
not possible to find a regular S1-invariant J . We resolve this by broadening the notion of a
complex structure to a domain-dependent almost complex structure. We define everything
in the section, after giving a brief overview of the constructions and arguments here. So: in
the Cauchy-Riemann equation for a map u : C → R×Y , we allow J to depend on points in C,
rather than on points u(p) in the codomain. To define such structures, we need functions on
C that are independent of reparameterization. This means that we should define functions
on isomorphism classes of punctured Riemann surfaces, i.e. elements of Mg,n, where we
view the punctures as marked points. Since we want to vary these complex structures, we
should define functions on all of Mg,n, and since when a sequence of holomorphic maps in
R×Y has a broken curve as a limit–a building, as described in [2]–the limit of the domains
is a nodal curve, so we should actually define our functions on Mg,n.

To have well-defined nontrivial functions on C, we should have C be stable (i.e.
Aut(C) is finite). All the remaining cases are stable: We have already taken care of C ∼=
R × S1. All holomorphic curves u : C → R × Y have at least one positive end, so C must
have at least one puncture, excluding closed curves of genus 0 and 1. The only remaining
unstable domain is C. But for such a map u : C→ R× Y , which must be asymptotic to a
unique Reeb orbit, we have u : S2 → Σ, which must be nullhomotopic because g(Σ) > 0, and
if we let the perturbation be sufficiently small, u must be close to a constant, which means
that u is concentrated near its limiting Reeb orbit, and thus cannot bound it. (Otherwise,
it would contradict the fact that faraway fibers are linked.)

So, we will be able to construct well-defined functions on C. These functions
must respect the orbifold structure of Mg,n, i.e. they must by invariant with regard to the
(finite) symmetry groups at the orbifold points. While the derivative of such an invariant
function will have a nontrivial kernel at an orbifold point, since the set of orbifold points
have positive complex codimension, there is enough flexibility in the normal direction to
define appropriate functions.



23

Chapter 6

Transversality for
domain-dependent almost complex
structures

In this section, we construct domain-dependent almost-complex structures, or
DDACS, which are flexible enough to achieve regularity without sacrificing S1 invariance.
We thus obtain smooth moduli spaces of the expected dimension which have S1 actions.
However, ECH is defined only for a (domain-independent) almost complex structure. In
the next section, we will compare the transversely-cut-out moduli spaces we construct here
to domain-independent ones.1

The implementation of DDACS in this paper is modeled on that of [3] and [6], who
studied genus 0 curves in certain symplectic manifolds of arbitrary dimension. The latter
paper also studies a situation with S1 symmetry (the symplectization of the mapping torus
of a symplectic manifold with a Hamiltonian diffeomorphism), and obtains a conclusion
analogous to ours. [3] and appendix D of [21] carefully describe the analytical details in the
genus 0 case, and the extension to higher genus is immediate, so we refer the reader to their
exposition, except for two new phenomena which we will explain. One is that higher genus
curves can have finite nontrivial symmetry groups, so that the moduli space of curves, and
therefore the moduli space of holomorphic map, are orbifolds. The second is that, even using
domain-dependent almost complex structures, a nodal curve with a constant component of
positive genus cannot be perturbed to achieve transversality near the curve. However, in
dimension 4, index considerations prevent such curves from arising.

1The foundational results of ECH depend heavily on intersection positivity (such as the embeddedness
theorem for curves with I = 1), and this does not hold for domain-dependent curves: at a transverse self-
intersection of a J-holomorphic curve in M , the relevant tangent spaces are complex with respect to different
complex structures on the tangent space to M , so their intersection need not be positive. It is not obvious
that ECH should be defined for such complex structures (e.g. that ∂2 = 0), or even if it can be defined, that
it agrees with the ECH for an (domain-dependent) almost complex structure.
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6.1 Domain-dependent almost complex structures

Let J ′ be the set of almost complex structures on the bundle ξ → Y which are
compatible with the symplectic structure dα|ξ; we identify J ∈ J ′ with the R-invariant

almost complex structure on T (R × Y ) obtained by setting J ∂
∂t = R. Let (J ′)S

1 ⊂ J ′

denote the subset of S1-invariant almost complex structures. Note that j ↔ π∗j gives a
correspondence between S1-invariant complex structures on ξ and complex structures on
TΣ. Fix a generic J0 ∈J S1

, and let {Na} be a disjoint collection of tubular neighborhoods
of the Reeb orbits {a}, and let N = ∪aNa. We define J := {J ∈J ′ : Jp = (J0)p ∀p ∈ N},
the subset of almost complex structures which agree with J0 onN , and let J S1 ⊂J consist
of the S1-invariant elements of J . These correspondend to almost complex structures on
TΣ which agree with a fixed π∗(J0) on π(N).

Let Mg,n be the moduli space of stable Riemann surfaces (aka complex curves) of
genus g with n (ordered) marked points. Recall that a curve C ∈Mg,n is stable means its
automorphism group is finite; this holds iff 2g + n ≥ 3. We will only ever speak of Mg,n

for which this condition holds, and these spaces are smooth orbifolds. Let Mg,n be the
Deligne-Mumford compactification of Mg,n consisting of connected stable nodal Riemann
surfaces with n marked points. That is, (C, j) ∈ Mg,n consists of a disjoint union of
(Ci, ji) ∈Mgi,ni+mi , where Ci is a stable curve, whose ni +mi distinguished points consist
of a subset of ni of the marked points of C (so

∑
ni = n), with the induced ordering, and mi

nodes. Every node p ∈ Ci is paired with some other node p′ ∈ Ci′ , with the stipulation that
i′ 6= i for at least one of the nodes of each Ci. We thus obtain a connected singular surface
by gluing p to p′ for every pair {p, p′} of nodes. Any sequence of curves Ck ∈Mg,n ⊂Mg,n

has a subsequence whose limit is a nodal curve C ∈ Mg,n. Furthermore, if pi ∈ Ci is a
marked point, a subsequence converges to some marked point p ∈ C, so p ∈ Ci ∈Mgi,ni+mi

for some Ci ⊂ C.

Lemma 6.1.1 If C ∈ Mg,n, for every component Ci ∈ Mgi,ni+mi of C, gi ≤ g, and
gi = g ⇒ ni +mi < n.

Proof. We can obtain the (nodal) limit C topologically from any smooth Ck by a sequence
of the following kinds of degenerations. The first is that k marked points in some component
C ′ can collide and form a bubble attached to C ′. The genus of C ′ does not change, but it
loses k marked points and gains a node at the point of attachment of the bubble. Thus,
the total number of marked and nodal points on C ′ decreases by k − 1. The bubble itself
is a genus 0 component with k marked points and one node. If the the original smooth
curve Ck had genus 0, then it must have had more than k marked points. So, every new
component resulting from repeated bubbling has genus 0 or g

The second kind of degeneration comes from letting the complex structure on the
curve degenerate. The result topologically is that a simple closed curve on some component,
the vanishing cycle, is crushed to a point. If the vanishing cycle is a nonseparating curve,
it reduces the genus of a component C ′ by 1 without creating any new components, and if
it is separating, it breaks a component C ′ into two pieces whose genera sum to that of C ′.
The case where one has genus 0 and the other has genus g(C ′) is topologically identical to
bubbling.
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2

Let us order pairs (g, n) lexicographically, i.e. (g′, n′) < (g, n) means that g′ < g or
g′ = g and n′ < n, as in the lemma. ∂Mg,n is a stratified space whose stratum containing a
nodal curve C is the product (over the Mg′,n′ for each component Ci of C with Ci ∈Mg′,n′ .
The lemma tells us that if Mg′,n′ is a factor in a stratum of Mg,n, then (g′, n′) < (g, n). One
of the components of a given C ∈Mg,n is distinguished by containing the nth marked point.
We can use this to inductively define functions on all the Mg,n simultaneously, in a coherent
fashion. Namely, assume we have defined fg′,n′ : Mg′,n′ → X for all (g′, n′) < (g, n). Each
element of ∂Mg,n is nodal curve C with n marked points. Say pn lies on C ′ ∈Mg′,n′ . By the
lemma, (g′, n′) < (g, n), so by hypothesis we have a function fg′,n′ on Mg′,n′ . We can thus
define fg,n(C) := fg′,n′(C

′). The collection {fg′,n′}(g′,n′)<(g,n) thus determines fg,n|∂Mg,n
.

We can extend fg,n to the interior Mg,n of Mg,n. We may continue in this fashion, defining
fg,N on Mg,N for all N > n, and then fg+1,n for all n, etc. This gives a prescription for
constructing functions of the following type:

Definition 6.1.2 A domain-dependent almost complex structure or DDACS is a collection
of C l (l > 0) maps F = {Fg,n : Mg,n → J },which are coherent in the sense that if
Ck ∈ Mg,n, and Ck → C ∈ ∂Mg,n, and C ′ ∈ Mg′,n′ is the component of C containing the
nth marked point, then limk→∞ Fg,n(Ck) = Fg,n(C) = Fg′,n′(C

′). The set of all such maps
will be denoted JD.

Note that Mg,n is an orbifold. We recall that a neighborhood of a point in an
n-dimensional orbifold is modeled on the quotient of Rn by the linear action of some finite
group G, and a C l function on an orbifold in a neighborhood modeled on Rn

G is a C l function
on Rn which is invariant under the group action. For g > 1, the locus of points on Mg,n

without automorphisms (i.e. where the action of G on Rn is nontrivial) has real codimension
at least two. In particular, a generic curve of genus g > 1 has no nontrivial automorphisms.
For g = 0, every stable curve has a trivial automorphism group, and for g = 1, n = 1,
a generic elliptic curve has an involution, and isolated points in Mg,1 (which is 2 (real)
dimensional) has extra automorphisms, and so functions on Mg,1 have no constraints at
generic points and respect extra symmetries at the points with extra automorphisms. The
derivative of a G-invariant function will have a nontrivial kernel, but at any tangent space
TxMg,n, there is a subspace of (real) dimension at least 2 on which the derivative has
no constraints, and there exists a map from a neighborhood of any point in Mg,n to a
neighborhood of any point q in a manifold X (of dimension at least two) sending a two
dimensional subspace of that unconstrained subspace to any 2 dimensional subspace to any
two-dimensional subspace of TqX. If we fix j and the first n marked points on Mg,n+1, we
may view this as a map Tpn+1C → TqX.

The algorithm described before the definition clearly suffices to construct any
DDACS. We call a DDACS generic if for every (g, n), the extension of fg,n from the
boundary–where the values are determined by fg′,n′–to the interior of Mg,n is a generic
C l map. We work in the C l category rather than C∞ so that JD is a Banach manifold
(we will need to apply the Sard-Smale theorem).

The special role of the nth marked point is related to the definition of J-holomor-
phic curves for a DDACS J . Recall that there is a map π : Mg,n+1 →Mg,n which forgets
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the (n + 1)st marked point (and collapses any resulting unstable components, which are
necessarily of genus 0.) The fiber over C ∈ Mg,n is itself isomorphic to C. This is clear
away from the marked and nodal points of C. The fiber above the kth marked point is a
single nodal curve which has a genus 0 component containing the kth and (n+ 1)st marked
points and a node, is glued to pk ∈ C. This component collapses when the (n+1)st marked
point is removed. The fiber above a node resulting from gluing p ∈ C ′ to q ∈ C ′′ is a single
curve which has a genus 0 component containing two nodes and the (n+1)st marked point,
attached by the first node to C ′ at p and to C ′′ at q by the second node. This genus zero
component similarly collapses when the marked point is removed. Thus, a point of Mg,n+1

is equivalent to a pair (C, p), where C ∈Mg,n and p ∈ C.
If C ∈Mg,n+1, we can delete the first n marked points to get an n-times punctured

curve with one marked point. Fix the first n marked points, and let J = {Fg′,n′} be a
DDACS. Then restricting Fg,n+1 to C ∼= π−1(C) ⊂Mg,n+1, we obtain a map JC : C →J ,
i.e. a family of almost complex structures on ξ parameterized by C. Now viewing C as
an n-times punctured curve, a map u : C → R × Y is J-holomorphic if it satisfies the
domain-dependent Cauchy-Riemann equation ∂J(u) = du + JC ◦ du ◦ j = 0. Note that
JC depends on p ∈ C as well as on u(p) ∈ R × Y ; for each p ∈ C, we have the equation
∂JC (u) = dup + J(p, u(p)) ◦ dup ◦ jp = 0, where ∂J(u) : TpC → Tu(p)R× Y . We’ll write JC
as J , understanding that in the Cauchy-Riemann equation for an n-times punctured curve
(C, j) ∈Mg,n, the domain of J is restricted to π−1(C).

Remark 6.1.3 The target in the definition of DDACS is J . So, if J ∈ JD and u :
(C, j) → (R × Y, J) is a (j, J)-holomorphic curve, then u|u−1(R×N) is (j, J0)-holomorphic.
In particular, since J0 is domain-independent, the subset u(C) ∩ R × N of u(C) satisfies
intersection positivity, which will be crucial in the final chapter.

6.2 Regularity for generic S1-invariant domain-dependent al-
most complex structures

We will need to consider regularity for two subsets of JD. The first is the set of
S1-invariant domain-dependent almost complex structures:

J S1

D = {Fg,n ∈ C∞(Mg,n+1,J
S1

) : {Fg,n} is a DDACS}

We will prove that a generic J ∈J S1

D is regular, which implies the weaker state-
ment that a generic J ∈ JD is regular. The other subset is J itself; J ∈ J can be
identified with the constant maps {Mg,n+1 → {J}}g,n. [10] shows that a generic compat-
ible almost complex structure is regular for curves of ECH index 1, and its argument is
easily modified to show that a generic J satisfying the constraint J |N = J0 is also regular.2

2Regularity follows from the subclaim of in Lemma 9.12 of [10] that a certain projection of the linearized
Cauchy-Riemann operator is surjective on a nonempty open set of the domain of some pseudoholomorphic
curve u : C → R× Y , but the proof obtains surjectivity on an open dense subset of C. The intersection of
this open dense set with u−1(R× (Y \N)) contains a nonempty open set, so the result holds.
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Theorem 6.2.1 (Generic S1-invariant DDACS are regular) Let a, b be orbit sets
with deg(a,b) > 0. Then for a generic J ∈J S1

D , and a J-holomorphic map u ∈M (a,b, J),
the linearization Du of ∂J at u is surjective. Therefore, Mu is a smooth orbifold whose di-
mension equals the Fredholm index of Du,J .

Remark 6.2.2 The statement that M is a smooth orbifold follows from the “folk theorem”
proved in [29] (Theorem 0): if u ∈ M (a,b, J) and Du is surjective, then a neighborhood
of u in M (a,b, J) may be given the structure of a smooth orbifold whose dimension equals
the Fredholm index. This generalizes the familiar theorems (cf. Chapter 3 of [21]) which
state that the moduli space is a smooth manifold in a neighborhood of a regular somewhere
injective curve, i.e. one which does not factor through a nontrivial branched covering.
At an orbifold point u ∈ M (a,b, J), where u : (C, j) → (R × Y, J), (C, j, p1, ..., pn+1)
has a nontrivial automorphism group with respect to which u is invariant, so u factors
through the branched covering C → C

Aut(C,j) . Other multiple covers may arise which do not
come from automorphisms of the domain, and one of the virtues of a domain-dependent
almost complex structure is that such multiple covers may be perturbed away by choosing
different perturbations at different points in u−1(u(p)). The multiple covers coming from
automorphisms are not perturbed away, because the functions Fg,n+1 : Mg,n+1 → J are
invariant with respect to the orbifold symmetry groups. However, the subset of orbifold
points of Mg,n—i.e. of curves with nongeneric symmetries—has real codimension at least 2
in Mg,n, we may conclude that the subset of holomorphic curves in the moduli space whose
domains are orbifolds also has real codimension at least 2. Therefore, a generic holomorphic
curve is not an orbifold point in its moduli space, and a generic path of holomorphic curves
avoids the locus of orbifold points, and we need not trouble further about them.

We will give some definitions before beginning the proof:
Fix the orbit sets a and b; in this discussion, all moduli spaces under consideration

are of curves (C, j) with ∂C = a − b. Let B := W 1,p(C,R × Y ) be the Banach space of
maps C → R×Y of Sobolev class (1, p), p > 2; the latter condition implies that any u ∈ B
can be represented by a continuous map. Let E → B be the Banach space bundle whose
fiber over u ∈ B is Eu = Lp(Ω0,1(u∗(R × Y ), C). (We’ll often drop the Sobolev exponents
below.) Then for any DDACS J , ∂J : B → E , u 7→ ∂J(u) = du+ J ◦ du ◦ j gives a smooth
section of this bundle. Now consider ∂J(u) as a function of both J and u. Its zero set lies
in B ×J . Pull back E by the projection B ×J → B to obtain a bundle E → B ×J .
The universal ∂ operator ∂(u, J) := ∂J(u) is a section ∂ : E → B ×J . Its zero set is the

universal moduli space M (J S1

D ) ≡ M (a,b; J S1

D ) = {(u, J) : J ∈ J S1

D , ∂J(u) = 0}. It

projects to JD, and the fiber over J ∈J S1

D is precisely M (α, β, J) ≡MJ .
If u : (C, j)→ R× Y is J-holomorphic, i.e. ∂J(u) = 0, consider the differential of

∂ at (u, J). It is a Fredholm map D ≡ Du +DJ : TuB ⊕ (TJJ
S1

D )→ Eu.
At (u, J), Du is essentially the same as the differential of the projection

M (J S1

D )→J S1

D

at (u, J), and the former is surjective at (u, J) for all u ∈ MJ (i.e. J is regular) iff J is a
regular value of the projection. By the Sard-Smale theorem, regular values of M (J S1

D ) are
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generic. Thus, if we can show that D is surjective, M (J S1

D ) is a (Banach) manifold and

the fibers MJ over a generic ∈J S1

D are manifolds of dimension ind(Du).
Recalling that Tu(B) = W 1,p(Γ(u∗(T (R× Y ), C)), for ζ ∈ Tu(B) we can write, as

usual, Du(ζ) = dζ + J ◦ dζ ◦ j +∇ζ ◦ du ◦ j ∈W p(Ω0,1(uT (R× Y ), C).
The domain of DJ is the tangent space at J to the space complex structures under

consideration. Let J (V ) be the set of all ω-compatible almost complex structure son the
symplectic vector space (V, ω). If J ∈J (V ), then

TJJ (V ) = End0,1
J,ω(V ) := {A ∈ End(V ) : AJ + JA = 0 and

∀v, w ∈ V, ω(Av,w) + ω(v,Aw) = 0}

If J ∈ J S1
, TJJ

S1
= ΓS

1

N (End0,1
J,dα(ξ), Y ), where End0,1

J,dα(ξ) is the bundle over

Y with fibers End0,1
J(p),dαp

(ξp) and ΓS
1

N denotes its S1-invariant sections whose restriction to

N is identically zero. (Because J |N ≡ J0|N .) Let us now restrict consideration to domains
C of genus g with n marked points. Choose coherent functions fg′,n′ for all (g′, n′) <

(g, n + 1) and let J S1

D,g,n+1 consist of all C l maps fg,n+1 : Mg,n+1 → J compatible with

{fg′,n′}(g′,n′)<(g,n+1) on ∂Mg,n+1 Then if J ∈ J S1

D,g,n+1, TJJ
S1

D,g,n+1 = Γ(T ∗(Mg,n+1) ⊗
J∗(TJ S1

)); we in fact will consider the sections of this bundle of Sobolev class (1, k) so
that it forms a Banach space. Reverting to our earlier notation, we may view the n punctures
on a curve C as fixed, with j varying on C = C \ {p1, ..., pn}, so that the tangent space to
Mg,n+1 at a point (C, j, p1, ..., pn, pn+1) is TjJ (C)⊕ Tpn+1C. So if u : (C, j)→ (R× Y, J)

is a holomorphic curve, and V = (a,A) ∈ TJ(J S1

D,g,n+1), where A : Tj(C) → TJJ
S1

and

a ∈ End0,1
j TC, then DJ(V ) = A ◦ du ◦ jC + J ◦ du ◦ a.

Proof.
deg(α, β) > 0 implies that u(C) is not a union of cylinders. I is additive and pos-

itive for non-cylindrical holomorphic curves, so there is a unique noncylindrical component
C ′ of C. Trivial cylinders are always cut out transversely, maps R× S1 → R× Y are dealt
with in the previous chapter. So we may have reduced the theorem to the case C ′ = C.
The domain C of u must be a stable curve: it has an end, so it’s stable if it has positive
genus. If C had genus 0, we could fill in the punctures of C to get a closed Riemann surface
C ∼= S2 and a map u : S2 → Σ extending π ◦ u. But since g(Σ) > 0, u is nullhomotopic

Since it is not a trivial cylinder, C ′ must have ends at (covers of) at least two
distinct embedded Reeb orbits, so u(C) intersects R × N , and in fact u−1(R × (Y \ N)
contains a nonempty open set of C ′.

We want to show that the linearization D = Du + DJ of ∂J is surjective for any
(u, J) ∈M (J ). Since Du is Fredholm, D has a closed range, so surjectivity is equivalent to
the triviality of the annihilator of Im(D). The codomain of D is Eu = Lp(Ω(u∗(R×Y ), C),
so we can make the identification E∗u = Lq(Ω(u∗(R × Y ), C). So let η ∈ coker(D). This
and the splitting D = Du +DJ imply

〈Du(ζ), η〉 = 0 and 〈DJ(V ), η〉 = 0

for all ζ ∈ TuB, V ∈ TJ(J S1

D ).
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By the first equation, η ∈ ker(D∗u). This implies that η is smooth by elliptic
regularity and if η vanishes on an open set, then η ≡ 0 by unique continuation. (See, e.g.,
Lemma 3.4.7 of [21]. To show the latter, consider the second equation.

Since D = Du + DJ , η ∈ ker(D∗u) in particular. D∗u is elliptic because Du is, so
by elliptic regularity, η is smooth. By unique continuation and the Carleman similarity
principle, if η ≡ 0 on an open subset of C, then η ≡ 0 on all of C.

First, note that u cannot be a nodal curve with a constant component of positive
genus. For, if such a curve C, with ind(C) = 1, was the union of a nodal curve C1 and a
constant component C2, then 1 = ind(C1)+ind(C2). Because u|C2 is constant, the pullback
of TR×Y restricted to C2 is trivial, so c1(u∗(TR×Y )) = c1(T (R×Y ))|C1+c1(T (R×Y ))|C2 =
c1(T (R × Y ))|C1 ≡ c1. Furthermore, because u maps C2 to a constant, all the punctures
must lie on C1. So the sum µ0 of the Maslov indices at the ends of C and C1 agree. By
hypothesis, C2 has positive genus, so we must have g(C1) < g(C), and χ(C1) > χ(C). So,
we have

ind(C) = −χ(C) + c1 + µ0 = 1

ind(C1) = −χ(C1) + c1 + µ0

and thus ind(C1) < ind(C) = 1. Therefore ind(C2) = 1 − ind(C1) > 0. But we assumed
that J is a generic DDACS, which implies that all of its restrictions to ∂(Mg,n+1)—which
determine the almost complex structure on C1 and C2—are generic. But for generic al-
most complex structures, positive index curves of positive genus do not exist. Thus, u is
not constant on a component of positive genus. Constant components of genus 0 may be
eliminated by reparameterization, so they pose no obstacle, and we conclude that u is not
constant on any component of C, so zeroes of du are isolated. 3

Let u : C → R × Y be a J-holomorphic map. The set of regular points p of C
such that π ◦ u(p) is a regular value of π ◦ u form an open dense subset of C. Furthermore,
if we intersect this with the set of points p ∈ C where Im(dup) = ξu(p), it remains open
and dense. (The projection to Y is already open and dense by the nonintegrability of
ξ.) The intersection D of this set with u−1(R × (Y \ N)) contains a nonempty open set.
Assume ηp 6= 0 for some p ∈ D ⊂ C. This implies that ηp ∈ Hom0,1

J(p,u(p)(TpC, Tu(p)(TR ×
Y )) and dup ◦ jp ∈ Hom1,0

J(p,u(p))(TpC, Tu(p)(TR × Y ) are injective maps. So given any

0 6= v ∈ TpC, then 0 6= ηp(v), dup ◦ jp(v) ∈ Tu(p)TR × Y . We first wish to find some

Ap ∈ End0,1
J(p,u(p)),dαp

(T (R× Y )) such that Ap(dup ◦ jp(v)) = ηp. On D, ξu(p) and Im(dup)

are distinct complex subspaces of Tu(p)(R × Y ), so they span it, so the codomain of D,

Hom0,1
j,J(TpC, Tu(p)(R× Y ), splits as the direct sum of Hom0,1

j,J(TpC, ξu(p) and End0,1
j,J(TpC).

Split ηp into its ξ and Im(du) components: ηp = ηξ+ηTC . Because J ◦du : TC → Im(du) is

injective, for any given vp ∈ TpC, we can choose ap ∈ End0,1
j(p)(TpC) so that J◦du◦a(vp) = ηp.

For the ξ component, note that End0,1
J(p,u(p))ξu(p) = TJ(p,q)J is one (complex) dimensional,

3For holomorphic curves in symplectic manifolds of dimension 2n, the index is given by ind(C) = (n −
3)χ(C) + c1 + µ0. In our argument for the case n = 2, it was crucial that the coefficient of χ is negative.
For n > 2, it is not possible in general to preclude constant components of positive genus, which is why the
authors of [3] were forced to restrict themselves to genus 0 curves.
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and for any given vq, wq ∈ ξq, there is an element Bp ∈ End0,1
J(p,u(p))ξu(p) sending vp to wp.

So choose Bp : Tp(C)→ TJ(p,u(p)) sending du ◦ j(vp) to ηxi. Thus, Ap ≡ (ap, Ap) : vp 7→ ηp.

Let us suitably extend Ap to an A ∈ TJJ S1

D .
When Fg,n is restricted to C ⊂Mg,n+1, V (p, q) depends on p ∈ C and π(q) ∈ Σ.

We want to extend A to all of TJJ
S1

D , which means letting it vary with the complex
structure j on the surface C ; we thus obtain an V (P, q) whose domain is Mg,n+1 × Σ.
So: define a smooth cutoff function κ : Σ → R which is nonnegative, 1 at π ◦ u(p), and
0 outside some open neighborhood of π ◦ u(p) that does not contain any of the other
critical points of the Morse function f : Σ → R used to perturb the contact form. Let
ν : Mg,n+1 → R be a smooth nonnegative function which is 1 at (C, j, p1, ..., pn, p) and zero
outside an open neighborhood of it. The neighborhoods of the pi should not intersect each
other, and the (n + 1)st neighborhood D′ (of p ∈ D) should not contain any preimages
of π ◦ u(p) besides p itself. (These preimages are finite in number; otherwise, they would
accumulate, and since π ◦ u satisfies a perturbed Cauchy-Riemann equation, it would have
to be locally and hence globally constant.)Then, choose an arbitrary smooth extension
A′ of Ap and shrink both neighborhoods if necessary to ensure that if q ∈ supp(κ) and
(j, p1, ..., pn+1) ∈ supp(ν), then 〈A(j, p1, ...pn+1, q) ◦ dupn+1 ◦ jpn+1 , ηpn+1〉 > 0. At last, we
define A(j, p1, ..., pn+1, q) := κ(q)ν(j, ..., pn+q) ·A′(j, ..., pn+1, q).

Therefore,
∫
C〈DJ(A)p, ηpdp〉 =

∫
D′〈DJ(A)p, ηpdp〉. As the integrand is smooth,

nonnegative, and positive at p ∈ D′,
∫
C〈DJ(A)p, ηpdp〉 > 0, contradicting the assumption

that η is orthogonal to the image of DJ . So, if η ∈ coker(DJ) ⊃ coker(D), ηp = 0 for for
any p in the nonempty open set D ⊂ C, so η ≡ 0, coker(D) = 0, and D is surjective.

For M sufficiently small, M contains only regular values of π◦u, so π◦u−1(M) ⊂ C
consists of a finite number of disjoint homeomorphic copies p ∈M1, ...,MD of M . Adjusting
ρ if necessary, we can assume q ∈ M2 ∪ ... ∪MD implies that ρ(C, j, p1, ..., pn, q) = 0. So
DJ(A)q = 0 outside M1. Therefore, 〈η,DJ(A)〉 is 0 for q /∈M1, nonnegative otherwise, and
positive at q = p. So

∫
C〈η,DJ(A)〉 =

∫
M1
〈η,DJ(A)〉 > 0, which contradicts η ∈ coker(D).

Thus η = 0, and D is surjective.
2

Corollary 6.2.3 If deg(a,b) > 0 and I(a,b) = 1, M (a,b, J) is empty for generic J ∈
JS

1

D .

Proof.
Let u : C → R × Y be J-holomorphic for some regular J ∈ J S1

D . Then DJ is
Fredholm. If J ′ is any other DDACS, DJ ′ has the same Fredholm index.. If J ′ is a generic
domain-independent almost-complex structure, and u′ : C ′ → R × Y is a J ′-holomorphic
curve with ∂C ′ = a − b, then by the ECH index inequality from [10], ind(DJ ′) ≤ I(C) =
I(a,b) = 1. So ind(DJ) ≤ 1 as well. The theorem shows that M (a,b, J), if nonempty, is
a manifold of dimension ind(DJ). But if C ∈M (a,b, J), deg(a,b) > 0 implies that image
of C is not a union of trivial cylinders, so S1 acts locally freely on M . R, as always, acts
freely on M by translation, and these actions commute. So dim(MC) ≥ 2, a contradiction.
Thus M (a,b, J) = ∅.

2
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Chapter 7

A comparison theorem

7.1 1-parameter families of DDACS

Let a and b be admissible orbit sets with deg(a,b) > 0 and I(a,b) = 1. The
previous section shows that a generic S1-invariant DDACS J0 is regular, from which we
concluded that M (a,b, J0) = ∅. Let J1 ∈ J be a generic almost complex structure on
ξ; [10] proves that J1 is regular. By definition, 〈∂a,b〉 = #(M (a,b, J1)/R). (We will not
discuss orientations here, but orientations on these moduli spaces exist, and all counts under
consideration are signed.) We will show that this number is zero by comparing the moduli
spaces for J0 and J1. So, let Jt, t ∈ [0, 1], be a generic path in J S1

D connecting J0 to J1.
When Jt is regular, M (a,b, Jt)/R is a (possibly empty) set of signed points. We

cannot guarantee that Jt is regular for every t, but focusing on curves with ∂C = a − b,
M (a,b, Jt) will be cut out transversely for all but finitely many ti ∈ (0, 1). To understand
M (a,b, J1), we need to compare Mti−ε and Mti+ε for a nongeneric time ti. Two kinds
of bifurcations can occur. The first is a cancellation, in which a pair of (R-families of)
oppositely signed holomorphic curves from a to b is created or destroyed at time ti. In this
case, the number of curves changes by two, but the the signed count remains the same.

7.1.1 Handleslides

The second kind of bifurcation is a handleslide. A handleslide occurs at ti when, as
t → ti, a sequence Ct ∈M (a,b, Jt) breaks into a Jti holomorphic building (see [2]) whose
levels consist of an index 1 curve C1, an index 0 curve C0, and index zero connectors.1 A
connector is a branched cover a union of trivial cylinders. 2 We will show that connectors
cannot occur at the top or bottom levels of the building, i.e. the broken curve actually
consists of an index 1 curve C1 ∈ M (a,b′, Jti) at the positive end, above an index 0
connector C ′ ∈M (b′,b′, Jti) (whose positive and negative ends consist of partitions of the

1Because the complex structures are domain-dependent, we cannot control the ECH index when the curve
breaks. ECH is 0 for connectors, but all we can say otherwise is I(C0) + I(C1) = 1 by additivity.

2The curve C1 is regular, but C0 is not: generic index 0 moduli spaces, being 0 dimensional before
modding out by R translation, must be R invariant, and hence cylinders. But the universal moduli space
for a 1 parameter family of index 0 curves is 1 dimensional, so after modding out by R, we expect isolated
index 0 curves at distinct isolated times.
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orbit set b′), and at the bottom, an index zero curve C0 ∈ M (b′,b, Jti). We could also
have the index 0 curve on top and the index 1 curve at the bottom; everything we say below
has a counterpart for this case.

The fact that connectors cannot occur at the top and bottom is crucial, because
it allows us to apply the gluing analysis of [14],[15] to relate the number of curves in
M (a,b, Jt0−ε) and M (a,b, Jt0+ε):

#M (a,b, Jt0+ε) = #M (a,b, Jt0−ε) + #G(C1, C0) ·#M (a,b′, Jt0) (7.1.1)

where #G is an integer depending on the partitions at the negative ends of C1 and the
positive ends of C0. The #M (a,b′, Jt0−ε) term is familiar from finite-dimensional Morse
theory.The situation here is much subtler, because we have to glue the negative end of C1

to the positive end of C0 by inserting a connector C ′ ∈ M (a′,a′, Jti). The partition of a
at the negative end of C ′ must match the partition of a′ at the positive end of C0, and the
positive partition of a′ must match the negative partition of C1. [14] derives an intricate
combinatorial formula for #G(C1, C0), the number of ways to glue C1 to C0 using an index
0 connector, in terms of the ends of C1 and C0.3 The existence of #G will suffice for the
purposes of this paper, since we will always end up multiplying it by zero.

Number the handleslides t1, ..., tk; cancellation bifurcations do not change the curve
counts, so we may omit them. (But note that a cancellation must occur before the first
handleslide, since we start out with an empty moduli space!) We begin with an S1-invariant
DDACS J0, so we know that #M (a,b, Jt1−ε) = 0. If we can show that #M (a,b′, Jt1−ε) is
zero for all possible b′, the equation (7.1.1) yields #M (a,b, Jt1+ε) = #M (a,b, Jt1−ε) = 0.
We then continue until the next handleslide at t2. If #M (a,b′′, Jt2) = 0 for all b′′, we
obtain #M (a,b, Jt2+ε) = #M (a,b, Jt2−ε) = 0. And so on.

Now consider M (a,b′, Jt1), a smooth, 1-dimensional moduli space of Fredholm
index 1 curves u : C → R × Y with ∂C = a − b′. We wish to show #M (a,b′, Jt1) = 0.
Choose a generic path in J S1

D from Jt1 to some regular S1-invariant DDACS, which might
as well be J0. We’ll call this path Jt, t ∈ [0, t1], but note that it need not coincide with the
Jt considered above and set aside for the moment. By the results of the previous section,
M (b′,b, J0) is empty. As before, following the one-parameter family Jt, the moduli spaces
of index 1 M (a,b′, Jt) are transversely cut out except for finitely many times {t′i} at which
a cancellation (irrelevant to the count) or handleslide occurs. Formula (7.1.1) governs the
change in #M (b′,b, Jt) as t crosses a ti. If we knew #M (b′′,b, Jt′1) = 0 whenever a family
C ′t ∈ M (b′,b, Jt) breaks into a building whose index 1 piece is C ′1 ∈ M (b′′,b, Jt′1), then
#M (b′,b, Jt) does not change as t crosses t′1. To do this, we need to consider M (b′′,b, Jt′1),

and connect Jt′1 to an S1-invariant regular DDACS J0 as before, etc.
By considering the degree, we see that this process cannot continue indefinitely.

Degree is additive, so the degree of the original curve is the sum of the degrees of the index
0 and index 1 curves that appear in its degeneration (a connector has degree zero). If the

3In [14],[15] the authors consider a slightly different situation. Rather than studying the degenerations
of a 1-parameter family of index 1 curves, they consider degenerations of a sequence of I = 2 curves with
respect to a fixed almost complex structure into two I = 1 curves with an index 0 connector between them.
The situations are very similar analytically, and the results carry over to the present situation.
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index 0 curve has degree 0, then it is a union of branched covers of cylinders, at least one
of which is not an orbit cylinder (otherwise, the curve is a connector). But a nontrivial
cylinder, and hence the union of cylinders including it, has positive index (the index of a
nontrivial cylinder is equal to the difference of the Maslov indices of its ends, which is in
turn equal to the difference of the Morse indices of the critical points over which the Reeb
orbits lie, which is positive because the cylinder projects to a neighborhood of a gradient
flow line if the perturbation is small).

So, the index 0 curve must have positive degree, and hence if at a handleslide,
Ct ∈ M (a,b, Jt) at t = t1 degenerates to a building with degree 1 level C1 ∈ M (b′,b),
then deg(C1) < deg(C). If C ′1 is an index 1 curve that similarly arises from studying moduli
spaces M (b′,b, Jt) at a handleslide, then deg(C ′1) < deg(C1), etc.

We continue until either the index 1 curve C ′′1 ∈M (a′,b′, J) in a building cannot
further degenerate via handleslides, or we reach a degree zero curve of index 1.4 In the first
case, we can choose a generic path in J S1

D from J to an S1-invariant DDACS J0 that has
only handleslides, and thus #M (a′,b′, J) = #M (a′,b′, J0)0 = 0. If C ′′1 has degree zero,
it is either the union of a branched cover of a nontrivial cylinder with branched covers of
trivial cylinders, or the union of a branched cover of a trivial cylinder over a hyperbolic
Reeb orbit with branched covers of trivial cylinders over elliptic orbits. In the former case,
the curve counts correspond to a count of gradient flows on Σ between the critical points
associated to the asymptotic Reeb orbits of the nontrivial cylinder. These counts will be
zero because the Morse function on Σ is perfect. We will show the latter case cannot arrive
due to a local adjunction formula argument. 5 So, assuming two technical lemmas to be
proven in the next section, we have shown:

Theorem 7.1.1 Let deg(a,b) > 0. Then for a generic (honest, domain-independent) al-
most complex structure J , the signed count #M (a,b, J) = 0. Consequently, 〈∂a,b〉 = 0.

7.2 Writhe and the local adjunction formula

In this section, we prove two results about connectors needed in the proof of
〈∂a,b〉 in the last section. Recall that a connector is a branched cover of a union of trivial
cylinders in R × Y . All or some of the components may be unbranched. Any connector
u : C → R× Y has degree zero, so c1(u∗TR× Y ) and Q(C) are zero. Connectors have the
same total multiplicities of each orbit at both ends, so µ(C), and hence I(C), are zero as
well.

Now consider the Fredholm index ind(C) = −χ(C) + 2c1(u∗T (R× Y ) + µ0(C) =
−χ(C) + µ0(C). µ0 = µ+

0 − µ
−
0 , where µ+

0 (C) =
∑

a µ(a), where the sum is taken over all

4It is actually enough to stop at degree 1, since transversality for degree 1 can be achieved by S1 invariant
domain-independent almost complex structures.

5We remark that this part of the result is true more generally. Due to the simplicity of the Reeb orbits
that arise here, we can explicitly classify and rule out all index 1 connectors. In other situations such
connectors might occur, but the count of them should be zero: in [7], Fabert uses an obstruction bundle
argument to show that the contribution of index 1 cylinders to SFT is zero. It should be possible to adapt
his argument to show that the number of ways to glue a building consisting of an index 1 hyperbolic cylinder,
a connector, and an index 0 curve is also zero.
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asymptotic Reeb orbits of C at ∞, and µ−0 is defined similarly.

Lemma 7.2.1 (Classification of connectors) Let u : C → R × Y be a connector with con-
nected components Ci.

i) If ind(C) = 0, then each Ci is either an unbranched cover of a cylinder or a
branched cover of an elliptic orbit.

ii-a) Index 0 connected branched covers of positive elliptic orbits have exactly one
positive end.

ii-b) Index 0 connected branched covers of negative elliptic orbits have exactly one
negative end

iii) If ind(C) = 1, then each exactly one component of Ci is nontrivial, and it is
a branched cover of the cylinder over a hyperbolic Reeb orbit which has either one positive
end and two negative ends, or two positive ends and one negative end.

Proof. If a component Ci of C has k positive and l negative punctures, −χ(Ci) = 2g(Ci)−
2 + k + l.

For a component Ch which covers a trivial cylinder over a hyperbolic orbit, µ(Ch) =
0, so ind(Ch) = −χ(Ch) + µ0(Ch) = −χ(Ch) = 2g(Ch)− 2 + k + l ≥ 0, with equality iff Ch
is a genus 0 curve with exactly one positive and one negative end. In that case, u|Ch has
no branch points by the Riemann-Hurewicz formula. ind(Ch) = 1 iff the genus is zero and
(k, l) = (1, 2) or (2, 1).

If a component Ce+ covers a trivial cylinder over the positive elliptic orbit, then
µ0(Ce+) = k − l and ind(Ce+) = 2g(Ce+)− 2 + k + l + (k − l) = 2g − 2 + 2k ≥ 2k − 2 ≥ 0,
with equality iff Ce+ has genus zero, exactly one negative end, and any number of positive
ends.

If a component Ce− covers a trivial cylinder over the negative elliptic orbit, then
µ0(Ce−) = l − k and ind(Ce−) = 2g(Ce−)− 2 + k + l + (l − k) = 2g − 2 + 2l ≥ 2l − 2 ≥ 0,
with equality iff Ce− has genus zero, exactly one positive end, and any number of negative
ends.

Branched covers of trivial cylinders over elliptic orbits cannot have index 1 because
the number of ends at hyperbolic Reeb orbits has the same parity as the Fredholm index.

By additivity of the Fredholm index under union, parts i) and iii) follow.
2

To prove that connectors cannot occur at the top and bottom of a building, and
that index 1 connectors over hyperbolic orbits cannot occur, we will use a relative adjunction
formula from [10]. In preparation for this, we recall the definition of the asymptotic writhe
of a holomorphic curve and compute the asymptotic writhes that arise here.

If (u : C → R×Y ) ∈M (a,b, J) is a J-holomorphic curve, for s� 0, C ∩{s}×Y
consists of a braid around an asymptotic Reeb orbit for every positive end of u. Focusing
in on a single embedded Reeb orbit a, if u has k positive ends at a with multiplicities
q1, ..., qk, then the intersection of C with {s} ×Na contains a k component braid ζ, whose
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ith component ζi has qi strands. We use the trivialization τ to identify Na with S1 ×D2

in such a way that a ⊂ Na corresponds to S1×{0}; the statement that ζ is a braid around
a means that the projection S1 ×D2 → S1, restricted to ζ, is a submersion. This implies
that if we smoothly imbed S1 ×D2 into R3, mapping a to the standard unit circle in the
xy-plane R2 × {0} ⊂ R3, the projection of ζ to the xy plane is an immersion. The signed
count of the crossings of this projection is the writhe of ζ. (We perturb if necessary so so
that the crossings are are transverse, and use the convention of [10] that a counterclockwise
twist has positive writhe.) It is elementary that w(ζ) =

∑
iw(ζi) + 2

∑
i<j lk(ζi, ζj), where

lk is the usual linking number of oriented links in R3.
The sum of the corresponding writhes for each asymptotic Reeb orbit at infinity

is w+, and the analogous sum at −∞ is w−. The writhe of C is w(C) = w+ − w−.
We will need to know the writhes of the ends of a curve C, ∂C = a − b, at each

embedded Reeb orbit a appearing in a and b. The following lemma computes the writhe
at a in terms of the partition that C induces on its total multiplicity in a and b. In what
follows, let e+, e−, and h denote positive elliptic, negative elliptic, and hyperbolic Reeb
orbits whose monodromies are small perturbations of the identity.

To compute the writhe, we use the existence and some properties of an asymptotic
expansion of the function u : C → R × Y near a puncture. In an open disc D around a
puncture p of C, D \ p ∼= R × S1. Let (s, t) ∈ R × S1 be local coordinates on D. Near p,
u approaches a cylinder over q times some embedded Reeb orbit a. u composed with the
projection to R× aq is a q-fold covering map, and considering the normal bundle to u, we
can describe u for s << 0 as a section of the bundle Rs × aqt → R× Y . We then can write

u(s, t) =
∑
n≥1

ane
λnsen(t), (7.2.1)

where an ∈ R, the en(t) are eigenfunctions with eigenvalue λn of the self-adjoint “asymptotic
operator”. See [10], section 6, for the definition of A and the proof of this expansion with
some analytic assumptions; [24] gives a general proof.

At a negative end, only terms with λn > 0 can appear with nonzero coefficient an.
Assume λi ≤ λi+1 for all i. For s � 0, the term with the smallest λn for which an 6= 0 is
much larger than any subsequent terms with λn′ > λn. So , so the writhe may be computed
by considering truncations of the asymptotic expansion of u. Nonzero eigenfunctions are
nonvanishing, so the truncations have well-defined winding numbers. In citeHT2, it is shown
that for a generic almost complex structure J , the coefficient a1 does not vanish for any
index 1 curve (Proposition 3.2), and for any pair of ends of an index 1 curve C, their a1’s
are distinct (Proposition 3.9). We will need a slight extension of this results that follows
from their methods: for a generic J , for any index 1 curve, a2, a3 6= 0 as well.

These genericity results, together with Kato’s perturbation theory (the exact state-
ments needed are in Lemma 6.4 of [10]), also allow us to exactly compute the winding
number ρ of ζi around a. Viewing ζi ⊂ S1 × D2 that does not intersect S1 × {0}, this
is the winding number around 0 of the projection of ζi to D2. At a negative end, it is
ρ−(ζi) = dµ(aqi)/2e = dµ(a)/2e (the last equality holds because our Reeb orbits have mon-
odromy near the identity), and at a positive end, the winding number is ρ+(ζi) == bµ(a)/2c.
(If we don’t know that a1 6= 0, the Maslov index expressions give only lower bounds on the
winding number for negative ends and upper bounds for positive ends.)
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Lemma 7.2.2 Let ζi and ζj be connected braids around the embedded Reeb orbit a with
multiplicities qi and qj. Then, at a positive end at a,
i) If a = e+, w+(ζi) = 1− qi, w−(ζi) = qi − 1, lk+(ζi, ζj) = 0, and lk−(ζi, ζj) = min(qi, qj)
ii) If a = e−, w+(ζi) = 1−qi, w−(ζi) = qi−1, lk+(ζi, ζj) = −min(qi, qj), and lk−(ζi, ζj) = 0

Proof.
First, consider the writhe at negative ends. The proof of (Lemma 6.7 of [10]) shows

that if a = e+, since ρ−(e+) = 1, gcd(qi, ρ−(e+)) = 1, so considering the first term of the
asymptotic expansion (nonvanishing by the aforementioned genericity theorem of [15], it
can be seen that ζi is isotopic to a (qi, ρ−(e+)) = (qi, 1) torus braid, so it has writhe qi − 1.

For a = e−, ρ−(e−) = 0, so ζi winds 0 times around a. Therefore, ζi is isotopic
to the cabling of a 1-stranded braid ζ1 with winding number 0 by a qi-stranded braid ζ2.
The extension of the genericity statement of [15] (that the terms with e1, e2 and e3 in the
asymptotic expansion appear with nonzero coefficients) implies that ζ2 is isotopic to the
braid swept out by the second term in the asymptotic expansion, and by the results of
general perturbation theory cited in Lemma 6.4 of [10]6, ζ2 has winding number 0, so it is
in turn a cabling of a 1 stranded braid ζ3 with winding number 0 by a qi-stranded braid
ζ4. ζ4 is isotopic to braid swept out by the third term of the asymptotic expansion, and by
genericity, that term is the e3 term. Perturbation theory then implies that ζ4 has winding
number 1, so it is isotopic to a (q, 1) torus knot and therefore w(ζ4) = q − 1.

By the general formula for the writhes of cables, we have w(ζi) = q2
iw(ζ1) +w(ζ2),

and w(ζ2) = q2
iw(ζ3) + w(ζ4). w(ζ1) = w(ζ3) = 0, so w(ζi) = w(ζ2) = w(ζ4) = qi − 1.

Lemma 6.9 of [10] shows that if the leading terms of the asymptotic expansions of
ζi and ζj are distinct—which is guaranteed by [15]—then

lk−(ζi, ζj) = min(qiρ−(aqj ), qjρ−(aqi))

. If a = e+, this equals min(qi, qj). If a = e−, the linking number is zero.
The result for positive ends follows from that for negative ends by the proof of

Lemma 6.13 of [10]. It shows that the writhe of ζ at a at ∞ is the opposite of the writhe
of the mirror image (under the bijection (t, y) ↔ (−t, y) of R × Y ) OF ζ), and the mirror
image of the end of a curve with a positive end at an elliptic orbit of rotation angle θ has
a negative end at an elliptic orbit with rotation angle −θ.

2

Lemma 7.2.3 (No connectors at top and bottom) Let Jt, t ∈ [0, 1], be a generic family of
DDACS, J0 be generic, and C(t) ∈M (a,b, Jt) be a family of index 1 curves that, as t→ 1,
degenerates to a building with n levels Ci+1 ∈ M (ai,ai+1, J1), i = 0, ..., n, where a0 = a
and an = b. Then neither C0 nor Cn are connectors.

6Namely, we use the following facts: the space of eigenfunctions e with winding number ρ(e) = n is 2-
dimensional for any n ∈ Z. Eigenfunctions e, e′with eigenvalues λ ≤ λ′ have winding numbers ρ(e) ≤ ρ(e′).
Finally, the minimal winding number for a positive eigenvalue is dµ(e−)/2e = 0, and the maximal winding
number for a negative eigenvalue is bµ(e−)/2c = −1. This implies that the winding number of e2 is also 0,
and the winding number of the e3 is 1.
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Proof.
Assume C1 ∈ M (a,a1, J1) is a connector, so a = a1, and consider an embedded

Reeb orbit a appearing in a. For some s0 � 0 and t near 1, ([s0,∞)×Na) ∩ C(t) may be
identified with the union of the components of C1 that cover R × a. Denote both by C.
Viewed as a subset of C(t), C is not a trivial cylinder. C is an embedding in the complement
of a finite number of singular points (if it is a multiple cover, replace C by the underlying
nearly-embedded curve of which it is a branched covers), so we can apply the following
relative adjunction formula with singularities from [10]) (remark 3.2 following proposition
3.1):

c1(u∗(TR× Y )|C = χ(C) + w(C) +Q(C)− 2δ(C) (7.2.2)

δ(C) ≥ 0 is a certain count of the singularities of C. In general, we can say nothing
about δ for J-holomorphic curve C if J is a DDACS, because intersection positivity fails.
But here, intersection positivity holds because C ⊂ R × N , and J(p, u(p)) = J0(u(p)) for
any u(p) ∈ R×N , so that J is domain-independent on C. Therefore, δ ≥ 0, with equality
if and only if C is embedded. (Specifically, δ =

∑
p∈Sing(C) δp, where δp is the number of

(transverse) double points of a generic holomorphic perturbation C in a neighborhood of
p.) We will show that C1 were a nontrivial connector, (7.2.2) would imply δ(C) < 0, a
contradiction.

c1(u∗(TR × Y )|C and Q(C) are zero because C1 is a branched cover of a trivial
cylinder (in particular, it has the same total multiplicities at ±∞). Dropping the C’s, the
equation becomes 2δ = w+ χ. By Lemma 2.1, index 0 branched covers of a R× a must be
unbranched if a is hyperbolic. So, assume there is a connector at the top, and separately
consider its branched covers of trivial cylinders over a = e+ and a = e−.
Case 1: a is a positive elliptic orbit.

In this case, the linking number term vanishes, and the writhe of a k-stranded
braid with multiplicities qi, i = 1, ..., k, is given by

∑k
1(1− qi) = k−m. So the total writhe

is w = w∞−w−∞ = (k−m)−(l−m) = k− l. Each component of an index 0 connector over
a positive elliptic orbit has one positive end and some number νi of negative ends, so the
k positive ends must correspond to k components, and the total number of negative ends∑k

1 νi is l. Thus, χ(C) =
∑k

1(2−1−νi) = k− l, and 2δ = χ+w = (k− l)+(k− l) = 2(k− l).
k ≤ l, and if there is nontrivial branching at any component, k < l, so δ < 0.
Case 2: a is a negative elliptic orbit.

Here, the writhe at a k-stranded braid with multiplicities qi is w =
∑k

1(1− qi)−
2
∑

i<j min(qi, qj) = k−m−2
∑

i<j min(qi, qj). Each component of an index 0 connector over
a negative elliptic orbit has one negative end and some number νi of positive ends, so the l
negative ends correspond to l components, and there are

∑l
1 νi = k positive ends. So χ(C) =∑l

1(2−νi−1) = l−k, and 2δ = χ+w∞−w−∞ = (l−k)+[(k−m)−2
∑

i<j min(mi,mj)]−
[(l −m)− 2

∑
i<j min(ni, nj)] = −2(

∑
i<j min(mi,mj)−

∑
i<j min(ni, nj)).

Note that since each component has exactly one negative end, the set {mi} is a
subpartition of {nj}, and the subpartition is proper unless all components are unbranched
covers of trivial cylinders. The result for positive now follows from the following combina-
torial lemma. Applying the relative adjunction formula at the negative ends, the symmetry
properties of the writhe (Lemma 6.13 of [10]), imply that a connector at the bottom over a
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positive (resp. negative) elliptic orbit cannot occur because a connector at the top over a
negative (resp. positive) elliptic orbit cannot occur.

2

Lemma 7.2.4 Given a multiset Q = {qi} of positive natural numbers, define

f(Q) =
∑
i<j

min(qi, qj)

. If Q,Q′ are partitions of m ∈ N and Q′ = {q′i} is a proper subpartition of Q, then
f(Q′) > f(Q).

Proof.
Assume qi ≤ qi+1, q

′
i ≤ q′i+1 for all i. Then f(Q) =

∑k
i=1(k − i)qi. We can obtain

any subpartition Q′ from Q by iterating two operations: first, subdivide by replacing any
qi by qi − 1 and 1 (and re-ordering the indices), and second, replace any pair q′i, q

′
j with

q′i < q′j−1which come from the same qk (by these two operations), by the pair q′i+ 1, q′j−1.
Each of these operations increases f :

For the first operation, WLOG assume that i is the smallest index with value qi,
so that qi−1 < qi. Then the first operation replaces Q = q1 ≤ q2 ≤ ... ≤ qi ≤ ... ≤ qk with
Q′ = 1 ≤ q1 ≤ ... ≤ qi−1 ≤ qi − 1 < qi+1 ≤ ... ≤ qk. The coefficients of each term is the
same for f(Q) and f(Q′) except that f(Q′) begins with k and replaces the (k− i)qi of f(Q)
with (k − i)(qi − 1), so f(Q′) = f(Q) + k − (k − i)qi + (k − i)(qi − 1) = f(Q) + i > f(Q).

For the second operation, we are subtracting from a term with a smaller coefficient
and adding to a term with larger coefficient: all the terms of f except the ith and jth are
unaffected, and (k− i)qi and (k− j)qj from f(Q) become (k− i)(qi + 1) and (k− j)(qj − 1),
and hence f(Q′) = f(Q) + (k − i)− (k − j) = f(Q) + (j − i) > f(Q).

2

Lemma 7.2.5 The index 1 curve C in a building that arises in a handleslide cannot be an
index 1 connector.

Proof. By Lemma 2.1, C must consist of the union of C ′, a single index 1 branched cover of
a cylinder over a hyperbolic orbit, with an unbranched cover of a union of trivial cylinders.
Furthermore, C ′ has two positive punctures and one negative puncture, or vice versa. Using
the same reasoning as in Lemma 2.3, (7.2.2) implies that C ′ would have to have a negative
number of singularities. As before, the c1 and Q terms of (7.2.2) vanish. µ(hk) = µ(h) = 0,
so the writhe bound of [10], Lemma 6.7, implies that w+(hk) ≤ 0 and w−(hk ≥ 0 for all k,
so w+ − w− ≤ 0. C ′ is a thrice-punctured sphere, so χ(C ′) = −1. Thus, (7.2.2) becomes
2δ(C ′) = w − 1 ≥ −1, a contradiction. 2
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