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Global Navigation Satellite Systems (GNSSs) have long been the cornerstone for positioning,

navigation, and timing. Despite their widespread use, GNSS signals face vulnerabilities such

as jamming, spoofing, and unreliable coverage in various environments like urban canyons,

indoors, tunnels, and parking structures. These limitations make exclusive reliance on GNSS

inadequate for the rigorous demands of future applications, including autonomous vehicles

(AVs), intelligent transportation systems, and location-based services.

To enhance GNSS performance in challenging settings, traditional methods have typically in-

corporated dead-reckoning sensors like inertial measurement units, lidars, or cameras. These

sensors, however, accumulate errors over time and only offer navigation solutions within a

local frame, relative to the user equipment’s (UE) initial position. In contrast, alternative

signal-based approaches, known as signals of opportunity (SOPs) – encompassing AM/FM

radio, satellite communication signals, digital television signals, Wi-Fi, and cellular – hold

considerable promise as global navigation sources in GNSS-challenged environments.

Among SOPs, cellular signals, particularly from third-generation (3G, code-division multiple

access (CDMA)), fourth-generation (4G, long-term evolution (LTE)), and fifth-generation

(5G, new radio (NR)) networks, stand out as potential navigation aids. Their navigation-

friendly characteristics include ubiquity, geometric diversity, high carrier frequencies, spectral

xx



diversity, spatial diversity, broad bandwidth, strong signal strength, and free accessibility.

Nevertheless, as SOPs are primarily designed for communication rather than navigation,

utilizing cellular signals for navigational purposes presents several challenges. These include

(1) the lack of specific low-level signal and error models for optimal state and parameter

extraction for positioning and timing, (2) the absence of published robust, efficient, and

reliable receiver architectures to generate navigation observables, (3) continual updates and

changes in cellular protocols, and (4) the scarcity of frameworks for high-accuracy navigation

using such signals.

This dissertation addresses these challenges, focusing on cellular signals from 4G and 5G

networks, with potential extensions to future cellular systems. The foundational contribu-

tions of this work are empirically validated on various platforms including ground vehicles

(GVs), unmanned aerial vehicles (UAVs), and high-altitude aircraft, demonstrating GNSS-

level navigation accuracy.
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Chapter 1

Introduction

1.1 Background

Global Navigation Satellite Systems (GNSSs) have been a dominant technology in position-

ing, navigation, and timing for several decades. Despite their widespread use, GNSS signals

encounter notable limitations:

1. Weakness in signal strength makes them ineffective in certain environments like indoor

spaces or deep urban canyons [2].

2. Vulnerability to both unintentional interference and deliberate jamming [3, 4].

3. Civilian signals are not encrypted nor authenticated and are detailed in publicly ac-

cessible documents, leading to potential spoofing risks [4].

4. Imprecise vertical position estimates due to limited angle diversity of GNSS space

vehicles, posing challenges, especially for aerial vehicles [5].

Given these limitations, relying solely on GNSSs falls short of meeting the stringent require-
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ments of future applications, including autonomous vehicles (AVs), intelligent transportation

systems, and location-based services. To augment GNSS performance in challenging envi-

ronments, conventional methods typically involve dead-reckoning sensors such as inertial

measurement units [6], lidars [7], or cameras [8]. These sensors, however, accumulate errors

over time and provide navigation solutions only within a local frame, relative to the AV’s

initial position.

An alternative approach is utilizing Signals of Opportunity (SOPs) for global navigation

in environments where GNSS is compromised. SOPs are ambient signals not originally

intended for positioning, navigation, and timing; they include cellular, AM/FM radio [9],

satellite communication [10], digital television [11], and Wi-Fi signals [12,13]. Among these,

cellular signals, particularly the following systems:

• The third-generation (3G), also known as the code-division multiple access (CDMA).

• The fourth-generation (4G), also known as the long-term evolution (LTE).

• The fifth-generation (5G), also known as the new radio (NR)

The cellular signals show significant promise as navigation aids due to their:

1. Ubiquity: The widespread presence of cellular base stations (BSs) due to the prevalence

of cellular networks and smartphones.

2. Geometric diversity: Cellular BSs are strategically positioned to provide favorable

geometry, unlike certain terrestrial transmitters which are often co-located.

3. High carrier frequency: Ranging from 600 MHz to 3,500 MHz and extending to

millimeter-wave (mmWave) bands (28 to 52 GHz), enabling precise carrier phase nav-

igation observations.
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4. Broad bandwidth: Cellular signals boast bandwidths up to 100 MHz in 4G (LTE)

Advanced, and potentially 1 GHz in mmWave 5G, facilitating accurate time-of-arrival

estimates.

5. Strong signal strength: Cellular signals maintain high usability in GNSS-challenged

environments, with a carrier-to-noise ratio (CNR) significantly exceeding that of GNSS

signals.

Furthermore, cellular signals offer the advantage of zero deployment costs for positioning

and navigation as they are already in place and free to use. Specifically, the receiver, or user

equipment (UE), can passively receive cellular transmissions without active communication

with the BS, extracting crucial positioning and timing data from the signals and computing

the navigation solution locally. While network-based navigation methods requiring two-

way communication exist, this dissertation concentrates on elucidating the precision of UE-

based navigation using cellular signals, particularly focusing on 4G (LTE) and 5G (NR)

technologies, with potential extensions to future orthogonal frequency division multiplexing

(OFDM)-based cellular systems. The core contributions of this dissertation are showcased

across various scenarios, including pedestrians, ground vehicles, unmanned aerial vehicles

(UAVs), and high-altitude aircraft, demonstrating meter-level accuracy in navigation solely

through the use of cellular 4/5G signals.

1.2 Related Work

Research aimed at enabling effective navigation in environments where GNSS faces challenges

is broadly categorized into two distinct approaches: sensor-based and signal-based [14–16].

The sensor-based approach leverages various types of sensors, such as inertial measurement

units (IMUs) [17–20], lidars [21, 22], cameras [23, 24], or a combination of sensors [8, 25, 26],
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to gather data about the vehicle’s or device’s surroundings and movement. These sensors,

often used in a complementary manner, provide vital information about orientation, speed,

and environmental features, allowing for the calculation of position and navigation solutions

independent of satellite signals. These approaches, however, tend to accumulate errors over

time, requiring occasional re-calibration or reference to a known position.

On the other hand, the signal-based approach to navigation in GNSS-challenged environ-

ments employs two main strategies. First, it involves the development and application

of advanced signal processing algorithms, as discussed in various studies [27–30]. Sec-

ond, this approach increasingly utilizes ambient SOPs, which are signals not originally

intended for navigation purposes. These signals encompass a range of sources, including

cellular networks [31–37], AM/FM radio [38, 39], low Earth orbit (LEO) communication

satellites [10, 40–44], digital television (DTV) [45, 46], and Wi-Fi [47–49]. By analyzing sig-

nal characteristics such as time-of-arrival (TOA), signal strength, carrier phase, and angle

of direction, these SOPs provide alternative means to deduce location and movement.

Each navigation approach has its distinct advantages and limitations, and the selection

typically depends on the navigation task’s specific requirements and environmental factors.

Studies have shown that AM radio and DTV signals can achieve positioning accuracies of

approximately 20 meters and 5 meters, respectively [38, 45]. However, these signals often

suffer from poor geometric diversity due to transmitters being co-located by design. In con-

trast, Wi-Fi-based localization, as explored in [50], has demonstrated a positioning accuracy

within the 80th percentile of about 5.6 meters. This method, however, requires accurate and

current information about Wi-Fi access point locations and is limited by the availability of

Wi-Fi signals in certain environments like tunnels or parking structures, and their potential

unavailability during emergencies.

Moreover, leveraging LEO communication satellites for navigation has emerged as a promis-

ing approach in recent years [44,51]. This is particularly relevant considering the increasing
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number of LEO satellites. Nevertheless, challenges remain due to the directivity of these

signals and the typically unknown signal structure for the public, which complicates their

utilization for navigation purposes.

This dissertation delves into cellular SOPs, with a particular emphasis on cellular 4/5G

signals and future advancements. The exploration into 4G signal-based navigation has been

significantly shaped by the development of specialized 4G navigation receivers. Foundational

research in this area, as illustrated in [52–54], laid the cornerstone for advanced receiver

design. These efforts have yielded promising results, achieving meter- and sub-meter level

accuracy in outdoor environments using 4G signals for both ground [1,52,54–58] and aerial

vehicles [59].

A particularly desirable reference signal (RS), known as the cell-specific RS (CRS), has

been leveraged in conventional 4G navigation receivers due to its high bandwidth. Owing

to the spectral nature of OFDM, the CRS is transmitted on distinct OFDM symbols and

subcarriers, also referred to as logical ports. Studies like [60] proposed a maximum likelihood-

based method for first path estimation using one antenna port. The positioning challenges

in multipath environments were addressed in [61] and [62], focusing on single antenna port

utilization. Moreover, a recent study [63] developed a tracking algorithm that adaptively

mitigated multipath in 4G positioning receivers while utilizing CRS from one antenna port.

The impact of different antenna ports on TOA estimation using CRS was investigated in [64],

revealing that varied channel responses for different antenna ports can diversify incoming

signals and enhance positioning accuracy. The utility of signal diversity provided by multiple

antenna ports for cycle slip detection in 4G carrier phase measurements was demonstrated

in [59]. Additionally, [65] considered exploiting two antenna ports, treating signals from each

as separate measurements, while [66] independently tracked signals from each port.

The navigation capabilities of 5G have been the focus of extensive research in recent years

[67, 68], employing various methods such as direction-of-arrival (DOA) [69], direction-of-
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departure (DOD) [70], TOA [71], or their combinations [72] for precise positioning. However,

these studies were largely confined to simulations and laboratory-emulated 5G signals or

relied on restrictive assumptions, including the need for network-based localization. Such

approaches can compromise user privacy and restrict users to 5G base stations (also known as

the Next Generation Node B (gNB)) within their subscribed network. In contrast, downlink

5G signals can be opportunistically exploited for navigation without network communication,

as explored in [73]. This approach, which extracts navigation observables from “always-on”

transmitted synchronization signals (SSs), has been validated experimentally with promising

results.

In signal-based navigation systems, a comprehensive understanding of the radio environment

is crucial to extract useful information from the sensed signals. A significant challenge

in such environments is signal attenuation, which is particularly pronounced for 5G-and-

beyond cellular signals. These signals typically operate at higher carrier frequencies with

wavelengths in the millimeter range. The inherent physical characteristics of millimeter

wave (mm-wave) signals limit their ability to travel long distances or penetrate through

objects. While this limitation reduces the multipath phenomenon—a potentially beneficial

attribute for navigation—it poses challenges for communication purposes. In scenarios where

line-of-sight (LOS) signals are absent, multipath propagation can ensure a more robust and

diverse communication link between the BS and the UE. To address these propagation

challenges and enhance the efficiency and reliability of mm-wave cellular systems, the concept

of reconfigurable intelligent surfaces (RISs) has emerged as a transformative solution. RISs

are essentially passive devices consisting of a large array of electronically tunable unit cells.

These cells can be adjusted to control and direct RF propagation favorably, offering a new

means to manipulate the radio environment [74–76].

The benefits of RIS for positioning and navigation have been the subject of extensive research

in recent years. Various methodologies and localization frameworks have been proposed, uti-
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lizing TOA, angle-of-arrival (AOA) / angle-of-departure (AOD), or a combination of these

measurements in conjunction with RIS for precise localization. An RIS is utilized for indoor

positioning in [77], leveraging ultra-wideband (UWB) signals. This study, both analytical

and simulation-based, indicates that RIS can replace traditional active APs and suggests a

preference for TOA measurements for position estimation. The work in [78] explores RIS

capabilities in multi-user passive localization. By dividing the RIS phase profile into con-

stant and time-varying components and selecting time-varying elements based on orthogonal

sequences, it avoids interference between reflected non-line-of-sight (NLOS) signals and the

LOS paths, achieving sub-meter accuracy. In [79], a new approach is proposed to exploit

wavefront curvature in geometric near-field (NF) conditions, focusing on a downlink sce-

nario. The study suggests that proximity to the RIS or a sufficiently large RIS can enable

UE’s position inference directly from the RIS-reflected multipath component in NF, without

requiring a direct path. However, in far-field (FF) scenarios, both LOS and NLOS paths are

needed for effective localization. The concept of partially-connected receiving RISs (R-RISs)

is introduced in [80]. This design, comprising several co-located single-RX-RF RIS subar-

rays, facilitates three-dimensional (3-D) localization in a computationally efficient manner,

independent of any BS or AP. A two-stage RIS-aided localization algorithm, named PAssive

PosItioning with RIS (PAPIR), is presented in [81]. PAPIR retrieves the TOA and the DOA

of RSs sent by the UE to estimate its position.

1.3 Challenges

Despite the advancements, current state-of-the-art 4/5G receiver designs encounter several

challenges:

• They exhibit limited robustness and accuracy in environments with significant signal

attenuation and short-delay multipath, such as indoor settings. This limitation poses
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a critical barrier to their practical applicability in various scenarios.

• The receivers’ ability to estimate the initial Doppler in the acquisition stage is limited

due to the small duty factor of the synchronization signals utilized for acquiring the

signal’s Doppler shift, namely 1.43%. This limitation becomes more pronounced in

high dynamics applications, where wider Doppler shift ranges require a reliable coarse

estimate for effective lock-in in tracking loops.

• They are burdened with a high computational cost, primarily due to their reliance on

a communication-influenced frequency-based design that necessitates processing ev-

ery received OFDM frame. This design feature, while standard in 4G communication

receivers for demodulating received data, introduces additional complexity and pro-

cessing overhead in navigation applications.

To this end, developing an efficient, robust, and accurate 4G navigation receiver that is

adaptable to different environments and applications is imperative.

Also, none of the conventional 4G receiver designs have concurrently exploited all antenna

ports as a single navigation source, identifying a potential research area. Generally, the

extraction of navigation observables from 4G signals in existing methods has been approached

predominantly from a communication systems perspective [62], suggesting the need for a 4G

navigation receiver that fully exploits the signal’s antenna ports.

In addition to the technical intricacies of receiver design, a comprehensive understanding and

detailed characterization of the signal are essential for creating a robust navigation receiver.

Although theoretical studies have made strides in addressing various challenges associated

with cellular 4/5G signals, the practical understanding of these signals is intricately linked to

the real-world dynamics of cellular network infrastructure and the influence of the physical

environment. Key aspects such as the received signal power and the stability of the signals

from BSs are critical for an effective navigation system. However, these elements have not
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been extensively explored in practical scenarios. The characterization of received power,

which directly impacts signal detectability and accuracy, and the analysis of signal stabil-

ity from BSs, crucial for consistent and reliable navigation, are areas that require further

empirical investigation. This exploration is vital to develop a navigation framework that

is not only theoretically sound but also practically robust and reliable in diverse real-world

conditions. Such practical insights into signal behavior will significantly enhance the design

and implementation of navigation systems that leverage cellular 4/5G signals.

In the realm of cellular navigation, utilizing 5G signals for user-based opportunistic naviga-

tion presents unique challenges when compared to 4G. The core of these challenges lies in

the ultra-lean transmission policy of 5G networks, which significantly minimizes the trans-

mission of “always-on” signals such as synchronization signals. This policy inherently limits

the scope of UE-based opportunistic navigation to these synchronization signals only. When

considering the potential downlink bandwidth Bp available in 5G networks and comparing

it to the bandwidth Bs allocated for synchronization signals, it becomes evident that only a

small portion of the available spectrum is being used for opportunistic navigation purposes.

This limited utilization of the bandwidth is a substantial impediment, as signals with a wider

bandwidth are known to provide more precise TOA estimates. These estimates are crucial

for effectively differentiating the LOS signals from the multipath components, a key factor

in enhancing the accuracy and reliability of navigation solutions. Consequently, harness-

ing the full potential of 5G signals for user-based navigation, particularly in the context of

maximizing bandwidth utilization, remains a significant and unexplored area of research.

Overcoming this challenge could unlock new possibilities in navigation accuracy and robust-

ness, especially in complex urban environments where multipath effects are prevalent.

Previous studies have effectively demonstrated the potential of RISs in enhancing positioning

and navigation within various scenarios, setting a foundational path for their future incorpo-

ration into wireless navigation systems. Nonetheless, a common limitation in these studies,
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as highlighted in [80], is the focus on stationary UE. To address this gap, this dissertation

presents a novel RIS-based localization approach for mobile UEs in an uplink millimeter-wave

cellular environment. This proposed approach synergizes the latest cellular 5G navigation

receivers and develops passive AOA estimators, enabling the estimation of both TOA and

AOA measurements from RIS-reflected paths for navigation purposes.

1.4 Contributions and Dissertation Outline

The dissertation is structured around the following contributions:

Chapter 2: Model Description

This chapter presents an in-depth analysis of OFDM within 4G and 5G cellular networks,

highlighting the desirable characteristics in the signal design that can be exploited for nav-

igation purposes. It explores the transition from 4G to 5G, specifically focusing on the

advanced numerologies of 5G, which are vital for designing an effective 4/5G navigation

receiver that optimally utilizes OFDM signals. Moreover, the chapter presents a model for

received 4/5G signals and introduces two dynamic models for UE motion: the white noise

acceleration model for low-dynamic scenarios and the continuous Wiener process accelera-

tion model for high-dynamic contexts. These models form a comprehensive framework for

evaluating navigational performance using cellular signals. Additionally, it investigates the

dynamics of clock errors in cellular BSs and UE, crucial for precise signal transmission and

reception. The chapter concludes by presenting mathematical models for various navigation

observables derived from 4/5G signals.
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Chapter 3: Accurate, Robust, and Efficient 4/5G Opportunistic Cellular Navi-

gation Receiver

This chapter proposes a novel design for a 4/5G opportunistic cellular navigation receiver,

aiming to enhance accuracy, robustness, and efficiency. It evaluates the architecture of con-

ventional frequency-domain-based receivers for 4G and 5G cellular navigation, highlighting

their limitations such as weak signal power in challenging environments and a restricted pool

of resources for navigation in 5G’s ultra-lean transmission approach. To overcome these con-

straints, the chapter proposes the Ultimate Reference Signal (URS) for 4G and the Ultimate

Synchronization Signal (USS) for 5G, designed to utilize a wider bandwidth and improve

signal power, thereby facilitating better navigation in demanding conditions.

The chapter presents a time-domain-based navigation receiver that exploits the 4G-URS

and 5G-USS for more effective extraction of navigation observables from received 4/5G

OFDM signals. This approach differs from conventional SDRs by aggregating all accessible

resource elements (REs) to form a composite signal, enhancing the signal’s frequency and

time resources. The dissertation provides a detailed methodology for generating these signals

and outlines the acquisition and tracking stages of the proposed SDR. Tracking results

from various scenarios, including high-altitude aircraft and ground vehicle applications, are

presented to demonstrate the efficacy of the proposed receiver design.

Chapter 4: Experimental Characterization of 4/5G Signals

This chapter explores the practicality of using 4/5G signals for navigation by assessing their

frequency stability and carrier-to-noise ratio (C/N0) under various conditions. Experiments

conducted in different environments reveal the reliable frequency stability of 4/5G networks,

with 5G showing particularly more consistent frequency stability. The chapter also assesses

the impact of environmental factors, antenna quality, and receiver clock accuracy on 4/5G
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signal strength. Results indicate that both 4G and 5G signals maintain similar C/N0 levels

in diverse scenarios, including indoor settings with varying structural barriers, and outdoors

with different antenna grades and receiver clocks. Additionally, a mobile outdoor experi-

ment highlights that 5G signals remain robust over considerable distances, suggesting strong

potential for reliable navigation solutions even in semi-urban environments. This comprehen-

sive analysis underscores the viability of 4/5G signals for precise and dependable navigation

applications.

Chapter 5: Navigation Performance

This comprehensive chapter demonstrates the navigation performance of the proposed 4/5G

opportunistic navigation receiver in various scenarios, including ground vehicles, high-altitude

aircraft, and UAVs. A ground vehicle equipped with a 4G receiver demonstrated robust

navigation in Global Positioning System (GPS)-denied conditions. The vehicle successfully

navigated through a challenging course at Edwards Air Force Base, California, showcasing

the efficacy of 4G signals for navigation during GPS jamming exercises. Furthermore, in a

groundbreaking experiment, 4G signals were harnessed for navigation in high-altitude aircraft

scenarios. The study, conducted with a Beechcraft C-12 Huron over Southern California,

demonstrated the potential of 4G signals for robust navigation solutions in high-altitude

and high-speed environments. This study included characterizing signal strength, the 4G’s

BSs availability (also known as the evolved Node B (eNodeB)) availability, and the impact

of aircraft maneuvers on signal reception. Finally, Experiments in urban settings revealed

the capability of 5G signals for precise navigation. Both ground vehicle and UAV scenarios

were tested, with the latter showing a remarkable position root mean-squared error (RMSE)

of 3.35 meters. This indicates the growing feasibility of using 5G signals for accurate and

reliable navigation in various urban applications.
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Chapter 6: Exploiting On-Demand 5G Downlink Signals for Opportunistic Nav-

igation

This chapter presents the first UE-based 5G navigation framework that exploits the “on-

demand” 5G downlink signals. In this framework, the entire system bandwidth of incoming

5G signals is utilized in an opportunistic fashion. The proposed framework involves a cogni-

tive approach to acquire the so-called URS for 5G, which includes the “on-demand” as well

as “always-on” RSs. Experimental results are presented showing that the acquired URS: (i)

spans the entire 5G downlink bandwidth, (ii) increases the CNR by 10 dB compared to state-

of-the-art 5G UE-based opportunistic navigation receiver, and (iii) reduces significantly the

carrier and code phase errors. A ranging error standard deviation of 2.75 m was achieved

with the proposed framework with a stationary receiver placed 290 m away from a 5G gNB

in a clear line-of-sight environment, which is lower than the 5.05 m achieved when using the

“always-on” 5G downlink signals.

Chapter 7: A Passive EKF-Based Reconfigurable Intelligent Surface (RIS)-Aided

Cellular Navigation System

This chapter presents a novel localization approach in a millimeter-wave uplink cellular

environment, utilizing an RIS and focusing on mobile UE. The approach encompasses a so-

phisticated measurement engine that integrates a state-of-the-art carrier-aided code-phase-

based 5G navigation receiver. This integration is enhanced by a passive, correlation-based

angle-locked loop (ALL) for accurate TOA and AOA estimations. In addition, we have

implemented an extended Kalman filter (EKF)-based navigation framework, leveraging the

RIS to accurately estimate the 3-D position and velocity of mobile UEs. This framework

takes into account the relative clock biases and drifts between the BS and UEs. It processes

TOA and AOA measurements corresponding to both LOS and virtual LOS (VLOS) signals.
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The performance of the proposed system was rigorously evaluated through Monte Carlo

(MC) simulations across diverse scenarios, including pedestrian movement, ground vehicles,

and UAVs. These simulations were conducted under various conditions: synchronous and

asynchronous clock settings between the BS and UE, and environments with and without

multipath effects. The results from these simulations highlight the proficiency of the pro-

posed navigation system, demonstrating its capability to achieve sub-meter to meter-level

positioning accuracy in a range of scenarios.

Chapter 8: Conclusions

This chapter summarizes the contributions of this dissertation.

The scholarly output of my Ph.D. journey culminated in contributions to 10 journal articles

and 24 conference papers. This dissertation, however, selectively presents only the following

publications in which I was the main contributor.

Journal Publications

[J1] A. Abdallah, J. Khalife, and Z. Kassas (2023) “Exploiting on-demand 5G downlink

signals for opportunistic navigation,” IEEE Signal Processing Letters, Vol. 30, pp. 389-393.

[J2] Z. Kassas and A. Abdallah (2023) “No GPS no problem: exploiting cellular OFDM-

based signals for accurate navigation,”IEEE Transactions on Aerospace and Electronic Sys-

tems, accepted.

[J3] Z. Kassas, A. Abdallah, S. Shahcheraghi, A. Kaiss, J. Khalife, C. Lee, J. Jurado, S.

Wachtel, J. Duede, Z. Hoeffner, T. Hulsey, R. Quirarte, and R. Tay (2023) “I can hear you

loud and clear: GNSS-less high altitude aircraft navigation with terrestrial cellular signals

of opportunity,” IEEE Transactions on Aerospace and Electronic Systems, accepted.

[J4] A. Abdallah and A. L. Swindlehurst (2023) “A Passive EKF-Based Reconfigurable In-
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telligent Surface (RIS)-Aided Cellular Navigation System,” IEEE Transactions on Aerospace

and Electronic Systems, in progress.

Conference Publications

[C1] A. Abdallah, K. Shamaei, and Z. Kassas (2020) “Assessing real 5G signals for oppor-

tunistic navigation,” ION Global Navigation Satellite Systems Conference, Sep. 21-25, 2020,

St. Louis, MO, pp. 2548–2559.

[C2] A. Abdallah, J. Khalife, and Z. Kassas (2021) “Experimental characterization of re-

ceived 5G signals carrier-to-noise ratio in indoor and urban environments,” IEEE Vehicular

Technology Conference, Apr. 25-28, 2021, Helsinki, Finland, pp. 1-5.
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MO, pp. 3294-3306.
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Propagation, Mar. 27 - Apr. 1, 2022, Madrid, Spain, pp. 1-5 (special session).
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environment,” ACM Workshop on Automotive and Autonomous Vehicle Security, Apr. 24,

2022, San Diego, CA, pp. 1-1.

[C6] Z. Kassas, A. Abdallah, C. Lee, J. Jurado, S. Wachtel, J. Duede, Z. Hoeffner, T.

Hulsey, R. Quirarte, and R. Tay (2022) “Protecting the skies: GNSS-less aircraft navigation
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Conference, Sep. 19-23, 2022, Denver, CO, pp. 1014-1025.
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Chapter 2

Model Description

This chapter is organized as follows. Section 2.1 offers an in-depth look at the frame struc-

tures of 4/5G OFDM and identifies potential navigation RSs. Section 2.2 is dedicated to

modeling the received 4/5G signal. In Section 2.3, we discuss two dynamic models relevant

for 4/5G-based navigation: the white noise acceleration model and the continuous Wiener

process acceleration model. Section 2.4 introduces a two-state model to capture the clock

error dynamics in both UE and BS. Finally, Section 2.5 elaborates on the modeling of various

navigation measurements derived from the received 4/5G signal.

2.1 OFDM Cellular Signals

Cellular signals, since 4G, deploy a multi-carrier modulation technique known as OFDM,

where all subcarrier signals within a communication channel are orthogonal to one another.

The orthogonality allows for efficient modulation and demodulation implementation using

the fast Fourier transform (FFT) algorithm on the receiver’s side, and inverse FFT (IFFT)

on the transmitter’s side. OFDM is more resistant to intersymbol interference, which is often
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caused by multipath propagation, due to two primary reasons: (i) the use of low symbol rate

modulation schemes, involving parallel low-rate streams instead of a single high-rate stream,

and (ii) the insertion of guard intervals between OFDM symbols. In the guard interval, a

partial copy of the OFDM symbol, known as the cyclic prefix (CP), is transmitted so that

the receiver integrates over an integer number of sinusoid cycles for each multipath signal.

Intersymbol interference can be avoided if the multipath time-spreading is shorter than the

CP, which varies according to the configuration of the transmitted OFDM signal.

In the realm of OFDM cellular transmission, two primary duplexing methods, TDD (Time

Division Duplexing) and FDD (Frequency Division Duplexing), distinguish how frequency

resources are allocated for uplink and downlink communications. TDD utilizes the same

frequency band for both uplink and downlink but allocates different time intervals for each,

making it particularly suitable for scenarios with asymmetrical traffic. However, its range

can be shorter due to the necessary guard period to prevent interference. In contrast, FDD

allocates distinct frequency bands for uplink and downlink transmissions, allowing simultane-

ous communication without interference. While FDD generally requires a broader spectrum,

it often boasts a wider operational range and consistent performance. In this study, we focus

on sub-6 GHz 4/5G signals, also known as frequency range 1 (FR1). Most cellular providers

prefer using FDD in this range due to its advantages in coverage and reduced latency. There-

fore, FDD is primarily considered in the presentation of 4/5G frame structures. However,

the proposed system is capable of utilizing TDD signals as well by simply taking into con-

sideration the corresponding changes in the frame structure due to changing the duplexing

mode.

The remainder of this section details the 4G and 5G cellular signal models. This includes

(i) the 4/5G frame structures and (ii) potential 4/5G RSs that are suitable for navigation

purposes.
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2.1.1 4/5G Frame Structure

OFDM uses a multi-carrier transmission scheme: transmitted data symbols are mapped into

multiple narrowband subcarriers in the frequency-domain, which reduces the frequency selec-

tive fading effect caused by multipath. The serial data symbols {S1, · · · , SN} are parallelized

in group symbols, each of length NR, where NR is the number of subcarriers carrying the

data. Then, a guard band in the frequency-domain is applied by zero-padding both sides of

the signal and extending the NR subcarriers into Nc subcarriers. At this step, an inverse fast

Fourier transform (IFFT) is taken, and the last LCP elements are repeated at the begin-

ning, which serves as a guard band in the time-domain to protect the OFDM signals from

intersymbol interference (ISI). At the receiver, the transmitted symbols are demodulated by

executing these steps in reverse order. The obtained OFDM signals are arranged in a 2-D

frame. The structure of this frame depends on the transmission duplexing mode as discussed

earlier.

When configuring an OFDM system, two main design parameters have to be chosen, i.e., the

subcarrier spacing and the corresponding CP length. Compared with the 4G system that

had one configuration, 5G introduced different configurations for various reasons:

• Diverse Service Requirements: 5G is designed to support a variety of use cases such

as enhanced Mobile Broadband (eMBB), Ultra Reliable Low Latency Communications

(URLLC), and Massive Machine Type Communications (mMTC). Each use case has

distinct performance needs. For instance, URLLC demands low latency, while mMTC

may prioritize coverage. Different numerologies allow the system to meet these varied

requirements.

• Varied Frequency Bands: 5G is designed to operate across a wide range of fre-

quency bands, from sub-1 GHz to mmWave frequencies. Different frequency bands
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have different propagation characteristics, interference scenarios, and deployment use

cases. Varied numerologies help in optimizing system performance across these bands.

• Flexible Deployment Scenarios: 5G supports diverse deployment scenarios, includ-

ing macro cells, small cells, indoor cells, and more. Different numerologies can cater

to the specific needs of each deployment type, such as managing interference in dense

urban areas or enhancing coverage in rural areas.

• Interference Management: By using different subcarrier spacings, 5G can better

manage interference. For instance, larger subcarrier spacings can be used for scenarios

where faster time domain scheduling is required, thereby reducing latency.

• Backward Compatibility and Coexistence: Different numerologies facilitate the

coexistence of 5G with legacy systems like 4G in the same frequency band. It aids in

ensuring that the new system doesn’t adversely affect the performance of the existing

one.

In summary, the introduction of different numerologies in 5G is a strategic design decision

to ensure the system’s flexibility, scalability, and capability to address a vast spectrum of

requirements, frequency bands, and deployment challenges.

In 5G networks, a range of subcarrier spacing (SCS) configurations are possible, in contrast

to the fixed 15 kHz SCS of 4G systems. These configurations in 5G are identified by a

numerology µ, which can take values from the set {0, · · · , 4}. The corresponding SCS for a

given numerology µ is calculated as ∆f = 2µ · 15 kHz. It is evident that the 4G SCS is a

specific case within the 5G framework. Therefore, throughout this section, we will employ

the 5G terminologies to describe the frame structure.

The temporal structure of the FDD 5G frame is uniform across different configurations,
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defined by the equation

Tf =
∆fmax ·Nf

100
· Tc = 10ms, (2.1)

where ∆fmax = 480 kHz represents the maximum subcarrier spacing, Nf = 4096 is the

number of subcarriers, and Tc =
1

∆fmax·Nf
= 0.509 ns is the basic time unit in 5G. This frame

is composed of ten 1 ms subframes. Further division yields two half-frames, each spanning

5 ms and comprising five subframes: half-frame 0 includes subframes 0-4, and half-frame 1

consists of subframes 5-9.

In the time domain, each subframe is partitioned into several slots. The number of slots

in a subframe, and the number of OFDM symbols within each slot, depend on the chosen

numerology µ. The relationship for the number of OFDM symbols in a subframe is expressed

as

N subframe,µ
symb = N slot,µ

symb ×N
subframe,µ
slot , (2.2)

where N slot,µ
symb denotes the number of OFDM symbols per slot, which is either 14 for a normal

CP or 12 for an extended CP, and N subframe,µ
slot is the number of slots in each subframe for

a given µ. To this end, the number of slots is denoted by nµs ∈ {0, 1, · · · , N
subframe,µ
slot } or

n
′µ
s ∈ {0, 1, · · · , N

frame,µ
slot } in an increasing order within a subframe or a frame respectively.

Figure 2.1 shows the different numerologies of 5G and the corresponding: single OFDM

carrier; the timing of two consecutive OFDM symbols guarded by CP; and the SCS, CP type,

number of OFDM symbols per slot, number of slots per frame, OFDM symbol duration, and

CP duration for different numerologies.

Depending on the numerology, a resource grid with N size,µ
grid NRB

sc subcarriers and N subframe,µ
symb

OFDM symbols are defined, starting at a common RB N start,µ
grid , which is indicated by higher-

layer signaling [82]. The carrier bandwidth N size,µ
grid and the starting position N start,µ

grid for
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a specific numerology µ are given by the higher-layering signaling carrierBandwidth and

offsetToCarrier in the SCS-SpecificCarrier IE, respectively.

A RB is defined as NRB
sc = 12 subcarriers in the frequency domain and has the time length

of a resource grid N subframe,µ
symb . A RB consists of resource elements (REs). The minimum

and maximum number of RBss in 5G along with the corresponding bandwidth for different

numerologies is summarized in Table 2.1. However, for 4G, the number of subcarriers in a

4G frame, Nc, and the number of used subcarriers, Nr, are not unique and are assigned by

the network provided according to the system bandwidth as tabulated in Table

Each element in the 5G frame is uniquely identified for a specific antenna port p and sub-

carrier configuration µ by (k, l)p,µ, where k is the index in frequency domain l is the symbol

position in the time domain relative to some reference point. In 5G protocol, “Point A”

serves as a common reference point and can be obtained as reported in [82]. Figure 2.2

summarizes the 4/5G frame structure.

Table 2.1: The minimum and maximum number of RBs and the corresponding bandwidths
for different numerologies.

µ Nmin
RB Nmax

RB Minimum bandwidth [Mhz] Maximum bandwidth [Mhz]

0 24 275 4.32 49.5

1 24 275 8.64 99

2 24 275 17.28 198

3 24 275 34.56 396

4 24 138 69.12 397.44

2.1.2 4/5G Potential Reference Signal

In 4G and 5G systems, there are specific RSs known as pilot signals. These are dataless,

predetermined sequences that are interspersed within the transmission at regular intervals.
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Table 2.2: 4G system bandwidths and number of subcarriers.

Bandwidth

[MHz]

Total number

of subcarrier (Nc)

Number of

used subcarriers (Nr)

1.4 128 72

3 256 180

5 512 300

10 1024 600

15 1536 900

20 2048 1200

They can be used by the receiver to perform various communication-essential tasks, such as:

• Channel Estimation: To determine the effect of the channel on the transmitted

signal, which is necessary for correct demodulation and decoding.

• Frequency and Time Synchronization: To synchronize the receiver’s frequency

and time to that of the transmitter.

• Signal Strength Measurement: To measure the received signal strength indicator

(RSSI), RS received power (RSRP), and RS received quality (RSRQ).

• Beamforming Feedback: Especially in 5G, where directional transmission is a key

feature, pilot signals help in determining the best beamforming vectors.

These signals, owing to their predefined structure and scheduling, can be leveraged for an

opportunistic user-based navigation approach. The following section will outline the poten-

tial 4G and 5G RSs that are suitable for such applications. It is also worth noting that there

are specific RSs in these systems dedicated to positioning, which will be discussed as well.
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Figure 2.2: 4/5G frame structure.

2.1.2.1 4G Potential Reference Signal

The 4G system has multiple candidates for downlink RSs that can be exploited for an

opportunistic navigation approach such

1. Initial cell search and SSs

(a) Primary Synchronization Signal (PSS)

(b) Secondary Synchronization Signal (SSS)

2. Channel estimation RSs

(a) Cell-Specific Reference Signals (CRS)

3. Dedicated positioning RSs

(a) Positioning Reference Signals (PRS)

Figure 2.3 shows the RE allocation of the various 4G potential RSs that can be leveraged

for positioning.
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Figure 2.3: Resource element (RE) allocation of potential 4G RSs.

2.1.2.1.1 PSS and SSS

The PSS and SSS are vital components for the initial cell search procedure in 4G networks.

They enable the UE to deduce the frame start time and the specific cell identity (ID) of the

eNodeB. The PSS utilizes a Zadoff-Chu sequence of length 62, centrally positioned across the

63 middle subcarriers—except for the direct current (DC) carrier—occupying approximately

0.93 MHz of the total system bandwidth. This signal is transmitted on the final symbol of

the 0th slot and again in the 10th slot. Each PSS can assume one of three distinct sequences,

which are distinguished by an integer N
(2)
ID ∈ {0, 1, 2}. This integer is an identifier for the

eNodeB’s sector.

Conversely, the SSS, a length-62 orthogonal sequence, is broadcast immediately prior to the

PSS in either the 0th or 10th slot and shares the same subcarriers. The formation of the SSS

involves the amalgamation of two maximal-length sequences, which are further scrambled by
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a unique orthogonal sequence that corresponds to the sector ID, N
(2)
ID . A total of 168 distinct

SSS permutations are possible, corresponding to a group identifier, N
(1)
ID , with a range of

{0, . . . , 167}. Together, these values formulate the physical cell ID of the eNodeB, defined

as

NCell
ID = 3N

(1)
ID +N

(2)
ID . (2.3)

Reference to the standard can be made for further details on the synchronization signals

structure [83].

2.1.2.1.2 Cell-specific Reference Signals

The CRSs serve as orthogonal sequences distributed across time and frequency, primarily

aiding in channel estimation. The allocation pattern of CRS REs is inherently linked to

several parameters, including the cell ID, symbol number, slot number, and transmission

antenna port, as detailed in [84]. The REs for the u-th eNodeB on the k-th subcarrier

within the l-th symbol are allocated according to

Y
(u)
l (k) =


S
(u)
l (k), if k = m∆CRS + νl,NCell

ID
,

D
(u)
l (k), otherwise,

(2.4)

where S
(u)
l (k) denotes the CRS sequence, and D

(u)
l (k) signifies all other data signals. Here,

m ranges from 0 to M − 1, with M = ⌊Nr/∆CRS⌋ signifying the number of REs available

for CRS, given a subcarrier spacing ∆CRS = 6. The term νl,NCell
ID

denotes a cell-specific

shift determined by the cell ID and the symbol index l. This representation caters to a

single antenna port scenario, p = 0, consistent with existing 4G literature. The complex

mapping of REs for various antenna ports, pertinent to more advanced configurations, will

be expounded in the subsequent chapter.
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2.1.2.1.3 Positioning Reference Signal

The PRS is intended for location-based services in 4G networks and was initially proposed

for enhancing positioning capabilities. Despite their intended purpose, an examination of the

current 4G infrastructure—specifically within the United States—revealed that these signals

are not actively transmitted by cellular operators. Consequently, the PRS has not been

incorporated into the design of the navigation method proposed herein. It is noteworthy to

acknowledge that due to the substantial similarity between the PRS and CRS, the omission of

PRS is unlikely to detract from the system’s overall positioning performance. The probable

redundancy of PRS, along with a preference for optimizing bandwidth for data traffic, may

account for its non-utilization in the operational networks.

2.1.2.2 5G Potential Reference Signal

The 5G system has multiple candidates for downlink RSs that can be exploited for an

opportunistic navigation approach such

1. Initial cell search and synchronization signals

(a) Primary Synchronization Signal (PSS)

(b) Secondary Synchronization Signal (SSS)

(c) Physical Broadcast Channel (PBCH) and its demodulation reference signal

(PBCH-DMRS)

2. Channel estimation RSs

(a) Channel State Information Reference Signal (CSI-RS)
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2.1.2.2.1 SS/PBCH

In 5G cellular networks, the gNodeB (gNB) transmits SS to facilitate the determination of

the frame start time. These SS encompass both the PSS and the SSS, which are pivotal

for acquiring symbol and frame timing, respectively. The identification of the frame start

time enables the CPs to be stripped away and allows for the execution of an FFT, which is

instrumental in constructing OFDM symbols that make up the frame.

The SS, along with the PBCH and the corresponding DM-RS, are encapsulated within

a four-symbol block known as the SS/PBCH block. This block comprises 240 contiguous

subcarriers, equivalent to 20 resource blocks (RBs), and spans across four consecutive OFDM

symbols. Within the SS/PBCH block, subcarriers are sequentially numbered from 0 to 239.

The structural composition of the SS/PBCH block, including the mapping of OFDM symbols

and subcarriers to the various signals, is depicted in Figure 2.4.
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v = N
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mod4

Figure 2.4: The structure of the SS/PBCH block and the associated mapping of OFDM
symbols and subcarriers to different signals within the block.

It is important to note that the positioning of the PBCH DM-RS is variable and dependent

on the parameter v, which itself varies with the physical cell ID NCell
ID . The SS/PBCH
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Table 2.3: Symbol numbers containing SS/PBCH block for different numerologies and fre-
quency bands.

subcarrier
spacing (kHz)

Carrier
frequency

Symbol
number

Slot
number n

Case A: 15
fc ≤ 3 GHz

3 < fc ≤ 6 GHz
{2, 8}+ 14n

{0, 1}
{0, · · · , 3}

Case B: 30
fc ≤ 3 GHz

3 < fc ≤ 6 GHz
{4, 8, 16, 20}+ 28n

{0}
{0, 1}

Case C: 30
fc ≤ 3 GHz

3 < fc ≤ 6 GHz
{2, 8}+ 14n

{0, 1}
{0, · · · , 3}

Case D: 120 fc > 6 GHz {4, 8, 16, 20}+ 28n

{0, · · · , 3,
5, · · · , 8,
10, · · · , 13,
15, · · · , 18}

Case E: 240 fc > 6 GHz
{8, 12, 16, 20, 32,
36, 40, 44}+ 56n

{0, · · · , 8}

block is periodically transmitted every two frames and is disseminated multiple times as an

SS/PBCH burst, which is constrained to a half-frame window (5 ms) for transmission. Each

instance of the block within the burst is subject to beamforming in differing directions.

The placement of the SS/PBCH block within the 5G frame is contingent upon the overarching

5G signaling. Furthermore, both the temporal allocation of the SS/PBCH block and the

dimension of the SS/PBCH burst within the frame are dictated by the transmission frequency

fc and the numerology µ, as outlined in Table 2.3, with the index 0 denoting the initial OFDM

symbol of the first slot in a half-frame.

The PSS and SSS are two orthogonal maximum-length sequences (m-sequences), each with

a length of 127 symbols. These sequences are transmitted over adjacent subcarriers, with

their occupied bandwidth being a function of the subcarrier spacing. The subcarrier spacing

is determined by the numerology, denoted by µ, which leads to a varying bandwidth for the

PSS and SSS. Specifically, the bandwidth can be as narrow as 1.905 MHz when µ = 0, and
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can increase to as much as 30.48 MHz for µ = 4. Similar to 4G, there are three potential

variations of the PSS, denoted by N
(2)
ID ∈ {0, 1, 2}, each correlating to an integer representing

the sector ID of the gNB. In contrast, there exist 336 permutations for the SSS, indicated

by N
(1)
ID ∈ {0, . . . , 335}, which correspond to a group identifier of the gNB. The physical cell

identity of the gNB is thus determined by the following expression:

NCell
ID = 3N

(1)
ID +N

(2)
ID . (2.5)

The PBCH serves as the conduit for transmitting system information that is essential for

establishing a connection between the gNB and the UE. The demodulation of the PBCH

parameters is elaborately discussed in [82]. Moreover, the DM-RS associated with the PBCH

facilitates decoding and aids in the estimation of the channel’s frequency response, with the

generation of the PBCH DM-RS sequence detailed in Section 7.4.1.4 of [85]. The bandwidth

of the PBCH message and its corresponding scattered DM-RS can be as narrow as 3.6 MHz

when µ = 0, and can increase to as much as 57.6 MHz for µ = 4.

2.2 Received Signal Model

The received cellular 4/5G baseband signal model can be expressed as

r[n] =
N∑
u=1

(αucu[τn − tsu [n]] exp (jθu[τn])

+du[τn − tsu [n]] exp (jθu[τn])) + w[n], (2.6)

where r[n] is the received signal at the nth time instant; αu is the complex channel gain

between the UE and the u-th BS (eNodeB/gNB); τn is the sample time expressed in the
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receiver time; N is the number of BSs; cu[n] is the periodic RS with a period of L samples;

tsu [n] is the code-delay corresponding to the UE and the u-th BS at the nth time instant;

θu[τn] = 2πfDu [n]Tsn is the carrier phase in radians, with fDu [n] being the Doppler frequency

at the nth time instant and Ts is the sampling time; du[τn] represents the samples of some

data transmitted from the u-th BS; and w[n] is a zero-mean independent and identically dis-

tributed noise with E {w[m]w∗[n]} = σ2
wδ[m−n], where δ[n] is the Kronecker delta function,

and X∗ denotes the complex conjugate of random variable X.

2.3 UE Dynamics Model

The primary objective of this study is to evaluate the baseline navigational performance

achievable using only cellular signals for UE-based navigation. To capture the range of mo-

tion characteristics pertinent to various navigation scenarios—including pedestrian, ground

vehicle, UAV, and high-altitude aircraft applications—two distinct dynamic models are uti-

lized: the white noise acceleration model and the continuous Wiener process acceleration

model. Subsequent sections are dedicated to the detailed mathematical exposition of these

two models.

2.3.1 White Noise Acceleration Model

Despite its simplicity, the white noise acceleration model is effectively used for UEs exhibiting

low dynamics. It captures the essential dynamics that occur between updates of the navi-

gation filter. This model is described by the following continuous-time (CT) state equation:

ẋpv(t) = Apvxpv(t) +Dpvw̃pv(t), (2.7)
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where the matrices Apv and Dpv are defined as:

Apv =

03×3 I3×3

03×3 03×3

 , Dpv =

03×3

I3×3

 , (2.8)

In the above equations, xpv ≜
[
rT
r , ṙ

T
r

]T
, with rr ≜ [xr, yr, zr]

T, represents the state vector

consisting of position and velocity. The process noise vector w̃pv = [w̃x, w̃y, w̃z]
T comprises

elements modeled as zero-mean, mutually independent white noise processes with respective

power spectral densities q̃x, q̃y, and q̃z.

When discretized with a uniform sampling interval T , the UE’s dynamics expressed in (2.7)

are transformed into a discrete-time (DT) model:

xpv(k + 1) = Fpvxpv(k) +wpv(k), k ∈ N, (2.9)

Fpv =

I3×3 T I3×3

03×3 I3×3

 , (2.10)

with wpv, the DT process noise, assumed to be a zero-mean white noise sequence with

covariance matrix Qpv, which is specified as:

Qpv =



q̃x
T 3

3
0 0 q̃x

T 2

2
0 0

0 q̃y
T 3

3
0 0 q̃y

T 2

2
0

0 0 q̃z
T 3

3
0 0 q̃z

T 2

2

q̃x
T 2

2
0 0 q̃xT 0 0

0 q̃y
T 2

2
0 0 q̃yT 0

0 0 q̃z
T 2

2
0 0 q̃zT


. (2.11)
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2.3.2 Continuous Wiener Process Acceleration Model

In scenarios involving higher dynamic movements, such as high-altitude aircraft naviga-

tion, the continuous Wiener process acceleration model is often more appropriate. Upon

discretization of this model over a uniform time interval T , the resulting equations are ex-

pressed as follows:

xpva(k + 1) = Fpvaxpva(k) +wpva(k), for k ∈ {0, 1, 2, . . .}, (2.12)

Fpva =


I3×3 T I3×3

T 2

2
I3×3

03×3 I3×3 T I3×3

03×3 03×3 I3×3

 , (2.13)

where xpva ≜
[
rT
r , ṙ

T
r , r̈

T
r

]T
encapsulates the 3-D position, velocity, and acceleration states.

The noise sequence wpva is characterized as a zero-mean white noise with a covariance matrix

Qpva:

Qpva =


T 5

20
T 4

8
T 3

6

T 4

8
T 3

3
T 2

2

T 3

6
T 2

2
T

⊗ S̃xyz, (2.14)

The Kronecker product, denoted by ⊗, combines the matrix with S̃xyz = diag
[
q̃
′
x, q̃

′
y, q̃

′
z

]
,

which defines the power spectra of jerk noise in the x, y, and z axes as q̃
′
x, q̃

′
y, and q̃

′
z,

respectively.

While this work focuses on two models for UE dynamics to study the navigation performance

of cellular signals exclusively, other more complex models exist that can better represent

specific types of motion. These include but are not limited to the Singer acceleration model,

mean-adaptive acceleration, circular and curvilinear motion, and the coordinated turn, as
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detailed by Li and Jilkov in their survey [86]. Additionally, when an inertial navigation

system (INS) is accessible, it can provide motion information, which is further refined by

integrating cellular signal data.

2.4 Clock Error Dynamics Model

Synchronization among transmitters is critical in radio navigation systems such as the GNSS.

GNSS satellites, equipped with atomic clocks, transmit their timing errors within the nav-

igation message, along with their positions. This protocol ensures that, for GNSS-based

navigation, only the UE’s clock bias needs to be estimated.

In contrast, cellular BSs utilize oscillators that, despite being synchronized with GNSS,

exhibit less stability. As a result, the clock error states for cellular BSs, including both bias

and drift, typically remain undetermined and require simultaneous estimation. To address

this, it is necessary to explicitly define the dynamics of the clock error states. The two-state

model is widely accepted for this purpose. It accounts for the clock bias, represented by δt,

and the clock drift, denoted by δ̇t, as shown in Figure 2.5.

w̃
δ̇t

δ̇t

w̃δt

δt
∫ ∫

+
+

Figure 2.5: Clock error states dynamics model.

The evolution of the clock error states is governed by

ẋclk,κ(t) = Aclkxclkκ(t) + w̃clkκ(t), (2.15)
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xclkκ =

δtκ
δ̇tκ

 , w̃clkκ =

w̃δtκ
w̃δ̇tκ

 , Aclk =

0 1

0 0

 , (2.16)

where κ ∈
{
{UE}i=Ii=1, {BS}u=Uu=1

}
. The variables w̃clkκ are modeled as zero-mean, mutually

independent white noise processes. The power spectral density (PSD) of these processes is

expressed by Q̃clkκ = diag
[
Sw̃δtκ

, Sw̃δ̇tκ

]
.

Upon discretizing the continuous-time dynamics given in Equations (2.15) and (2.16) at a

sampling interval T , we obtain the discrete-time equivalent model

xclkκ(k + 1) = Fclkxclkκ(k) +wclkκ(k), (2.17)

where wclkκ represents a discrete-time white noise sequence with zero mean and covariance

matrix Qclkκ with

Fclk =

1 T

0 1

 , Qclkκ =

Sw̃δtκ
T + Sw̃δ̇tκ

T 3

3
Sw̃δ̇tκ

T 2

2

Sw̃δ̇tκ

T 2

2
Sw̃δ̇tκ

T

 . (2.18)

Cellular BSs typically utilize oven-controlled crystal oscillators (OCXOs), whereas many

UEs are equipped with temperature-compensated crystal oscillators (TCXOs), which are

less stable. The clock error dynamics are commonly approximated by considering only the

frequency random walk coefficient h−2 and the white frequency coefficient h0. This leads

to the approximations Sw̃δt
≈ h0

2
and Sw̃δ̇t

≈ 2π2h−2 [87]. Typical values for h0 and h−2 in

TCXOs and OCXOs are presented in Table 2.4.
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Table 2.4: Typical values of h0 and h−2 for TCXOs and OCXOs.

Oscillator h0 h−2

Typical TCXO 2.0× 10−19 2.0× 10−20

Best TCXO 9.4× 10−20 3.8× 10−21

Typical OCXO 2.6× 10−22 4.0× 10−26

Best OCXO 8.0× 10−20 4.0× 10−23

2.5 Cellular Measurements Models

Various measurements can be obtained from the received 4/5G OFDM signals. This section

discusses four different types of measurements that are pertinent to location estimation.

These measurements are categorized based on their underlying principles: TOA and AOA.

The TOA-based measurements encompass: the LOS measurement derived from the direct

path between the BS and UE, and a reflected measurement from a particular surface in

the environment. The latter, which involves an RIS, is pivotal to a cellular navigation

approach elaborated in a subsequent chapter. This measurement is associated with a VLOS,

as recognized in existing literature.

The pseudorange measurements for LOS and VLOS between the i-th UE and the u-th BS,

denoted by ρ
(u)
i and ρ

′(u)
i , respectively, are modeled in meters as follows

ρ
(u)
i (k) = ∥rr,i(k)− rris∥2 + c · [δtr,i(k)− δts,u(k)] + νρ,i,u(k), (2.19)

ρ
′(u)
i (k) = ∥rr,i(k)− rs,u∥2 + ∥rs,u − rris∥2 + c · [δtr,i(k)− δts,u(k)] + ν

′

ρ,i,u(k), (2.20)

where rr,i = [xr,i, yr,i, zr,i]
T represents the 3-D position of the i-th UE, rs,u = [xs,u, ys,u, zs,u]

T

denotes the 3-D position of the u-th BS, and rris = [xris, yris, zris]
T is the RIS’s 3-D position.

Here, c signifies the speed of light, δtr,i and δts,u are the clock biases of the UE and BS,

respectively, and νρ,i,u and ν
′
ρ,i,u represent the measurement noise, modeled as zero-mean
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white Gaussian noise with respective variances σ2
ρ,i,u and σ

′2
ρ,i,u.

In a network-based localization framework that will discussed in a later chapter, the positions

of the BSs {rs,u}Uu=1 and the RIS are assumed to be known parameters. This assumption

is practical, as the fixed infrastructure locations are typically predetermined and available

for use in location computation. This prior knowledge facilitates the simplification of the

RIS-reflected pseudorange measurement ρ
′(u)
i (k). The measurement reflects the sum of the

known distance from the u-th BS to the RIS and the unknown distance from the RIS to

the i-th UE. Thus, one can deduce the latter by subtracting the former from the overall

pseudorange measurement, leaving the distance between the i-th UE and the RIS as the

remaining unknown component to be determined and expressed as

ρ
′′(u)
i (k) = ρ

′(u)
i (k)− ∥rs,u − rris∥2 . (2.21)

For ease of notation, we will henceforth refer to the updated measurement simply as ρ
′(u)
i (k),

omitting the double prime.

The azimuth measurement of the LOS path and both the azimuth and elevation measure-

ments of the VLOS path can be defined mathematically as

ψi(k) = arctan

(
yr,i(k)− ys,u
xr,i(k)− xs,u

)
+ νψ,i,u(k), (2.22)

ϕi(k) = arctan

(
yr,i(k)− yris
xr,i(k)− xris

)
+ νϕ,i,u(k), (2.23)

θi(k) = arctan

(
zr,i(k)− zris√

(xr,i(k)− xris)2 + (yr,i(k)− yris)2

)
+ νθ,i,u(k), (2.24)

for i = 1, 2, ..., I,

where νψ,i,u, νϕ,i,u, νθ,i,u are the measurement noises, which are modeled as zero-mean white

Gaussian random sequences with variances σ2
ψ,i,u, σ

2
ϕ,i,u, and σ

2
θ,i,u, respectively.
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Chapter 3

Accurate, Robust, and Efficient 4/5G

Opportunistic Cellular Navigation

Receiver

This chapter is organized as follows. Section 3.1 evaluates the architecture of traditional

frequency-domain-based receivers for 4G and 5G cellular navigation, focusing on their inher-

ent limitations. Section 3.2 introduces the URS for 4G and the USS for 5G, both engineered

to leverage a broader bandwidth for improved signal power. Section 3.3 presents a novel time-

domain-based navigation receiver designed for optimizing the use of 4G-URS and 5G-USS.

This section further elaborates on the generation of 4G-URS and 5G-USS, signal acquisition,

and tracking loops.
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3.1 Conventional Frequency-Domain-Based 4/5G Cel-

lular Navigation Receivers

The design of the 4G (LTE) or 5G communication receivers excels at its intended commu-

nication tasks. This successful foundation has naturally prompted the conceptualization of

cellular 4/5G navigation receivers as supplementary enhancements, built incrementally upon

the pre-existing communication receiver infrastructure. Such designs have demonstrated the

capability of achieving meter-level and submeter-level positioning accuracies for pedestrians,

ground vehicles, and UAVs [1, 52–54,59,61,68,73,88–98].

This section delves into the architecture of contemporary frequency-domain-based receivers

employed in 4/5G cellular navigation systems. The design principles underlying these re-

ceivers are outlined and provided with a critical examination of their inherent limitations.

The discussion aims to lay the groundwork for understanding the operational framework and

the challenges faced by these advanced navigation technologies.

3.1.1 Conventional 4G Navigation Receiver

The conventional 4G receiver, a state-of-the-art frequency-domain-based system, has been

detailed in collective works such as [1, 54, 93]. Its architecture is delineated in the software-

defined receiver (SDR) format, with the structural diagram provided in Figure 3.2. This

receiver comprises three primary stages: initial acquisition, acquisition refinement, and track-

ing.

During the initial acquisition, the receiver, by connecting nodes A, B, and C to node 1,

carries out carrier removal and retrieves the baseband samples of OFDM symbols along with

their CPs at the UE. As the UE could commence signal reception at any frame instance,
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Figure 3.1: Primary synchronization signal (PSS) and secondary synchronization signal
(SSS) normalized correlation results with real 4G signals [1].

it must pinpoint the symbol’s commencement to discard the CPs and employ the FFT for

frame structuring. This process begins with PSS correlation in the time domain, exploiting

its bi-frame transmission for peak identification over a frame’s 10-millisecond span. The UE,

however, cannot discern symbol numbers solely from PSS peaks due to identical sequences

at slots 0 and 10. Consequently, SSS correlation is necessary for acquiring precise symbol

numbers, with the SSS’s unique frame transmission yielding a singular correlation peak.

Figure 3.1 exemplifies PSS and SSS correlations with actual 4G signals, showcasing their 1

MHz bandwidth. Multipath conditions may induce biases in correlation peaks, addressed

as symbol timing errors in the signal model. Post carrier wipeoff, residual carrier frequency

offsets may persist, attributable to oscillator discrepancies and Doppler shifts, characterized

as the total carrier frequency offset.

In the acquisition refinement phase, by interfacing nodes A, B, and C with node 2, the

receiver estimates and corrects symbol timing errors and carrier frequency offsets in the

signal. This necessitates an initial channel frequency response (CFR) estimation. When

processing CRS sequences at port p = 0, the known CRS facilitates CFR estimation via the

estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm.
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Figure 3.2: Block diagram of the conventional 4G receiver architecture. Abbreviations in-
clude ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), FFT
(Fast Fourier Transform), NCO (Numerically Controlled Oscillator), PSS (Primary Synchro-
nization Signal), and SSS (Secondary Synchronization Signal).

The final tracking phase involves a specialized delay-locked loop (DLL), supported by a

phase-locked loop (PLL), to maintain symbol timing by connecting nodes A, B, and C to

node 3. Given that the CRS is distributed across the bandwidth, traditional DLL approaches

are unviable for CRS tracking due to the difficulty in obtaining time-domain correlations.

Therefore, this receiver employs a specifically tailored DLL for the CRS in 4G systems.

For an exhaustive discussion on the receiver’s design stages, refer to [1, 54,93].

3.1.2 Conventional 5G Navigation Receiver

In parallel with 4G technologies, the conventional 5G communication receiver architecture,

which similarly utilizes frequency-domain processes, has been adapted to extract navigation

observables. The design of this receiver, as well as its function in extracting navigation

data, has been elaborated in collective studies [73, 92]. Notably, a segment of this design is

attributed to the author’s research efforts and represents a substantive contribution to the

dissertation presented herein.
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The carrier-aided code SDR aims at opportunistically extracting the TOA measurements

from received 5G signals and it has three main stages: (i) 5G carrier frequency extraction,

(ii) acquisition, and (iii) tracking. The rest of this section discusses each of these stages.

3.1.2.1 5G Carrier Frequency Extraction

This stage is required if the carrier frequency of the transmitted 5G signal is unknown for the

UE. Otherwise, if this information is known, this stage can be skipped, and the UE can start

at the acquisition stage. At this stage, a blind search is performed over all candidate 5G

frequency bands in order to find the carrier frequency of the transmitted 5G signals. To do so,

the UE searches for available SS/PBCH block, which is carried by the synchronization raster.

The synchronization raster indicates the frequency positions of the synchronization block that

can be used by the UE for system acquisition when explicit signaling of the synchronization

block position is not present. The center frequency of the synchronization raster is the

center subcarrier of the SS/PBCH block, i.e., the 121-th subcarrier denoted by SSREF. The

frequency position of SSREF is defined with corresponding to global synchronization channel

number (GSCN) [99]. The parameters defining the SSREF and GSCN for all frequency ranges

are presented in Table 3.1. More details can be found in Section 5.4.3 in [99].

3.1.2.2 Acquisition

Knowing the frequency position of SSREF, the UE starts sampling the 5G signals with at least

a sufficient sampling rate to capture the entire SS/PBCH bandwidth. Then, the received

signal is converted to the baseband domain by wiping out the carrier frequency. At this

level, a coarse estimate of the frame start time and N
(2)
ID are obtained by acquiring the PSS

signal. The frame start time is used to control the FFT window timing. The CP elements

are removed and an FFT is taken to convert the signal into the 5G frame structure. Then,
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Table 3.1: GSCN parameters for the global frequency raster.

Frequency range

[MHz]
SSREF frequency position GSCN

Range of

GSCN

0 – 3000
N · 1200 kHz +M · 50 kHz

N = 1 : 1 : 2499, M ∈ {1, 3, 5}∗
3N + (M − 3)/2 2 – 7498

3000 – 24250
3000 MHz +N · 1.44 MHz

N = 1 : 1 : 14756
7499 +N 7499 – 22255

24250 – 100000
24250.08 MHz +N · 17.28 MHz

N = 1 : 1 : 4383
22256 +N 22256 – 26639

∗ The default value for operating bands with SCS spaced channel raster is M = 3

the SS/PBCH block is extracted, and the received SSS signal is correlated with the possible

locally generated sequences to determine N
(1)
ID , and calculate NCell

ID of the gNB. Note that the

frequency reuse of 5G is 1, i.e., the received signal may have 5G signal from multiple gNBs

with different NCell
ID , In this case, multiple PSS and SSS peaks can be observed corresponding

to more than one gNB. Once the UE determines the NCell
ID of the acquired signal, it maps

the DM-RS subcarriers and extracts it from the SS/PBCH block. The extracted DM-RS is

correlated with all possible sequences, and the one with the highest peak is used to estimate

the channel frequency response (CFR). Knowing the CFR, the estimated channel distortion

is reversed using a channel equalizer. Then, the PBCH message is decoded and the second

and fourth symbols of the SS/PBCH block are used to refine the frame start time estimate

using ESPRIT algorithm, where in this paper, the frame start time represents the TOA of

the received 5G signal. A coarse estimate of Doppler frequency f̂D is obtained by looking at

the phase difference between the CFR estimated from two distinct symbols in the SS/PBCH

block.
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3.1.2.3 Tracking

In this stage, a PLL-aided DLL is used to track the TOA of the received signal. At each

tracking loop iteration, the phase effect is wiped off from the received signal, which is assumed

constant over a duration of two frames and calculated by integrating f̂D over time. Then,

the TOA is normalized by the sampling time Ts, where the integer part of samples Int{.} is

used to control the FFT window timing and the fractional part of samples 0 ≤ Frac{·} < 1

is removed from the signal using a phase rotation in the frequency domain. The remaining

code and carrier phase errors are estimated using a DLL and PLL, respectively.

The carrier phase discriminator can be defined as the phase of the integrated CFRs over

the entire subcarrier as shown in [1]. Then, a second-order loop filter at the output of

the discriminator can be used to estimate the rate of change of the carrier phase error 2πf̂D

expressed in rad/s. For code tracking, an early-power-minus-late-power discriminator is used

to derive the normalized timing error ẽτ [100]. Assuming that the symbol timing error has

linear variations, a second-order loop is used to achieve zero steady-state error. Finally, the

TOA estimate ẽτ is updated according to

êτ ←− êτ +
Tf
Ts

(vDLL − vPLL) ,

where Tf = 20 ms and vDLL and vPLL are the outputs of the DLL and PLL filters, respec-

tively. Figure 3.3 presents the block diagram of the acquisition and tracking stages.
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3.1.3 Challenges and Limitations of Existing 4/5G Navigation Re-

ceivers

The designs of the aforementioned 4/5G navigation receivers are not without their limita-

tions. This section will discuss these limitations in detail and will also explore the untapped

potential of these signals for navigation purposes. To facilitate this discussion, we introduce

two metrics. Firstly, rB,RSi represents the ratio of the bandwidth occupied by the RS RSi

to the entire downlink bandwidth of the system. For instance, a rB,RSi = 100% indicates

that RSi is using the full bandwidth. Secondly, rT,RSi denotes the duty factor of the RSs

RSi, which is the proportion of OFDM symbols that are active in a 4/5G OFDM frame. An

OFDM symbol is deemed active if at least 1% of its subcarriers are active. For example, a

rT,RSi = 50% means that in a 4G system, half of the OFDM symbols, or 70 out of 140, are

active.

3.1.3.1 Coverage

In demanding environments such as deep urban canyons, the interiors of buildings, and at

high altitudes, cellular 4/5G terrestrial signals experience significant path losses. These

losses stem from environmental structures that cause attenuation, as well as from the ex-

tended distances of wireless propagation. Consequently, such conditions can impede 4/5G

navigation receivers from successfully acquiring signals and extracting the requisite naviga-

tion observables.

In the realm of 4G technology, conventional receivers capitalize on the CRS primarily from

a single antenna port, specifically p = 0. Better design may allow for the allocation of

additional resources, thereby amplifying the power of the signals received. Conceptually,

the acquisition of 4G signals can be framed as a detection challenge, where an increase in
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signal power directly translates to an elevated CNR. A higher CNR, in turn, augments the

likelihood of signal detection, offering a clear advantage in the receiver’s performance.

In the case of 5G signals, the adoption of ultra-lean transmission strategies restricts the pool

of available resources predominantly to the SS/PBCH block. A standalone reliance on these

signals constrains the cumulative power that could otherwise be harnessed if the design

ingeniously amalgamated all available signals concurrently. Such an integrated approach

promises to significantly amplify the signal power, which is critical for robust signal detection.

3.1.3.2 Initial Doppler Estimation

A pivotal challenge in OFDM-based navigation systems is the precise estimation of initial

Doppler shifts during the acquisition stage. This estimation is inherently constrained by the

SSs having a small duty cycle, quantified as rT,SS = SSs symbols
Total symbols

·100, which amounts to 1.43%

for 4G and 0.71% for 5G. The impact of this limitation is particularly pronounced in high-

dynamic environments where the Doppler shifts exhibit broader variations, necessitating a

robust initial estimate to ensure successful lock-in by tracking loops. Additionally, significant

clock drift mismatches between the UE and the BS exacerbate this issue by inducing large

Doppler shifts, further complicating the acquisition process.

3.1.3.3 Ultra-Lean Transmission

Unlike previous cellular systems, 5G applies an ultra-lean transmission policy, which mini-

mizes the transmission of “always-on” signals; hence, limiting UE-based opportunistic navi-

gation to only SSs. To demonstrate the impact of this limitation, consider the possible 5G

downlink bandwidth B5G, which ranges between 4.32 to 397.44 MHz, with SSs spanning

a bandwidth BSS that ranges between 3.6 to 57.6 MHz. As such, for B5G = 397.44 and

BSS = 57.6, only rB,RS5G,SS
= 14.5% of the bandwidth is being exploited opportunistically
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with SSs alone. Higher bandwidth signals yield more precise time-of-arrival estimates and

facilitate differentiating the LOS signal from multipath components.

3.2 Ultimate Reference/Synchronization Signal

In the pursuit of enhancing navigation capabilities within cellular networks, this section

introduces an innovative concept: the Ultimate Reference Signal (URS) for 4G and the

Ultimate Synchronization Signal (USS) for 5G. These signals are designed to overcome the

limitations of weak signal power and limited resource utilization inherent in standard receiver

designs.

3.2.1 4G Ultimate Reference Signal

This section introduces the URS concept for 4G to tackle the issue of weak signal power

in OFDM-based navigation. The 3GPP standards define antenna ports for the 4G/LTE

cellular system as logical entities identified by their unique reference sequences, rather than

by physical antennas. An antenna port may cover multiple RSs associated with a single

physical antenna or be distributed across multiple transmit antennas. The formal definition

from the 3GPP standards is: An antenna port is such that the channel through which an

OFDM symbol is transmitted can be inferred from the channel of another symbol on the same

port [101]. Each antenna port has its own resource grid, and the transmission of a physical

channel or signal may involve several antenna ports depending on their configuration.

With the proposed approach, the CRS that spans the entire bandwidth of the 4G sys-

tem—previously described in Chapter 2.1.1 and known to the UE—is fully exploited. For

CRS, the relevant antenna ports p could be a single port p = 0, a pair p ∈ {0, 1}, or a set

p ∈ {0, 1, 2, 3}. Prior research has focused on using only p = 0 [54]. Although different
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Figure 3.4: 4G frame representation CRS REs allocation for all antenna ports.

antenna ports do not necessarily correlate to distinct physical antennas for all RSs, CRS

uniquely maintains a direct mapping. Figure 3.4 illustrates the 4G OFDM frame, high-

lighting the CRS resources for all antenna ports. The frame shown represents a simulated

4G downlink with a 20 MHz system bandwidth, the maximum possible, translating to 1200

subcarriers with a spacing of 15 kHz each [102].

Previously, 4G SDRs utilized only CRS resources corresponding to p = 0, marked in blue

in Figure 3.4, which resulted in a duty factor rT,CRScon = 0.71 %. For brevity, CRScon

will henceforth be denoted simply as CRS, referring to the CRS resources used in the last

generation of 4G SDRs. The proposed approach, by employing various available ports,
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Figure 3.5: (a) The number of active subcarriers for each URS symbol and (b) the number
of active symbols for each URS subcarrier.

amalgamates CRSs from different antenna ports to form the 4G-URS. Consequently, the

combined OFDM REs, as depicted in Figure 3.4, constitute the 4G-URS. An analysis of the

4G-URS’s spectral efficiency rB,4G−URS and duty factor rT,4G−URS, based on the number of

active subcarriers and symbols, is visualized in Figure 3.5. The duty factor of rT,4G−URS =

42.86%, a significant increase from rT,SS = 1.43%. For the bandwidth ratio, it is noted that

rB,4G−URS = rB,CRS = 100%.

The URS approach offers distinct advantages. It leverages 24,000 REs compared to the

200 REs used by previous SDRs, thereby amplifying the 4G signal power by a factor of 120.
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This amplification is crucial for addressing weak signals in challenging scenarios such as high-

altitude aircraft navigation. Figure 3.6 demonstrates the gain in the squared autocorrelation

function (ACF) magnitude when comparing CRS-based and URS-based approaches, assum-

ing equal power among all REs. The gain factor, calculated as rgain ≈
√

1
6.29687×10−5 = 126.02,

exceeds the anticipated factor of 120, attributed to the inclusion of CP REs before the IFFT

of each OFDM symbol—a process that will be further explained when discussing URS replica

generation. Moreover, the URS significantly improves the duty cycle, which directly enhances

the accuracy of carrier phase estimation, notably in estimating the initial Doppler shift.

3.2.2 5G Ultimate Synchronization Signal

In the context of 5G, the available resources are confined to the SS/PBCH block, as dictated

by the ultra-lean transmission approach previously discussed. Nevertheless, a method akin

to the 4G URS can be adopted for 5G to formulate an USS. This USS amalgamates all user-

known RSs, specifically the PSS, SSS, and PBCH DM-RS, to maximize resource utilization.
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To evaluate the USS’s correlation characteristics, a 5G OFDM frame was constructed ad-

hering to the parameters specified in Table 3.2. An image plot of this frame is depicted

in Figure 3.7. The USS in the time domain was derived by converting the frame into

samples, as delineated in Subsection 2.1.1. Subsequently, the USS’s ACF was computed,

as illustrated in Figure 3.8(a). For comparative analysis, separate OFDM frames for each

standalone SS—namely the PSS, SSS, and PBCH DM-RS—were also constructed. Their re-

spective time-domain sequences were generated, and the ACFs were calculated accordingly,

as demonstrated in Figure 3.8(a).

The DM-RS exhibits a sharper autocorrelation peak compared to the PSS and SSS, which is

anticipated given its wider bandwidth of approximately 3.6 MHz versus 1.905 MHz for the

PSS and SSS. Conversely, the USS correlation shows a considerably stronger peak. However,

its first zero-crossing lies between the PSS/SSS and the PBCH DM-RS. This variation arises

because the USS correlation is no longer a singular sinc function but now contains two distinct

sinc components derived from the PSS/SSS and PBCH DM-RS. The distinct characteristics

of these components are visible upon examining the PSD of the ACFs, presented in Figure

3.8(b). The PSDs for the PSS and SSS are represented as

SPSS/SSS(f) = a rect(f/1.905), (3.1)

with f denoting frequency in MHz and a symbolizing an amplitude contingent on the se-

quence’s power. The PBCH DM-RS’s PSD is approximated by

SDMRS(f) ≈ b rect(f/3.6), (3.2)

where b is another amplitude parameter. This approximation is necessitated by the scattered

allocation of PBCH DM-RS REs in the 5G frequency domain, unlike the contiguous PSS

and SSS, as visualized in Figure 3.7. Therefore, an approximate PSD for the USS can be
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formulated as

SUSS(f) ≈ 2a rect(f/1.905) + b rect(f/3.6), (3.3)

leading to an inferred USS ACF

RUSS(τ) ≈ F−1 {SUSS(f)} = 3.81a sinc(1.905τ) + 3.6b sinc(3.6τ), (3.4)

where τ is the time delay in microseconds. This estimated RUSS(τ), plotted with a red dashed

line in Figure 3.8(a), closely aligns with the empirically determined autocorrelation, depicted

by the solid purple line. From this analysis, we can deduce the spectral efficiency, denoted

as rB,USS, and the duty factor, denoted as rT,USS, for the USS. Notably, the duty factor for

the USS is rT,USS = 1.43%. This represents a marked improvement over the rT,SRS = 0.36%,

which refers to the duty factor when a single reference signal (SRS) is used in isolation, as

is typical in standard 4/5G navigation receivers. Regarding the bandwidth utilization, the

USS achieves a bandwidth ratio of rB,USS = rB,DMRS = 14%, which reflects the proportion of

the total available bandwidth that the USS occupies.

Table 3.2: The 5G USS simulation settings.

Parameter Value

µ 0
NCell
ID 0
īssb 0

SS/PBCH subcarrier spacing 0
System bandwidth 20 MHz

NRB 100
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3.3 Time-Domain-Based 4/5G Cellular Navigation Re-

ceiver

In this section, a time-domain-based SDR that utilizes the 4G-URS and 5G-USS. These

4G-URS and 5G-USS are designed to harness time orthogonality and thereby extract nav-

igation observables from received 4/5G OFDM signals more effectively. Unlike the con-

ventional 4/5G SDRs that rely on frequency-domain orthogonality of synchronization and

channel estimation RSs—where the OFDM frame is reconstructed from the received time-

domain serial data—the proposed SDR takes a novel approach. While previous systems

estimate navigation observables using the RS with the largest bandwidth, which stems from

communication-focused applications that require OFDM frame reconstruction for two-way

communication, the proposed method pivots towards opportunistic navigation. Here, the

primary objective is to capitalize on the most extensive frequency (bandwidth) and time

(duty factor) resources available in the received signal for navigation observables extraction.

Leveraging the inherent orthogonality of OFDM signals across both frequency and time

dimensions, the proposed SDR aggregates all accessible REs (REs) to form a composite

4G-URS/5G-USS. The subsequent subsections detail the generation process of the UXS and

delineate the two fundamental stages of the proposed time-domain SDR: acquisition and

tracking. Figure 3.9 depicts the block diagram of the proposed SDR.

3.3.1 Generation of 4G-URS and 5G-USS Sequences

The generation and mapping procedures for the 4G-URS and the 5G-USS are comprehen-

sively detailed in Appendices A.1 and A.2, respectively. The culmination of these procedures

results in the creation of OFDM frames that represent the frequency-domain versions of the
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4G-URS and 5G-USS, symbolically represented as UXSfsig,ID. Here, sig ∈ {4G, 5G} specifies

the signal type, and ID denotes the physical Cell ID of the cellular node.

To transform these frames into a practical form for transmission, UXSfsig,ID is first converted

into a time-domain sequence, designated asUXStsig,ID. This conversion involves zero-padding

by 1
2
Nmax,DL

RB − NDL
RB REs on both sides of the signal in the frequency domain. An IFFT is

then applied. Subsequently, CP elements are added to each OFDM symbol to mitigate ISI.

This CP addition essentially involves appending a copy of the end portion of the OFDM

symbol to its beginning.

This entire procedure mirrors the signal processing that occurs at the eNodeB/gNB, with

the key difference being the replacement of data in the data-allocated REs with zeros in our

case. This substitution is critical to avoid interference and maintain the orthogonality of

UXStsig,ID. For the sake of simplicity and clarity in the following discussions, the superscript

t will be omitted, and UXStsig,ID will henceforth be referred to simply as UXSsig,ID.

3.3.2 Acquisition

The primary goal of the acquisition stage is to identify nearby eNodeBs/gNBs and obtain

coarse estimates of their corresponding code start times and Doppler frequencies. Assuming

that the UE knows the carrier frequencies of surrounding eNodeBs/gNBs, it begins by sam-

pling the 4/5G cellular signals at a rate sufficient to cover the entire system bandwidth. These

signals are then converted to the baseband domain by eliminating the carrier frequency. The

resulting discrete-time signal is represented as x[n], where n signifies a discrete-time instance.

A search is then conducted over the code start time and Doppler frequency to detect the

presence of a signal at n = 0 within x[n].

For identification, there are 504 potential URS sequences for 4G, arising from CRS combi-
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nations, and 1008 potential USS sequences for 5G, derived from PBCH-DMRS. These are

denoted as {UXS4G,ID}503ID=0 and {UXS5G,ID}1008ID=0, respectively. Each UXSsig,ID serves as a

pseudo-random number (PRN) for the SDR, similar to GPS.

The enhanced duty factor offered by the UXS allows for a GPS-like frequency acquisition

search, aiding in the initial Doppler shift estimation. This search yields coarse estimates

of the initial Doppler frequency f̂D0 and the code start time t̂s0 , which are then input into

the tracking loops. It is important to note that the SSs are deliberately excluded from

the proposed UXS due to their non-uniqueness for every eNodeB/gNB, which could lead to

interference in scenarios where multiple eNodeBs/gNBs are detectable, such as in aviation

with a clear line of sight from multiple cellular nodes.

3.3.2.1 Acquisition Optimization

The computational burden of the acquisition stage, particularly due to the Doppler search

for all possible IDs, is a significant challenge. For context, the number of potential PRNs is

about 16/32 times greater than that of GPS L1, depending on the signal type. To address

this, the proposed SDR incorporates two optimization strategies:

Firstly, the SDR combines different sectors of the same cellular node, meaning Cell IDs with

varying PSS but identical SSS. This is feasible because (i) the UXS exhibits excellent cross-

correlation properties and (ii) SSs are not used in the UXS. Therefore, the three sectors of

an eNodeB/gNB can be represented by a single PRN:

UXSsig,ID
′ = UXSsig,ID=ID

′ +UXSsig,ID=ID
′
+1 +UXSsig,ID=ID

′
+2,

for ID
′
= {0, 3, 6, · · · , 502},

where each term represents one of the three sectors. This approach effectively reduces the
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number of potential UXSs by a factor of three.

Secondly, the SDR optimizes the Doppler search by considering Doppler values with integer

differences of the UXS-frame frequency spacing ( 1
tframe

= 100 Hz for 4G-URS and 50 Hz for

5G-USS). The Doppler search range is thus defined as:

fD,search ∈ [−fmax, fstep, fmax] ,

where fmax is the maximum search value, and fstep is the search step. If fmax >
1

tframe
= fframe

Hz, a new search range f0 is defined as:

f0 ≡ [−fframe, fstep, fframe] .

Thus, higher search ranges are effectively circularly-shifted versions of f0 of the locally-

generated UXSs.

3.3.2.2 Acquisition Sample Outputs

Figures 3.10 and 3.11 present the two-dimensional acquisition output samples from experi-

mental data, showcasing results from a stationary 4G receiver and a UAV-based 5G receiver,

respectively. The output from the 4G receiver demonstrates superior detection capabilities,

which can be attributed to the more extensive resources available in the 4G-URS, in contrast

to those in the 5G-USS. It shall be noted that the acquisition illustrated in Figure 3.10 was

conducted over the span of a single frame. In comparison, for the 5G acquisition shown in

Figure 3.11, a subaccumulation technique encompassing three frames was employed. This

approach was necessary to compensate for the relatively low duty cycle of the 5G-USS signal,

even after its enhancement from the utilization of a single reference signal at a time.
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Figure 3.10: Cellular 4G signal acquisition results showing |Sm|2 versus t̂s0 f̂D0 for one
detected eNodeB from a stationary 4G experiment, along with the cross-sectional view of
the 2D search in time- and frequency- domains.
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Figure 3.11: Cellular 5G signal acquisition results showing |Sm|2 versus t̂s0 f̂D0 for four
detected gNBs from a UAV-based 5G experiment, along with the cross-sectional view of the
2D search in time- and frequency- domains of gNB 1.
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3.3.3 Tracking

After obtaining coarse estimates of the initial Doppler frequency f̂D0 and the initial code

start time t̂s0 , the receiver refines and maintains these estimates via tracking loops. In the

proposed design, a PLL is employed to track the carrier phase and a carrier-aided DLL is

used to track the code phase.

The PLL consists of a phase discriminator, a loop filter, and a numerically-controlled oscil-

lator (NCO). Since URS is a data-less pilot channel, an atan2 discriminator, which remains

linear over the full input error range of ±π, could be used without the risk of having phase

ambiguities. It was found that a second-order PLL is sufficient to maintain track of the

carrier phase for different dynamical scenarios. The loop filter transfer function is given by

FPLL(s) =
2ζwns+ w2

n

s
, (3.5)

where ζ ≡ 1√
2
is the damping ratio and wn is the undamped natural frequency, which can be

related to the PLL’s noise-equivalent bandwidth Bn,PLL by Bn,PLL = wn

8ζ
(4ζ2 + 1) [5]. The

output of the loop filter at the m-th subaccumulation vPLL,m is the rate of change of the

carrier phase error, expressed in rad/s. Then, the Doppler frequency estimate is obtained as

f̂Dm =
vPLL,m

2π
. The carrier phase estimate is modeled as

θ̂(tn) = 2πf̂Dmtn + θ0, (3.6)

where tn = nTs is the sample time expressed in receiver time, Ts is the sampling time, and

θ0 is the initial beat carrier phase of the received signal.

The carrier-aided DLL employs the non-coherent dot product discriminator, in which the

prompt, early, and late correlations, denoted by Spm , Sem , and Slm , respectively. The DLL

loop filter is a simple gain K, with a noise-equivalent bandwidth Bn,DLL = K
4
≡ 0.05 Hz.
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The output of the DLL loop filter vDLL,m is the rate of change of the code phase, expresses

in s/s. Assuming low-side mixing, the code start time is updated according to

t̂sm+1 = t̂sm − (vDLL,m + f̂Dm/fc) ·NsTs, (3.7)

where fc is the carrier frequency of the received signal and Ns is the number of samples per

subaccumulation.

3.3.3.1 Tracking Sample Outputs

Experimental results from a high-altitude aircraft employing a 4G receiver and a ground

vehicle utilizing a 5G receiver are presented in Figures 3.12 and 3.13, respectively. These

figures display the tracking outputs of the receivers, providing a comprehensive view of

various metrics. The data includes (i) the in-phase and quadrature components of the prompt

correlation, (ii) the carrier-to-noise ratio (C/N0), (iii) the code phase error in samples, (iv)

the carrier phase error in degrees, (v) the measured pseudorange in meters, and (vi) the

measured Doppler shift in Hz.

These figures and their accompanying metrics provide valuable insights into the tracking

capabilities and performance of 4G and 5G receivers in different operational environments.
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Figure 3.12: 4G signal tracking results from a high-altitude aircraft-based receiver, illustrat-
ing (i) in-phase and quadrature components of the prompt correlation, (ii) C/N0, (iii) code
phase error in samples, (iv) carrier phase error in degrees, (v) measured pseudorange, and
(vi) Doppler shift.
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Figure 3.13: 5G signal tracking results from a ground vehicle-based receiver, showing (i)
in-phase and quadrature components of the prompt correlation, (ii) C/N0, (iii) code phase
error in samples, (iv) carrier phase error in degrees, (v) measured pseudorange, and (vi)
Doppler shift.
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Chapter 4

Experimental Characterization of

4/5G Signals

This chapter is organized as follows. Section 4.1 details an experimental analysis focused on

the frequency stability characteristics of 4/5G networks. In Section 4.2, we investigate the

influence of environmental variables, antenna performance, and receiver clock precision on

the strength of 4/5G signals. This section also includes a mobile outdoor experiment aimed at

modeling the relationship between 5G signal reception and distance in a semi-urban setting.

4.1 Frequency Stability of Cellular 4/5G Signal

4.1.1 Carrier Frequency Search

As detailed in Subsection 3.1.2.1, determining the frequency position of SSREF is essential

when unknown to the UE. To address this, an extensive search across the 5G frequency

bands in FR1 was conducted in three Californian cities: Irvine, Costa Mesa, and Santa Ana.
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Following the guidelines in Table 3.1, the search primarily found 5G signals in the sub-3 GHz

range, particularly in the n5 and n71 bands, linked to AT&T and T-Mobile. Interestingly,

during these searches, a new smartphone with AT&T service indicated a 5G signal on the n5

band, but initial searches in the expected frequency positions yielded no results. It was only

after an expanded search that a 5G signal at 872 MHz, outside the listed frequency positions,

was discovered. Another detected signal at 632.55 MHz corresponded to a frequency position

for N = 527 and M = 3 (GSCN = 1581), as per the search parameters.

4.1.2 Stationary Experiment: Frequency Stability in Cellular 5G

System

4.1.2.1 Experimental Setup and Environmental Layout

A stationary experiment was conducted at the University of California, Irvine (UCI), USA,

using a quad-channel National Instrument (NI) universal software radio peripheral (USRP)-

2955 connected to a UE receiver. This setup utilized two consumer-grade cellular omnidi-

rectional Laird antennas, with the USRP sampling signals at 10 mega samples per second

(Msps). The USRP was tuned to two different carrier frequencies to receive signals from one

eNodeB and one gNB, belonging to two different U.S. cellular providers. The characteristics

of these BSs are outlined in Table 4.1. The collected 4G and 5G signals were transferred

from the USRP-2955 to a laptop via a PCI Express cable for subsequent post-processing.

Figure 4.1 displays the experiment’s environmental layout, including the positions of the

eNodeB and gNB, and the hardware and software setup used.
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Table 4.1: Frequency Stability Experiment: eNodeB’s and gNB’s Characteristics.

Base station Carrier frequency [MHz] NCell
ID Cellular provider

eNodeB 751 223 Verizon
gNB 872 872 AT&T

2 Laird Antennas
Laptop

PCIe cable GPS
Antenna

Quad-Channel
USRP-2955

MATRIX 5G and LTE
modules

Figure 4.1: Environmental layout and experimental setup.

4.1.2.2 Results

The collected data over approximately 7970 seconds (around 2 hours and 13 minutes) en-

compassed 4G and 5G signals. These signals were analyzed post-processing using the SDR

methodologies from [1] and this paper. The USRP-2955’s clock was synchronized by a GPS-

disciplined oscillator (GPSDO), meaning the observed Doppler frequencies mainly reflected

the clock drifts in the eNodeB and gNB. The Allan deviation σ̂A(τ) and the corresponding
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Figure 4.2: Allan deviations for collocated eNodeB and gNB at UCI.

error bound êb were estimated as follows:

σ̂A(τ)=

√√√√ 0.5

MT −m

MT−m−1∑
i=0

(fDn [(i+ 1)m]− fDn [(im])2 ,

êb =
σ̂A(τ)

MT + 1
,

wherem = τ ·fs, fDn = fD/fc is the normalized Doppler frequency,MT is the total number of

samples, m is the averaging factor in samples, τ is the averaging time, and fs is the data rate.

Figures 4.2 and 4.3 illustrate the Allan deviations and the normalized Doppler frequencies

for both eNodeB and gNB. Notably, the gNB frequencies were more tightly confined within

the bounds compared to the eNodeB, which had higher mean absolute deviation (MAD)

magnitudes and more variations. This suggests greater stability in the gNB’s clock. However,

the Allan deviations for both systems’ clocks still fell within the nominal range for an OCXO.

Given past research showing promising positioning accuracies with 4G, these results indicate

the potential of 5G for navigation, especially as mmWave infrastructure will likely employ

more stable clocks, enhancing reliability for navigational use.
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Figure 4.3: Normalized Doppler frequencies for gNB and eNodeB with MAD bounds.

4.2 Performance Evaluation of 4/5G Signal Reception

in Varied Environments

This section evaluates a key metric for opportunistic navigation using 4/5G signals: the

received C/N0. The study focuses on several aspects: (i) the influence of various indoor

structures and floor levels on the C/N0 of 5G signals, (ii) the impact of receiver antenna

quality, receiver’s clock accuracy, and sampling rate on the C/N0, and (iii) the relationship

between the receiver’s distance from the cellular node and the C/N0.

4.2.1 Methodology

The assessment encompasses both 4G signals and 5G signals within FR1, where FDD is

predominantly utilized by cellular providers for its advantages in coverage and latency. The

C/N0 of these signals is determined by tracking the 4G-URS and the 5G-USS using the SDR
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described in Section 3.3. The C/N0 is calculated as follows:

C/N0 =10 log10

[
∆f(C − σ2

n)

σ2
n

]
,

C =max
t
{|h(t)|} ,

σ2
n =

1

⌈3
4
M⌉ − ⌈1

4
M⌉

⌈ 3
4
M⌉∑

ti=⌈ 1
4
M⌉

|h(ti)|2 ,

where ∆f is the subcarrier frequency, C represents the carrier power, σ2
n is the noise power,

h(t) is the estimated impulse response within the tracking loop of the navigation SDR, and

M is the length of h(t). The symbol ⌈·⌉ denotes integer rounding towards +∞.

4.2.2 Experimental Results

This section evaluates the signal power of sub-6 GHz 4/5G signals and their potential for

opportunistic navigation in diverse environments. Three distinct scenarios are examined to

compare the C/N0 of 5G and 4G signals: (1) a stationary indoor scenario assessing the impact

of walls and floors, (2) a stationary outdoor scenario examining the influence of sampling

rate, antenna quality, and receiver clock accuracy, and (3) a mobile outdoor experiment to

analyze the C/N0 relative to the receiver’s distance from cellular nodes.

4.2.2.1 Scenario 1: Stationary Indoors

This scenario investigates the C/N0 of 4G and 5G signals within indoor environments.
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4.2.2.1.1 Experimental Setup

In the first scenario, the C/N0 of FR1-5G and 4G signals are characterized indoors, where the

effect of wall and floor partitions are studied. To this end, 5G and 4G signals were collected

over durations of five minutes at 14 different locations in the Engineering Gateway building

at the University of California, Irvine (UCI), USA. Out of the 14 locations, 12 are labeled

with a number and a letter according to “ij”, where i ∈ {1, 2, 3, 4} corresponds to the floor

number and j ∈ {a, b, c, d, e, f} corresponds to a building area. The remaining two locations

are labeled “bridge” (an indoor bridge with glass walls on the 3-rd floor connecting the two

buildings) and “elevator” (an elevator in the middle of the building which was going up and

down between floors 1 and 4 during data collection). At each location, signals from two

U.S. cellular providers were received: T-Mobile and AT&T, transmitting at four different

frequencies in total, as summarized in Table 4.2. Both gNB1 and eNodeB1 were located

on top of the Engineering Tower building on the UCI campus. In addition to being from

the same operator, gNB2 and eNodeB2 have the same cell ID. As a result, they are most

likely co-located; however, their exact locations are not known. The receiver was equipped

with four omnidirectional, low-grade (LG), magnetic mount antennas connected to a quad-

channel NI USRP-2955R to simultaneously down-mix and synchronously sample signals at

the four carrier frequencies with a sampling rate of 10 Msps. The signals were processed in

a post-processing fashion using the proposed 4/5G SDR in Section 3.3. Figure 4.4 shows

the environment layout in which the experiment was performed, the eNodeBs’ and gNBs’

positions from which signals were collected, and the experimental hardware and software

setup.
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USRP-2955

Laptop

PCIecable

MATRIX 5GandLTE
modules

Quad-Channel

Figure 4.4: Environment layout and hardware and software setup of scenario 1. Map data:
Google Earth.

74



Table 4.2: Indoor C/N0 Assessment: eNodeB’s and gNB’s Characteristics.

Base station
Carrier

frequency [MHz]
NCell
ID Cellular provider

gNB 1 872 872 AT&T
gNB 2 632.55 394 T-Mobile

eNodeB 1 739 93 AT&T
eNodeB 2 731.5 394 T-Mobile
eNodeB 3 751/2125 221 T-Mobile

4.2.2.1.2 Experimental Results

The measured C/N0 at each location for the BSs listed in Table 4.2 is shown in Figure 4.5.

A summary of the minimum, maximum, average, and standard deviation of C/N0 values at

each site is presented in Figure 4.6. Key observations include:

1. Both 4G and 5G signals from the providers exhibited similar C/N0 across different

locations, indicating comparable navigational accuracy.

2. No clear trend in C/N0 was observed across floors or areas. This conclusion is surprising

and implies that a uniform navigation performance is expected throughout the entire

building.

3. Despite metal elevator walls, signal strength inside the elevator was unexpectedly high,

indicating that receivers in motion within the building can maintain signal tracking

without the need to perform re-acquisition.

4.2.2.2 Scenario 2: Stationary Outdoors

In this scenario, the effect of sampling rate, antenna grade, and receiver clock quality on the

C/N0 is studied.
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Figure 4.5: Experimental results of scenario 1 showing the C/N0 values of the 2 gNBs and
eNodeBs 1 & 2 from Table 4.2 in different locations in the Engineering Gateway building on
UCI campus.
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Figure 4.6: Summarized tabulated results of the C/N0 values of the eNodeBs and gNBs
indoors.

4.2.2.2.1 Experimental Setup

The receiver was placed on the roof of the Anteater parking structure on UCI campus, 300

m away from gNB1 and eNodeB1 with direct LOS. The hardware setup is similar to that

of the stationary indoors setup in scenario 1, except that two of the omnidirectional LG

antennas were replaced by two high-grade (HG) 10 Watts, omnidirectional Laird antennas

with a gain of 1.5 dBi. The antennas were connected to the same USRP mentioned in the

previous setup to simultaneously down-mix and synchronously sample signals at the four

carrier frequencies, which are then post-processed by the proposed SDR in Section 3.3. The

USRP’s oscillator was operated in two modes: (i) a GPSDO (precise frequency standard)

and (ii) free running internal oscillator (typical OCXO). Moreover, the signals were sampled

at (i) 10 Msps and (ii) 20 Msps to study the effect of the sampling rate on the C/N0. Figure

4.7 shows the experimental hardware and software setup.
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Quad-Channel
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Sampling Rate: 10 MHZ / 20 MHZ Antennas
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Antennas

PCIe
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Figure 4.7: Hardware and software setup of scenario 2.

4.2.2.2.2 Experimental Results

The C/N0 values of the 4G and 5G signals for different antenna grades, clock qualities, and

sampling rates are shown in Figure 4.8. The following can be concluded from these plots:

• As expected, the C/N0 values with the HG antenna are consistently 3–6 dB higher

than that with the LG antenna. While these results imply that investing in a HG

antenna (around $40 USD price difference) yields a 3–6dB gain in the C/N0, which

goes a long way in low signal-to-noise ratio (SNR) applications, it is also important to

notice that the C/N0 values with the LG antenna are mainly above 50 dB-Hz. Such

C/N0 is high enough to produce a reliable navigation solution. Similar values were

obtained indoors with the LG antenna, as indicated in Figure 4.8.

• When operating with the GPSDO, the receiver produces stable values of C/N0. When

operating with the USRP’s internal OCXO, the C/N0 values are less stable initially but

appear to stabilize around high enough C/N0 values as time progresses. This implies

that such signals are useful in GNSS-challenged environments (e.g., scenario 1 and in

deep urban canyons) or in environments under spoofing or jamming attacks.

• There does not seem to be any noticeable gain in increasing the sampling rate from

10 Msps to 20 Msps, as the bandwidth of the 4G and 5G signals under study was 10

MHz.

78



0 50 100 150 200 250 300

Tim e[s]

45

50

55

60

65

70

[d
B
-H
z
]

632.55--LG--GPSDO--10

632.55--LG--GPSDO--20

632.55-HG--GPSDO--10

632.55--HG--GPSDO--20

0 50 100 150 200 250 300

Tim e[s]

45

50

55

60

65

70

[d
B
-H
z
]

872--LG--GPSDO--10

872--LG--GPSDO--20

872--LG--Internal--10

872--HG--GPSDO--10

872--HG--GPSDO--20

0 50 100 150 200 250 300

Tim e[s]

45

50

55

60

65

70

[d
B
-H
z
]

751--LG--GPSDO--10

751--LG--GPSDO--20

751--LG--Internal--10

751--HG--GPSDO--10

751--HG--GPSDO--20

2125--HG--GPSDO--20

 Carrier Frequency--Antenna--Receiver Clock--Sampling Rate

* Sampling Rate: 10 MHz (10) / 20 MHz (20)

(c)

(b)

(a)

* Receiver Clock: GPS-disciplined oscillator (GPSDO) / USRP (Internal)

* Antenna: Low Grade Antenna (LG) / High Grade Antenna (HG)

Figure 4.8: Experimental results of scenario 2 showing the C/N0 values of gNBs 1 & 2 and
eNodeB3 from Table 4.2 for a stationary outdoor receiver and for different antenna grade,
receiver clock quality, and sampling rate.
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4.2.2.3 Scenario 3: Mobile Outdoors

This scenario characterizes the C/N0 as a function of the range r between the receiver and

the gNB.

4.2.2.3.1 Experimental Setup

In this third scenario, the experiment was conducted on Fairview Road in Costa Mesa, Cal-

ifornia, USA. One of the HG Laird antennas was connected to the USRP, which was in

turn mounted on a vehicle and tuned to listen to FR1-5G signals at an 872 MHz carrier

frequency, which corresponds to the U.S. cellular provider AT&T. The gNB cell ID was

608 and its location was surveyed prior to the experiment. The USRP’s GPSDO was used

throughout this experiment. The vehicle was equipped with a Septentrio AsteRx-i V inte-

grated GNSS-IMU whose x-axis pointed toward the front of the vehicle, y-axis pointed to

the right side of the vehicle, and z-axis pointed upward. AsteRx-i V is equipped with a dual-

antenna multi-frequency GNSS receiver and a VectorNav VN-100 micro-electromechanical

system (MEMS) IMU. The loosely-coupled GNSS-IMU with satellite-based augmentation

system (SBAS) navigation solution produced by AsteRx-i V was used as ground truth in

this experiment. Figure 4.9 shows the environment layout and the experimental hardware

and software setup.

4.2.2.3.2 Experimental Results

The C/N0 was computed along the trajectory and plotted as a function of the range between

the gNB and the receiver and is shown in Figure 4.10 along with a linear fit. The following

can be concluded from this plot. While simple, the linear model seems to fit well the

behavior of the C/N0 in this semi-urban environment. Such models can be particularly
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Figure 4.10: Experimental results of scenario 3 showing the C/N0 values of a gNB in a
semi-urban environment as a function of the range between the gNB and an outdoor mobile
receiver mounted on a vehicle.

useful for navigation framework design and analyses. Moreover, the received 5G signals are

surprisingly powerful at more than 55 dB-Hz beyond 2 km, which is a typical cell size in

semi-urban environments. This result implies that the receiver could reliably track signals

from numerous 5G gNBs, which directly improves the navigation performance.
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Chapter 5

Navigation Performance

This chapter is structured to provide a detailed exploration of various navigation scenarios.

Section 5.1 demonstrates the navigation capabilities of a ground vehicle using the proposed

4G receiver under a real-world GPS-denied environment. Section 5.2 details a pioneering

experiment where 4G signals are utilized for navigation in high-altitude aircraft environ-

ments, covering aspects such as signal strength, eNodeB availability, the influence of aircraft

maneuvers on signal reception, and overall navigation performance. Section 5.3 showcases

an experimental validation of the proposed 5G receiver in a ground vehicle, navigating a

suburban area using sub-6 GHz 5G signals from two gNBs. Lastly, Section 5.4 describes an

experiment featuring the proposed 5G receiver on a UAV, assessing its navigation capabilities

in an urban setting.
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5.1 4G – Ground Vehicle Scenario in a Real GPS-

Jamming Experiment

This section presents an experimental demonstration of the proposed 4G receiver mounted on

a ground vehicle navigating in a real-world GPS-denied environment. A mapping campaign

was conducted before the experiment to locate 4G eNodeBs in the environment. The vehicle

was driven in the Mojave Desert at Edwards Air Force Base (AFB), California, USA, during

the intentional GPS jamming exercises, known as NAVFEST. The vehicle’s trajectory was

composed of three segments: (A) GPS signals were available (0–40 seconds; 1.1 km), (B) GPS

signals were intermittent (40–50 seconds; 0.4 km), and (C) GPS signals were not available

(50–180 seconds; 3.5 km).

5.1.1 Environmental Layout and Hardware Setup

Six high-power jammers and one portable box jammer were spread over an area of approx-

imately 50 miles north of Edwards AFB. Figure 5.1 shows the jamming-to-signal ratio J/S

heatmap; which actually extends outside the depicted rectangle; however, this was the only

data provided by Edwards AFB.

The ground vehicle, shown in Figure 5.1, was equipped with an NI-USRP-2955, two consumer-

grade Laird cellular antennas, PCIe cable, laptop, and a Septentrio GNSS-IMU system, com-

prising a multi-frequency GNSS AsteRx-i V receiver, an industrial-grade Vectornav VN-100

MEMS IMU, and a dual-GNSS antenna system. The vehicle-mounted GNSS-IMU was used

to obtain the vehicle’s ground truth trajectory, utilizing signals from non-jammed GNSS

constellations (Galileo and GLONASS). The USRP utilized a GNSS-disciplined oscillator

(GNSSDO) and was tuned to listen to two carrier frequencies corresponding to the U.S.
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10 km

Figure 5.1: Environment layout and jamming-to-signal ratio J/S heatmap. The ground
vehicle’s trajectory is within the dashed white rectangle.

Table 5.1: Ground Vehicle Navigation in a Jamming Experiment: eNodeBs’ Characteristics.

eNodeB Carrier frequency Cell ID Cellular provider

1 751 MHz 417 Verizon
2 751 MHz 399 Verizon
3 751 MHz 393 Verizon
4 751 MHz 402 Verizon
5 2145 MHz 186 T-Mobile
6 2145 MHz 195 T-Mobile
7 2145 MHz 489 T-Mobile

cellular providers: Verizon Wireless and T-Mobile, as tabulated in Table 5.1.

5.1.2 Receiver Output: Tracking Results

The receiver discussed in Section 3.3 was used to acquire and track signals from 7 4G eN-

odeBs (see Figure 5.1). A second-order PLL with a noise-equivalent bandwidth of 6 Hz was

employed to track the carrier phase, and a carrier-aided DLL whose loop filter is a simple
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gain K = 0.2 was used to track the code phase.

Figure 5.2 shows the code phase tracking error. From Table 5.1 and Figure 5.2, it can be

inferred that the receiver was able to track 4G signals at 751 MHz and 2145 MHz, with

the tracking loops failing to track as the receiver drove further away from the eNodeBs.

It is worth noting that not all seven eNodeBs were continuously tracked along the entire

trajectory. In particular, while eNodeBs 1, 2, and 7 were continuously tracked along the

receiver’s trajectory, eNodeBs 5 and 6 were tracked during the earlier part of the trajectory,

while eNodeBs 3 and 4 were tracked during the latter part of the trajectory.

Figure 5.3 shows the tracking results: (i) CNR, (ii) pseudorange estimates versus expected

ranges (the latter calculated from the receiver’s ground truth trajectory and eNodeBs’ posi-

tions), and (iii) range error (i.e., the difference between pseudorange and range). The CNR

is calculated from CNR = Pr−N0
N0T

, where Pr, N0, and T denote the received signal power,

noise power, and subaccumulation time interval, which is set to the 4G frame duration.

From Figure 5.3(a), it can be seen that the CNR for tracked eNodeBs is about 50 dB-Hz,

with some of the closer eNodeBs having a CNR exceeding 75 dB-Hz. The intermittency in

tracking is due to the receiver tracking loops failing to acquire/track all eNodeBs along the

entire trajectory. From Figure 5.3(b), it can be seen that eNodeBs 3 and 6 were tracked, while

being 25.5 km and 23.6 km, respectively, away from the vehicle. The drift in the range error

in Figure 5.3(c) is due to the combined receiver–eNodeB’s clock error, which is dominated by

the eNodeB’s clock error, since the receiver possessed a GNSSDO. These drifts are indicative

of the eNodeBs being equipped with high-quality OCXOs. The correlation observed among

some of the eNodeBs could be due to the “loose” network synchronization: eNodeBs need to

be synchronized, as per the 3GPP standards, with certain eNodeBs tend to exhibit tighter

synchronization, forming so-called “clusters” [103]. It is worth noting in Figure 5.3(c) starting

segment (C), which is when GPS signals become completely unavailable, there seems to be

an “inflection” point impacting the range error. It is speculated that this is due to the
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Figure 5.2: Cellular 4G code phase tracking error results.

jamming impact on eNodeBs’ clocks; however, it is difficult to assert such a statement.

5.1.3 Navigation Solution

The extracted carrier-aided code-phase pseudorange measurements were fused in an EKF

to estimate the receiver’s 3-D position rr and velocity ṙr, and relative clock bias and drift

between the receiver’s and eNodeBs’ clocks denoted by {δtr−δts,u}7u=1 and
{
δ̇tr−δ̇ts,u

}7

u=1
,

respectively. The EKF state vector can be expressed as

x ≜
[
xT
r ,x

T
clk

]T
, (5.1)

where xr =
[
rT
r , ṙ

T
r

]
and xclk is the clock state vector. As observed in [104], and due to

high vertical dilution of precision when using terrestrial eNodeBs alone, the vertical esti-

mation error was much higher than horizontal errors. As such, 2-D navigation errors are

reported and compared with those achieved in [104], in which the conventional state-of-

the-art frequency-domain 4G receiver discussed in Subsection 3.1.1 was deployed. For this

purpose, the receiver is assumed to move in a 2-D plane with a constant known height
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Figure 5.4: Navigation solutions of GNSS-IMU, GPS-IMU, and cellular 4G. Map data:
Google Earth.

zr ≡ z0. The receiver’s motion is assumed to evolve according to the white noise ac-

celeration model discussed in Subsection 2.3.1. The clock state vector xclk is defined as

xclk ≜
[
c∆δt1, c∆δ̇t1, · · · , c∆δtU , c∆δ̇tU

]T
. The clock error dynamics are assumed to evolve

according to the discrete-time dynamics discussed in Section 2.4. In this experiment, the re-

ceiver was assumed to be equipped with a typical TCXO, while the eNodeBs are assumed to

be equipped with a typical OCXO for the experimental values as depicted in Table 2.4. The

measurements noise variances were chosen according to the models described in [104], which

when using the expressions relating CNR to measurement noise variances [1], the variances

were found to vary between 0.2 – 22 m2.

After traversing a trajectory of 5 km in 180 seconds, a 2-D position RMSE of 2.6 m and

a 2-D maximum error of 4.5 m were achieved using only 4G signals, without using other

sensors (see Figure 5.4). This unprecedented accuracy is an order of magnitude lower than

previously published results in the same environment and the same collected raw 4G in-

phase and quadrature samples, in which a 2-D position RMSE of 29.4 m was achieved [104].

While the state-of-the-art receiver in [104] was only able to acquire and track the 5 km-away

eNodeB 1, the proposed receiver acquired and tracked weaker signals from eNodeBs 2–6.

The GPS-IMU navigation solution exhibited a position RMSE of 237.9 m.
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5.2 4G – High-Altitude Aircraft Scenario

This section delves into evaluating the availability, signal strength, and navigation per-

formance of cellular 4G signals at high altitudes, marking the first exploration of cellular

signals for navigation in high-altitude aircraft environments. The research was propelled

by an innovative aerial campaign in March 2020, a collaborative endeavor between the Au-

tonomous Systems, Perception, Intelligence, and Navigation (ASPIN) laboratory and the

United States Air Force (USAF) at Edwards AFB in California, USA. Dubbed “SNIF-

FER: Signals of opportunity for Navigation In Frequency-Forbidden EnviRonments,” this

week-long flight campaign aimed to capture ambient cellular 4G signals across the Southern

California region using a USAF Beechcraft C-12 Huron, a fixed-wing aircraft.

The campaign sought to address several critical questions:

1. The feasibility of receiving and utilizing cellular 4G signals at aircraft altitudes and

speeds for robust navigation solutions.

2. The impact of cellular BS antenna tilt on reliable signal reception at high altitudes.

3. The availability of a sufficient number of detectable cellular BSs for sustained naviga-

tion over extensive high-altitude trajectories.

4. The potential navigation accuracy achievable exclusively with cellular 4G signals in

high-altitude aircraft scenarios.

To answer these questions, the following aspects are thoroughly examined: (i) the hard-

ware setup for signal collection, (ii) specific flight regions and aircraft maneuvers during the

campaign, (iii) data processing methodologies, (iv) characterization of 4G signals at high al-

titudes, (v) performance of the proposed receiver’s, and (vi) overall navigation performance.
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5.2.1 Hardware Setup

The equipment, prepared at the ASPIN Laboratory, was meticulously assembled on a spe-

cialized rack provided by the USAF and then shipped for installation on the C-12 aircraft.

The rack’s configuration included:

1. A quad-channel NI-USRP-2955 for signal reception and processing.

2. A desktop computer outfitted with a 1 terabyte (TB) solid-state drive, designated for

data storage.

3. A laptop computer set up for real-time 4G signal acquisition. During flights, a flight

engineer operated this system to actively monitor and identify available cellular 4G

channels. This information was crucial to appropriately adjust the USRP-2955’s tun-

ing. The laptop was interfaced with the USRP-2955 through a PCIe cable.

4. A GPS antenna that served dual purposes: firstly, to provide GPS measurements for

the aircraft’s navigation system, and secondly, to discipline the onboard GPSDO of

the USRP.

Additionally, three consumer-grade 800/1900 MHz Laird cellular antennas were affixed to

the underside of the C-12, establishing a direct connection to the USRP-2955. This setup

enabled the USRP to tune into three distinct carrier frequencies, each corresponding to major

U.S. cellular providers: T-Mobile, AT&T, and Verizon. The experiment was conducted with

each cellular channel being sampled at a rate of 10 Msps. Subsequently, the collected data

was processed using the proposed 4G SDR. Figure 5.5 shows the hardware setup with which

the C-12 aircraft was equipped
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5.2.2 Flight Regions and Aircraft Maneuvers

A comprehensive flight campaign was executed over four consecutive days, focusing on the

collection of 4G signal samples for subsequent post-processing. This extensive campaign

resulted in the accumulation of terabytes (TBs) of data across 65 individual flight runs,

creating a unique dataset. This dataset predominantly features signal samples from 55 flight

runs conducted over two distinct regions: (i) Region A, characterized as a rural area within

Edwards AFB in California, and (ii) Region B, a semi-urban region in Palmdale, California.

Figure 5.6 illustrates these specific regions where the experimental flights took place.

In the course of this campaign, more than 200 4G eNodeBs were methodically mapped using

the procedure outlined in [105]. To ensure accuracy and completeness, the identified eNodeB

locations were cross-verified using Google Earth and relevant online databases. These verified

eNodeB positions are depicted as orange pins in Figure 5.6, providing a visual representation

of the extensive coverage and distribution of the cellular towers encountered during the

experimental flights.

The C-12 flew with altitudes up to 23,000 ft above ground level (AGL) and performed two

types of maneuvers to test several aspects of aircraft navigation with cellular SOPs. The

first type was a climbing/descending teardrop-like pattern. These patterns were used to

characterize eNodeBs availability versus altitude, C/N0, and multipath interference. The

second was a grid-like pattern with many turns and straight elements. These patterns

were used to stress-test the proposed 4G navigation receiver’s tracking loops. Figure 5.7

illustrates the maneuvers, where the “geographic point of interest” refers to the “center” of

the climbing/descending teardrop, which the aircraft flew through as it ascended/descended

vertically in order to assess the received signals as a function of altitude.
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Region A: Edwards (rural)

Region B: Palmdale (semi-urban)

Figure 5.6: Regions A and B in Southern California, USA, over which the flight campaign
took place. The orange pins represent cellular 4G towers. The flight trajectories over the
four days are shown in different colors.
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Figure 5.7: Maneuvers performed by the C-12 aircraft. The altitude step is denoted by ∆h
and θ denotes the elevation angle.

5.2.3 Data Processing

To efficiently process terabytes (TBs) of 4G signal data, an autonomous version of the

proposed SDR was developed. This autonomous SDR is designed to automatically process

the collected data and produce key metrics, including Doppler frequency, carrier phase,

pseudorange, C/N0, carrier phase error ePLL,m, and code phase error eDLL,m. The workflow

of this autonomous SDR is illustrated in Figure 5.8.

The first step involves down-sampling the 4G data, followed by an acquisition process. This

process correlates the received data with locally generated 4G-URSs as discussed in 3.3.2,

yielding a coarse estimate of the code start time, Doppler frequency, and the corresponding

C/N0 for the received signal. Detected eNodeBs’ acquisition parameters are then fed into

the tracking loops to continuously monitor code and carrier phases.

A key feature of this autonomous SDR is its dynamic tracking adjustment. It periodically

performs a re-acquisition every tre−ac seconds, a user-defined parameter, to add new eN-
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odeBs to the tracking loop. Additionally, every tas seconds, another user-defined interval, it

evaluates the tracking performance of the eNodeBs. This assessment involves analyzing the

variance of the carrier phase error, denoted as σ2
e
PLL,n

′ , where n
′ = tas/tframe represents the

window size for calculating σ2
e
PLL,n

′ . If this variance exceeds a predefined threshold σ2
PLL,Th,

the tracking of the corresponding eNodeB is discontinued. For the SNIFFER 4G campaign,

these parameters were set to tre−ac = 20 seconds, tas = 5 seconds, and σ2
PLL,Th = 6×103 deg2.

The noise-equivalent bandwidth of the PLL, Bn,PLL, was configured to 12 Hz.

The data processing from each flight run yields crucial tracking information for all detectable

eNodeBs, which is then archived for comprehensive analysis. This dissertation’s subsequent

sections focus on utilizing this data to evaluate the receiver’s performance, explore the recep-

tion characteristics of 4G signals, and assess the potential of these signals for high-altitude

aircraft navigation. To support these assessments, the USAF team provided time-stamped

data on the position, orientation, and other vital ground truth parameters of the C-12 air-

craft at the end of each flight day. This information was captured using the aircraft’s onboard

Honeywell H764-ACE EGI INS/GPS system. A meticulous examination and synchroniza-

tion of this ground truth data with the cellular data from each flight were conducted. This

synchronization process was instrumental in organizing the cellular data by key metrics such

as altitude and roll angle. Furthermore, aligning these datasets is pivotal for the ensuing

analysis of navigational performance using 4G signals, providing a foundation for compre-

hensive evaluations.

5.2.4 Receiver Performance

The data collected from the campaign profoundly influenced the development of a novel

time-domain-based 4/5G receiver, as elaborated in Section 3.3. Initially, the experiment

aimed to analyze the data using a state-of-the-art frequency-based 4G receiver, detailed in
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Figure 5.9: Acquisition output of the state-of-the-art frequency-domain-based 4G SDR at
5,500 ft AGL.

Subsection 3.1.1. However, this receiver faced significant challenges in acquiring and tracking

terrestrial cellular signals when deployed on high-altitude aircraft, particularly with eNodeBs

displaying low SNR or experiencing high Doppler shifts.

The acquisition outcomes of the PSS using the frequency-based 4G receiver, demonstrated

in Figure 5.9, were obtained over a region with a dense 4G eNodeB network. These results

starkly reveal the receiver’s inability to acquire any 4G signal, contrasting sharply with its

successful acquisitions under different conditions, as shown in Figure 3.1. This discrepancy

underscored the necessity to develop a new time-domain-based 4/5G receiver capable of

overcoming these challenges, leading to the proposed receiver in Section 3.3.

Employing the new 4G SDR, as per the process outlined in Subsection 5.2.3, across more than

55 flight runs yielded surprising results. The SDR detected over 100 eNodeBs simultaneously,

far exceeding the typical 10-15 eNodeBs detected in other scenarios like pedestrian, ground

vehicle, or UAV contexts. Remarkably, some eNodeBs were detected at distances up to 100

km, with the SDR still effectively tracking their signals and generating reliable navigation

observables. Figures 5.10 to 5.13 present sample outputs from Region A’s climbing flight
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Figure 5.10: Receiver Output: Region A, climb, altitude range = [1.76 2] km AGL.

mode for various flight runs. Notably, Figure 5.13 illustrates the takeoff phase, where a

significant increase in detectable eNodeBs is observed as the C-12 aircraft ascends.

The receiver outputs for flight runs 24 and 28, showcased in Figures 5.14 and 5.15, respec-

tively, correspond to grid maneuvers conducted in Region A at altitudes of around 5.46 and

1.4 km. Similarly, Figures 5.16 and 5.17 depict outputs from flight runs 44 and 49, involving

teardrop maneuvers.

For Region B, Figures 5.18 through 5.21 display sample outputs from various climbing flight

runs, while Figures 5.22 and 5.23 show outputs for grid maneuvers at altitudes around 1.7 and

1.68 km. Additionally, Figure 5.24 presents the output from flight 54’s teardrop maneuver.

These exhaustive results serve as the foundation for further mining and characterization of

4G signals at high altitudes, and for assessing their navigation performance.
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Table 5.2: Summary of the data processed from the 55 flight runs conducted by the USAF.

Flight
Number Region Flight

Mode
Altitude Range

AGL [km]
Total Number
of eNodeBs

Average C/N0

[dB-Hz]
1 Region A Climb 1.76 2 113 37.48
2 Region A Climb 2 2.28 118 37.08
3 Region A Climb 2.28 2.58 145 36.78
4 Region A Climb 2.59 2.94 141 36.61
5 Region A Climb 2.98 3.19 155 36.03
6 Region A Climb 3.2 3.44 155 36
7 Region A Climb 3.44 3.87 165 36.07
8 Region A Climb 3.91 4.2 144 35.84
9 Region A Climb 4.23 4.54 150 35.58
10 Region A Climb 4.54 4.85 127 35.48
11 Region A Climb 4.86 5.14 143 35.13
12 Region A Climb 5.16 5.45 124 35.51
13 Region A Climb 5.47 5.77 131 34.72
14 Region A Climb 5.78 5.88 102 35.5
15 Region A Climb 5.99 6.37 122 34.51
16 Region A Climb 6.4 6.71 103 34.89
17 Region A Climb 6.72 6.96 119 34.33
18 Region A Climb 7 7.03 91 34.41
19 Region A Climb 1.15 1.31 126 36.81
20 Region A Climb 1.35 1.58 134 36.56
21 Region A Climb 1.59 1.78 129 37.08
22 Region A Climb 0.69 0.76 66 37.23
23 Region A Climb 0 1.34 91 38.22
24 Region A Grid 5.45 5.47 144 34.66
25 Region A Grid 5.45 5.48 155 34.5
26 Region A Grid 5.45 5.47 132 34.49
27 Region A Grid 5.46 5.47 145 34.55
28 Region A Grid 1.26 1.61 161 36.85
29 Region A Grid 1.61 1.61 116 36.06
30 Region A Grid 1.6 1.62 164 36.09
31 Region B Climb 3.06 3.13 112 35.51
32 Region B Climb 3.38 3.53 104 35.54
33 Region B Climb 3.69 3.7 99 34.64
34 Region B Climb 4 4.1 90 34.29
35 Region B Climb 4.31 4.32 97 33.68
36 Region B Climb 4.62 4.62 76 33.24
37 Region B Climb 4.93 4.94 102 33.42
38 Region B Climb 5.24 5.25 62 33.27
39 Region B Climb 5.39 5.4 82 33.94
40 Region B Climb 1.7 2.32 127 37.22
41 Region B Climb 2.46 2.64 132 36.62
42 Region B Climb 2.76 2.77 50 36.11
43 Region B Climb 2.92 2.92 93 35.72
44 Region A TearDrop 1.08 1.1 85 37.07
45 Region A TearDrop 1.1 1.24 94 37.79
46 Region A TearDrop 1.27 1.4 82 37.32
47 Region A TearDrop 1.51 1.57 109 37.28
48 Region A TearDrop 1.55 1.71 103 36.79
49 Region A TearDrop 1.7 1.86 93 37.18
50 Region B Grid 1.7 1.71 120 37.56
51 Region B Grid 1.69 1.72 132 37.08
52 Region B Grid 1.69 1.72 142 37.27
53 Region B Grid 1.66 1.71 118 37.82
54 Region B TearDrop 1.08 1.86 84 37.84
55 Region B Climb 1.45 1.93 100 36.7
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Figure 5.11: Receiver Output: Region A, climb, altitude range = [3.91 4.2] km AGL.

Figure 5.12: Receiver Output: Region A, climb, altitude range = [7 7.03] km AGL.
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Figure 5.13: Receiver Output: Region A, takeoff, altitude range = [0 1.34] km AGL.

Figure 5.14: Receiver Output: Region A, grid, altitude range = [5.45 5.47] km AGL.

102



Figure 5.15: Receiver Output: Region A, grid, altitude range = [1.26 1.61] km AGL.

Figure 5.16: Receiver Output: Region A, teardrop, altitude range = [1.08 1.1] km AGL.
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Figure 5.17: Receiver Output: Region A, teardrop, altitude range = [1.7 1.86] km AGL.

Figure 5.18: Receiver Output: Region B, climb, altitude range = [3.06 3.13] km AGL.
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Figure 5.19: Receiver Output: Region B, climb, altitude range = [4 4.1] km AGL.

Figure 5.20: Receiver Output: Region B, climb, altitude range = [5.39 5.4] km AGL.
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Figure 5.21: Receiver Output: Region B, climb, altitude range = [1.45 1.93] km AGL.

Figure 5.22: Receiver Output: Region B, grid, altitude range = [1.69 1.72] km AGL.
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Figure 5.23: Receiver Output: Region B, grid, altitude range = [1.66 1.71] km AGL.

Figure 5.24: Receiver Output: Region B, teardrop, altitude range = [1.08 1.86] km AGL.
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5.2.5 Characterization of 4G Signals at High Altitudes

5.2.5.1 Receiver Output Preliminary Takeaways

The preliminary analysis of the flight run data, as summarized in Table 5.2, has led to several

important observations:

Regional Variations: The data reveals significant differences between Region A and Region

B. In Region A, there is a higher count of detectable eNodeBs along with a marginally better

average CNR. This may suggest that Region A presents less challenging terrain for signal

propagation compared to Region B.

Flight Mode Impact: Analysis of different flight modes, such as Climb, Grid, and Teardrop,

highlights variations in eNodeB detection capabilities and CNR values. The Climb mode, in

particular, tends to demonstrate a broader range of altitude fluctuations and a higher number

of detectable eNodeBs. This indicates that increased altitudes could enhance line-of-sight

access to multiple eNodeBs.

Altitude Influence: The altitude AGL exhibits a nuanced impact on the count of de-

tectable eNodeBs and CNR. While ascending typically boosts visibility and line-of-sight, it

also presents challenges due to the extended distance from the eNodeBs. The data points

towards an optimal altitude range where the interplay between visibility and distance max-

imizes both eNodeB detection and CNR.

eNodeB Density and CNR Correlation: A notable correlation is observed between

the count of detected eNodeBs and the average CNR. Regions and flight modes recording

higher eNodeB numbers usually exhibit improved CNR values, likely due to an enhanced

probability of line-of-sight connections.
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These findings emphasize the criticality of considering geographic, altitudinal, and opera-

tional variables in signal characterization. The subsequent sections delve deeper into the

correlation between eNodeB detection and altitude across various flight modes, as well as

the influence of multipath effects.

5.2.5.2 Comparative Analysis of eNodeB Detection vs. Altitude in Different

Flight Modes

This section is dedicated to evaluating the availability of 4G signals at various altitudes, with

a particular focus on quantifying the number of eNodeBs that are detectable at different

heights and with different flight modes. The analysis is grounded in the processed data

derived from 55 distinct flight runs over regions A and B. This data has been methodically

categorized based on two pivotal metrics: (i) the altitude AGL, symbolized as h, and its

equivalent in ft, and (ii) the roll angle of the C-12 aircraft during its flight operations. A

significant aspect of this categorization is the inclusion of the roll angle. This metric is crucial

as it facilitates an understanding of how the aircraft’s banking maneuvers might influence

the detectability of eNodeBs, particularly in scenarios where the aircraft body could obstruct

signal reception.

Figure 5.25 illustrates the relationship between the average number of detectable eNodeBs

and altitude, up to a height of 7 kilometers (approximately 23,000 ft) AGL, under steady

flight conditions, defined as having a roll angle ≤ 10◦. Data from Region A is comprehensive,

covering the full altitude range from ground level to 7 km (0 to 23,000 ft), as take-offs and

landings occurred at Edwards AFB, located within this region. Conversely, the dataset for

Region B encompasses altitudes ranging from 400 meters (0.4 km or approximately 1,312 ft)

to 4.6 kilometers (approximately 15,091 ft).

An empirical analysis aimed at modeling the number of eNodeBs relative to altitude h

109



reveals two distinct intervals: (i) altitudes below 300 meters (approximately 984 ft), and

(ii) altitudes above 300 meters. In the first interval, which only includes data from Region

A, a linear increase in the number of eNodeBs with altitude is observed, ranging from an

estimated 5.82 eNodeBs at ground level in rural areas to 45.96 eNodeBs at 300 meters AGL.

For altitudes above 300 meters, the data fits a parabolic curve more precisely, with the peak

number of eNodeBs observed at altitudes of 3.15 km (approximately 10,335 ft) and 2.28 km

(approximately 7,480 ft) for Regions A and B, respectively. Beyond these peak altitudes,

there is a noticeable decrease in the number of eNodeBs with increasing altitude; however,

even at the upper limit of 7 km AGL (approximately 23,000 ft), at least 20 eNodeBs remained

detectable. This observation is particularly notable and underscores the significant potential

of using cellular signals for navigation at high altitudes.

The observed discrepancy in the number of detectable eNodeBs between Regions A and B

can be explained by differences in transmission power. eNodeBs in rural areas like Region

A typically have higher transmission powers to ensure sufficient coverage over expansive

areas and open spaces. This is in contrast to urban/semi-urban eNodeBs, like those in

Region B, which are generally calibrated for high-density usage and are characterized by

lower transmission powers to manage interference and optimize energy efficiency.

Figure 5.26 illustrates the relationship between the number of detectable eNodeBs and alti-

tude for scenarios where the aircraft was in a banking mode, defined by a roll angle greater

than 10◦. In this context, the data from Region A is again more exhaustive, encompassing

altitudes ranging from 0.43 kilometers (approximately 1,411 feet) to 7 kilometers (approxi-

mately 23,000 feet). In contrast, the data from Region B covers a narrower altitude range,

from 0.59 kilometers (approximately 1,936 feet) to 2.29 kilometers (approximately 7,513

feet).

Analysis of the number of eNodeBs detectable within these altitude ranges suggests that a

parabolic curve effectively characterizes the observed behavior. The apex of this parabola,
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Figure 5.25: Measured number of eNodeBs vs AGL altitude h [km] in regions A and B along
with the quadratic fit of the measured data in airplane steady mode (roll angle ≤ 10◦). The
shaded region represents h < 0.3 km.
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Figure 5.26: Measured number of eNodeBs vs AGL altitude h [km] in regions A and B along
with the quadratic fit of the measured data in airplane banking mode (roll angle > 10◦).

indicating the maximum number of eNodeBs, occurs at altitudes of 3.09 kilometers (approx-

imately 10,138 feet) in Region A and 1.57 kilometers (approximately 5,151 feet) in Region

B. Following these peak altitudes, a discernible decline in the number of detectable eNodeBs

is observed with increasing altitude in both regions. This pattern indicates that despite the

changes in altitude and aircraft banking angles, there is a consistent trend in the detectability

of eNodeBs, with a peak followed by a gradual decrease as altitude continues to rise.

5.2.5.2.1 Discussion

In order to comprehensively understand how the number of detected eNodeBs varies with

altitude in different flight modes, Figure 5.27 presents the obtained empirical models over

the altitude range from 0 to 7 km (0 to approximately 23,000 feet) for Regions A and B. The

analysis reveals distinct patterns in eNodeB detectability across different flight conditions:

1. Region A:

(a) Steady Mode: Observations indicate an increase in the number of detected
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eNodeBs with altitude, reaching a peak at approximately 3.15 km (approximately

10,335 feet). Beyond this peak, a gradual decrease in detectability is observed.

(b) Banking Mode: A similar trend is noted, with the peak detectability occurring

around 3.09 km (approximately 10,138 feet). It is noteworthy that the peak

number of detectable eNodeBs in banking mode is marginally lower compared to

steady mode.

2. Region B:

(a) Steady Mode: The pattern mirrors that of Region A, with a detectability peak

at around 2.28 km (approximately 7,480 feet). However, the decrease in eNodeB

detection beyond the peak is less pronounced compared to Region A.

(b) Banking Mode: A markedly different behavior is observed, characterized by a

rapid increase in eNodeB detection up to about 1.57 km (approximately 5,151

feet), followed by a precipitous decline.

In Region A, the altitude yielding the highest eNodeB detectability appears to be consistently

around 3 km (approximately 10,138 to 10,335 feet) for both flight modes, suggesting a more

uniform eNodeB distribution or different geographic characteristics compared to Region B.

Conversely, Region B exhibits significant discrepancies between steady and banking modes,

with the optimal altitude for eNodeB detection in banking mode being notably lower than

in steady mode. This disparity may be attributable to the influence of aircraft banking on

the visibility of eNodeBs, which are potentially more scattered or located in varied terrains.

Furthermore, steady mode in Region A consistently outperforms banking mode in terms

of eNodeB detectability across most altitudes, particularly at higher altitudes. In Region

B, while steady mode generally detects more eNodeBs at lower altitudes, banking mode

temporarily surpasses steady mode around 1.5 km (approximately 5,151 feet) before rapidly

decreasing.
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Figure 5.27: The obtained empirical models of the detected eNodeBs vs altitude for different
Regions and flight modes.

These findings provide valuable insights into the relationship between flight mode, altitude,

and cellular network coverage, which is pivotal for the development of cellular-based navi-

gation systems for aircraft.

5.2.5.3 Multipath Characterization

This section focuses on characterizing the accuracy of 4G navigation observables at high

altitudes, particularly in the context of multipath channel effects. Both severe- and short-

delay multipath can introduce significant biases in pseudorange measurements, adversely

affecting the navigation solution. A key method for assessing the multipath channel involves

estimating the channel impulse response (CIR) using the receiver proposed in Section 3.3.

The CIR is evaluated at various altitudes within Regions A and B to understand its impact.

Representative results for each region are depicted in Figure 5.28, with a focus on a 4G signal
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bandwidth of 10 MHz. The data presented in Figure 5.28 illustrates that the LOS signal is

predominant in the CIR up to altitudes of 23,000 ft AGL. Interestingly, the results indicate

that multipath effects are more pronounced at lower altitudes. This trend is attributed to

the increased presence of reflective surfaces near the ground, which contribute to multipath.

Consequently, the CIRs at lower altitudes are either relatively free of multipath or exhibit

low multipath levels, suggesting higher accuracy in pseudorange measurements.

It is noteworthy that the CIRs appear to deteriorate slightly at altitudes around 15,000 ft

(AGL) and above. However, this degradation is primarily attributed to channel noise rather

than multipath. Such insights into the CIR at various altitudes are crucial for understanding

and enhancing the accuracy of high-altitude 4G navigation solutions.

5.2.6 Navigation Performance

This section focuses on assessing the navigation performance of the proposed 4G-based high-

altitude aircraft navigation system. Specifically, it examines two flight runs, namely flight

runs 28 and 54. Flight run 28 involves a grid maneuver over Region A, while flight run 54

encompasses a teardrop maneuver over Region B. These maneuvers are detailed in Table

5.2. Subsequent discussions in this section will delve into the design and settings of the

navigation filter and explore the navigation performance observed in both flight runs.

5.2.6.1 Navigation Filter

The extracted carrier-aided code-phase pseudorange measurements were fused in an EKF

to estimate the receiver’s 3-D position rr, velocity ṙr, and acceleration r̈r expressed in

North-East-Down (NED) frame, and relative clock bias and drift between the receiver’s and
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Figure 5.28: Top: Surface plots of the CIR as a function of altitude for representative
eNodeBs in Regions A nad B. Bottom: Snapshots of empirical CIR in Regions A and B at
10,000 ft AGL along with the theoretical CIR.
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eNodeBs’ clocks. The EKF state vector is expressed as

x ≜
[
xT
pva,x

T
clk1

, · · · ,xT
clkU

]T
, (5.2)

where xpva ≜
[
rT
r , ṙ

T
r , r̈

T
r

]T
, xclku ≜

[
c∆δts,u, c∆δ̇ts,u

]T
, ∆δts,u ≜ δtr − δts,u, ∆δ̇ts,u ≜

δ̇tr − δ̇ts,u, and U is the total number of eNodeBs. The dynamics of x can be expressed as

x(k + 1) = Fx(k) +w(k), (5.3)

where F ≜ diag [Fpva,Fclk, · · · ,Fclk], with Fpva and Fclk defined in (2.12) and (2.18), respec-

tively; and w(k) is the overall process noise vector, which is modeled as a zero-mean white

sequence with covariance Q ≜ diag [Qpva,Qclk]. The dynamics covariance Qpva is defined in

(2.14) except for S̃xyz ≡ S̃NED, where S̃NED = diag
[
q̃
′
N, q̃

′
E, q̃

′
D

]
, with q̃

′
x, q̃

′
y, and q̃

′
z being

the NED jerk continuous-time noise spectra, respectively. The clock error covariance Qclk is

defined as

Qclk = ΓQclkrΓ
T +Qclks , (5.4)

Γ ≜ [I2×2, · · · , I2×2]
T , (5.5)

Qclks ≜ diag
[
Qclks,u=1 , · · · ,Qclks,u=U

]
, (5.6)

whereQclkr andQclks,u are the receiver’s and the u-th eNodeB’s clock process noise covariance

matrices, with Qclkκ as defined in (2.18).
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5.2.6.2 Navigation Solution

5.2.6.2.1 EKF Settings

The EKF was configured with a measurement rate of T = 0.01s, aligning with the duration

of the 4G-URS replica. The jerk process noise spectra were set to q̃
′
N = q̃

′
E = 5 m2/s5 and

q̃
′
D = 1 m2/s5. The covariance matrices for the receiver’s and eNodeBs’ clock process noise

were defined as

Qclkr =

4.22× 10−5 3.37× 10−7

3.37× 10−7 6.74× 10−5

 , (5.7)

Qclks,u =

3.59× 10−5 3.54× 10−9

3.54× 10−9 7.09× 10−7

 . (5.8)

Considering the similar altitudes of terrestrial cellular transmitters as viewed from a high-

flying aircraft, a large vertical dilution of precision (VDOP) is expected. To address this, the

EKF’s measurement-update step integrates altimeter data zalt from the aircraft’s navigation

system with cellular carrier-aided code-phase pseudorange measurements. The altimeter

measurement error variance σ2
alt(k) was set to 5 m2. The cellular measurement noise vari-

ances, based on CNR and receiver parameters as discussed in [106], varied between 0.3−11.7

m2 in Region A and 3.1− 29.0 m2 in Region B.

5.2.6.2.2 Results

Figure 5.29 presents the navigation solution for a flight run featuring a 90◦-turn maneu-

ver over Edwards, California, USA (Region A). During this 450-second run covering 42.23

km, navigation observables from 32 out of 144 tracked eNodeBs, coupled with altimeter
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measurements, yielded a 4G-based navigation solution with a position RMSE of 9.86 m.

Figure 5.32 illustrates the solution for a flight run with a teardrop maneuver over Palmdale,

California, USA (Region B). Over 600 seconds and 56.56 km, observables from 18 out of 84

eNodeBs, alongside altimeter data, produced a navigation solution with a position RMSE of

10.37 m.

Figures 5.30 and 5.33 display CNR, pseudoranges, and errors in clock bias (∆δ̃ts,u = ∆δ̂ts,u−

∆δts,u) and drift (∆δ̃ts,u = ∆δ̂ts,u −∆δts,u) for the mapped eNodeBs in each flight.

Figures 5.31 and 5.34 exhibit the EKF error plots with ±3σ bounds for position and velocity

in the East and North directions. Variations in σ-bounds are attributed to the relative

geometry between the aircraft and eNodeBs, the number of tracked eNodeBs, and model

mismatches, particularly during banking maneuvers. Table 5.3 summarizes the navigation

performance for Regions A and B.

While the findings presented in this paper offer encouraging prospects for aircraft navigation

using cellular terrestrial signals, it is crucial to differentiate between the specific requirements

of military operations and civil aviation for practical implementation. This study primarily

concentrated on demonstrating the aspects of ranging and accuracy. However, critical factors

such as integrity, availability, and continuity have not been addressed and thus merit further

investigation. Moreover, the paper raises pertinent questions regarding the alignment of

civil aviation’s long operational timeline with the rapidly evolving cellular technology. This

situation leads to key inquiries: How can we reconcile these potentially conflicting timelines?

What kind of commitments should be expected from regulatory bodies, such as the 3GPP,

or local cellular service providers, to ensure the viability and reliability of using cellular

signals for aviation purposes? These questions underscore the necessity for a collaborative

approach involving various stakeholders to successfully integrate cellular technology into

aviation systems.
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Edwards, CA, USA

Figure 5.29: High-altitude aircraft navigation – Region A: Edwards, CA, USA – Experi-
mental environment and aircraft navigation results showing: eNodeB positions, true aircraft
trajectory, and aircraft trajectory estimated exclusively using cellular 4G signals. The air-
craft traversed a total distance of 42.23 km traversed in 450 s during the experiment. The
position RMSE over the entire trajectory was 9.86 m.

5.3 5G – Ground Vehicle Scenario

This section presents an experimental demonstration of the proposed 5G receiver mounted

on a ground vehicle navigating in a suburban environment while utilizing sub-6 GHz 5G

signals from two gNBs. It is shown that while a state-of-the-art frequency-domain-based 5G

opportunistic navigation receiver can only reliably track the gNBs’ signals over a trajectory

of 1.02 km traversed in 100 seconds, producing a position RMSE of 14.93 m; the proposed

time-domain-based receiver was able to track over a trajectory of 2.17 km traversed in 230
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Figure 5.30: High-altitude aircraft navigation – Region A: Edwards, CA, USA – Top to
bottom: (a) Time history of CNRs for all eNodeBs used to compute the navigation solution
in Region A. (b) Time history of pseudoranges estimated by the proposed receiver and
corresponding true range. The initial values of the pseudoranges and ranges were subtracted
out for ease of comparison. (c) Time history of the clock bias error (pseudorange plus the
estimated bias minus the true range). (d) Time history of the clock drift error (pseudorange
rate plus the estimated drift minus the true range rate).

seconds, achieving a position RMSE of 9.71 m.

5.3.1 Experimental Setup and Environmental Layout

The experiment was performed on the Fairview Road in Costa Mesa, California, USA. In

this experiment, a quad-channel NI USRP-2955 was mounted on a vehicle, where only two

channels were used to sample 5G signals with a sampling ratio of 10 MSps. The receiver was

equipped with two consumer-grade cellular omnidirectional Laird antennas. The USRP was

tuned to listen to 5G signals from AT&T and T-Mobile U.S. cellular providers as summarized

in Table 5.4. The vehicle was equipped with a Septentrio AsteRx-i V integrated GNSS-IMU

121



Figure 5.31: High-altitude aircraft navigation – Region A: Edwards, CA, USA – EKF plots
showing the time history of the position and velocity errors as well as the ±3σ bounds.

to be used as a ground truth in this experiment. Figure 5.35 shows the experimental hardware

and software setup.

5.3.2 Signal Acquisition and Tracking Performance

The signal acquisition was performed to detect the hearable gNBs. Two gNBs were detected

as shown in Figure 5.36. The gNBs’ positions were mapped prior to the experiment. In

the tracking stage, the 5G signals from both gNBs were tracked for 230 seconds. Figure

5.37 shows the tracking results of the two gNBs including: (i) CNR, (ii) Doppler frequency

estimate versus expected Doppler obtained using the ground vehicle’s ground truth reference,

(iii) pseudorange estimate versus expected range after removing the initial bias, and (iv)

range errors.
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Palmdale, CA, USA

Figure 5.32: High-altitude aircraft navigation – Region B: Palmdale, CA, USA – Experi-
mental environment and aircraft navigation results showing: eNodeB positions, true aircraft
trajectory, and aircraft trajectory estimated exclusively using cellular 4G signals. The air-
craft traversed a total distance of 56.56 km traversed in 600 s during the experiment. The
position RMSE over the entire trajectory was 10.37 m.

5.3.3 Navigation Filter

The 5G pseudorange measurements are fed to an EFK to estimate the state vector x defined

as

x ≜
[
xT
r ,x

T
clk

]T
, (5.9)

xr ≜
[
rT
r , ṙ

T
r

]T
, (5.10)

xclk ≜
[
c∆δt1, c∆δ̇t1, · · · , c∆δtU , c∆δ̇tU

]T
(5.11)
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Figure 5.33: High-altitude aircraft navigation – Region B: Palmdale, CA, USA – Top to
bottom: (a) Time history of CNRs for all eNodeBs used to compute the navigation solution
in Region A. (b) Time history of pseudoranges estimated by the proposed receiver and
corresponding true range. The initial values of the pseudoranges and ranges were subtracted
out for ease of comparison. (c) Time history of the clock bias error (pseudorange plus the
estimated bias minus the true range). (d) Time history of the clock drift error (pseudorange
rate plus the estimated drift minus the true range rate).

where and xclk is the clock error state vector, {∆δtu ≜ δtr − δts,u}Uu=1 and {∆δ̇tu ≜ δ̇tr −

δ̇ts,u}Uu=1 are the relative clock bias and drift between the receiver and the u-th gNB. The

temporal evolution of xr used in the EKF is assumed to follow the white noise acceleration

model, as discussed in Subsection 2.3.1, and the clock error dynamics is assumed to follow a

double integrator driven by process noise model, as discussed in Subsection 2.4.

5.3.4 Navigation Solution

The vehicle traversed a trajectory of 2.17 km in 230 seconds. The receiver’s position and

velocity state vectors and their corresponding covariances were initialized from the GNSS-
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Figure 5.34: High-altitude aircraft navigation – Region B: Palmdale, CA, USA – EKF plots
showing the time history of the position and velocity errors as well as the ±3σ bounds.

IMU system. Using the expressions of measurement noise variances as a function of the CNR

and receiver parameters in [107], the variances were found to vary between 0.67 to 12.78 m2.

Figure 5.38 shows the environmental layout, 5G gNBs location, and the navigation solution of

the proposed 5G framework versus ground truth. The proposed 5G opportunistic navigation

framework tracked the 5G signals, achieving a position RMSE of 9.71 m. In contrast, the

previous generation 5G SDR, presented in Subsection 3.1.2, was only able to track over a

shorter segment of 1.02 km, achieving a position RMSE of 14.93 m as shown in Figure 5.39.

It is worth noting that due to bad gNB geometric diversity, the majority of errors are in the

east direction. Figure 5.40 shows the EKF errors of the ground vehicle’s (a) east-position,

(b) north-position, along with the associated ±1σ bounds, and (c) position errors along the

east and the north directions.
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Figure 5.35: Experimental hardware and software setup.
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Figure 5.36: Cellular 5G signal acquisition results showing squared correlation magnitude
|Sm|2 versus initial estimates of the code start time t̂s0 and Doppler frequency f̂D0 for the
two detected gNBs.
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Figure 5.37: Cellular 5G signal tracking results of the two gNBs showing: (i) CNR, (ii)
Doppler frequency estimate in solid lines versus expected Doppler obtained using the vehi-
cle’s ground-truth reference in dashed lines, (iii) pseudorange estimate in solid lines versus
expected range in dashed lines after removing the initial bias, and (iv) range errors.
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Costa Mesa, CA, USA

gNB 2

gNB 1

Figure 5.38: Environmental layout with 5G gNBs and the traversed trajectory (ground truth
versus estimated with 5G signals). Image: Google Earth.
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Costa Mesa, CA, USA

gNB 1

Fairview road

870 m

1.5 km

gNB 2

5G

True

Duration = 100 s

Total trajectory = 1.02 km

RMSE = 14.93 m

Standard deviation = 8.28 m

Maximum error = 25.87 m

Figure 5.39: Environmental layout with 5G gNBs and the traversed trajectory (ground truth
versus estimated with 5G signals) when using the conventional 5G receiver. Image: Google
Earth.
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Figure 5.40: The EKF estimation of the ground vehicle’s (a) east-position and (b) north-
position along with the associated ±3σ bounds. (c) A comparison of the position errors
along the east and the north directions.
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Table 5.3: Navigation Performance with Cellular 4G Signal on High Altitudes.

Metric Region A Region B

Total number of tracked eNodeBs 144 84

Total number of unique eNodeBs used (mapped) 32 18

Number of {min, max} eNodeBs used 17-27 5-17

Cellular frequency [MHz] 731.5. 739, 751 731.5, 739

Flight duration [sec] 450 600

Flight length [km] 42.23 56.56

Altitude range AGL [ft] [MHz] 7,530-7,598 3,540-4,573

Position RMSE [m] 9.86 10.37

Velocity RMSE [m/s] 0.34 0.39

Position error standard deviation [m] 5.92 4.39

Velocity error standard deviation [m/s] 0.19 0.22

Maximum position error [m] 35.26 24.42

Maximum velocity error [m/s] 3.62 3.14

Table 5.4: gNBs’s Characteristics.

gNB Carrier frequency [MHz] NCell
ID Cellular provider

1 872 608 AT&T
2 632.55 398 T-Mobile

5.4 5G – Unmanned Aerial Vehicle Scenario

This section presents an experimental demonstration of the proposed 5G receiver mounted

on a UAV over an urban environment. The experimental results of a UAV navigating with

the proposed 5G SDR, while receiving signals from four 5G gNBs, are demonstrated. It is

shown that over a trajectory of 500 m traversed in 145 seconds, the position RMSE was 3.35

m.
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Autel Robotics X-Star PRemium UAV Ettus E312 USRP Cellular antenna GPS antenna

Figure 5.41: Experimental setup.

5.4.1 Experimental Setup and Environmental Layout

An experiment was conducted in Santa Ana, California, USA. In the experiment, the naviga-

tor was an Autel Robotics X-Star Premium UAV equipped with a single-channel Ettus 312

USRP connected to a consumer-grade 800/1900 MHz cellular antenna and a small consumer-

grade GPS antenna to discipline the on-board oscillator. The cellular receivers were tuned

to the cellular carrier frequency 632.55 MHz, which is a 5G frequency allocated to the U.S.

cellular provider T-Mobile. The Samples of the received signals were stored for off-line

postprocessing with a sampling ratio of 10 MSps. The ground-truth reference trajectory

was taken from the on-board Ettus 312 USRP GPS solution. The UAV traversed a trajec-

tory of 500 m in 145 seconds. Figures 5.41 and 5.42 show the experimental setup and the

environment layout, respectively.

5.4.2 Receiver Output

The signal acquisition process was applied to detect the ambient 5G signals from the collected

data. Based on experimental data, the Doppler frequency search window was chosen to be

between -25 and 25 Hz. The code start time search window was chosen to be one code

interval with a delay spacing of one sample. Four gNBs were detected, three of which were

hearable starting at tn = 0 seconds, and a fourth gNB was hearable at tn = 25 seconds. The

gNBs’ positions were mapped prior to the experiment. Figure 5.43 shows |Sm|2 versus t̂s0
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Santa Ana, CA, USA

gNB 1

gNB 3
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gNB 4
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Figure 5.42: Environmental layout and UAV trajectory.
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Figure 5.43: Cellular 5G signal acquisition results showing |Sm|2 versus t̂s0 f̂D0 for the four
detected gNBs.

f̂D0 for the four detected gNBs.

In the tracking stage, the noise-equivalent bandwidths Bn,PLL and Bn,DLL were chosen to be

6 Hz and 0.05 Hz, respectively. Figure 5.44 shows cellular 5G signal tracking results of the

four gNBs including: (i) CNR, (ii) Doppler frequency estimate in solid lines versus expected

Doppler obtained using the UAV’s ground-truth reference in dashed lines, (iii) Pseudorange

estimate in solid lines versus expected range in dashed lines after removing the initial bias,

and (iv) range error estimate in solid lines versus measured error in dashed lines.

5.4.3 Navigation Solution

The 5G measurements are fed into an EKF similar to the one deployed in Subsection 5.3.3

to produce the position estimates. The UAV traversed a distance of 500 m in 145 seconds.

The receiver’s position and velocity state vectors and their corresponding covariances were

initialized using the output of the Ettus 312 USRP GPS solution. The initial relative clock
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Figure 5.44: Cellular 5G signal tracking results of the four gNBs showing: (i) CNR, (ii)
Doppler frequency estimate in solid lines versus expected Doppler obtained using the UAV’s
ground-truth reference in dashed lines, (iii) Pseudorange estimate in solid lines versus ex-
pected range in dashed lines after removing the initial bias, and (iv) range error estimate in
solid lines versus measured error in dashed lines.
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Duration = 145 s
Total trajectory = 500 m

RMSE = 3.35 m

Standard deviation = 1.61 m
Maximum error = 8.36 m

Figure 5.45: The 5G navigation solution exhibited a position RMSE of 3.35 m versus the
ground-truth reference navigation solution. Image: Google Earth.

biases were eliminated, i.e., the EKF’s relative clock biases were initialized to zero. The first

two 5G measurements were dropped, where the first two positions from the Ettus 312 GPS

solution were used to initialize the relative clock drifts. The receiver’s and gNBs’ clocks were

modeled as OCXO with Sw̃δtj
= 1.3× 10−22 and Sw̃δ̇tj

= 7.9× 10−25 [108]. The process noise

power spectral densities q̃x and q̃y were set to 0.1 (m2/s3).

Figure 5.45 shows the navigation solution of the USS-based 5G receiver versus the Ettus 312

GPS solution. The proposed receiver yielded a UAV position RMSE of 3.35 m.
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Chapter 6

Exploiting On-Demand 5G Downlink

Signals for Opportunistic Navigation

This chapter is organized as follows. Section 6.1 establishes the foundation by motivating the

problem under study. In Section 6.2, we introduce the pioneering UE-based 5G navigation

framework that capitalizes on the ’on-demand’ 5G downlink signals. This section elaborates

on the various phases involved in the framework, including the acquisition of 5G-URS, its

preprocessing, and the development of tracking loops. Section 6.3 details the innovative

implementation of UE-based carrier and code phase tracking, leveraging the full bandwidth

of the sampled 5G downlink. It also presents and evaluates the results of 5G-URS acquisition,

preprocessing, and tracking using real 5G data from the existing sub-6 GHz 5G infrastructure

in the US.
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Figure 6.1: The 5G-USS OFDM locally-generated frame.

6.1 Motivation

The carrier-aided code phase-based 5G receiver that was proposed in Section 3.3, demon-

strated its superior performance compared to the conventional frequency-based state-of-the-

art SDR discussed in Subsection 3.1.2, and claimed the state-of-the-art status. However, the

proposed SDR extracts navigation observables only from the known “always-on” 5G down-

link denoted by 5G-USS while utilizing the time-domain orthogonality of downlink signals.

The 5G-USS is essentially the 5G frame with a normalized SS/PBCH and zeros elsewhere.

Aside from the improvement that this approach achieved, it is still limited by the ratio of USS

bandwidth versus the entire downlink bandwidth rB,5G−USS and the duty factor rT,5G−USS,

which limits the accuracy of the delay and carrier phase estimates, respectively [109]. For

different configurations, rB,USS and rT,USS range between 14.5%–36% and 0.0104%–5.33%,

respectively. Figure 6.1 shows the USS locally-generated 5G frame in the frequency-domain,

where only the yellow REs are known to the UE, and the rest is set to zero. The depicted

frame represents a 5G downlink signal with µ = 0, 10 MHz bandwidth, rB,5G−USS = 36%,

and rT,5G−USS = 1.33%.
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The “always-on” approach requires knowing the signal structure, specifically the RSs. To

alleviate this, a cognitive opportunistic navigation (CON) framework was proposed in [110]

to exploit all available RSs, including ones unknown to the UE. The CON framework suc-

cessfully estimated a periodic 5G RS, which was subsequently tracked, and exploited for

navigation. However, the following question arises: How much of the available resources does

the cognitively-acquired RS capture compared to the “always-on” (i.e., 5G-USS)? Given that

the OFDM frame start time is unknown in the CON framework, the only way to assess the

acquired signal is to look at the narrowness of the normalized ACF of both RSs, which gives

an estimate of the bandwidth that is being exploited (i.e., rB,RS). The results in [110] showed

rB,5G−CON = 25% versus rB,5G−USS = 36%.

The CON framework suffers from the following limitations

• The acquisition in the CON framework is challenged by the propagation channel fading

and stationarity, which limits the coherent processing interval (CPI), i.e., the time

interval in which the Doppler, delay, and channel gains are considered constant. Short

CPI means fewer resources to be captured in the cognitively-acquired signal.

• The CON framework requires the UE to be in motion to exploit multiple gNBs trans-

mitting on the same channel. Yet, to do so, the CON framework uses Doppler subspace

to differentiate between gNBs; thus, the framework acquires only the most powerful

gNB among different gNBs with similar Doppler profiles. This results in acquiring

fewer gNBs than the “always-on” approach.

• The 5G frame start time remains unknown in the CON framework; hence, it is not

possible to construct the frame structure of the acquired signal. As such, pre-filtering

and power allocation of different RSs cannot be performed, which affects the fidelity

of the acquired signal.
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6.2 Proposed Framework

This section presents the proposed framework in which the on-demand 5G signals are ex-

ploited. The framework aims to maximize rB,5G−URS and rT,5G−URS by exploiting other

periodic RSs in the 5G downlink signals that are unknown to the UE, such as: channel

state information RS (CSI-RS); other DM-RSs for the physical downlink control channel

(PDCCH) and physical data shared channel (PDSCH); and phase tracking RS (PTRS).

6.2.1 Signal Model

The received baseband signal model can be expressed as

r[n] =
N∑
u=1

(αucu[τn − tsu [n]] exp (jθu[τn])

+du[τn − tsu [n]] exp (jθu[τn])) + w[n], (6.1)

where r[n] is the received signal at the nth time instant; αu is the complex channel gain be-

tween the UE and the u-th gNB; τn is the sample time expressed in the receiver time; N is the

number of gNBs; cu[n] is the periodic RS with a period of L samples; tsu [n] is the code-delay

corresponding to the UE and the u-th gNB at the nth time instant; θu[τn] = 2πfDu [n]Tsn is

the carrier phase in radians, with fDu [n] being the Doppler frequency at the nth time instant

and Ts is the sampling time; du[τn] represents the samples of some data transmitted from

the u-th gNB; and w[n] is a zero-mean independent and identically distributed noise with

E {w[m]w∗[n]} = σ2
wδ[m − n], where δ[n] is the Kronecker delta function, and X∗ denotes

the complex conjugate of random variable X.
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6.2.2 Proposed Approach

The structure of the proposed framework is shown in Figure 6.2. This framework utilizes a

so-called URS for 5G opportunistic navigation, which takes advantage of both “always-on”

and “on-demand” 5G downlink RSs. Since the USS is always transmitted in the 5G downlink

signal, it is used as a prior to acquire OFDM resources, which (i) extends the CPI, (ii) uses

the USS subspace to exploit all available gNBs (even gNBs with similar Doppler profiles),

and (iii) allows preprocessing of the acquired replica to suppress noise and interference and

maintain equally-distributed power among different RSs.

6.2.2.1 5G-USS-Based Acquisition and Tracking

In the acquisition stage, the USS is used to determine which gNBs are in the UE’s proximity

and obtain a coarse estimate of their corresponding code start times
{
t̂su,0

}U
u=1

and Doppler

frequencies
{
f̂Du,0

}U
u=1

, where U is the total number of gNBs.

In the tracking stage, the receiver refines these coarse estimates via a PLL and a carrier-aided

DLL. At first, node A in Figure 6.2 is connected to 1 and the tracking loops use the USS as

the local replica. These two steps are discussed in detail in Subsections 3.3.2 and 3.3.3.

6.2.2.2 5G-URS Acquisition

After the tracking loop achieves lock, the acquisition of the 5G-URS is performed as

URS5G,u ≜
1

K

K∑
k=1

ŷu,k, (6.2)
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where K is the total number of 5G frames used to capture the 5G-URS and ŷu,k is the

received k-th 5G frame, defined as

ŷu,k ≜ exp(−j2πf̂Du,k
[τk])⊙ rk[(n− ⌊t̂su,k · fs⌉)L], (6.3)

where a ⊙ b is the element-wise product, ⌊·⌉ rounds the argument to the nearest integer,

(·)L denotes modulo-L operation, fs is the sampling frequency, and rk and τk are defined as

rk ≜ [r[(k − 1)L+ 1], r[(k − 1)L+ 2], · · · , r[kL]]T ,

τk ≜
[
τ(k−1)L+1, τ(k−1)L+2, · · · , τkL

]T
.

6.2.2.3 5G-URS Preprocessing

A main advantage of the proposed framework is its ability to estimate the 5G OFDM frame

start time. This allows converting the captured time-domain 5G-URS into 5G frame struc-

ture (i.e., frequency-domain) where the transmitted symbols are generated, which gives ac-

cess to each received 5G RE separately. This capability can be utilized to pre-filter the

acquired URS and minimize interference. The preprocessing is summarized in Algorithm 1,

where γ is a predefined threshold chosen empirically between 0 and 1, which depends on

the fading channel between the gNB and UE. The preprocessing stage outputs a modified

version of the URS signal denoted by URS
′

5G,u.

6.2.2.4 5G-URS Tracking

After acquiring and preprocessing the 5G-URS, node A switches to 2 and uses the 5G-URS

as the local replica in standard tracking loops (e.g., as in [111]).
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Algorithm 1 5G-URS Pre-processing.
Input: URS5G,u

Output: URS
′

5G,u

1: Convert URS5G,u to frame structure URSf5G,u (i.e., time-domain serial array to matrix)
2: Normalize by maximum magnitude of REs

URSf5G,u = URSf5G,u/URSm, URSm ≜ max
{∣∣∣URSf5G,u

∣∣∣}
3: for x = 0, x++, while x < Number of symbols do
4: for y = 0, y++, while y < Number of subcarriers do

5: if
∣∣∣URSf5G,u(x, y)

∣∣∣ < γ then

6: URSf5G,u(x, y)← 0
7: end if
8: end for
9: end for
10: Normalize element-wise: URSf5G,u = URSf5G,u./

∣∣∣URSf5G,u

∣∣∣
11: Convert URSf5G,u into time-domain URS

′

5G,u
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Figure 6.2: Block diagram of the proposed framework.
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6.3 Experimental Results

This section presents the first UE-based carrier and code phase tracking, exploiting the entire

sampled 5G downlink bandwidth. To this end, a stationary NI-USRP-2955 was equipped

with a consumer-grade omnidirectional Laird antenna to receive 5G downlink signals. The

bandwidth was set to 10 MHz and the carrier frequency was set to 632.55 MHz, which

corresponds to the U.S. cellular provider T-Mobile. The collected data was stored on a

laptop for off-line processing. 5G-URS acquisition, preprocessing, and tracking results are

presented next.

6.3.1 5G-URS Acquisition and Preprocessing

The USRP recorded 5G signals for 300 seconds. The 5G-USS was used to detect a nearby

gNB as in [94]. The gNB was mapped prior to the experiment and its location was known to

the receiver. The receiver determined the gNB cell ID, Doppler, and code start time through

the correlation approach detailed in Subsection 3.3.2. A gNB with NCell
ID = 394 was detected.

The processing needed to track the Doppler and code start time followed the steps outlined

in Subsection 3.3.3.

After the tracking loops achieved lock, the proposed framework acquired the 5G-URS signal

for 4 seconds. Then, the acquired signal was preprocessed as discussed in Algorithm 1

with γ = 0.2. Figure 6.3 shows the frame structure of acquired 5G-URS before and after

preprocessing.

To study 5G-URS’s spectral efficiency rB,5G−URS and duty factor rT,5G−URS, the number of

active subcarriers and symbols was obtained from the preprocessed 5G-URS as shown in

Figure 6.4. Assuming that a 5G-URS symbol is active if 10 or more subcarriers are active
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Figure 6.3: Frame structure of the 5G-URS before and after preprocessing.
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within that symbol results in having 32 active symbols; hence, rT,5G−URS = 22.86% compared

to rT,5G−USS = 2.86%. For the bandwidth ratio, Figure 6.4 shows that rB,5G−URS = 100%

compared to rB,5G−USS = 36% and rB,5G−CON = 25%. The advantage of this increase in

bandwidth ratio can be seen in the narrowness of the 5G-URS-ACF as shown in Figure 6.5,

which gives higher resolution in the time-domain to discriminate the LOS from multipath

components.

6.3.2 5G-URS Tracking Results

Next, the receiver switched to using the URS for tracking the signal parameters. Figure

6.6 shows the tracking results of the proposed framework utilizing the entire sampled 5G

bandwidth compared to the USS-based approach. It can be seen how the CNR significantly

increased by approximately 10 dB when using the acquired 5G-URS. This is due to the fact

that in typical time-of-arrival-based ranging, the variance of the ranging error is a decreasing

function of (i) the signal bandwidth and (ii) the signal-to-noise ratio. In the proposed

approach, the bandwidth of the SS was increased by learning more synchronization sequences

in higher subcarriers. Moreover, synchronization sequences were learned in different symbols

of the frame. This resulted in a 10 dB increase in CNR as shown in Figure 6.6. Consequently,

the standard deviation of the 5G-URS-based method is significantly decreased compared to

that of the 5G-USS-based method. Also, smaller carrier and code phase errors were obtained

by the proposed approach, which translates to better-ranging performance. It is worth noting

that the CNR increase comes with an additional computational complexity on the order of

O(K · n), from (6.2) and (6.3). Also, the 5G-URS cannot be used until after K time-steps.

However, this delay is reasonably short. For example, in the presented results, the duration

was only 4 seconds.
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Figure 6.5: Normalized autocorrelation function of the 5G-URS compared with the ones
estimated with the CON receiver and to the 5G-USS.

6.3.3 Ranging Results

This subsection assesses the ranging performance of the proposed framework. In this station-

ary scenario, the true range is fixed (290 m); hence, after removing the initial range error,

the remaining range error over time can be observed in Figure 6.7. Note that the range

error of the proposed 5G-URS-based framework drifts slower than that of the 5G-USS-based

framework. The range error’s standard deviation of the 5G-USS and 5G-URS frameworks

were 5.05 m and 2.75 m, respectively.
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Figure 6.6: Cellular 5G tracking results of the proposed 5G-URS versus USS: (a) C/N0, (b)
carrier phase error, and (c) code phase error.
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Chapter 7

A Passive EKF-Based Reconfigurable

Intelligent Surface (RIS)-Aided

Cellular Navigation System

This chapter is organized as follows. Section 7.1 describes the system model including the

location scheme and the signal and channel models. Section 7.2 presents the measurement

engine to estimate the TOA and AOA from the uplink LOS and VLOS received signals.

Section 7.3 discusses the RIS phase profile optimization. Section 7.4 implements an EKF as a

navigation filter for the proposed system. Section 7.5 presents a cellular-5G-OFDM simulator

to evaluate the performance of the proposed approach through Monte Carlo (MC) simulations

across diverse scenarios, including pedestrian movement, ground vehicles, and UAVs. These

simulations were conducted under various conditions: synchronous and asynchronous clock

settings between the BS and UE, and environments with and without multipath effects. The

results from these simulations highlight the proficiency of the proposed navigation system,

demonstrating its capability to achieve sub-meter to meter-level positioning accuracy in a

range of scenarios.
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7.1 Model Description

7.1.1 Location Scheme

We consider a 3-D localization scenario with I single-antenna UEs, a BS each equipped with

a Nu-length uniform linear antenna array whose elements are regularly spaced with inter-

element spacing d = λ/2, and an N = Nx × Ny element rectangular RIS. The i-th UE is

located at rr,i = [xr,i, yr,i, zr,i]
T. Each BS is equipped with a uniform linear antenna array

consisting of M elements. The array at the BS is centered at rs = [xs, ys, zs]
T with the

elements spaced at λ/2 apart. The RIS is assumed to lie in the yz-plane with a reference

point 03, where the location of the n-th element is denoted by rris,n = [0, yris,n, zris,n]
T. The

RIS elements are regularly spaced with inter-element spacing d = λ/2 in both dimensions.

Figure 7.1 depicts the localization scenario.
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7.1.2 Signal and Channel Model

We consider a mmWave uplink transmission that employs OFDM as its modulation tech-

nique. In this revised scenario, the complex baseband signal received by the antenna array

at the u-th BS from the i-th UE comprises several components: (i) A direct LOS signal,

(ii) a signal reflected by the RIS, often referred to as the VLOS in literature, and (iii) L

multipath signals. The received signal at the multiple antenna elements of the BS from the

i-th UE can be expressed as

Ri(t) =
[
r
(1)
i (t), · · · , r(Nu)

i (t)
]T
, (7.1)

where r
(nu)
i (t) ∈ CNs,i×1, with Ns,i being the number of OFDM samples, is the received signal

at the nu-th antenna element of uth BS and can be expressed as

r
(nu)
i (t) =

√
P

l=L+1∑
l=0

γ
(nu)
i,l si(t− τi,l) +w

(nu)
i (t), (7.2)

γ
(nu)
i,l ≜ a(ψ

(nu)
i,l )α

(nu)
i,l , (7.3)

where P is the transmit power; s(t) ∈ CNs,i×1 denotes the known OFDM signal vector;

w
(nu)
i (t) represents zero-mean white Gaussian noise vector with a PSD of N0/2; τ0,i =

∥rr,i−rs∥2
c

and τ1,i =
∥rr,i∥2+∥rs∥2

c
correspond to the LOS and VLOS delays, respectively; signals

for which l > 1 are identified as multipath components; a(ψ
(nu)
i,l ) = ej(nu−1)µi,l is the nu-th

response element of the l-th path between the i-th UE and the BS, with µi,l = −2π
λ
d sin(ψi,l)

being the the spatial frequency associated with that path, and ψi,l is the corresponding az-

imuth AOA; and c is the speed of light. The channel complex gains α
(nu)
i,l , l ∈ {0, 1} are
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modeled geometrically in the mmWave regime [112] as

α
(nu)
i,0 = e−j2πfcτi,0

λ

4π ∥rr,i − rs∥2
, (7.4)

α
(nu)
i,1 = e−j2πfcτi,1

λ2

16π2 ∥rr,i∥2 ∥rs∥2
hT

RIS,uΩhi,RIS, (7.5)

where fc is the carrier frequency, hRIS,u ∈ CN×1 is the RIS to BS response vector, hi,RIS ∈

CN×1 is the i-th UE to RIS response vector, and Ω is an N ×N diagonal matrix, which is

assumed to be electronically controlled and optimized depending on the current estimates

of the UE locations. The response vector hRIS,u can be expressed as

[hRIS,u]n=e
−jrT

ris,nk(ϕRIS,u,θRIS,u), n ∈ {0, 1, · · · , N − 1}, (7.6)

where ϕRIS,u and θRIS,u are the azimuth and elevation corresponding to the angle of departure

of the signal from the RIS to the BS, and k(ϕ, θ) is the wavevector expressed as

k(ϕ, θ) = −2π

λ


sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

cos(θ)

 . (7.7)

The response vector hi,RIS can be expressed as

[hi,RIS]n = e−jr
T
ris,nk(ϕi,RIS,θi,RIS), n ∈ {0, 1, · · · , N − 1}. (7.8)

The RIS phase profile matrix Ω can be expressed as

wRIS = diag(Ω), (7.9)

where wRIS = [ejwRIS,0 , ejwRIS,1 , · · · , ejwRIS,N−1 ]
T
.
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7.2 Measurement Engine

The received signal from the lth path of the i-th UE to the BS, which is operated upon by

the measurement engine, is formulated as the beamformed signal from that specific direction.

This can be mathematically expressed as

r
′

i(t) = wi,lRi(t), (7.10)

wi,l = a∗
i,l, (7.11)

ai,l =
[
1, ejµi,l , ej2µi,l , · · · , ej(Nu−1)µi,l

]T
, (7.12)

µi,l = −
2π

λ
d sin(ψ̂i,l), for l ∈ {0, 1}, (7.13)

where ψ̂i,l represents the current estimate of the azimuth AOA of the LOS path for l = 0,

or the known azimuth AOA of the VLOS for l = 1.

7.2.1 TOA Estimation

For TOA estimation, the proposed time-domain-based SDR in Section 3.3 is adopted and

modified in the next parts of this chapter to develop a passive AOA estimator for an RIS-

aided cellular navigation framework.

7.2.2 AOA Estimation

In this section, we introduce a passive AOA estimator designed to determine the azimuth and

elevation angles between the UE and the RIS. This estimator capitalizes on the correlation

properties of the OFDM uplink signals as received by the BS.

An illustration of the exhaustive UE-RIS AOA search can be found in Figure 7.2. This
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Figure 7.2: Sample output of the initial UE-RIS AOA search.

representation assumes that the BS is privy to knowledge of the channel coefficients hT
RIS,u

and the RIS phase profile Ω. Given that in uplink scenarios the position of the BS is

known, this assumption holds. Observing the figure, it’s evident that the normalized ACF

exhibits a peak aligned with the true AOA. Interestingly, the ACF’s magnitude diminishes

when the generated replica deviates from the desired AOA, indicating that AOA data can

be extracted from the ACF. Yet, it’s imperative to recognize that the efficacy of such a

comprehensive search is intertwined with the AOA search resolution. A heightened search

resolution inevitably amplifies the computational expense associated with the estimation

process. Consequently, this section delves into the exploration of an AOA estimator that

strikes a balance between accuracy and computational efficiency.
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7.2.2.1 AOA Discriminator Design

The quest for an optimal AOA estimator that addresses prevailing challenges leads us to

derive inspiration from the DLL architecture. While the DLL encompasses standard loop

features like integrations, filters, and NCOs, its uniqueness emerges from the specialized

discriminator it employs. This discriminator gauges the error of the current delay estimate.

Facilitating this, the DLL incorporates two auxiliary correlations—early and late. These can

be conceptualized as delayed and advanced replicas of the prompt code, respectively. The

rationale behind this is the generation of the S-curve, a product of the differential between

the early and late correlators. It is the zero-crossing of this S-curve that the DLL monitors

keenly. By doing so, it ascertains the current error, which is subsequently directed back to

the local code generation block. This feedback mechanism adjusts and refines the preceding

estimate of the incoming code delay.

To visually encapsulate this mechanism, one can refer to Figure 7.3. This figure vividly

depicts both the early and late correlations, alongside the resultant S-curve birthed from

their interplay. Operational nuances of the DLL emphasize its functioning within the linear

domain of the discriminator, specifically between −0.5 and +0.5 chips. Such an operating

window ensures a direct linear relationship between the discriminator output and the actual

offset.

To design the AOA discriminator, it’s imperative to first understand the AOA error in

relation to the ACF. To achieve this, we performed a MC analysis. This simulation mirrored

a wireless environment comprising a singular BS, an RIS, and one UE. Notably, we focused

exclusively on evaluating the reflected path, i.e., the VLOS. Specific details regarding this

simulation setting can be accessed in Table 7.1.

Upon analyzing the outcomes of over 1000 iterations, the relation between AOA errors

and the normalized ACF was obtained, as shown in Figure 7.4. Based on these insights, we
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Figure 7.3: (a) Normalized early, prompt, and late ACF for GPS L1 signal. (b) S-curve for
the normalized early minus late discriminator.

engineered a normalized early-minus-late (eml) angle discriminator. This involved extracting

S-curves for both azimuth and elevation corresponding to various eml angles, symbolized as

aeml.

For the purpose of AOA estimation, we defined our region of interest within a range of

−5◦ to 5◦. This span effectively encapsulates the variance in AOAs across two sequential

measurements. The ensuing step involved evaluating the linearity of each S-curve, followed

by the computation of a linear RMSE fit. Our analyses determined that an aeml value

approximating 1◦ yielded the most precise open-loop estimates. For a more detailed visual

representation of the azimuth and elevation eml discriminator’s performance, readers are

directed to Figures 7.5 and 7.6, respectively.

The comparison between the extensive search and the open-loop discriminator approaches

is depicted in Figure 7.7. It can be seen how the discriminator approach outperforms the

extensive search; however, it struggles to converge to a zero-error steady state. To achieve
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Table 7.1: AOA Discriminators Monte-Carlo Settings.

Parameter Value Description

xrange [-2.5, 2.5] km
The geometric range in the x
direction. A typical cell size

yrange [-2.5, 2.5] km
The geometric range in the y

direction

zrange [-50, 50] m
The geometric range in the z

direction. Represents the relative
height between BS, RIS, and UE

fc 28 GHz Carrier frequency

B 100 MHz OFDM Signal Bandwidth

tframe 10 ms Typical 4/5G frame duration

sc 15 kHz OFDM subcarrier spacing

N 64 Number of RIS elements

this, a closed-loop ALL is designed next.

7.2.2.2 AOA-Locked Loop

Besides the developed early-minus-late AOA discriminator, the ALL loop filter is a simple

gain Bn,ALL = K
4
≡ 1 Hz. The output of the ALL loop filters vALL,m is the rate of change of

the azimuth and elevation angles, respectively, expressed in ◦/s. The block diagram of the

overall measurement engine is depicted in Figure 7.8.

7.3 RIS Optimization

In signal-based localization techniques, estimation error has an inverse relationship with the

received SNR [5]. For a specific scenario, consider the SNR of the i-th UE received at the

u-th BS antenna, which is represented as two separate SNRs corresponding to the LOS and
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Figure 7.4: AOA errors vs ACF in Monte Carlo fashion.

Figure 7.5: Azimuth early-late discriminator.
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Figure 7.6: Elevation early-late discriminator.
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the VLOS as

SNRi,l ≜ P

nu∑
nu=1

∣∣∣α(nu)
i,l

∣∣∣2
Nuσ2

n

, for l ∈ 0, 1, (7.14)

where l = 0 and l = 1 denote the LOS and VLOS signals, respectively.

Assuming a single BS that is controlling the RIS phase profile, and in the presence of multiple

UEs, the optimization of the RIS phase profile, Ω, is formulated to maximize the minimum

SNR among the VLOS of all UEs, which can be formulated as

maximize
Ω

min{SNRi,1}i=Ii=1 (7.15)

subject to |wj| = 1, for j = 1, · · · , N. (7.16)
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7.4 EKF Implementation

Separate EKFs are deployed to estimate the UEs’ 3D positions and velocities along with

relative clock bias and drift using the TOA and AOA measurements. The EKF state vector

for the i-th UE is expressed as

xi ≜
[
xT
r,i,x

T
clk

]T
, (7.17)

=
[
rT
r,i, ṙ

T
r,i, c∆δt, c∆δ̇t

]T
(7.18)

where ∆δt ≜ δti−δts; δti and δts are the clock biases of the i-th UE and the BS, respectively;

∆δ̇t ≜ δ̇ti − δ̇ts; and δ̇ti and δ̇ts are the clock drifts of the i-th UE and the BS, respectively.

7.4.1 EKF Time Update

The receiver’s motion is assumed to evolve according to the white noise acceleration model

as discussed in Subsection 2.3.1. The receiver’s discrete-time dynamics are hence given by

x̂i(k + 1|j) = Fixi(k|j) +wi(k), (7.19)

Fi ≜ diag [Fr,Fclk, ] , Fclk =

1 T

0 1

 , (7.20)
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where where T is the measurement update period, and k and j are two discrete-time indices

such as k ≥ j. The prediction error covariance matrix is given by

Pi(k + 1|j) = Pi(k|j)FT
i +Qi, (7.21)

Qi ≜ diag
[
Qr, c

2Qclk

]
, (7.22)

Qclk = Qclk,i +Qclk,BS, (7.23)

Qclk,κ =

Sw̃δtκ
T + Sw̃δ̇tκ

T 3

3
Sw̃δ̇tκ

T 2

2

Sw̃δ̇tκ

T 2

2
Sw̃δ̇tκ

T

 , (7.24)

where κ ∈
{
{UE}i=Ii=1,BS

}
.

7.4.2 EKF Measurement Update

Once the EKF receives the measurement vector zi, it performs a measurement update ac-

cording to

x̂i(k + 1|k + 1) = x̂i(k + 1|j) +Ki(k + 1)νi(k + 1)

where ν and K are the innovation vector and Kalman gain, respectively, given by

νi(k + 1) ≜ zi(k + 1)− ẑi(k + 1),

zi(k + 1) =
[
ρi(k + 1), ρ

′

i(k + 1), ψi(k + 1), ϕi(k + 1), θi(k + 1)
]T
,

Ki(k + 1) ≜ Pi(k + 1|j)HT
i (k + 1)S−1

i (k + 1),

Si(k + 1) ≜ Hi(k + 1)P(k + 1|j)HT
i (k + 1) +Ri(k + 1),

164



where Ri is the measurement noise covariance matrix the iith receiver given by

Ri ≜
[
σ2
ρ,i, σ

′2
ρ,i, σ

2
ψ,i, σ

2
ϕ,i, σ

2
θ,i

]
, (7.25)

and Hi is the Jacobian matrix defined as

Hi =


H

(1)
i

...

Hi

 , (7.26)

where

Hi(k + 1) =



H1,1(·) H1,2(·) H1,3(·) 01×3 1 0

H2,1(·) H2,2(·) H2,3(·) 01×3 1 0

H3,1(·) H3,2(·) H3,3(·) 01×3 0 0

H4,1(·) H4,2(·) H4,3(·) 01×3 0 0

H5,1(·) H5,2(·) H5,3(·) 01×3 0 0


, (7.27)
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H1,1 =
xr,i − xs
∥rr,i − rs,u∥2

, (7.28)

H1,2 =
yr,i − ys

∥rr,i − rs,u∥2
, (7.29)

H1,3 =
zr,i − zs

∥rr,i − rs,u∥2
, (7.30)

H2,1 =
xr,i − xris
∥rr,i − rris∥2

, (7.31)

H2,2 =
yr,i − yris
∥rr,i − rris∥2

, (7.32)

H2,3 =
zr,i − zris
∥rr,i − rris∥2

, (7.33)

H3,1 = −
yr,i − ys

(xr,i − xs)2
[
1 +

(yr,i−ys)2
(xr,i−xs)2

] , (7.34)

H3,2 =
xr,i − xs

(xr,i − xs)2
[
1 +

(yr,i−ys)2
(xr,i−xs)2

] , (7.35)

H3,3 = 0, (7.36)

H4,1 = −
yr,i − yris

(xr,i − xris)2
[
1 +

(yr,i−yris)2
(xr,i−xris)2

] , (7.37)

H4,2 =
xr,i − xris

(xr,i − xris)2
[
1 +

(yr,i−yris)2
(xr,i−xris)2

] , (7.38)

H4,3 = 0, (7.39)

H5,1 =
(zr,i − zris)(xr,i − xris)

∥rr,i − rris∥22
√
(xr,i − xris)2 + (yr,i − yris)2

, (7.40)

H5,2 =
(zr,i − zris)(yr,i − yris)

∥rr,i − rris∥22
√
(xr,i − xris)2 + (yr,i − yris)2

, (7.41)

H5,3 =

√
(xr,i − xris)2 + (yr,i − yris)2

∥rr,i − rris∥22
. (7.42)

Please note that for simplicity of notation, (k + 1) was dropped from the above equations.

The estimation error covariance matrix is updated according to

Pi(k + 1|k + 1) = [I−K)i(k + 1)Hi(k + 1)]Pi(k + 1|j). (7.43)
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7.5 Results

The efficacy of the proposed approach is demonstrated through its application to three

distinct scenarios: pedestrians, ground vehicles, and UAVs. This section is structured as

follows: First, we present the configuration of the simulator used for the performance evalu-

ation. This is followed by an analysis of the accuracy of the measurement engine, comparing

its performance with and without the presence of multipath effects across the different sce-

narios. Finally, we assess the overall navigation performance of the proposed approach,

delineating its effectiveness in each of the aforementioned scenarios.

7.5.1 Simulator

A 5G OFDM simulator was developed to evaluate the proposed method, ensuring the realistic

emulation of received 5G signals. The block diagram of the simulator is illustrated in Figure

7.9. The simulator operates in two primary stages: the user interface and the 5G simulation

process.

In the user interface stage, parameters such as the dynamic range of the receiver, local

map generation, cell size, carrier frequency denoted by fc, signal bandwidth, multipath

characteristics, and RIS configurations are specified by the user. The dynamic parameters

for the simulation are selected at random within the bounds of the user-defined dynamic

range for the scenarios considered.

During the 5G simulation process, several key steps are carried out:

1. Random generation of UEs’ trajectories within the constraints of the cell size defined

by the user.
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Ground truth Received Signal

Figure 7.9: Simulator block diagram.

2. Determination of the BSs’ positions and virtual multipath reflectors, distributed ran-

domly based on the user’s cell size preferences and the specified multipath delay spread.

3. Creation of time histories for range and Doppler shifts associated with LOS, VLOS,

and multipath signal components.

4. Synthesis of the benchmark 5G OFDM signal for each UE, with the allocation of a

unique 5G physical cell ID and signal configuration adhering to 3GPP standards [85].

5. Computation of channel parameters as detailed in Subsection 7.1.2.

6. Integration of dynamic parameters with the channel effects.

7. Compilation of the received signal for each user, coupled with ground truth data to

facilitate performance assessment.
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Table 7.2: Simulation Settings.

Parameter Value Description

xrange [-1, 1] km The geometric range in the x direction. A typical cell size

yrange [-1, 1] km The geometric range in the y direction

zrange [-10, 10] m
The geometric range in the z direction.

Represents the relative height between BS, RIS, and UE

N 64 Number of RIS elements

vinit [0, 2.5] m/s speed range of a pedestrian

qx & qy [0, 1.44] m/s2 range of pedestrian acceleration in the x and y directions

qz [0, 1] m/s2 range of pedestrian acceleration in the z direction

P(0|0) diag([10T1×3,5
T
1×3]

T) Initial covariance matrix

R diag([1, 5, 5]T) measurement noise covariance matrix

7.5.2 Sample Iteration

In the rest of this chapter, the measurement engine and the proposed RIS-enabled navigation

framework are assessed. To do so, MC simulations are conducted. This section presents a

simplified single-realization sample, i.e., an iteration in the MC simulations. In this realiza-

tion, a single UE and walking pedestrian dynamics are considered. The simulation settings

are summarized in Table 7.2. The OFDM settings used are the same in Table 7.1. The dura-

tion of the simulation was set to be 300 seconds, in which the UE traversed a distance of 1.5

km. The proposed approach exhibited a position RMSE of 0.78 m and 1.2 m in 2D and 3D,

respectively. The simulation scenario and the navigation solution are shown in Figure 7.10.

the empirical cumulative distribution function (CDF) of the positioning error is shown in

Figure 7.12, where the depicted 50-th and 80-th percentile are 0.14 and 0.35 m, respectively.

Finally, the EKF estimation errors along with the ± 3σ bounds are presented in Figure 7.11.
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Figure 7.11: Sample iteration - EKF estimation errors along with the ± 3σ bounds.
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Figure 7.12: Sample iteration - Positioning error empirical CDF.

Table 7.3: Dynamics parameters for different platforms.

Platform Parameter Value

vinit [0, 2.5] m/s

Pedestrian qx & qy [0, 1.44] m/s2

qz [0, 1] m/s2

vinit [0, 50] m/s

Ground Vehicle qx & qy [0, 5] m/s2

qz [0, 2] m/s2

vinit [0, 25] m/s

UAV qx & qy [0, 3] m/s2

qz [0, 4] m/s2

7.5.3 Performance Evaluation

7.5.3.1 Multipath-Free with Only VLOS Available

This section presents an MC simulation that assesses the navigation accuracy of the proposed

system under different dynamic scenarios, assuming only the VLOS path is accessible and

that UE and BS clocks are synchronized. Three platforms are considered: pedestrian, ground

vehicle, and UAV. The simulation parameters align with those in Table 7.2, with adjustments

in the ranges for vinit and [qx, qy, qz] to suit each platform according to Table 7.3.
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Figure 7.13: Scenario: VLOS Only with Synchronized Clocks – Empirical CDF of Positioning
Error for Different Platforms.

The simulation, executed for 100 iterations, examines the positioning error. Figure 7.13

displays the empirical CDFs of these errors. Results indicate that pedestrian dynamics yield

the highest accuracy, while ground vehicles show slightly lower accuracy, attributable to their

more complex dynamics introducing greater noise in both processes and measurements.

7.5.3.2 Multipath-Free with Both LOS and VLOS Available

This section extends the MC simulations to consider scenarios where both LOS and VLOS

paths are available, with synchronized UE and BS clocks. The three platforms - pedestrian,

ground vehicle, and UAV - are again evaluated, using simulation parameters from Table 7.2

but tailored for each platform type according to Table 7.3.

Conducted over 500 iterations, the simulation investigates the combined effect of LOS and

VLOS paths on positioning accuracy. Figure 7.14 presents the average empirical CDFs of

positioning errors across all iterations and user scenarios. Consistent with the VLOS-only
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Figure 7.14: Scenario: LOS and VLOS with Synchronized Clocks – Empirical CDF of Posi-
tioning Error for Different Platforms.

scenario, pedestrians exhibit the highest accuracy, with ground vehicles showing slightly

lower accuracy. Notably, including LOS measurements significantly enhances navigation

precision compared to relying solely on VLOS measurements.

7.5.3.3 Mutlipath Analysis

In this section, the accuracy of the measurement engine is analyzed in a closed-loop fashion

where both LOS and VLOS paths are available, with synchronized UE and BS clocks, and

a single-antenna BS. To do so, an MC simulation is conducted. The simulation settings

are summarized in Tables 7.4 and 7.3. The MC simulation was run for 500 iterations per

scenario, each with a random set of parameters selected according to the ranges provided in

the aforementioned tables.

In analyzing the performance of the proposed approach under various scenarios, including

pedestrians with short-delay and long-delay multipath (SDM and LDM), ground vehicles

with SDM and LDM, and UAVs with SDM and LDM, several trends are observed as depicted
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Table 7.4: Monte Carlo Simulation Settings.

Parameter Value Description

xrange [-2.5, 2.5] km
The geometric range in the x
direction. A typical cell size

yrange [-2.5, 2.5] km
The geometric range in the y

direction

zrange [-50, 50] m
The geometric range in the z

direction. Represents the relative
height between BS, RIS, and UE

fc 28 GHz Carrier frequency

B 20 MHz OFDM Signal Bandwidth

tframe 10 ms Typical 5G frame duration

sc 15 kHz OFDM subcarrier spacing

N 64 Number of RIS elements

Nu {1, 2, 4, 6, 8, 12, 16, 24} Number of BS antennas

L {1, · · · , 15} Number of multipath signals

στ,l {0.1, 1}∗ km Multipath delay spread

P(0|0) diag(pinit) Initial covariance matrix

R(0|0) diag(rinit)
Measurement noise
covariance matrix

vinit [Table 7.3] Initial speed range

qx, qy, & qz [Table 7.3]
Range of acceleration in
the x, y, and z directions

titer 20 sec Duration of each iteration

I [1, 15] Number of UEs

pinit ≜
[
10T1×3,5

T
1×3,10

T
1×2, · · ·

]T
rinit ≜ [1, 1, 5, 1]T

∗ Considered short-delay and long-delay multipath.
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in Figure 7.15. It is worth mentioning that this study assumed a single-antenna BS to study

the effect of multipath. The observed trends are influenced by the increasing number of

multipath signals, as reflected in the azimuth and elevation AOA accuracies, positioning

accuracies, and signal tracking success rates.

For pedestrians in SDM conditions, there is a noticeable increase in azimuth and elevation

AOA accuracies with the number of multipath signals, peaking at four signals before a slight

decrease, likely attributed to the imperfections in the MC simulation rather than an actual

deterioration in system performance. The positioning accuracy worsens with an increase in

multipath signals, while the signal tracking success rate shows a substantial decline.

In the scenario of pedestrians in LDM, both azimuth and elevation AOA accuracies increase

slightly with more multipath signals, but the positioning accuracy worsens marginally. The

signal tracking success rate remains consistently high, only showing a slight drop at higher

signal numbers, which again might be due to simulation imperfections.

Ground vehicles in SDM exhibit a significant increase in both azimuth and elevation AOA

accuracies with an increasing number of multipath signals. However, similar to pedestrians,

the positioning accuracy deteriorates, and the signal tracking success rate decreases notably

after three signals, a pattern possibly exaggerated by the simulation’s limitations.

For ground vehicles in LDM, there is a moderate increase in azimuth AOA accuracy with

more multipath signals, and the elevation AOA accuracy follows a similar trend. The posi-

tioning accuracy slightly deteriorates with increasing multipath signals. The signal-tracking

success rate remains high, indicating robustness in these conditions.

In the case of UAVs with SDM, both azimuth and elevation AOA accuracies increase signif-

icantly, particularly up to four signals, and then stabilize. The positioning accuracy worsens

with more multipath signals, and the signal-tracking success rate decreases significantly,

which might be partly due to the imperfections in the simulation process.
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Figure 7.15: Performance evaluation of the proposed approach vs multipath under various
scenarios, including pedestrians with short-delay and long-delay multipath (SDM and LDM),
ground vehicles with SDM and LDM, and UAVs with SDM and LDM.
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Lastly, UAVs in LDM conditions show a gradual increase in azimuth AOA accuracy with

more multipath signals, and the elevation AOA accuracy increases slightly then stabilizes.

The positioning accuracy worsens with an increasing number of multipath signals, but the

signal tracking success rate remains consistently high across all signal numbers, suggesting

a potential overestimation in the simulation’s accuracy at higher multipath conditions.

Overall, these trends suggest that the increase in multipath signals generally leads to a

deterioration in positioning accuracy and signal tracking success rate, with some variations

in azimuth and elevation AOA accuracies. However, it is important to note that the slight

decreases observed after certain peaks in the data are likely anomalies resulting from the

imperfections inherent in the MC simulation process, rather than true reflections of system

performance.

7.5.3.4 Effect of the BS’s Antennas Design

In this section, the effect of the number of the BS’s antenna elements on the performance of

the proposed approach is studied. The simulation settings are similar to the ones in Tables

7.4 and 7.3 except for assuming no multipath signals to exclusively assess the impact of the

BS infrastructure for different dynamical scenarios. The MC simulation was run for 200

iterations per scenario. The results of the simulation are depicted in Figure 7.16.

The data from the three scenarios - pedestrians, ground vehicles, and UAVs - reveal insightful

trends concerning the number of antenna elements of the BS and its influence on azimuth

and elevation AOA accuracies, positioning accuracy, and signal tracking success rate.

For pedestrians, as the number of antenna elements increases from 1 to 24, there is a clear

improvement in the azimuth AOA accuracy, decreasing from 0.4369 degrees to 0.0493 degrees.

The elevation AOA accuracy remains consistently low, with a minimal variation, suggesting

high precision. Positioning accuracy improves significantly, decreasing from 0.7636 meters
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Figure 7.16: Performance evaluation of the proposed approach vs the number of the BS’s
antenna elements under various scenarios including pedestrians, ground vehicles, and UAVs
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to 0.1500 meters, while the signal tracking success rate remains consistently high at 100

In the case of ground vehicles, a similar trend is observed. The azimuth AOA accuracy

improves markedly with an increase in antenna elements, dropping from 0.7641 degrees

to 0.0926 degrees. Elevation AOA accuracy also shows improvement, although with slightly

more variation compared to the pedestrian scenario. Positioning accuracy exhibits significant

enhancement, reducing from 0.9500 meters to 0.2659 meters, with a constant signal tracking

success rate of 100

For UAVs, the data shows an initial high azimuth AOA accuracy at 1 antenna element (0.8939

degrees), which then improves consistently as the number of antenna elements increases,

reaching 0.0575 degrees at 24 elements. Elevation AOA accuracy demonstrates a relatively

stable trend with slight fluctuations. Positioning accuracy improves from 1.4864 meters

to 0.3727 meters as the number of antenna elements increases. Notably, the signal tracking

success rate starts at 95.2381% with one antenna element and reaches 100% with two or more

elements, indicating a rapid improvement in tracking capabilities with additional antenna

elements.

These trends collectively suggest that increasing the number of antenna elements in a BS

significantly enhances the accuracy of azimuth and elevation AOAs and improves overall

positioning accuracy. The consistent 100% success rate in tracking signals for ground vehicles

and UAVs, and the rapid achievement of this rate in the UAV scenario, further underscores

the effectiveness of increasing antenna elements in navigation systems. This improvement

is particularly notable in scenarios with higher complexity, such as UAV operations, where

precise navigation is crucial.
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Chapter 8

Conclusion

This dissertation represents a significant foray into the realm of 4G and 5G cellular signals,

exploring their potential and developing innovative applications in navigation. The journey

embarked upon in this research has yielded insights and technological advancements that

redefine the boundaries of cellular navigation technology.

The initial phase of this work entailed a deep analysis of the evolution from 4G to 5G,

focusing on advanced numerologies and dynamic models for UE motion. This exploration

was instrumental in understanding the potential of these signals for navigation, laying the

groundwork for subsequent innovations.

Building upon this foundational knowledge, a novel design for an opportunistic cellular

navigation receiver was introduced, targeting enhancements in accuracy, robustness, and

efficiency. The development of the Ultimate Reference Signal for 4G and the Ultimate Syn-

chronization Signal for 5G marked a significant step forward, enabling improved navigation

capabilities, especially in challenging conditions.

Practical evaluation followed, with the experimental characterization of 4/5G signals. As-
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sessing their stability and carrier-to-noise density ratio in various conditions underscored the

feasibility of these signals for precise and dependable navigation.

The performance of the proposed receiver was then demonstrated through experiments in

diverse scenarios such as ground vehicles, high-altitude aircraft, and UAVs. These tests

showcased the effectiveness of 4G and 5G signals in providing robust and accurate navigation

across different platforms and environments.

Further innovation was presented through the development of a UE-based 5G navigation

framework that efficiently utilizes ’on-demand’ 5G downlink signals. This novel approach

led to marked improvements in signal quality and a significant reduction in ranging errors,

highlighting the advanced capabilities of 5G in navigational applications.

Lastly, a novel approach involving a RIS-aided cellular navigation system was developed for

millimeter-wave uplink environments. This approach, integrating a sophisticated measure-

ment engine and an EKF-based framework, demonstrated the potential to achieve impressive

positioning accuracy in a variety of scenarios for future cellular systems.

In summary, this dissertation contributes significantly to the field of cellular navigation, not

only by enhancing the understanding of 4G and 5G signals but also by introducing practical,

robust, and efficient solutions for their use in navigation. This work opens new avenues for

the application of cellular signals in real-world navigation and sets a foundation for future

research and development in this promising domain.
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[20] E. Hinüber, C. Reimer, T. Schneider, and M. Stock, “INS/GNSS integration for aer-
obatic flight applications and aircraft motion surveying,” Sensors, vol. 17, no. 5, pp.
941–956, 2017.

[21] A. Garcia-Moreno and J. Gonzalez-Barbosa, “GPS precision time stamping for the
HDL-64E Lidar sensor and data fusion,” in Proceedings of IEEE Electronics, Robotics
and Automotive Mechanics Conference, November 2012, pp. 48–53.

[22] J. Khalife, S. Ragothaman, and Z. Kassas, “Pose estimation with lidar odometry and
cellular pseudoranges,” in Proceedings of IEEE Intelligent Vehicles Symposium, June
2017, pp. 1722–1727.

183



[23] J. Meguro, T. Murata, J. Takiguchi, Y. Amano, and T. Hashizume, “GPS multipath
mitigation for urban area using omnidirectional infrared camera,” IEEE Transactions
on Intelligent Transportation Systems, vol. 10, no. 1, pp. 22–30, March 2009.

[24] A. Mulloni, D. Wagner, I. Barakonyi, and D. Schmalstieg, “Indoor positioning and
navigation with camera phones,” IEEE Pervasive Computing, vol. 8, no. 2, pp. 22–31,
April 2009.

[25] A. Hassani, N. Morris, M. Spenko, and M. Joerger, “Experimental integrity evaluation
of tightly-integrated IMU/LiDAR including return-light intensity data,” in Proceedings
of ION GNSS Conference, September 2019, pp. 2637–2658.

[26] L. Chang, X. Niu, T. Liu, J. Tang, and C. Qian, “GNSS/INS/LiDAR-SLAM integrated
navigation system based on graph optimization,” Remote Sensing, vol. 11, no. 9, p.
1009, 2019.

[27] S. Saab and Z. Kassas, “Power matching approach for GPS coverage extension,” IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 2, pp. 156–166, June
2006.

[28] F. Caron, M. Davy, E. Duflos, and P. Vanheeghe, “Particle filtering for multisensor
data fusion with switching observation models: application to land vehicle positioning,”
IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2703–2719, June 2007.

[29] B. Xu, Q. Jia, and L. Hsu, “Vector tracking loop-based GNSS NLOS detection and
correction: Algorithm design and performance analysis,” IEEE Transactions on In-
strumentation and Measurement, vol. 69, no. 7, pp. 4604–4619, 2019.

[30] C. Jiang, S. Chen, Y. Chen, D. Liu, and Y. Bo, “GNSS vector tracking method using
graph optimization,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 68, no. 4, pp. 1313–1317, 2020.

[31] R. Martin, C. Yan, H. Fan, and C. Rondeau, “Algorithms and bounds for distributed
TDOA-based positioning using OFDM signals,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 3, pp. 1255–1268, March 2011.

[32] I. Bilik, K. Adhikari, and J. R. Buck, “Shannon capacity bound on mobile station lo-
calization accuracy in urban environments,” IEEE Transactions on Signal Processing,
vol. 59, no. 12, pp. 6206–6216, December 2011.

[33] C. Yang, T. Nguyen, and E. Blasch, “Mobile positioning via fusion of mixed signals
of opportunity,” IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 4, pp.
34–46, April 2014.

[34] J. Khalife, K. Shamaei, and Z. Kassas, “A software-defined receiver architecture for
cellular CDMA-based navigation,” in Proceedings of IEEE/ION Position, Location,
and Navigation Symposium, April 2016, pp. 816–826.

184



[35] Z. Kassas, J. Khalife, K. Shamaei, and J. Morales, “I hear, therefore I know where I
am: Compensating for GNSS limitations with cellular signals,” IEEE Signal Processing
Magazine, pp. 111–124, September 2017.

[36] A. Abdallah, S. Saab, and Z. Kassas, “A machine learning approach for localization
in cellular environments,” in Proceedings of IEEE/ION Position, Location, and Navi-
gation Symposium, April 2018, pp. 1223–1227.

[37] Z. Kassas, “Position, navigation, and timing technologies in the 21st century,” J. Mor-
ton, F. van Diggelen, J. Spilker, Jr., and B. Parkinson, Eds. Wiley-IEEE, 2021,
vol. 2, ch. 43: Navigation from low Earth orbit – Part 2: models, implementation, and
performance, pp. 1381–1412.

[38] J. McEllroy, “Navigation using signals of opportunity in the AM transmission band,”
Master’s thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio, USA, 2006.

[39] S. Fang, J. Chen, H. Huang, and T. Lin, “Is FM a RF-based positioning solution in
a metropolitan-scale environment? A probabilistic approach with radio measurements
analysis,” IEEE Transactions on Broadcasting, vol. 55, no. 3, pp. 577–588, September
2009.

[40] M. Joerger, L. Gratton, B. Pervan, and C. Cohen, “Analysis of Iridium-augmented
GPS for floating carrier phase positioning,” NAVIGATION , Journal of the Institute
of Navigation, vol. 57, no. 2, pp. 137–160, 2010.

[41] K. Pesyna, Z. Kassas, and T. Humphreys, “Constructing a continuous phase time his-
tory from TDMA signals for opportunistic navigation,” in Proceedings of IEEE/ION
Position Location and Navigation Symposium, April 2012, pp. 1209–1220.

[42] J. Morales, J. Khalife, U. Santa Cruz, and Z. Kassas, “Orbit modeling for simultaneous
tracking and navigation using LEO satellite signals,” in Proceedings of ION GNSS
Conference, September 2019, pp. 2090–2099.

[43] J. Khalife and Z. Kassas, “Receiver design for Doppler positioning with LEO satel-
lites,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, May 2019, pp. 5506–5510.

[44] Z. Kassas, J. Khalife, M. Neinavaie, and T. Mortlock, “Opportunity comes knock-
ing: overcoming GPS vulnerabilities with other satellites’ signals,” Inside Unmanned
Systems Magazine, pp. 30–35, June/July 2020.

[45] M. Rabinowitz and J. Spilker, Jr., “A new positioning system using television syn-
chronization signals,” IEEE Transactions on Broadcasting, vol. 51, no. 1, pp. 51–61,
March 2005.

[46] P. Thevenon, S. Damien, O. Julien, C. Macabiau, M. Bousquet, L. Ries, and
S. Corazza, “Positioning using mobile TV based on the DVB-SH standard,” NAVI-
GATION , Journal of the Institute of Navigation, vol. 58, no. 2, pp. 71–90, 2011.

185



[47] R. Faragher, C. Sarno, and M. Newman, “Opportunistic radio SLAM for indoor navi-
gation using smartphone sensors,” in Proceedings of IEEE/ION Position Location and
Navigation Symposium, April 2012, pp. 120–128.

[48] J. Prieto, S. Mazuelas, A. Bahillo, P. Fernandez, R. Lorenzo, and E. Abril, “Adaptive
data fusion for wireless localization in harsh environments,” IEEE Transactions on
Signal Processing, vol. 60, no. 4, pp. 1585–1596, April 2012.

[49] J. Khalife, Z. Kassas, and S. Saab, “Indoor localization based on floor plans and
power maps: Non-line of sight to virtual line of sight,” in Proceedings of ION GNSS
Conference, September 2015, pp. 2291–2300.

[50] Y. Shu, Y. Huang, J. Zhang, P. Coue, P. Cheng, J. Chen, and K. Shin, “Gradient-based
fingerprinting for indoor localization and tracking,” IEEE Transactions on Industrial
Electronics, vol. 63, no. 4, pp. 2424–2433, 2016.

[51] T. Reid, A. Neish, T. Walter, and P. Enge, “Leveraging commercial broadband LEO
constellations for navigating,” in Proceedings of ION GNSS Conference, September
2016, pp. 2300–2314.

[52] C. Gentner, E. Munoz, M. Khider, E. Staudinger, S. Sand, and A. Dammann, “Particle
filter based positioning with 3GPP-LTE in indoor environments,” in Proceedings of
IEEE/ION Position, Location and Navigation Symposium, April 2012, pp. 301–308.

[53] M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and F. Babich, “Indoor
positioning using LTE signals,” in Proceedings of International Conference on Indoor
Positioning and Indoor Navigation, October 2016, pp. 1–8.

[54] K. Shamaei, J. Khalife, and Z. Kassas, “Exploiting LTE signals for navigation: Theory
to implementation,” IEEE Transactions on Wireless Communications, vol. 17, no. 4,
pp. 2173–2189, April 2018.

[55] F. Pittino, M. Driusso, A. Torre, and C. Marshall, “Outdoor and indoor experiments
with localization using LTE signals,” in Proceedings of European Navigation Confer-
ence, May 2017, pp. 311–321.

[56] Z. Kassas, J. Morales, K. Shamaei, and J. Khalife, “LTE steers UAV,” GPS World
Magazine, vol. 28, no. 4, pp. 18–25, April 2017.

[57] K. Shamaei, J. Khalife, and Z. Kassas, “Pseudorange and multipath analysis of posi-
tioning with LTE secondary synchronization signals,” in Proceedings of Wireless Com-
munications and Networking Conference, April 2018, pp. 286–291.

[58] K. Shamaei, J. Morales, and Z. Kassas, “A framework for navigation with LTE time-
correlated pseudorange errors in multipath environments,” in Proceedings of IEEE
Vehicular Technology Conference, April 2019, pp. 1–6.

186



[59] K. Shamaei and Z. Kassas, “Sub-meter accurate UAV navigation and cycle slip de-
tection with LTE carrier phase,” in Proceedings of ION GNSS Conference, September
2019, pp. 2469–2479.

[60] W. Xu, M. Huang, C. Zhu, and A. Dammann, “Maximum likelihood TOA and OTDOA
estimation with first arriving path detection for 3GPP LTE system,” Transactions on
Emerging Telecommunications Technologies, vol. 27, no. 3, pp. 339–356, 2016.

[61] P. Wang and Y. Morton, “Multipath estimating delay lock loop for LTE signal TOA
estimation in indoor and urban environments,” IEEE Transactions on Wireless Com-
munications, vol. 19, no. 8, pp. 5518–5530, 2020.

[62] H. Dun, C. Tiberius, and G. Janssen, “Positioning in a multipath channel using OFDM
signals with carrier phase tracking,” IEEE Access, vol. 8, pp. 13 011–13 028, 2020.

[63] P. Wang, Y. Wang, and J. Morton, “Signal tracking algorithm with adaptive multipath
mitigation and experimental results for LTE positioning receivers in urban environ-
ments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp.
2779–2795, August 2022.

[64] C. Yang, T. Pany, and P. Weitkemper, “Effect of antenna ports on TOA estimation
with 4G LTE signals in urban mobile environments,” in Proceedings of ION GNSS+
Conference, January 2020, pp. 2166–2181.

[65] M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and F. Babich, “Vehicular
position tracking using LTE signals,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 4, pp. 3376–3391, April 2017.

[66] I. Lapin, G. Granados, J. Samson, O. Renaudin, F. Zanier, and L. Ries, “STARE:
Real-time software receiver for LTE and 5G NR positioning and signal monitoring,”
in Proceedings of Workshop on Satellite Navigation Technology, April 2022, pp. 1–11.

[67] J. Gante, L. Sousa, and G. Falcao, “Dethroning GPS: Low-power accurate 5G po-
sitioning systems using machine learning,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 10, no. 2, pp. 240–252, 2020.

[68] I. Lapin, G. Seco-Granados, O. Renaudin, F. Zanier, and L. Ries, “Joint delay and
phase discriminator based on ESPRIT for 5G NR positioning,” IEEE Access, vol. 9,
pp. 126 550–126 563, 2021.

[69] N. Garcia, H. Wymeersch, E. Larsson, A. Haimovich, and M. Coulon, “Direct local-
ization for massive MIMO,” IEEE Transactions on Signal Processing, vol. 65, no. 10,
pp. 2475–2487, May 2017.

[70] C. Guo, J. Yu, W. Guo, Y. Deng, and J. Liu, “Intelligent and ubiquitous positioning
framework in 5G edge computing scenarios,” IEEE Access, vol. 8, pp. 83 276–83 289,
2020.

187



[71] X. Cui, T. Gulliver, J. Li, and H. Zhang, “Vehicle positioning using 5G millimeter-wave
systems,” IEEE Access, vol. 4, pp. 6964–6973, 2016.

[72] M. Koivisto, M. Costa, J. Werner, K. Heiska, J. Talvitie, K. Leppanen, V. Koivunen,
and M. Valkama, “Joint device positioning and clock synchronization in 5G ultra-
dense networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp.
2866–2881, May 2017.

[73] K. Shamaei and Z. Kassas, “Receiver design and time of arrival estimation for oppor-
tunistic localization with 5G signals,” IEEE Transactions on Wireless Communica-
tions, 2021, accepted.

[74] E. Basar, M. D. Renzo, J. D. Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless
communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp.
116 753–116 773, 2019.

[75] M. D. Renzo, A. Zappone, M. Debbah, M. Alouini, C. Yuen, J. D. Rosny, and
S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent sur-
faces: How it works, state of research, and the road ahead,” IEEE journal on selected
areas in communications, vol. 38, no. 11, pp. 2450–2525, 2020.

[76] Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. D. Renzo, and N. Al-Dhahir, “Reconfigurable
intelligent surfaces: Principles and opportunities,” IEEE communications surveys &
tutorials, vol. 23, no. 3, pp. 1546–1577, 2021.

[77] T. Ma, Y. Xiao, X. Lei, W. Xiong, and Y. Ding, “Indoor localization with reconfig-
urable intelligent surface,” IEEE Communications Letters, vol. 25, no. 1, pp. 161–165,
2020.

[78] K. Keykhosravi, M. Keskin, S. Dwivedi, G. Seco-Granados, and H. Wymeersch, “Semi-
passive 3D positioning of multiple RIS-enabled users,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 10, pp. 11 073–11 077, 2021.

[79] M. Rahal, B. Denis, K. Keykhosravi, B. Uguen, and H. Wymeersch, “RIS-enabled
localization continuity under near-field conditions,” in IEEE International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), 2021, pp. 436–
440.

[80] J. He, A. Fakhreddine, C. Vanwynsberghe, H. Wymeersch, and G. Alexandropou-
los, “3D localization with a single partially-connected receiving RIS: Positioning error
analysis and algorithmic design,” arXiv preprint arXiv:2212.02088, 2022.

[81] A. Albanese, P. Mursia, V. Sciancalepore, and X. Costa-Pérez, “PAPIR: Practical
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Appendix A

4G-URS and 5G-USS: Sequence

Generation and Mapping

A.1 4G-URS

A.1.1 Sequence Generation

In the frame structure, the CRS sequence can be dCRS(k) is defined as

dCRS(m) =
1√
2
(1− 2 · c(2m)) + j

1√
2
(1− 2 · c(2m+ 1)) ,

m = 0, 1, · · · , 2Nmax,DL
RB − 1, (A.1)
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where ns is the slot number within the frame, Nmax,DL
RB is the largest downlink bandwidth

configuration. The pseudo-random sequence c(i) is defined as

c(n) = (x1(n+Nc) + x2(n+Nc)) mod 2 (A.2)

x1(n+ 31) = (x1(n+ 3) + x1(n)) mod 2 (A.3)

x2(n+ 31) = (x2(n+ 3) + x2(n+ 2) + x2(n+ 1) + x2(n)) mod 2 (A.4)

where Nc = 1600 and the first maximal length sequence (m-sequence) shall be initialized

with x1(0) = 1, x1(n) = 0, n = 1, 2, · · · , 30. The initialization of the second m-sequence is

denoted by

cinit = 210 ·
(
7 · (n′

s + 1) + l + 1
)
· (2 · i+ 1) + 2 · i+NCP, (A.5)

where it is initialized at the start of each OFDM symbol such as

n
′

s =


10⌊ns/10⌋+ ns mod 2, if frame structure type 3

ns, otherwise.

NCP =


1, for normal CP

0, for extended CP.

A.1.2 Sequence Mapping

The CRS sequence dCRS(m) shall be mapped to complex-valued modulation symbols Y
(p)
k,l

used as reference symbols for antenna port p in slot ns according to

Y
(p)
k,l = dCRS(m

′
), (A.6)
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where

k = 6m+ (v + vshift) mod 6

l =


0, NDL

symb − 3 if p ∈ {0, 1}

1, if p ∈ {2, 3}.

m = 0, 1, · · · , 2.NDL
RB − 1

m
′
= m+Nmax,DL

RB −NDL
RB ,

where NDL
RB is the downlink bandwidth configuration of the received 4G signals, and the

variables v and vshift define the position in the frequency domain for different RSs for v given

as

v =



0, if p = 0 & l = 0

3, if p = 0 & l¬0

3, if p = 1 & l = 0

0 if p = 1 & l¬0

3(ns mod 2), if p = 2

3 + 3(ns mod 2), if p = 3,

and vshift = NCell
ID mod 6 for CRS.
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A.2 5G-USS

A.2.1 Sequence Generation

A.2.1.1 PSS

The PSS sequence dPSS(n) is a 127-length m-sequence defined as

dPSS(n) = 1− 2x(m), (A.7)

m = (n+ 43N
(2)
ID ) mod 127, (A.8)

0 ≤ n < 127, (A.9)

where

x(i+ 7) = (x(i+ 4) + x(i)) mod 2, (A.10)

and

[
x(6) x(5) x(4) x(3) x(2) x(1) x(0)

]
=

[
1 1 1 0 1 1 0

]
. (A.11)
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A.2.1.2 SSS

The SSS sequence dSSS(n) is another 127-length m-sequence defined as

dSSS(n) = [1− 2x0((n+m0) mod 127)] [1− 2x1((n+m1) mod 127)] , (A.12)

m0 = 15⌊N
(1)
ID

112
⌋+ 5N

(2)
ID , (A.13)

m1 = N
(1)
ID mod 112, (A.14)

0 ≤ n < 127, (A.15)

where

x0(i+ 7) = (x0(i+ 4) + x0(i)) mod 2, (A.16)

x1(i+ 7) = (x1(i+ 4) + x1(i)) mod 2, (A.17)

and

[
x0(6) x0(5) x0(4) x0(3) x0(2) x0(1) x0(0)

]
=

[
0 0 0 0 0 0 1

]
, (A.18)[

x1(6) x1(5) x1(4) x1(3) x1(2) x1(1) x1(0)

]
=

[
0 0 0 0 0 0 1

]
. (A.19)

A.2.1.3 PBCH-DMRS

The PBCH-DMRS is a special type of physical layer signal that functions as a reference signal

for decoding PBCH. In 4G, this kind of special DMRS for PBCH is not needed because the

CRS can be used for PBCH decoding. However, in 5G/NR there is no CRS. That’s why

the DMRS is dedicated for PBCH decoding. The PBCH-DMRS sequence dDMRS(m) is a

pseudo-random sequence that is dependent on the initialization value that is made up of
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various components like physical cell ID, SSB index, and half frame number. That is, by

decoding this DMRS, UE can figure out SSB Index and Half Frame. The UE shall assume

the reference sequence dDMRS(m) for an SS/PBCH block is defined by

dDMRS(m) =
1√
2
(1− 2 · c(2m)) + j

1√
2
(1− 2 · c(2m+ 1)) , (A.20)

where c(n) is given by is given by clause 5.2 in [82]. The scrambling sequence generator shall

be initialized at the start of each SS/PBCH block occasion with

cinit = 211 (̄iSSB + 1)
(
⌊NCell

ID /4⌋+ 1
)
+ 26 (̄iSSB + 1) +

(
NCell

ID mod 4
)
, (A.21)

where

• For L̄max = 4, īSSB = iSSB + 4nhf , where nhf is the number of half-frame in which the

PBCH is transmitted in a frame with nhf = 0 for the first half-frame in the frame and

nhf = 1 for the second half-frame in the frame, and iSSB is the two least significant bits

of the candidate SS/PBCH block index.

• For L̄max > 4, īSSB = iSSB where iSSB i is the three least significant bits of the candidate

SS/PBCH block index.

A.2.2 Sequence Mapping

The PSS, SSS, and PBCH DMRS are allocated specific resource elements (REs) within the

5G frame structure. The exact locations depend on the frequency range (FR1 or FR2),

subcarrier spacing, and bandwidth. The mapping of these RSs is depicted in Figure 2.4.
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