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The Loop-driven Graphical Unitary Group Approach
to the Electron Correlation Problem, Including Configuration
Interaction Energy Gradients

By

Bernard Robinson Brooks
Lawrence Berkeley Laboratory, University of California -

Berkeley, CA 94720
ABSTRACT

The Graphical Unitary Group Approach (GUGA) has been cast into
an extraordinarily powerful form by restructuring the Hamiltonian in
terms of loop types. This allows the adoption of the loop-driven
formulation which illuminates vast numbers of previously unappreciated
relationships between otherwise distinct Hamiltonian matrix elements.
The theoretical/methodological contributions made here include the
development of the loop-driven formula generation algorithm, a
solution of the ubper walk problem used to develop a loop breakdown
algorithm, the restriction of configuration space employed to the
multireference interacting space, and the restructuring of the Hamil-
tonian in terms of lcop types. Several other developments are presented
and discussed. Among these developments are the use of new segment
coefficients, improvements in the loop-driven algorithm, implicit
generation of loops wholly within the external space adapted within
thé framework of the loop-driven metﬁcdology, and comparisens of the

diagonalization tap: method to the direct method. It is 2lso shown

how it is possible to implement the GUGA method without the time-

G

. 5. . . . 5 A
consuming full (m”} four-irdex transformation. A particularly promising
new direction presented here involves the use of the GUGA methodoiogy

to obtain one-electron and two-electron density matrices. Once these
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are known, analytical gradients (first derivatives) of the CI potential
energy are easily obtained. Several test calculations are examined

in detail to illustrate the unique features of the method. Also
included is a calculation on the asymmetric 21A' state of 502 with
23,613 configurations to demonstrate methods for the diagonalization

of very large matrices on a minicomputer.
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I. INTRODUCTION

The importance of electron correlation in quantum mechanical
predictions of chemical interest can hardly be overestimated. It
has been abundantly documented that correlation effects can greatly
alter theoretical predictions of bond energies,1 activation energies,2
and spectroscopic electronic energy differences,3 to cite three of
the most important examples. For this reason, much theoretical and
computational effort has been justifiably expended in recent years in
the development of new approaches to the correlation problem.

Fortunately, the past decade has witnessed great progress in the
theorist's ability to describe electron correlation in a practical
but rigorously variational manner. Most of the new methods are either
variants of, or in some way equivalent to, the standard method of
configuration interaction (CI).4 Some of the most successful currently

5,6

available techniques are the pair natural orbital (PNO)} CI, direct

CI methods,7_9 the method of self-consistent electron pairs (SCEP),10
and a whole range of sophisticated general CI me’chods.ll'19 In
practical terms, these advances mean that a nearly complete solutioﬂ of
the correlation problem is now feasible for essentially any molecule for
which gg_initio self-consistent-field (SCF) wave functions could be
obtained ten years ago. From another perspective, one can now approach
the correlation problem for the benzene molecule (C6H6) at a level of
theory that was barely possible for methylene (CH2) a decade ago.20
Rather than satisfying the desires of chemists to use increasingly

sophisticated quantum mechanical techniques, the above developments

have instead whetted appetites for further forays into even more



complicated chemical problems. Thus the need for ever more powerful

theoretical methods is likely to be with us for some time to come.

One of the most promising ideas advanced in the past several years

is the Graphical Unitary Group Approach (GUGA). Actually the unitary'

group mathematical formalism has been available for more than a

decade,21 and some of it for much longer.22 However, it was by no

means obvious that this formalism had any particular advantage over
existing variational many body techniques. The latter situation has
been changed by the recent research of Paldus23 and of Shavitt24 on
the adaptation of the unitary group approach‘to electronic structure’
problems. Indeed the present work was inspired by a series of lectures
recently given by Shavitt25 at Livermore.

The formal basis of the unitary group approach is the fact that a
particular Gelfand-Zetlin canonical basis spans the space of spin-
adapted many-electron functions for a given.number of electrons and
total spin S.21 This in itself is not terribly novel since there are
many available techniques for the generation of spin eigenfunctions,
e.g. the genealogical method,26 use of projection operators,27 and

28 2

of S°. The power of the graphical unitary group

24,25

diagonalization
approach, as developed by Paldus23 and by Shavitt, lies with the
tremendous amount of insight it provides into the structure of the
Hamiltonian matrix H. This structure is not only an edifice of
mathematical beauty but also a practical tool for the calculus of
matrix element evaluation.

Taking the work of Shavitt as our starting point, we present

here the first implementation of the graphical24 unitary group approach
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for molecular electronic structure problems. The most critical
contribution of our own work is the development of the loop-driven
methodology. This method of generating the Hamiltonian contributions
illuminates previously undiscovered relationships between otherwise
distinct Hamiltonian matrix elements. Other theoretical contributions
made here in addition to the development of the loop-driven algorithm
are a solution of the upper walk problem, the restriction of config-
uration space employed to the multireference interacting space29
suggested by second-order perturbation theory, and the restructuring

of the Hamiltonian in terms of loop types; Within the Shavitt framework
a number of additional methodological modifications and improvements
have been made to harness the formalism into a éequence of functioning
algorithms. To demonstrate the power of the unitary group approach,

it has been applied to a series of problems, several of which were
beyond the capabilities of our previoué large scale configuration

19,30

interaction (CI) techniques. In fact for large, general, multi-

reference configuration interaction (CI) problems, our unitary group
methods require only a ffaction of the computation time necessary for
state-of-the-art conventional CI techniques.19 When one realizes that

these conventional methods have been perfected over a period of more

4,31

than 25 years, the'magnitude of this achievement becomes apparent.

Of course the basic formalism of the unitary group approach (UGA) has

been available for more than a decade.ZI,

The development of analytic gradient techniques for the investiga-

tion of potential energy surfaces has been one of the most important

32

recent developments in electronic structure theory. Much of the




early advancement in this area is largely due to the work of Pulay,33

who presented an expression for the forces on all of the nuclei for
closed-shell self-consistent-field theory. His techniques have
been used mainly for prediction of force constants and equilibrium
geometries. Other more recent ab initio gradient techniques and

methods are due to the further work of Poppinger,34 Schlesel,35

Kormornicki,36 Dupuis and King,37 Pople,38 Hehre,39 and by Goddard,

Handy and Schaefer.40

With these methods, energy derivatives with
respect to nuclear position can be obtained for a wide range of
electronic wavefunctions, including open-shell restricted Hartree-Fock,
unrestricted Hartree-Fock, two configuration MCSCF wavefunctions, and
for second order Moller-Plesset perturbation theory. Notably missing
from this list are analytic gradient methods for large scale config-
uration interaction wavefunctions.

We present here the new methods required to obtain analytic
gradients for general large scale CI calculations, we well as a
description of the first implementation of these methods. The most
important contribution of this work is the use of the loop-driven
algorithm to generate the'two—particle density matrix. Another
important contribution is in the area of determining the gradient
41

contribution for perturbations in the CI expansion basis. Pople = has

recently developed an efficient iterative computational method for

solving the coupled-perturbed Hartree-Fock (CPHF) equations given by

42 for restricted Hartree-Fock wavefunctions. We

Gerratt and Mills
have improved this technique to simultaneously solve the CPHF equations

for all 3N nuclear perturbations (where N is the number of nuclei)



with a further reduction of necessary work.
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IT. REVIEW OF THEORY

There are two rather distinct aspects of the GUGA method,

the first being the generation of the distinct row table (DRT),

which completely determines the configuration space that is N
included in the CI. The DRT can be as complex as necessary to

describe any predetermined configuration set. The second aspect is

the utilization of the DRT as a backbone or template to generate all

of the loops which define the Hamiltonian matrix in a compact symbolic

form. Each loop defines a set of equivalent matrix element contri-

butions. The loop-driven algorithm is used to generate the loops in

a rapid manner.




A. The Paldus Representation

Each Gelfand state22 (or configuration) can be represented by
a three column array of non-negative integers referred to as a Paldus

array or tableau that spans the number of molecular orbitals (n) used

in the CI,

_
a b c
n n n
a1 Pp1 o Cn-1
. 1
pl = | : : (
3y by S
0 0 0
L _

For this repreSentation the top row determines the electronic state,

and each other row, where

3. +b. +c, =i 2
1 1 1

represents a particular irreducible representation of the unitary
group U(i). There are only four ways (or cases) in which one TOW
(i-1) of any Paldus array can differ from the neXt TOW (i), which

determines the occupancy of orbital i for that particular corre-

sponding Gelfand state. The four cases are identified by case numbers

Si which can be summarized by:

Sy Aai Abi Ac:.L n, ASi

0 0 0 1 0 0

1 0 0 1 1/2 )]
2 1 -1 1 1 -1/2

3 1 0 0 2 0 .

[ kB
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Here Aa; = a, - a, 4 and n, is the number of electrons in orbital i.
Case 0 results when orbital i is unoccupied. Cases 1 and 2 result
from the differept spin couplings (referred to as alpha and beta
coupled respectively) of the singly occupied orbital i, and Case 3

results from a doubly occupied orbital i. It is clear from this that

1
ai—iNi -Si (4)

and

b, = 28, , (5)

where Ni is the number of electrons in the first i qrbitals and Si is
the spin of this subgroup. For a given top row, all possible Paldus
arrays that can be generated correspond to the configurations of a
full CI treatment. Perhaps a simpler way to represent each Gelfand
state is by a series of n case values (51,52,...,sn) where n is the
number of orbitals. There is a one-to-one correspondence between
these case arrays and complete, orthonormal, spin-adapted Gelfand

states.
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B. The Shavitt Representation

24,25

In the graphical representation developed by Shavitt
primarily for illustrative purposes, each different case value
corrésponds to a different slope line segment (or arc) that spans
one orbital. A vertical arc represents an unoccupied orbital (si=0).
A sharply slanted arc represents a doubly occupied orbital (si=3) and
the two singlet couplings are identified by differing intermediate
slopes. When a series of these arcs are chained together as described
by the case array s, one forms a path (or walk) that uniquely dgfines
that Gelfand state. One of the most remarkable features of theée
paths is that when any two such pathé of a given spin state are super-
imposed so that their tails (bottom) coincide, their heads (top) must
also coincide. Their paths may also coincide at intermediate points.
This suggests superimposing all of the Gelfand states desired for a
given CI calculation. When this is done one obtains a Shavitt graph
(or master graph as referred to previously). The numerical analog
of a Shavitt graph is referred to as a distinct row table (DRT). A
sample Shavitt graph is depicted in Figure 1. The corresponding DRT
for this case is shown in Table I. The Shavitt graph24’25 is identified
by'a series of vertices (distinct rows) and arcs. The rows of any
level i correspond to the possible rows of the Paldus arrays of that
Gelfand basis at that same level i. The index j refers to a given

distinct row within i, such that
i=a,. +b., +c.. . (6)

Each level i is connected to the next lower level i-1 by the occupancy
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of orbital i. Each row of level i can relate to up to four rows of
level i-1 by the four different cases (si, si=0,1,2,3). Any such

valid relation corresponds to an arc. Each:érc can be represented

by the three indices (i,j,s) which will uniquely determine its position
within the DRT. Each vertex (at level i) identifies a particular
component.of Gelfand states containing this vertex and is determined
by the number of electrons and total spin of these electrons in the
first i orbitals. The Shavitt graph is also two-rooted in that single
points determine its head or tail. The graph tail corresponds to

the origin and the graph head uniquely determines the number of electrons
and the spin state. Each possible walk represented by a series of n
arcs from the graph head to the graph tail correSpoﬁds to a particular
configuration. In general the number of different arcs and distinct
rows is much smaller than the number of configurations. There is a
one-to-one correspondence between these walks and the Gelfand states

of the Gelfand-Zetlin basis. The selective elimination of certain

arcs is used to generate a subset of the configurations of the full CI,
such as all singly and doubly excited configurations from a given
reference.

There is also a lexical ordering of states such that m' < m if
and only if si < S5 at the highest level, where S # 3 for those
states. Here m refers to the state index and S5 refers to the case
values (si=0,1,2,3). For each distinct row there are a number of X,
of lower walks (possible paths to reach the graph tail) and also a
number of ir of upper walks; The lexical ordering of states provides

that for any upper walk from a given distinct row all states corresponding
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to the different lower walks are sequential. Each given row of the
Shavitt graph or DRT is also given an arc weight (y) for each valid
arc. The index m for any state can be ekfressed as a sum of the '
arc weights over all the levels. Table I gives a sample DRT with
all of the mentioned features.

The numerical analog of the Shavitt graph is the DRT (distinct

row table) which in its simplest form is made up of different distinct

rows in the Paldus representation.
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C. Matrix Elements of the Unitary Group Generators

Matrix elements between two Gelfand states can be expressed as

<m'|[H|m> = 2 <i|ffj> <m']Eijlm>

1,]
) [ij;k£]<m']EijEkR-ijEi2|m> (7)
1,j,k, 2
The spin independent generator Eij is given by
Ty (8)

E..=ZX. . s
ij g 10 “jo |
where XIO and XiO are creation and annihilation operators for an
electron in orbital i ang Spin state 0. The generator E;; when

Operating on a Gelfand State, removes an electron from orbital j and

adds one to orbitai i. Other properties of these generators are:

(9)

wEylm =

where Eii is termed a weight generator, and

<m']Eij]m> = <m,Ejilm'> =0 , (i<j, m'>m) (10)

due to the lexical ordering of states.

Direct formulas for the evaluation of matrix elements of any
generator have been derived by Gouyet et aj.#3 and by Drake and
Schlesinger,44 and these lead to a factorization of generators and
generator products into segment contributions. Thus each different

Segment shape has certain coefficients associated with it that are

determined by generator factorization. This factorization is one of

#

Le
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the essential features that distinguish the GUGA method from other

unitary group CI methods.

e

The matrix elements of the generators are determined by a

factorization (of the matrix element) over the levels between and

including the indices of the generator or generator product. The one- ;
electron generator matrix elements can be given by
q
<m';qu1m> = T W(T;,s}s;,Ab;,b;) (11)
1=p

where the differént W segment values are simply predetermined
coefficients for each possible segment shape. Whenever two config-
urations in the graphical representation m' and m have a nonzero
matrix element such that <m'|Ejilm> # 0 (where j>i) are superimposed,
they must coincide at all levels above level j, (referred to as an
upper walk) and also coincide at all levels below level i (referred
to as a lower walk). The distinct row at level j is referred to as
the loop head. The distinct row at level i-1 is referred to as the
loop tail. The separate walks between the loop head and loop tail
are referred to as the m and m' branches of the loop. Within the
loop each level connects with the next lower level by a given loop
segment. For single generators there are only 18 valid segment shapes
(or types). For generator products there are many more such segment
shapes. The body of this loop is depicted by the behavior of the
segment shapes between levels i and j inclusive. The coefficient

of integral <i|ﬁlj> is determined only by the body of the loop itself, é

R

thus different configuration pairs that share the same loop body with

e

I

different upper and lower walks will have the same one-electron

T
1,
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integral contribution. By defining a loop only by its body, the
number of times this given loop will contribute to the Hamiltonian
is given by the product of the number of upper walks from the loop
head and the number of lower walks from the loop tail (ih . xt).
A sample one-electron loop is depicted in Figure 2.
The two electron integral contribution of the Hamiltonian is
given by
’/zi,jgk,z[ij;kl]m' IEijEkQ-ijEizlm> . (12)
In our preliminary implementation the matrix element of generator
products was determined by a factorization requiring intermediate
states such that
<m'lquErS]m> = g; <m'|qu|m”><m"|Ers[m> . (13)
For levels where pq and rs do not overlap, the segment coefficients
are identical to those of the single generator. An efficient
recursive scheme was developed by Shavitt24 for the evaluation of
these generator products within the overlap region. There are, however,
severai drawbacks to this approach (when compared with newer approach),
the most serious being that at any level within the overlap region
up to three segment coefficients are needed when the loop-driven
algorithm is used. Another difficulty is that the 6qrEps term is not
included which results in calculation of extra contributions that cancel

later.
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45 ... 46 . .

Work by Paldus ~ and Shavitt = since the completion of our
preliminary implementation have suggested that the matrix element
generator products be represented by

' |e |m> = { I W(T.,s!s.,Ab,,b.) *
Pq, TS i(no overlap) S
i W(T.,s.:s.,Ab.,b.,X) . (14)
x=0,1 i(overlap) R
where epq,rs is given by
€ =E E -6 E (15)
pPq,Ts pPq TS5 qr ps

This representation is superior to the previous method for several
reasons. One obvious reason is that each segment in the overlap
region now has at most two coefficients. The x=0 branch and the x=1
branch elucidate the relationship between direct and exchange terms for
integrals that are related by index permutation. When the use of

loop types is employed where two integrals are involved, the coeffi-
cients of both integrals can be determined by the same two segment
coefficients in the overlap region, resulting in a further reduction
of work. One final reason that coefficients defined in this manner
are superior is that the quEps term is included, eliminating all of
the cancellation of repeated terms present in the earlier version of
the method. The implementation of these new coefficient values is one
of the major reasons for the factor of two reduction of computational

times from those of the already impressive preliminary implementation.
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III.

METHODS AND DEVELOPMENTS OF THE UNITARY GROUP APPROACH CI
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A. The Interacting Space

17

For any general CI method to be useful it must be able to include

those classes of configurations that are important without being
required to also include a vast set of insignificant configurations.
One such important distinction concerns the Hartree-Fock interacting

space,29 those configurations that potentially interact with the
|

| |

references, compared with the full spin configuration space. Experi-

47 that these additional configurations within

i
ence has demonstrated
the full spin space are unimportant in terms of correlation energy
and electronic properties, and their exclusion substantially

reduces the computational effort required for the CI calculation.

In its earliest electronic formulations, the effectiveness of

the GUGA was only apparent for full CI wavefunctions. This capability

24,25

was thereafter considerably extended by Shavitt to cases

involving different levels of excitation relative to a single reference

configuration. Our contribution in turn was the extension of the
GUGA to the multireference interacting space. Since the term
"interacting space" is not widely understood in this context, a
specific example is in order.

| The restricted Hartree-Fock wavefunction for the triplet ground

state of methylene (CHZ) is of the form

2 2 2
la1 2a1 1b2 3a1u1b1a

Now consider a double excitation of the form 2a1 lb2 ~ ij. This

gives rise to the new orbital occupancy

(16)

‘;:‘ CRAlE:

[T S A
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la2 2a

1 2a; 1by i j 3a; b (17) :

with six unpaired spins. These six unpaired spins give rise to no

fewer than nine triplet (S=1) spin eigenfunctions. Most conventional
CI methods require either none or all of these configurations to be
included Variationally.4 However, this 9-dimensional spin space can
be partitioned29 in such a way that only two of the configurations
have nonvanishing Hamiltonian matrix elements with the Hartree-Fock
reference configuration (16). The two "interacting" configurations

are of the form

2 A |
la1 [2a lb2 ij= Al] 3a1a1b1a (18)

1

in which the four orbitals in brackets have been coupled in the two
possible ways yielding a singlet (S=0) state.

The seven configurations neglected above are exactly those which
do not contribute in second-order perturbation theory. Further,
numerical tests on methylene and other molecules have shown that the
interacting space does include all energetically important config-

47 That is, although the interacting space includes typi-

urations.
cally less than half of all symmetry-adapted configurations in a given
double excitation space, it yields v 99.9% of the correlation energy
due to the complete space.

Consider a singles and doubles CI calculation from a single

doublet reference configuration that can be described by a single 3*

Slater determinant

la2 2a2 3a2 .... Naog . (19)
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Most of the doubly excited configurations of this calculation

(assuming a large enough problem) will have five unpaired spins. For

m‘ SR

a given prbital occupancy the full S=1/2 spin space will consist of

TS

five configurations. These configurations can be expressed as linear

[

combinations of the ten possible Ms=1/2 Slater determinants. On the
other hand, the interacting space will consist of only two of these
configurations and can be represented by a linear combination of six
of the ten possible Slater determinants. (Four of the unpaired
orbitals are singlet coupled and the fifth unpaired spin, corresponding
to the unpaired reference orbital, is restricted to be of the same
spin occupation as in the reference.)

Using the Clebsch-Gordan expansion, the coefficients of the five
Gelfand states expressed over determinants (ignoring the doubly
occupied and unoccupied orbitals) are given in Table II. By inspection
the first and second configurations are the only pair of configurations
that can select the interacting space from the full spin space. Notice
that for this combination the fifth unpaired spin must always be alpha
occupied. This must correspond to the unpaired orbital of the
reference configuration. In order to have the fifth unpaired spin to
be the last for all possible double excitations that orbital must be
the last (or the top) orbital of the distinct row table.

For higher spin states, such as triplets, to generate the
interacting space all of the spin restricted orbitals must be at the
top of the distinct row table. For a single open-shell singlet

reference configuration the spin restricted orbitals have two possible

4

positions on the DRT, at either extreme. For the sake of continuity

e e
s
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we chose to put them at the top also. The remainder of the orbitals
may lie anywhere within the rest of the DRT except that all of the
doubly occupied orbitals should be grouped together and all of the
virtual orbitals should be grouped together. This is done so that it
is easy to keep track of the excitation levels, without adding
additional dimensions to the DRT. For an optimized method the larger
of these two blocks should be at the bottom of the DRT. For calcula-
tions of double zeta quality or bétter, the virtual space is larger
than the doubly occupied space; thus within the DRT the orbitals are
ordered (from top to bottom): the active space, the doubly occupied
space, and the virtual space. Removed from the DRT are the frozen
core orbitals and the deleted virtual orbitals.

To implement the use of the interacting space, each row of the
DRT is given a type (T) classification. This value, which corresponds
to the number of excitations accounted for, determines the maximum
number of electrons that can be excited into the virtual space for all
walks containing this distinct row. For a singles and doubles CI,

a value of T=0 implies that two electrons may be excited into the

virtual space,because no excitations have occurred in the active space.

A value of T=1 or T=2 implies that one or no electrons respectively
may be excited into the virtual space. The T value is only meaningful
for those rows of the DRT that are above the interface between the
doubly occupied and virtual space. For the one reference doublet
interacting space, if the orbital that is unpaired in the reference is
doubly occupied (s=3) or beta coupled (s=2), the T value is set to

one, because either of these occupations accounts for one of the two

”N'\‘ 701
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possible excitations. The T values are determined by the active orbit-

als at the top levels of the DRT, and the same T values remain unchanged

g

along any walk within the doubly occupied space. All potential excita-

tions are compared with the T value to determine if that excitation is

TR ST AT

valid.

One problem with this approach to the interacting space is that
it is possible for the two branches of a valid loop to end on two
different rows that only differ by T values. The solution to this
problem is to extend the loops for these cases until the rows coincide.
This will occur at the level of the interface between doubly occupied
and virtual orbitals. This loop extension will not alter the loop
coefficient or the integrals that contribute to that loop, but is
required so that the contribution will be added to the correct matrix
elements. This extension is not a major computational consideration
since only a very small percentage of the total loops will require
this extension and all of the loops that require this extension are
small.

This simple algorithm can be used to generate the interacting
space from higher spin states as well as from open-shell singlet

references.
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B. The Multireference Space

Whereas all single and double excitations from a single reference
configuration may be adequate for some molecular systems, many of the
more interesting chemical problems require double excitations from more

3,11,12,15,20 None of

than one reference for an adequate description.
the other direct CI methods can handle these types of problems except
for the most restrictive cases.48 On the other hand the graphical
unitary group approach is ideally suited for such problems because

the configuration space is determined only by the DRT, which can be

as complex as desired, to handle almost any problem.

For most cases the active orbitals, those orbitals that are either
singly occupied or occupied differently by different references, must
be adjacent within the distinct row table. For cases where the full
spin space is desired, the active orbitals may be anywhere within the
DRT, but with the most optimized method they should be between the
doubly occupied and virtual space. Whenever the interacting space
is also required the active orbitals must be placed at the top of the
DRT. If the active orbitals are at the top of the DRT, for either
full spin space or multireference interacting space calculations,
then the same T values described in the interacting space section can
be used to generate the multireference configuration space. For more
complex multireference calculations, several different T type parameters
must be used. Typically the number of T type parameters must be the
same or less than the number of reference configurations, but these
additional parameters are only needed within the active orbital space

of the DRT. If the active orbitals are placed between the occupied
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and virtual space, then another algorithm must be used. The system in
its present form always restricts the active orbitals to be at the top
of the DRT.

The method for implementing a given multireference calculation
consists of two steps. First, a small model DRT without symmetry
must be created describing the desired multireference configuration
space; and secondly, an algorithm must be developed that can reproduce
this model as well as the desired multireference configuration set in
the general case. Once a given case has been worked out, the
developed algorithm may be added to the rest of the system. The
complexity of the model increases rapidly as the number of references
increases, which can make this method quite difficult even for some
three reference calculations. Table III gives an example of a model
DRT for the interacting space from two open-shell singlet reference
configurations. An important future advancement of the GUGA method
will be the automation of the multireference configuration space
generation. Once this has been done the capabilities of this method
in terms of types of calculations will be almost limitless.

The algorithm that will make the GUGA method completely general
is still in the design stage. In its current form it can roughly
be broken up into the following steps:

1. Generate the distinct row table (DRT) with some or many

unwanted configurations included.

2. Generate the indexing array.

3. Strike out unwanted configurations from the indexing array.

4, Restructure the indexing array in such a way as to maximize
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similarities (this will result in the simplest final DRT).

5. From this new indexing array generate the compressed form of

the ihdexing array.

A T

6. Using these two arrays and the old DRT, generate a new DRT

E

W o
i

that has only the wanted configurations present.
7. Use this DRT for the rest of the CI.
This algorithm currently works for unrealistically simple cases, but
its generalization in an efficient manner (that does not require

a great deal of internal storage) will be rather difficult.
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C. Spatial Symmetry

Orbital or spatial symmetry can be treated in several ways

within the structure of the GUGA method. At the simplest level

symmetry can obviously be ignored. This will result in an unneces-
sarily large formula tape as well as a much larger secular equation
than necessary when symmetry is present. For example, if we are
studying the 382 ground state of methylene (C2V point group), the
number of unique configurations may be increased by a factor of 5 if
spatial symmetry is ignored.

At the first level of sophistication, symmetry may be used oﬂly
to eliminate those loops where the contributing integrals will be
zero by symmetry. This approach will result in the smallest possible
formula tape and fastest formula tape generation (if implemented
properly); however the secular equation will still be large. The
Hamiltonian matrix will be blocked with regards to the different
irreducible representations, but the entire matrix will present
itself to whatever diagonalization scheme is used. Since most
diagonalization schemes require at least two real vectors in core at
any one time, this approach is only feasible for large core machines.
Even if some clever diagonalization scheme is devised that can reduce
the problem of the large secular equation, it seems unlikely that the
small savings in the formula tape (compared with other symmetry treat-
ments) will warrant the increased difficulty in the diagonalization,
especially if the formula tape is to be used more than once.

An innovative method proposed by Shavitt49 left the DRT unchanged

o

from that without spatial symmetry, except that for each row there are
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stored separate configuration counting indices for each symmetry type

of a nondegenerate point group. This results in the elimination of

all configurations that are of a different irreducible representation .

than that of the reference. Each loop on the formula tape will have

separate indexing indices for each symmetry structure of that loop.

We have carried this idea further by treating the different
symmetry species of any row as if they were unrelated and only including
those that have both a nonzero number of upper and lower walks. This
provides for a simpler algorithm when constructing the loops except
that a given loop may have to be created as many times as there are
irreducible representations in the symmetry point group. Instead of
making each row more complex, additional rows are added to the DRT by
giving each row a symmetry type classification, where the symmetry
type of any row is the product of the irreducible representations of
all singly occupied orbitals (s=1 or s=2) of any lower walk. In
principle this approach could multiply the complexity of the DRT by
the number of symmetry types. This is an important consideration since
both the computational effort required as well as the formula tape
length is heavily dependent on the complexity of the DRT. The
number -of different symmetry type classifications at any level of the

DRT can be expressed by
np() = min [P (1), Py(i)] (20)

where Pu and PQ are the number of different symmetry products of all
possible combinations of the irreducible representations of all of the

upper or lower orbitals, respectively. This number can vary greatly
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depending on the order of the orbitals with regards to symmetry type.
This suggests that the complexity of the DRT can be greatly reduced

by a reordering of orbitals witﬁin each type of orbital space (active,
doubly occupied, and virtual). The method adopted for our implementation

results in a rigorous minimization of

n
L np(d) , (21)
i=1

where n is the number of levels. This is done by placing all of the
symmetric orbitals at the extremes of the DRT so that nn of as many
levels as possible will be unity. Similar considerations are used
in the ordering of the rest of the orbitals. This is apparently also
equivalent to the minimization of the number of distinct rows in the
DRT. For favorable cases the DRT is only slightly more complex than

the DRT produced without symmetry.
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D. The Importance of Loop Types

The two-electron integral contribution of the Hamiltonian is

11 mnkgae,
i,3,k, 8 J

’k2|m> (22)
The sum is over all ordering of the indices, and hence a given integral
[ij;kR] where i, j, k, and & are all different will appear eight times

with coefficients in terms of generator products of:

1 1
%45,k 28K0,i5
1 1
€. . Le ..
ji,k& k&,ji (23)
1 L
€54,k €0k,1j
1 1
2853 9k ok, 5i
50 . 24 . .
As demonstrated by Paldus™ and by Shavitt, since only matrix
elements where m'<m are of interest, the last four of these contri-
butions are zero. Also since
(24)

®i7,k2 T ®k2,ij
the first pair of these contributions is identical and the second pair

is also identical. The contribution of this integral may be expressed

as

[ij;kx]<mngij,k2 + sji’k2|m> (i<j<®, j#k<R) (25)

o . . , 24
A similar treatment of the remaining types of two-electron 1ntegrals50 2

leads to the following results:
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[ij;52]<m' |€;
[ij;i%]<m' |€,
[i%;k]<m' |€,
[ij; 28] <m' [e £|m>
[isL;m1<m'|eM 1gIm>

[ii; 1£]<m'|e ii, 1£|m

[i2;12]<m' |%e,
it e]<m!|eg s 2|m>

Llii; 28] <m' |e, n>

11 11|

i%,ij T %ji,j8
ij,ie ¥ Fig,5il™

i, ket %1kt Gek, ip!m>

ig,ig ¥ Ri,i£|m>

(i<j<®)

(1<j<8)

(i<k<R)

(i<j, ifR, j#2)
(i<q)

(i<R)

(i<Q)

(i<g)

It should be mentioned here that this representation of integral

contributions in terms of generators is not unique.
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(26)

(27)

(28)

(29)
(30)
(31)
(32)
(33)

(34)

Since the choice

of representation will affect the loop types that are used in the loop

generator, other representations should be considered.

A rearrangement of these equations leads to the important

development of using loop types.

products that can contribute to the same matrix elements (including

By combining integral generator

the one-electron integrals), we find that there are fourteen different

loop types.
1) <m'|[ik;jz]eki + [ij;k]€;
2) <m'|[iIL;J'k]f-:kj,l + [13:k8]ey.

3) <m'|[ik;j£]e.
4) <m'|[ij;il]e, i, lem
) <n'|[i5338eg 5 *

6) <m'|[ik;i£]eik,i£|m>

7) <m'|[1k;i£]€i£ i

+ [iz;jk]ejk

[3isif]e;

+ [ii; kl]s

i, ka'|m> (i<j<k<®)
kl|m> (i<j<k<q)
,i£|m> (i<j<k<q)

(i<j<q)

i3s 1£lm> (1<j<i)
(i<k<Q)

ii, p ™ (1<k<R)

(35)

(36)

(37)

(38)
(39)
(40)

(41)
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8) <m'|[i2;j2]€i2 jllm> (i<j<g) (42) 7
9) <m'|[i£;j2]€2i j£|m> (i<j<Q) (43) é
10) <mv|[ist;jz]e£j ig ¥ [135%01e,, ij|m> (i<j<Q) (44)
11) <m'][i£;m]€m,i£ + [ii5i0]e ) o) + <i|R[2>E, [m>  (i<0) (45) ;
12) <m'| [i%;i0]e;, ;o/2|m> (i<q) (46) )

13) <m'|[i£;i£]€m g * [iis88]eg M|m> (i<q) (47) _
14) <m'[[gg;gg]€£2’2£/2 + <z|h|£>Ez2|m> . (48)

One obvious advantage of defining loop types in this manner is that
loops now can represent a linear combination of integrals and this
linear combination cén be performed at an early stage of the calcula-
tion. A schematic of each loop type is shown in figure 3.46

Loop types 1, 2, and 3 are the most abundant, so most generated
loop values will consist of a linear combination of two integrals.
The importance of using loop types defined in this manner should not
be underestimated. If loops were generated for each integral
separately, not only would the effort required to generate the loops
be doubled, but the same doubling would apply to the effort required
each iteration of the diagonalization. Also, as stated previously,
both integrals of any loop type that contains two integrals can be
described by the same two coefficients (x=0, x=1) in the region
where the generators of a generator product overlap.

When two Gelfand states differ by two orbitals there will be
at most one contributing loop to the matrix element of the states.
The vast majority of nonzero matrix elements fit into this category. 2

Loops on the other hand can contribute to a great number of matrix

I



J oo o
31

elements (but the average number of contributions per loop is about

two for the reported test calculations). Thus a Hamiltonian stored

in this manner is more compact than the conventional form of CI

matrix storage.

Once the loop type structure has been chosen, this information
must be transferred into a form that can be used by the program. The
loop searching master table (Table IV) contains all of this information.
Each loop is given four indices i, j, k, and %, where igjgkg!®. For
loop type 1 all four indices are different and for loop type 14 all
four are the same. Each loop starts at its lop level 2 and ends at
its bottom level i-1. Any levels outside of this range have no effect
on the generator coefficient values or integrals of the loop but would
only affect the upper or lower walks of that loop and hence only
affect which matrix elements a given loop will contribute to. The
value of any loop depends only on the shape of that loop and the
starting spin value (bl) of the loop head.

Each loop type is broken into at most four sections depending on
the number of differing indices. Loop types 1-7 all behave identically
within the £ to k section. When generating these loops the work
required for this section can be performed once and used for any of the
loops of these types. If each loop type was processed separately a
sevenfold repetition of work would result in this section. Loop types
that behave identically between the £ to j sections are:

1, 2, (and 7 if new loop types are used)
3 and 6

8 and 12

9, 10, and 13
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Loop types 11 and 14 must be processed separately sinceithey have no
sections in common with any other loop types. Loop types that behave
identically in the j to i section cannot be processed together but
the same section of code can be used for each.

The use of loop types as a linear combination of integrals and
overlaying them are essential features of the efficient implementation

of the loop-driven algorithm.
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E. The Loop-driven Methodology

s

The loop-driven algorithm is without question the most important

element accounting for the success of our GUGA method. The term

"loop-driven algorithm'" is derived from the manner in which loops
are generated. In a conventional CI (configuration driven), the
next configuration on the configuration list determines what is done
subsequently. With an integral driven approach it is the next
integral on the list of integrals that determines what is processed
next. In contrast to both of these approaches, with the loop-driven
algorithm, the next loop that can be produced with the least effort
is generated. Since most loops have large sections in common with
many other loops, the savings are found in that the algorithm only
generates portions of the next loop that differ from the previous
loop. Generating loops in this manner corresponds to neither a
configuration driven approach nor an integral driven approach. Not
only does this method illuminate vast numbers of previously unappre-
ciated relationships between otherwise distinct Hamiltonian matrix
elements, it also points out the relationships between different
integrals that share 6ne or more common indices.

Figure 4 shows four sample two-electron loops. Once the first
loop (solid lines) has been generated, the remaining three loops can
be generated by simply finding and processing the segment shapes
depicted by broken lines, usually with little additional effort. The
four loops depicted also use different integrals that have little in
common with one another except some common indices. Because of this,

we claim that the integrals are processed simultaneously. While
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generating the loops for one integral, major portions of loops for
other integrals are also being produced. The method used to find
the loops is based on an exhaustive tree search method,51 allowing

a systematic generation of all the loops for a given block of
integrals. A block of integrals usually contains all two- and one-
electron integrals that share a common largest index. At each
intermediate level all valid lower segment shapes are investigated.
If the accepted segment represents a valid closure, then that loop
is processed and the search continues at the previous level. If at
any level all segment shapes have been exhausted, then the search
also reverts to the previous level. In order to generate all of the
loops, this tree search must be processed for every possible loop
head (each row of the DRT). The order in which distinct rows are
processed in this manner is determined by the structure of the integral
sorting arrays (see section III G.).

To process the above described tree search, pushdown stacks” L
are used. A pushdown stack is simply an array that spans the levels
of the DRT. The use of these stacks is needed so that the program can
"remember" where it left off at any level of the tree search when
it returns to that level. Two of these stacks are coefficient stacks
which are used to find the generator coefficients. Two are indexing
stacks which are used to determine to which matrix elements the
generated loop will contribute. Two of these stacks point to
distinct rows of the DRT and are used to determine whether any given

path to the next level is valid. An additional two stacks are segment

stacks which determine the loop type section, starting segment shape,

1
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and the segment shape that was last tested. The last is a tracking

stack used to determine the final offsets (m values) of the integrals

to be used in determining the loop value. Integral offsets are only

updated whenever a k, j, or i value is reached; thus the offsets are

not needed to be stored in pushdown stacks. :
To minimize the searching, the different loop typeé are overlayed

in all areas where they behave identically (as described in section

III D.). Without this essential overlaying, the GUGA method would

be at least a factor of two slower than it is in its present form.

This is another manner in which the loop-driven algorithm provides

insight into the Hamiltonian. Much additional unnecessary searching

can be eliminated by recognizing at an early stage what segment

shapes will not lead to valid loops despite the appearance of validity.

In the first implementation such tests were primarily used with regards

to the total symmetry structure of the loop (the m and m' branches

of the loop must not differ by symmetry when the loop tail is reached).

Since then, we have further reduced the amount of searching for valid

segment shapes. Use of thé new segment coefficients does not allow

loops to end with both m and m' branches having an s value of zero at

the bottom segment (the last orbital unoccupied in both Gelfand

states). Thus, when there are no electrons remaining in all of the

lower orbitals, there is no need to test any further segments along

this line. Another reason that the amount of searching has been

reduced is that by using the new segment coefficients, loop types 1,

2, and 7 now behave identically in the loop region between j and 2.

In the preliminary implementation, they only coincided in the region %
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from k to &. Since these types include the most common loops, the

reduction of repetition in this area has led to improved timings,

both because fewer segment shapes are searched for and because fewer

segments are accepted and processed.

The loop-driven algorithm is a completely general method and
it will efficiently generate all of the loops for any distinct

row table (DRT), regardless of the complexity and the level of

excitations included in the DRT.
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F. The Loop Searching Master Table

The loop searching master table (Table IV) contains all of the
information about loop types and how they are overlayed. Within
the loop-driven formalism, it controls the path of the tree searching
algorithm. In one sense this information completely defines the
nature of the Hamiltonian and the DRT is only used as a template oT
backbone on which loops are generated. This information is in a
similar form to that needed by an efficient implementation of this
method. (In fact a listing of a working program using this method
was consulted to produce this table.) This table is also an invaluable
tool to anyone attempting to create or modify a program using the
loop-driven algorithm.

The ISEG value refers to a particular searching section. For a
given ISEG value all JSEG values within its range will be investigated
at that level within the DRT before reverting to a previous higher
level. For example, when ISEG=3, JSEG values from 35 to 52 are tested.
Each JSEG value corresponds to a particular segment type. Not only
is the shape of the segment determined but also its range and
position within possible valid loops. The search is always initiated
af the loop head where ISEG=1.

The columns labeled IS(Ab), by, and FS(Ab) uniquely determine the
shape of the segment. These columns are not needed by the searching
algorithm but are included here to make the table more readable. The
heading IS refers to the "initial shape" (top of segment) and the
heading FS refers to the "final shape" (bottom of segment); each

identified by one or two letters. In this notation R represents a
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raising generator and L represents a lowering generator between the
m and m' branches of the loop at that intermediate level. A zero
implies that the m and m' branches of the loop coincide at that

intermediate level (a necessary condition for the loop head or tail).

The segment shape is further specified by a Ab value where Ab=b-b'.
Whenever an IS or FS term contains a "/" this implies that the seg-
ment shape may be used in a loop type where a linear combination of
integrals is needed. When a compound integral track (two values) is
present, the integral defined by the second track value often corre-
sponds to the shape factor to the left of the "/'". Whereas the IS
and FS columns refer to the starting and ending shape, the "by"
columns define the body of the loop segment. The letters R and L
again refer to raising and lowering generators respectively. A bar
over or under a letter indicates the initiation or termination of a
generator (top or bottom segment of the generator range) respectively.
The letter W indicates that a weight generator for this level is
Present. An asterisk on any generator simply means that a change of
sign is introduced to the x=1 branch of the loop coefficient. Further
details and use of this notation can be found elsewhere.46

The column labeled 'next'" specifies the next ISEG block that
must be tested at the following lower level if the current segment at
the present level is accepted. A '"next'" value of zero implies that
this segment if accepted will terminate a loop and that this loop
should then be processed before continuing further with the search.
The s' and s values simply identify the case numbers for the m' and :

m branches of the loop. These values are compared with the arcs of

"l
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the Shavitt graph at the current position to determine if the current

segment is acceptable. The column labeled '"tracks'" gives the final

ERIUES

offset values used in determining the position of integrals within the

current integral block. When a loop is terminated the current track
value(s) is used when processing that loop. Whenever a segment is
accepted where the track value is not specified, the track value(s)
from the previous level is used as the current tracks value. A track
value with only a single integer (ml) implies that only one integral
will contribute to the loop and that the X' coefficient will be used
to determine the coefficient of that integral. For this case the

loop value (v) is given by:
v = X' I(a' + ml) - (49)

where I represents the array containing the current block of integrals
and a' is the address offset within that block determined by (i, j, k,

and %) and is given by:

a' = K

o * Jj(rk x Tp) + Ii(Tj x T, xTp) (50)

where kK, J, and I are the integral offset arrays (see section III G.).

When the tracks value contains two integers (ml,mz) the loop value

is given by:
v = X'[I(a' + ml) + 2'I(a' + m2)] . (51)

When the tracks value contains two or three integers (ml,mz,ms)
enclosed in parentheses only the X' value is used as the coefficient

for all these integrals which implies that the loop value for three

integrals can be expressed as:
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v = X'[I(a' + ml) + I(a' + m2) + I(a' + ms)] . (52)

nwm r

The column labeled '"kjcond" contains information used to determine

i
E
F
5

if a "k" or "j" value has been reached at the current level. When a

"k" or "j" level has been reached its contribution to the integral
address offset is determined. A k-condifion of -1, 0, and 1 imply the
k level has not yet been reached, (the current segment is above the
k segment), the k segment has already been reached (the current
segment is below the k segment), and that the current level is the k
level segment, respectively. The distinction between k-condition
values of -1 and 0 is needed to test whether or not a block of integrals
sharing a largest common index has been divided into subgroups (due
to internal storage limitations for large calculations). The j-condition
can have only two values, 1 and 0. A value of 1 implies that the
current level is the j level segment. It should also be pointed out
that the j level segment cannot be above the k level segment and that
a valid loop may not terminate unless both the j and k level segments
have been reached.

As stated previously (section II C.) the coefficient of any two-
electron integral in a particular loop can be represented by:

Im> = { T W(T;,s!,s;,4b,b.)
i(no overlap) .

<m'le
Pqg, s

I W(T.,s:,s.,Ab,,b.,x) , (53) .
x=0,1 i(overlap) ot

where there is a different set of W coefficients for any loop segment.

These coefficients are stored in equations under the heading of
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ncoefficients'". Within these equations there are two pushdown
stacks51 (X and Y) and a third simple variable Z'. The pushdown

stacks used here can simply be thought of as arrays that span the
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levels of the DRT. During loop generation, when a segment is accepted

the composite contribution of all upper segments (X and/or Y) are
updafed with the contribution of the current loop segment, and the
new composite contribution is stored at the current level (X' and/or
Y'). The X stack is always used at every level and the Y stack is

only used for the x=1 term when both x=0 and x=1 terms are present.

The Z' element is occasionally changed. The segment coefficients are

expressed in terms of the initial b value of the m branch of the loop

using the definitions:

t =1/v2
Ao = Y 2B

2
B(p) = \[Eb+p)(b+p+l)

(b+p-1) (b+p+1)
b+p

C(p) =

_ (b+p-1) (b+p+2)
D(P) =Y ~(+p) (o+p+1)

2
E(p) = \[cb+p)cb+p+2)

The coefficient codes listed in the last column simply assign an
arbitrary number to each unique set of coefficient equations. This

allows an easy and compact storage of the coefficient information

(54)

(55)

(56)

(57)

(58)

(59)

through the use of a large "computed GO TO" within the loop generation

algorithm.
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It should be mentioned that the choice of segment coefficient and
overall structure of this table is not unique, and a large number of
decisions were made in its preparation. Most of the credit in deter-

45 and

mining the segment coefficients presented here goes to Paldus
Shavitt.46 When some of the newer developments are included such

as repartitioning the Hamiltonian relative to a ''reference state'"
instead of relative to the 'vacuum" as described by Shavitt,46 the
loop searching master table must be expanded and adapted to allow for
this additional complexity. One major advantage of presenting the
Hamiltonian in this manner is that when a change of this nature is

required, the loop generation algorithm need not be altered. It is

sufficient to change only the information stored in the table.

TR
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G. Integral Sorting and Storage

There are three reasons for resorting52 the one- and two-electron

integrals for the GUGA method. The most important reasons is that many

loops require two or three integrals to determine the loop value, and
these different integrals must be in core at the same time. Even
better, if the different integrals needed were stored in adjacent -
positions, then only one address pointer would be required for any

loop. Since loops are generated by the tree search method, all

integrals used for any given tree search will have a largest integral

index of %, the level of the loop head. It is therefore highly

advantageous to hold all integrals of a given largest index in core

at any one time, and they should all belong to the same integral block

if possible. Another reason for sorting the integrals is that once

they are sorted, they can be stored in the manner presented here. For

some cases this implicit addressing storage method requires only half

of the storage space required with a conventional integral tape that

contains a label and value for every integral. The last reasons men-

tioned here is that since a reordering of the orbitals is almost a

 necessity for the GUGA method, the integrals must undergo an indices

chahge, unless the orbitals are reordered before the integral transforma-
tion. The transformation algorithm déveloped for use with GUGA CI
applications creates and stores integrals in this manner thus eliminating
an explicit sorting step later with the additional benefit of reduced
external storage requirements.

The integral sorting could be avoided with an integral driven

method, but as stated previously this type of approach would result
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in a factor of 2 increase in the size of the formula and diagonaliza-
tion tapes. The integral driven approach would also result in a many-
fold repetition of work in the loop generétion steps. Another way of
understanding this difference is that the integral driven approach
treats each integral separately whereas the loop-driven algorithm
processes a block of integrals simultaneously. For these reasons
this approéch would be at best an order of magnitude less effective
than the loop-driven algorithm, (unless loops are generated implicitly).

For a given loop head all integrals that could be required are
stored, if possible, in the same block. If there are more of these
integrals than the block size, then these integrals are divided into
different blocks in such a way that the repetition of work is minimized.
The integral blocks are defined in such a way as to minimize the
number of blocks required for a given available core with the above
restriction.

Each integral is assigned a block and a position as follows:

(1) Each integral is given a type (t, t=1-7) and a subtype
(m, m=1-3) and an i, j, k, and & value where i<jgksg®.

The possible types and subtypes are:




[] 3 m} i;}
45 1
t m Integral Condition
1 1 [ik;j 2] i<j<k<q é
2 [ij;k2]
3 [5k; 18]
2 1 [ij;34] i<j=k<
2 [33;i4]
3 Not used
3 1 [ik;i] i=j<k<q
2 [ii;k4]
4 1 [i2;342] i<j<k=%
.2 [ij; 2]
3 Not used
5 1 [i2;282] i<j=k=%
2 [ii;12]
3 <i|ﬁ|2> + (frozen core)
6 1 [i2;i2] i=j<k=%
2 [ii;24]
7 1 [28;22] i=j=k=2
2 <2|h|2> + (frozen core) . (60)

The positions recorded as '"not used'" are kept as place holders (in cases

i#j) so that the addressing can be defined simply by arrays. For large

calculations these holders should only increase the integral space

required by about 4%. Integrals that correspond to frozen core or

deleted virtual orbitals are not stored. There is also no space held :

for integrals that are zero by symmetry.
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(2) Given an i, j, k, %, and m value, the address a within the

proper block (determined by k and %) is given by:

a =K.+ JJ.(I‘k X Fz) + Ii(Pj X Tk X Fl) +m s (61)

p;wrmﬂwy EEL T

where Ti is the irreducible representation of orbital i. Kk, J, and I
are offset arrays generated based on the symmetry of each orbital and ;
the number of orbitals. The integral addresses are generated during the
loop generation. As k, j, and i values are reached, the integral
offsets are updated. This minimizes the amount of computational effort
required in generating integral addresses. The m values for’any given
loop are determined by the tracking pushdown stack.
Within this framework entire blocks of integrals are processed
together; that is, all possible loops requiring these integrals are
generated sequentially. This is also used very efficiently as a direct

CI method7 where the storage of the diagonalization tape is avoided.
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H. The Loop Breakdown Algorithm (Solution of the Upper Walk Problem)

In the early stages of the development of the GUGA CI method

one of the major stumbling blocks was that there was no simple way to

easily find all of the Hamiltonian contributions of a given loop once

it had been generated. Due to the nature of lexical ordering the £

lower walks of a loop were sequential, thus easily determined. This -

problem was then reduced to the task of finding all of the upper walks

for a given loop ("the upper walk problem"). At that time there were

several proposed methods to solve or circumvent this problem but

of these all had serious drawbacks. One solution that would have been

prohibitive in terms of computational efficiency, was to simply search

for all upper walks whenever a loop was generated. Another.solution

with a similar deficiency would be to regenerate a given loop at }

different times for each upper walk. The only solution which appeared |

to be acceptable was to consult a list of upper walks from the loop

head of each generated loop, but this approach was discarded in favor

of the more efficient loop breakdown algorithm presented here. ;
Due to the nature of the lexical ordering24 of configurations '

(walks), all configurations that pass through a given distinct row

with a given upper walk are contiguous. All of these configurations

can be simply referenced by a starting position and a length.
m=m_+Kk k=1, 2, ... X (62)

where m, is the weight of the given upper walk and X, is the number of
lower walks of that row. Whereas the lexical ordering of states

greatly facilitates finding configurations of lower walks through any
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row, this is not so for upper walks. The upper walk problem is to find
an effective algorithm that can generate all the upper walks for any
loop. Consider a different ordering of states where all configurations
passing through a given distinct row with a given lower walk are
contiguous or, in other wafds, all upper walks are sequential. This
ordering of states would be roughly equivalent to the lexical ordering
of states if the DRT was inverted. This ordering of states, termed the
"reverse lexical order,' is related to the lexical ordering of states

by the indexing array Y, such that

m = Y(m) (63)

where m is the reverse lexical order index and m is the lexical order
index of a given state. Each distinct row is also assigned a primary
upper walk weight, Z.s and the number of upper walks, ir’ as well as

the number of lower walks, X, All states that pass through a given

row are given by:
m = Y(zr + k) + j j=1,2,3, ..., Xx
k=1,2,3, ..., X . (64)

Here the final states are in reverse lexical order. To extend the use
of the indexing array to loops, all matrix element contributions Hﬁ Zrs
b

can be found simply by

=
1

= Y(zh +my + k) + j j=1, 2, 3,

B'o= Y(z w4 k) + k=1,2,3, ..., X , (65)

=

g
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where my and m'2 are the weight of each branch of the loop and the

subscripts h and t refer to the loop head and tail rows, respectively.

Again the final indices are in reverse lexical order. A given loop

will contribute to the Hamiltonian xt . ih times. This breakdown

algorithm is needed in the diagonalization step and in the generation ' .
of the one- and two-particle density matrices, since the information -
required for this algorithm can be stored in a compact form with only

three quantities needed:

3) x . (66)

Here X, is not present because it is best stored as a flag since its

h
value is constant for all loops from a given loop head. The final loop
value must also be written as a real number.

Due to the nature of the indexing array Y all contributions from
any given loop will lie on the same super-diagonal (i.e. m-m' =
Y(zh+m£)-Y(zh+m'£), which is a constant). This loop breakdown algorithm
allows a rapid determination of all matrix element contributions and its

only drawback is that an integer indexing array that exactly spans the

configuration basis must be held in core during the diagonalization.

BT
l
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I. Implicit Treatment of the External Space

For a theoretical study in which only single and double excita-
tions into the external space are allowed, it is possible to generate
loops that are mostly or wholly within this space in a manner that is
more efficient than the loop-driven algorithm. When the external orbit-
als are placed at the bottom of the DRT, the Shavitt graph is quite
simple for reasons described earlier. At any external level there can
be (ignoring symmetry distinctions) at most four rows, designated W
(two electrons singlet coupled in lower orbitals), X (two electrons
triplet coupled in lower orbitals), Y (one electron in lower orbitals),
and Z (no electrons in lower orbitals). Because of this simple struc-
ture all loop shapes and coefficients in this area can be implemented
implicitly. This idea was first suggested by Siegbahn53 for an
integral driven approach. Of course the generation of loops for a
given integral on demand by using the factorization of coefficients
over levels is a slow and repetitious process. Thus the only hope fér
an integral driven approach is to generate the vast majority of loops
in an implicit manner. This idea was carried further by Shavitt,54
who worked out the shapes and details for all of the different loop
types with the virtual orbitals correctly placed at the bottom of the
DRT. We have implemented the generation of the all-external implicit
loops in a manner similar to the method suggested by Shavitt but with
a few modifications. The method used is somewhat analogous to the
loop-driven algorithm, in that we proceed by bringing in a block of
integrals (abc) for a given largest integral index (d) stored in the

manner described in section III G. Once this is done one enters

FHSIRF < TR A
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a set of three nested DO loops over the remaining indices (abc) where

g

the number of operations in the inner loops has been minimized so that

i

any symmetry pointer or offset that is used for different integrals

TR

is computed only once. In the next to innermost DO loop where the

S

indices (bcd) have been established, the loops are essentially deter-
mined. The final offset is added and the GUGA loops are processed

in the innermost DO.loop. Also, in this formulation it is easy to
treat those integrals with coefficients of %1 in a more efficient
manner by avoiding unnecessary multiplications.

We find that the implicit generation of loops is almost a factor
of two faster than the loop-driven algorithm for the all-external
space. For the partly external loops this ratio will not be as large
as two-to-one. For Example I (BHS’ 34 orbitals in C2V sugbroup) the
loop-driven algorithm required 23.0 seconds to generate the all-
external loops and the implicit generation required 13.4 seconds to
generate the same loops within the 30 virtual orbitals. The time
required for the remaining loops was 125.7 seconds, giving a tqtal
savings of 7% (neglecting time required for DRT generation and
integral sorting) by the implementation of the implicit generation
of all-external loops when the ratio of external to internal orbitals
is 7.5 to 1. When the implicit generation is also put into practice
for loops with two or three external indices, the overall savings will
be perhaps 30% compared with the purely loop-driven algorithm. For

Example Il (CH2, 61 orbitals C, point group) where the ratio of

i

external to internal orbitals is 11 to 1 the percent savings in the

s S

loop generation phase is found to be 9.4% using the implicit generation

of the all-external loops.

5
£
£
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J. Diagonalization Tape vs. Direct Method

As shown earlier, the GUGA method is quite suitable as a formula

tape method, albeit the formula tape generation step is so fast that -

: ;wmrmm\:v S CSTTH @ W 7

it may not be worth saving from one calculation to the next. In this

section we discuss the calculations in which the formula tape generation

is omitted and the diagonalization tape (symbolic formulas already
combined with molecular integrals) is generated directly. Since no
sorting is required, it is also possible to implement the loop-driven
algorithm as a direct method,7 in which all of the loops are generated
during each iteration of the diagonalization without losing any
efficiency in terms of the simultaneous treatment of integrals.

For Example I (BHS’ 34 orbitals, sz subgroup) the computation
time required to generate and process all of the loops (neglecting
DRT generation, buffer packing and integral sorting) is 122.9 seconds
for the loop-driven algorithm. The time required for the matrix
multiplication o, = Z Hi.c. at each iteration of the diagonalization
is 32.2 seconds for an overall ratio of 3.8 to 1. It should be
mentioned again that, because of the nature of the loop-driven
algorithm, each nonzero Hij has (on the average) just over one contrib-
uting Ioop, because loops are linear combinations of integrals, whereas
for an integral driven method there will be almost two contributions
per nonzero Hi" Thus, the iteration time required for the multi-
plications in o; = Z Hijcj will be almost twice as large for an integral .
driven method. ’

The ratio of loop generation time to diagonalization iteration time

is important because it will become cost effective to generate all of

v erpr ‘W‘|'"”" PR
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the loops each iteration of the diagonalization when this ratio becomes

e

small enough. For each machine the break-even point will depend on

i
i

the particular charging algorithm used to calculate the cost. With

T 1

TR
|

the advantages of treating the all-external space implicitly the ratio

I

reduces to 3.5 to 1. When the parts of other loops with three and two
external indices are treated implicitly, the savings may be perhaps 30% -
over the purely loop-driven algorithm, and with that improvement the

ratio will be reduced to 2.7 to 1. It is our contention that further

improvements elsewhere can bring this ratio to 2 to 1; that is, it

will take only twice as long to create the complete Hamiltonian matrix

as it does to multiply it by a vector. Even if this approach is not

cost effective, for very large calculations, the external storage

requirement of the diagonalization tape may make the direct method

preferable. Although many of our algorithms have been written with

the direct method in mind, we cannot implement this on our Harris

. 55 . .
minicomputer”” for any reasonably sized calculation because of severe

internal (core) storage requirements.

o
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K. Large Matrix Diagonalization Method

.

For the GUGA method, a straightforward diagonalization using

SR

the method of Davidson56 requires that two real vectors and one

g

integer vector spanning the configuration basis, and the buffer space

reside in core simultaneously. On a minicomputer such as ours

(with only 20K of real words available to the user) this limits the
size of the secular equation to at most 8000 configurations. By
today's standards this is not considered to be large, and many prob-
lems of current interest require considerably more configurations than

this.57

To develop a method for minicomputers that will allow very
large matrices to be diagonalized, it is clear that the matrix must
be partitioned. One method of doing this is to read thé entire Hamil-
tonian several times, using only the portions that correspond to the
particular section that is currently being processed. However this
rapidly becomes prohibitive when the vector is broken up into n sec-
tions if n is more than two, since the number of passes is given by
n(n+1)/2. Clearly what is needed is to sort the matrix into n(n+1)/2
sections, each of which can be read when the proper portion of each
vector is in core. If n is minimized in such a way that only two
portions of vectors are needed at one time, most of the Hamiltonian
will need to be read and processed twice, since oniy the lower half
of the Hamiltonian is stored. Taking another approach, doubling the
size of n implies that each portion of the CI vector is half as large

so that four portions can be held in core at once. This allows the H

step 0 = Hc to be carried out by reading the matrix only once and

processing a given Hij twice when i#j (the only drawback being an
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increased number of Hamiltonian sections).

Since 20K real words are available to the user, after leaving
some space for buffers each portion of the vector can at most be about

4000 configurations. A rather fortuitous coincidence is that the

HarrisVSIash Four word size is 24 bits. Half of a word is thus 12 é
bits, which can be used to specify an address from 1 to 4096. Thus .
by choosing 4096 as our block size we also can specify a given

element (I and J) with a single word.

Another fortuitous occurrence involves the use of the GUGA iﬁ
reverse lexical ordering as described in the loop breakdown section.

The average loop has more upper walks than lower walks, and each
contribution for different upper walks can be specified by a starting
matrix element and a length, which define other matrix element contrib-
utions along the given super-diagonal. These contributions will usually
lie sequentially within the same Hamiltonian block. The combiﬁation

of storing I and J addresses in a single word and using reverse

lexical ordering allows us to store an entire Hamiltonian in about half
the space required for the corresponding conventional matrix. Since
this method is limited only by available disc space (up to about

30,000 configurations) this essentially doubles our capabilities.

The final '"matrix' tape is also smaller than the unsorted
diagonalization tape, so the Yoshimine sorting method58 we use allows
the final matrix tape to be stored in the same external space that
the original unsorted diagonalization tape is read from.

One of the largest variational wavefunctions determined stémmed

from a three reference interacting space treatment (two closed shell

[0 valrn“vrwau ||mm
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singlets, one open shell singlet) of SO2 that contains 23,613
configurations. This calculation required about 60 megabytes of
external storage, or less than half what is available to any user

on our system. Thus calculations on the order of 25,000 will become
routine on our minicomputer. For this calculation, the diagonalization
tape was generated in only 39 minutes at a real cost of about $5. The
time required to sort this matrix is 57 minutes; however, this

sorting would not be necessary if enough core storage were available.
Each iteration of the diagonalization step required 19 minutes and

a total of 9 iterations were required to obtain the second root only.
The diagonalization time is between 10% and 20% longer than it would

be on a similar computer that could store and process two complete

real vectors in core. When including the sorting time as well as

the reduced efficiency, we find that the present diagonalization
procedure increases the (unlimited central memory) diagonalization

time for any given calculation by about 50%. Since the diagonalization
step is not usually the most time-consuming portion of a single

calculation, we do not find this to be a major drawback.

e
|
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L. Density Matrix Analysis

We have also developed a one-particle density matrix analysis

which enables us to obtain one-electron properties at the CI level.

Unlike conventional CI methods, where the optimum method for generating
the density matrix is to read and process the one-electron portion of
the formula tape, we do not have a separate one-electron portion of the
formula tape, nor a configuration list. Instead we simply generate

all of the one-electron loops and use the loop breakdown algorithm

to rapidly find all of the CI vector coefficients. We find that the
time required to generate the one-particle density matrix by this
method is negligible compared with the other steps involved in the CI.
Once the one-particle density matrix is created, it can be transformed

to the AO basis and then passed to a one-electron properties routine.
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M. Avoidance of the Full Integral Transformation

Previous work by Pople and coworkers38 describes a method that
partly avoids the explicit (ms) four-index transformation of atomic
integrals to’a molecular basis. In particular, their work shows
how the integrals [ab;cd] never need to be computed (where all of the
indices (a,b,c,d) correspond to the external space). Their method
allows the contributions of the all-external integrals to be included
directly from the atomic integrals [Au;vo}, usually with a reduction
of necessary operations. This approach has some similarities to the
self-consistent electron pair (SCEP) method of Meyer59 and Dykstra
et al.60

One of the drawbacks to Pople's formalism is that it is only
applicable to CI methods that include up to double replacements from
a single reference Slater determinant. We will show how this
formalism can be extended to a completely general CI procedure over
spin-adapted Gelfand states of a multireference interacting basis,
or any other set of Gelfand states where at most two electrons are
allowed into some external space.

Using Davidson's method for diagonalization,56 each iteration of

a o vector must be found such that
op = ) HysC5 . (67)

The all-external two-electron integral contribution to the o vector

can be expressed as

ext abcd
o7 = ) c, cxacubcvccgd[ku,vc] bI; (68)
J Auvo

s
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where CJ is the CI coefficient of configuration J and [Au;vo] is an
integral in the AO basis. The b?SCd term is simply a spin coupling
coefficient where the indices (a,b,c,d) are all restricted to the
external orbitals. For a determinant based CI the coupling coefficients
b?BCd will either be unity or zero. On the other hand, when a Gelfand
configuration basis is used the coupling coefficients become more
complex. This additional complexity requires some modification of the
formalism presented by Pople.38

1f two electrons occupy the external space, they can only be
coupled in two ways (singlet or triplet coupled) if the ordering of
orbitals is chosen in the manner described earlier (where all of the
external orbitals are placed at the bottom of the Shavitt graph or
DRT). If the electrons are triplet coupled, then this Gelfand state
can only have a nonzero matrix contribution of the all-external
integrals with other Gelfand states that also have two triplet coupled

external electrons. These states are referred to as X states and the

spin coupling coefficients are given by

bed
?Jc = 61 J sgn[a-c] sgn[b-d] (69)
up” up

b

where Iup refers to a particular upper walk of configuration I in the

internal space. The function sgn[x] is defined as

sgnix] =1 if x >0
sgn[0] = O
sgn[x] = -1 if x <0 . (79)

For the X states, the coefficients are already factored into an ac term

g

g
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and bd term.
States where the two external electrons are singlet coupled are
referred to as W states. The spin coupling coefficients for these

states are given by

abed _ 5
Iy 1 _,J
up’“up

b [(1+¢§L1)aac)(1+(/§-1)6bd - 8,.84] . (71)

For the W states, it is not as easy to factor the spin coupling
coefficient into ac and bd parts. By rewriting configuration I as

either upw+ac or upX+ac, equation (68) can be rewritten as

Gz;;+ac - bd Ao Cupw-*bd CAacubC\)ccod [Ausvo] -
[(1+(/§-1)6ac)(1+(/§-1)6bd) - 8,.8,4] (72)'
and
0§;;+ac = g% Agso Cupx+bd cAacubcvccod [Au; Vo]
sgnfa-c] sgn[b-d] . (73)

Rather than first finding [ab;cd] as is usually done, these equations

can be solved by first forming the intermediates Fxo, Fxo’, and Fﬁc’

defined as

uo
F = z (c.,c ,+¢c ,c,)C (74)
W bod ub “od ud “ob upw+bd

I SV, (75)

W ubod “up,->bb

b

and

T

R
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uo
E, = c.Cc , - ¢C .C c 76
X bzd (©bCod = pa®ob? Cupyrbd (76)
The next step, which will be the most time-consuming, combines the
“atomic integrals with these F terms to form
Yo 7 EY g vol 77)
W W
o
AV . 0.
Fyg " = ZF“; [AW; Vo] (78)
o
and
E)A(V = 7 F§0 [\ vo] : (79)
o
Using the F intermediates ﬂuaceXt contribution can easily be found as
ext - sAV kv,
0upx-*ac - g: [(F X ) (cAaCVC * CxcCva t
/_ kv,
(/f'z)Cxa va 8ac) - (©)ava ac) (30)
and
px+ac z F (©3a%uc = SacCva) : (81)

As stated previously, the most time-consuming step is described
by equations (77-79) and it is of the order (n2m4) where n and m are
the number of internal orbitals and the number of basis functions
respectively. The step that this avoids reduces the integral trans-
formation from an (ms) process to an (nm4) process. Therefore, whether
this type of approach is optimum for a given CI problem will depend on

the relative comparison of n2 and m as well as other factors. It should
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also be remembered that the procedure presented here must be performed
every iteration of the diagonalization. As it will be shown in a later
section, the real advantage of this type of an approach will come about

for analytic gradients of CI energies.
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IV. ANALYTICAL GRADIENTS FOR CI ENERGIES

One of the most promising aspects of the GUGA formalism will

be in the determination of analytical gradients (first derivatives)

of configuration interaction energies with respect to changes in %
nuclear positions.
The current conventional approach to calculating energy derivatives
at the CI level is through the use of the finite-difference method.
This is done by performing several distinct calculations (at least
two) at nearby geometries for each degree of freedom that is needed.
The desired energy derivative for any perturbation can be approximated
by

3E(x) ~ B(x+Ax)-E(x)
ox N 2 Xx ) (82)

Whereas the methods required to obtain CI derivatives in this manner
are much simpler than those required to obtain analytic CI gradients,
there are several drawbacks to this approach. The most obvious
drawback is that it is an approximation. If the step size Ax is

too large, the contamination effects of higher derivatives could become
important. On the other hand, if the step size is too small, roundoff
effects could dominate. The pfoblem of roundoff errors at the CI
level are much more pronounced than those at the SCF level (due to
the nature of the four-index transformation). Perhaps a more serious
drawback is that finding energy derivatives in this manner can be
quite costly. Usually three calculations are required to obtain any

derivatives accurately, thus for any (non-linear) molecule the approxi-
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mate cost to find all of the derivatives can be expressed as

(3N-6) x 3 x I1 (83)
where I1 is the cost of a single calculation. Using the methods
presented here, the cost required to obtain the identical results | 3
would be
I, + I, ~ (84)

where 12 is the cost to obtain all of the energy derivatives, once
the CI calculation has been completed. Since (as it will be shown)
that 12 is approximately equal to I1 for most cases, and for difficult
cases 12 could be twice as large as Il, savings of an order of magni-
tude could easily be found for a molecule as large as C4H6 using
analytic gradient methods.

In this section, the theory behind these new methods will be
presented, as well as some details and insight into the first imple-

mentation (which at the time of this writing is near completion).
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A. Theory of CI Energy Gradients

The GUGA method will be extremely useful in determining analytical

gradients61 (first derivatives) of CI energies with respect to changes
in nuclear positions. It is clear that not only can this method be
implemented in such a way as to be more efficient than performing
several distinct CI calculations, but also in such as way as to be
flexible enough to be useful for a general large scale multireference

CI with any desired configuration set.

For any CI wavefunction
¢ =} Cré; (85)
the energy can be written as

_ ij _aifys ijk& ...
E = 2 CICJ(aIJ <1|hIJ> + bIJ [ij;keD . (86)

The derivatives of the electronic energy can then be expressed as
a _ oE _ ij . ..a ijk& (.i.1012

since the CI coefficients are variationally determined, and thus the

formula for the gradient will not involve their differentials., In

equation (87) a}} and bigkz are simply spin coupling constants.

The derivatives of the integrals are given by

S

T
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P! ~ ~
<i|h|j>" = )\2 cAicuj <)\|h|u>a + Z (ciicuj + c)\icz’j) < h|u>
M Al
= )\%:i ckicuj <>\|}/{]u>a + g (Uii <r|h|j> + U:j<i]h|r>) (88)

and by

‘. a _ L a ..
[ij;k2]7 = A_z ckicujcvkcol [Au;vo] 2 (Uri [rj;ke] +
uvo T

a . a .. a ...
Urj [ir;k8] + Uk [ij;k8] + U, [ij;k2]) (89)

where Uii denotes the first order changes in the molecular orbitals.62

To compute the energy gradients in this manner one néeds, in addition
to the information required in the ordinary CI, the derivatives of all
of the atomic integrals <)\|ﬂ|u>a and [Ay;vo]? as well as the Uii
coefficients.

It is true that the contribution of the atomic integral derivatives
[Au;vc]a can be obtained simply by a four-index transformation, but this
would require a separate (m5) transformation process for each derivative
under consideration. We will present two methods here to avoid this
problem. The first method shows how an (ms) transformation may be
perfofmed once and used for all of the different derivatives and the
second method (given in section IV C.) demonstrates that much of even
this one remaining (ms) transformation can be avoided.

By combining equations (88) and (89) with equation (87) the

energy gradient can be expressed in two terms as

m[wuw‘vm :

] UWW‘W' T T



LA A -
67 !
a. _ 1jke a :
E°" = ) Y ) c.C.b C,:c .C.C o [Aus;vo]” +
Ao iike 17 I"J°1J AiTuj Tvk ol :
ij ~pLLa i
7Y ) ccatd oelc o <alh|w> (90) 3
g 1 T A :
and 3
a.. ij a " a _.in
E*= ) Y c.catd w2, <r|h|j> + 0 <i|h|x>+ ) )
ijriyg TJW O ri ijker 17
(91)
ijk& .a . a . a .. a ..
CICJblg ﬁjri [rj; k2] +Urj [ir;k] + Uk [ij;r] + U [ij;kr])

where the total energy derivative is given by

E = E + E (92)
The optimum method for evaluating these equations is by first
computing the one- and two-particle density matrices64 given
respectively by
_ ijkg
Gijg = L CiCaby3 (93)
1J .
and
= ij
Q5 = ) C;Cjar3 . (94)
1J
. - ijk& ij . .
The coupling coefficient bIJ and ary can be found rapidly by using
the loop-driven algorithm. The density matrices are used in two

different ways to find both the gradient contributions of £ and E3°".

To find the contribution E** given by equation (90), the

density matrices are transformed to the AO basis by

pram hwwmn:lﬂw RN R IR I
Co H
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QMJ = 1% c)\iCUjQij (95)

i HTW‘ ]

and by

(96)

1 P:-nrmﬂw R o

G = z Cy.C .C.C oG, .
AUVO i7ke AiTuj vk oL T1ijke

This step will be of the order (ms) and is similar to the four-index
transformation, except that the transformation here is from the MO
to the AO basis which requires less effort than the reverse process
whenever orbitals are either deleted or treated as frozen core
orbitals. By substituting equation (95) and (96) into (90), g2~
reduces to

a. _ . a ~yoLa

E = ) Cyppug [AH3vol™ + ZQM <AJhlu> . (97)

AUV AU
The transformation of the density matrices is processed only once
and the result is used for all of the different derivatives. Also,
the integrals [Au;vc]a are never stored. As they are generated,
its product with its corresponding density matrix element is
immediately added to energy derivatives terms.
The derivative contribution E®*~ given by equation (91) is found

by first generating the Lagrangian Xir given by
Xip = ) 4Gy jyp [Tis k2T + ) 2Q; 5 <r|h}j> (98)
jk& J
which is determined by an (m5) process that is performed once. The
effort required for this step is about one fourth of the effort required

in a four-index transformation. This Lagrangian is an extremely -
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useful entity. When the density matrices are symmetric, that is
Gijkg = Cijax = Cjike = Cjimk = Cxesy ~ Skayi T Sekiy T Cukgi (99) =
and :
Q.. = Q.. (100) é

ij ji
then the Lagrangian given by equation (98) can greatly simplify equation

(91) and becomes

o a
27 = g& X; U (101)

which is processed when the Uii coefficients have been determined by
the CPHF equations (see section IV F.). It should also be noted that
this Lagrangian X, given by equation (98) has other uses, particularly
when used in an iterative MCSCF scheme to find an optimum unitary
transformation that will yield a '"better" set of orbitals based on the
CI wavefunction. Also, when the MCSCF wavefunction is converged, the
Lagrangian will be symmetric (i.e. Xir = Xri)' We are currently
developing and implementing this MCSCF method, and we will present
a more detailed description in section IV D.

The advantages of the above theoretical developments cannot be

65,40

overestimated. Practical investigations emphasize the enormous

difficulty of locating transition states, let alone reaction paths,
for organic molecules. The possibility of having accurate forces for
CI wavefunctions will mean that advanced numerical techniques66 can
be applied to these forces and force constants to find reaction paths

and transition states with a minimum of computational effort. .
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B. Generation of the One- and Two-Particle Density Matrix

The use of one- and two-particle density matrices allows the
energy contribution to be found easily for all (3N) different deriva-

tives, since the density matrices are independent of any particular

derivative. In addition to determining CI energy derivatives with
respect to nuclear position they can also be combined with any other
set of integral derivatives to find other CI energy derivatives
(e.g. electric field strength). The one- and two-particle density
matrices are given by equations (93) and (94). The coupling coeffi-
cients bigkg and a}g ére exactly those that are used in determining
the CI energy, which were defined by loops. The simplest method for
generating the density matrices is to generate these same loops. The
only difference here is that once a loop has been generated it is
processed differently. This allows the density matrix to be generated
with the loop-driven algorithm. The effort required to compute the
density matrices in this manner is only slightly longer than the effort
required to generate the corresponding diagonalization tape.

In the diagonalization tape generation step, loop coefficients
are combined with appropriate integrals to form an overall loop
value.” This loop value is then used a number of times, determined
by the loop breakdown algorithm, for each diagonalization iteration.
In generating the density matrices, this process is reversed. When
a loop is generated, the loop breakdown algorithm is used first to

determine the total loop contribution (d). This total loop contri-

bution is simply a sum of the products of CI and CJ for each separate

inps |r“mr 1

loop contribution and is given by:

g
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*n %t 102
d = C « C . 102
§ % Y(zh+m2+k)+j Y(zh+m'2+k)+3 :

where m, and m'z are the weights of each branch of the loop, Zy is the

primary upper walk weight, ih and x_ are the number of upper and lower

t

walks respectively, and Y is the indexing array. Once the total loop
contribution has been determined, its product with the loop coeffi-
cients is added to correct density matriX element terms.

The density matrix elements here play the same role that the MO
integrals play in the diagonalization tape generation step. These
elements are stored in the same manner and a particular density
matrix element can be found with the integral storage offset arrays
by equation (59). Using the same storage method allows a block of
density matrix elements to be computed simultaneously with the loop-

driven algorithm.
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C. Transformation and Partial Transformation of the Two-Particle
Density Matrix

Since the density matrices are generated in the MO basis and the

integral derivatives are created in the AO basis, either the integral

derivatives, or the density matrices must be transformed to the other ' . 4
basis. If only one derivative (or degree of freedom) is investigated,
then either choice is acceptable. On the other hand, when several sets
of integral derivatives are to be computed, it is much more efficient
to transform the density matrices to the AO basis as expressed by
equations (95) and (96). The methods requiredto proéess these equations
are almost identical to the methods for the four-index integral
transformation step, with only minor modifications. VOne such modi-
fication is that the initial steps required for this transformation
step, which include reading and sorting the MO one- and two-electron
integrals, are identical to the initial steps of the methods required
to generate the Lagrangian. Thus the computational methods for these
rather distinct steps can be efficiently combined together.
Another important modification involves the storage structure of
the final AO density matrix elements. Since the integral derivatives
are computed using an adapted version of HONDO which generates integral
derivatives with the method of Rys polynomials,67 the density matrix
elements must be stored by the same blocking structure that the -
integrals are generated by. This can be done by simply adding an
additional sorting step after the transformation. A more efficient

method involves producing the transformed AO density matrix elements

1a
|

in the sequence that they are needed. This avoids an extra major

sorting step with only a modest increase in the complexity in the

[ lqn e
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transformation algorithm.

It is also possible to eliminate a large portion of this trans-

formation given by equation (96). This advancement which describes

an alternate method to compute the contribution of the all-external
two-electron density matrix elements, is analogous to the avoidance

of the full integral transformation in section III M. By computing the

intermediates va s FAV’, FAv as given by equations (74-76), the all-

W X
external contribution of the two-particle density matrix over AQO's

can be expressed as

AUVO AV AV uo U0 . AV VO
G = F S .
ext ug [y By DEy + Ry ) wow 1T
W
A
) FXV Fic : (103)
u
Px

This step is of the order (n2m4) and could greatly reduce the effort
required to obtain E?” given by equation (97).

Another potentially very useful approximation is the use of
frozen core orbitals and deleted virtual orbitals. The approximation
presented here treats the frozen core orbitals as they would act in
a gradient procedure at the SCF level. In other words the contribution

of Ea” given by equation (101) is replaced for frozen core orbitals by

B2 - .50 (104)

core  j_frozen core T 11

. . . a .,
where Ei is the orbital energy of orbital i and S is the overlap
derivative matrix. This is identical to the expression used for all

doubly occupied orbitals in an SCF gradient procedure. The contri-

bution of E>*is ignored for deleted virtual orbitals. The use of
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this approximation implies that any MO density matrix elements that
represent these orbitals need not be computed provided that these

same orbitals were frozen core or deleted virtual orbitals within the
CI calculation. This approximation can substantially reduce the (ms)
process required for both the density matrix transformation and the
generation of the Lagrangian. It is important that the E2” term

given by equation (97) is not altered by this approximation. Since the
MO density matrix elements that represented frozen core orbitals

were never computed, their contribution to the AO density matrix must
be included directly. This can be accomplished by expressing the full

AO density matrices as

t 1
- ' -1 _ 1
Gypvo = Sapvo + 2 PaypPuo ~ 2 PywPuo = % PacPuv + PaQuo * Qo

1] 1 1] 1 1
-y pMQUO -k QMPUG -k P)\OQW -4 QMPW (105)

and

1

where Q' and G are the one- and two-particle density matrices in the
AO basis constructued only from those orbitals that are included in
the CI and Pyu is the frozen core density matrix defined as

P)\u = .z C)\icui . (107)

i=frozen core
The usefulness of this approximation will depend on a number of

factors. The main trade-off here is between computation efficiency
and accuracy. It is hoped that the error introduced by this approxi-

mation will be less than one micro Hartree for most orbitals that can

ait qu'fmTvm:rwm P e
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be considered to be part of a frozen core. The capability to apply

this approximation already exists within our CI gradient system.

LR
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D. Generation and Use of the Lagrangian Matrix

w[‘ 'W 0

The initial step in generating the Lagrangian given by equation

(98), is to process a sort on both the density matrix elements and

=
g

the MO integrals. This sort is needed because the density matrix E
elements Gijab for all ij for a fixed ab must be present with the MO
integrals [k&;ab] for all k&. The contribution to the Lagrangian for

this fixed ab is then found by a simple matrix multiply

X, (ab) = JZ Gijab[rj;ab] . (108)

The methods to process this matrix multiply are slightly modified

because both Gi‘a and [k&;ab] are stored in lower triangular form.

jab

The procedure to generate the Lagrangian is combined with the
procedure to transform the density matrices to eliminate an extra
sorting step. The diagonal elements of the Lagrangian are roughly
equivalent to the product of the orbital energy and the orbital
occupancy of that orbital. The off-diagonal elements correspond to
the interaction between two orbitals.

Once the Lagrangian is formed it is used to find the CI energy

gradient contribution through equation (101). As mentioned earlier,

it is also possible to use the Lagrangian to find the MCSCF wave-

68
function. The CI energy can be expressed in a simple form as r
E_= ) G,., [ij;k2] + ) Q.. <i|h]j> . (109) .

If a unitary transformation was applied to the orbital basis to find

a '"better' set of orbitals, the CI energy could then be approximated by
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Ex ) ) G, U,,[ab;cd] + QU .U <a|h b> . (110)
v i1ke abed 1Jkg ai bJ UekVag 3% 2: ai bj |

This is only an approximation because the density matrices G and Q
depend on the orbital basis in a complex ﬁanner. If the unitary trans-
formation U was close to unity, then this approximation would be fairly
good. This suggests an iterative procedure to find the MCSCF wave-
function. If for any CI calculation the transformation U could be
found that minimizes the energy through equation (110), then the CI
calculation could be repeated in this new basis (i.e. compute the
correct density matrix for this new basis). This procedure could then
be repeated until the transformation matrix approaches unity, which
should also yield the MCSCF wavefunction.

The problem then becomes to find a procedure that can determine
the "best" unitary transformation each iteration within this procedure.

By assuming that U is fairly close to unity, U can be represented as

U=1+U" . (111)

When this is substituted into equation (110) and all higher terms in

U1 are ignored, then the energy can be further approximated as

1 1 1
E 4 G ws .8 +68 U8 S +8 8 U 8
v i;i% ag;d ijke [ ai bj ck d2 ai bj ck dg ai bj ck d&
+ 8,18, 18, Ugg) [ab3cd ) W+ 6, U J<a|h|b> (112)
+ + a
ck d2 [ab; cd] 4 Q5 Va3%5 * °15%;

which can be simplified to

1 1 ~
Ev 7 G, . (4U )[rj;ke] + ] Q, @1 )<rlhli> . (113)
" ijkir ijk& ir ijr 1T

iR
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Since the Lagrangian is defined as

X, = ] 4G, [rj;ke] + ) 2q,. <r|h|i> (114)
Ir  55ke ijk& j ij
equation (112) can be further reduced to
En ) X uo- )X, (U, -86.) (115)
v ir 4 ir  ir ir

1T jr ir

Minimizing the energy through equation (115) is equivalent to finding

the unitary transformation U that minimizes

(116)

)

.U,
iy irir

This can be done a number of ways. One such approach involves the use

of a penalty function which blows up rapidly when U becomes non-unitary.

This is done by solving a similar problem such as minimizing

Ep = g; X, U+ P(T) (117)
where P is the penalty function and I is given by
T - Uy (118)
One example of a penalty function is
(119)

2 2
eXP[(Tij) ] - N7)

P(T) = a(} exp[(l—Tii)z].+ 7
i i i#3

where N is the dimension of T. This penalty function will be zero if

U is unitary and be large whenever U deviates sufficiently from a

unitary matrix. Equation (117) can now be solved as an unconstrained

g

T S

T
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problem. Another approximate method which is much simpler involves the

m[‘:qwr\ 1

direct diagonalization of a matrix constructed from the X matrix that

will give a good unitary transformation.

T

The computational effort required for each iteration of this MCSCF

e -

scheme will be roughly the same as with other MCSCF procedures (i.e.
dominated by the integral transformation step). We have also implemented
the capability to treat certain orbitals as part of a frozen core or as
deleted virtuals by not allowing these orbitals to 'mix" with the
remaining orbital space in the MCSCF iterationms. This approximation

can substantially reduce the (ms) integral transformation effort
required each iteration.

The MCSCF procedure presented here allows the rigorous optimization
of orbitals for any set of configurations that can be used in a CI
calculation. These techniques can also be advanced for excited state
calculatipns. We expect that MCSCF calculations involving 10000 con-

figurations will become routine with our system.
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E. Generation and Use of the Integral Derivatives

The integral derivatives are generated using an adapted version

6
of the HONDO SCF gradient program. 7 The only portions of this program .

that have been modified are the section that interfaces the program
to the rest of the program system and the sections of the program that
process the computed integral derivatives. Each integral <>\|h|u>a
and [Au;vo]a are processed in two different ways to find the contri-
bution to both g~ and E&*~ given by equations (97) and (191). The
integral derivatives are first combined with the appropriate density

matrix element and processed through

B= Jquamlwt e o6 Davwl® (120)

Al AMivo  AWvo
The integral derivatives are also required to process the coupled-
perturbed Hartree-Fock equations. For a closed shell singlet

calculation they are processed through

a
B2 - <A[h|u>a + 7 P_(2[\v0] - [Av;uo]a) (121)
)\u Vo AVe)

which is simply a Fock matrix constructed from integral derivatives

instead of ordinary integrals. For other types of SCF reference states

more than one of these Fock matrices constructed from integral deriva-

tives will be required. In any case, there must be at least one such ;
matrix for each of the (3N) nuclear perturbation under consideration.

Since all of these matrices must be maintained within internal storage

(core), this applies a modest limit to the size of our calculations.

The use of these Fock matrices constructed from integral derivatives

will be described in the next section.

ey



¢ B . L .

81
F. Coupled Perturbed Hartree-Fock
The CPHF equations are solved to find the energy derivative =
contribution of E*”” given by equation (101). The first order £
changes in the molecular orbitals Uir are given by Gerratt and :é
Mi11s52 for closed shell RHF as f
a a a
U = - € € - € 2
e (B -e s/ - e (122)

~

. . . a . . .
where € is the orbital energy of orbital r, S 1s the derivative of
T

a . . . . .
the overlap matrix, and F 1is the derivative of the Fock matrix given

by
a a occ a a
F° = <r|h|s®+ ] (2[rs;kk]" - [rk;sk]™)
rs k
occ virt a
+ ) ) (4[rs;kb] - [rk;sb] - [rb;sk]) U
k b kb
oCC OCC a
- Y Y s (2[rs;k2] - [rk;sR]) . (123)
i 0 K2

The difficulty with this representation is that U appears on both sides
of this equation. Straightforward methods to solve this equation have
been applied by Pople and coworkers.41 We find it more useful to

rewrite equation (101) in a symmetric and antisymmetric contribution

a + a - -
E777 = . (- .U, 4
g; Xlr( Sir/z) * g; Xlrulr (124)
where
X = (x, +%x_)/2 (125
ir ir ri ’ )



82

Xir = (Xir - Xri)/Z s (126)
a- _ a a
Uir = (Uir - Uri)/z s (127)
and
a+ a a a
= = -§ 2 . 2
Uir (Uir * Uri)/2 ir/ (128)

. . . . a . .
The second part of equation (128) is given since U, is constrained
ir

such that

2 + 02 +s? =0 ) (129)

Rewriting equation (122) in this new basis we find that U:; is
given by

v = F € s? /2)1/(e_ - €.) 130
N N CRNER TV} VICREICS PR ek )

a
For this representation Frs is given by equation (123), but in the

new representation it is better expressed in a form dependent on

U?” as
a a occ virt a-
Frs = BrS + E % (4[rs;kb] - [rk;sb] - [rb;sk]) Uy,
occ all a
- z Z (4{rs;kt] - [rk;st] - [rt;sk])(S7./2) (131)
k t tk
where B:s is obtained by the transformation
a a
B = B 132
TS g; cArcus Au (132)
a
and Bku is given by equation (121). The U?" contribution has been

included in the last term.

v
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As demonstrated by Pople,41 ya- can be found by solving the
coupled equations :
(1-mu* = up (133) i
where E;
A - Cohit Coni i _
(ai,bj) (4[ai;bj] - [aj;bi] - [ab;ij])/(e, - €) (134)
and
occ a a
ug = [<a|n|i>® - ) (2[ai;kk] - [ak;ik] )
(ai) k
. - €) all s°
. - occ
i gst LT ) (59 lai -
al k t
- [ak-ti] - [at;ik])]/(e, - € ) . (135)
i a

The matrix A is a non-symmetrical square matrix that has the dimensions
of the product of the number of occupied orbitals (excluding frozen
core orbitals used with the frozen core approximation) and the number
of virtual orbitals (again excluding the deleted virtuals). ga- and
ga— are column vectors of the same dimension. This equation must be
solved for each different derivative under consideration.
Once equation (133) has been solved the complete ya— matrix can

be found by equations (130) and (131), except that we are not really

g interested in compufing the ya- matrix, but only its contribution to
the energy gradient given by equation (124). The total contribution
to the energy gradient is found in a straightforward manner for all
terms except the contribution derived from the second term of equation

(131). This is the only term which requires the solution of the CPHF

equations and its contribution can be expressed as

. mmpmmmrm B e e e
| .
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occ virt

a»// - a-
E*7=2 ) [X_ /(e -¢€][) ) U (4[rs;bk]
r>g IS S 't g § bk .
- [rk;bs] - [rb;sk])] (136) -
which is treated separately, thus avoiding the explicit calculation . 3

of ya- for the parts that do not connect the occupied and virtual
spaces.

Pople41 presented an innovative iterative method to solve the
coupled equations given by equation (133). His method has many
similarities to the Davidson diagonalization method,56 except that
the method solves a set of simultaneous equations. (In fact, to
implement this method we simply made minor modifications to our

diagonalization routine.) For each nuclear variable he defines an

increasing set of orthogonal vectors given by

gt = 3" 137)
<0 <0 (
and
<B _|A|B >
a Z ~2|x|~n
B = AB - —x TR < B , (138)
n+l T e T ogfg <Bp|Bp> 2y

where n increases by one each iteration. The solution is approximated

by solving a much smaller set of simultaneous equations given by

<B li'é|§2> o, = <§k|§ > (139)

for £ and k=0,n and then

uo N ) o, B (140)
~n 2=0

The time-consuming step for this procedure is the effort required to
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~
~

multiply the matrix A by the vector En each iteration.

This concept can be improved even further by considering that
the different solutions to equation (133) for each different derivative
will not be orthogonal. Thus, by approximating each solution with
the same set of orthogonal vectors it is possible to reduce the
computation effort for this step. The savings can then be found in
that the number of matrix multiplies per iteration can be substantially
reduced (typically half of the number of nuclear variables) with only
a modest increase in the number of iterations. This is done by
defining an orthonormal set of n vectors Ei and vector products o
given by

g = (1-A)b, . (141)
~i ~z oz ~1

For each nuclear variable, solve a small set of coupled equations

~

a _ a-
<}3k!92> a, = <b U™ > (142)

for k and %=1,n. The approximate solution to equation (133) is given

by

U A lf o> b (143)
~ N h T |

and the correction vector to improve convergence is given by

n

a- a‘;) a;)
= - 14
Pn Pn ,Q,Zl <PJZ,IPH >Pg, (144)
where
a a
b ‘2’ = Z o g (145)
R =( B

This will yield a set of (3N) new correction vectors which are neither

normalized nor orthogonal to each other. From this set, approximately
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(3N/2) orthonormal vectors are produced and added to the set of n
vectors. These vectors, which are linear combinations of the Ez'
vectors, are chosen so as to most improve the nuclear degrees of
freedom which had poorer convergence (i.e. where fpi'[pi’> is large),
thus after several such iterations all (3N) solutions will be equally
converged. The initial orthonormal set of Ei vectors is obtained

a- :
by orthogonalizing and normalizing the U0 vectors.
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V. GRAPHICAL UNITARY GROUP APPROACH CI AND CI ENERGY GRADIENTS

AS A SYSTEM OF PROGRAMS

The methods and algorithms described in the earlier sections

have been combined into an effective system of programs. The system
is referred to as the Berkeley Unitary Group Approach Configuration -
Interaction (BUGACI) system of programs. Figure 6 shows a simplified
schematic of the information flow within this system.
The input to this system (other than direct user input) is a set
of symmetry orbital (SO) integrals, and a file that contains the SCF
transformation matrix and other orbital information. The program
DRTGEN generates all of the distinct row table arrays as well as the
integral sorting arrays. This is the only program in the system that
requires any appreciable user supplied input (cards) beyond simple
option parameters. The DRT file is used by many programs in the system.
The program TRANS performs the integral transformation. The
algorithm used in this transformation program differs somewhat from
conventional approaches in that extra sorting steps have been eliminated, -
integrals are always stored with implicit addressing, and the effective
working space is doubled using a scratch file as virtual memory. The
"ffozen core'" contribution is included through the use of a frozen
core Fock matrix as a one-electron effective Hamiltonian. One current
drawback to this program is that symmetry is not included explicitly.
The program NEWCORE is used to increase the number of frozen
core orbitals by including the new frozen orbitals into the effective
Hamiltonian. Since this process results in a loss of information,

this program can only be used to increase the number of frozen core
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orbitals.
The pfogram BUGME generates the diagonalization tape with the
loop-driven algorithm. This program has the capability of generating

three sequential tapes; one for diagonal loops, one for off-diagonal

loops, and the last one is used to store only "important" off-diagonal -
loops. The diagonalization program (DIAG) can iterate rapidly
reading only the diagonal elements and the important off-diagonal loops
and when convergence is near, the program can switch to the full off-
diagonal loops tape. The program DIRECT avoids the storage of the
diagonalization tape, and constructs all of the loops each diagonaliza-
tion iteration.
After the CI has been completed, the program DENSITY can obtain
the one-particle density matrix which can be used to obtain CI properties
(CIPROPS), or used to obtain a set of natural orbitals. This set of
natural orbitals can be used to transform the MO integral list to a
new basis (the original integral tape is always used to eliminate
excessive error accumulation) with the program MOTRANS. This program
is almost identical to TRANS and is use& for natural orbital iterations
in this way.
The program TWOPDM generates the one- and two-particle density
matrices from the CI vector. These can be used to find an optimum
orbital transformation matrix with the program SUPERCI. By trans- J
forming the integrals to this optimum basis and iterating, the MCSCF :
wavefunction can be found.
The one- and two-particle density matrices can also be used to

obtain CI energy gradients with respect to all nuclear perturbations.

Hmn‘umrw’n|H|wm 7

This is done by transforming the MO density matrices to the AO basis
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with the program TRANSDM, and combining them with the integral deriva-

tives generated by the program CIDER. The program CIDER also computes

the integral derivative Fock matrices required to solve the CPHF -

equations which are processed in the program CICPHF. The program CICPHF

combines the separate energy derivative contributions and produces

the final result. The gradient system in its present form is restricted

to closed shell RHF wavefunctions, or converged MCSCF wavefunctions.
This system of programs has not been completed at the time of

this writing, and will undoubtedly undergo substantial modifications,

improvements, and additions in the future. It is expected (and hoped)

that this system of programs will be maintained and used for a number

of years.
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A. Examples and Timing Results

A

A
|

One of the more important aspects to this work is the reporting

of a series of examples including timing breakdowns and comparisons

‘[?TIT R B

between the current version and the preliminary version of this method,
as well as with other CI methods. Also reported, in addition to
timing results, are some statistical data on generated loops. All
timing resuls are given in minutes on the Harris 6024/4 (about a
factor of 27 slower than the CDC 7600).

Since our preliminary implementations, we have more than doubled
the efficiency of the programs (excluding the diagonalization timings
and integral transformation). There are a great number of factors
that contribute to this increase in efficiency. The more important
of these are: 1) the use of the new segment coefficients, 2) reduction
in searching for acceptable segments due to the use of new coefficients
and an additional test to determine if enough electrons remain in lower
orbitals, 3) elimination of the buffer packing and unpacking required
in the formula tape version, 4) elimination of coding loop coefficients
and the associated packing operations, 5) use of the implicit treatment
of the all-external loops, and 6) an assortment of other minor improve-
mehts in many other areas.

The first example involves the closed shell ground state of BHy
in C2V symmetry. It is a small calculation and reported here primarily
for the comparison of CI methods as well as detailed timing breakdown
of all aspects of the diagonalization tape generation depicted in
Figure 5. Although this is a rather small calculation, it is not

expected that the relative proportions of the different sections will
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change substantially as one goes to larger calculations. The second
example involves the 1A1 state of CH2 with a fairly extensive basis
set. This example gives a direct comparison of the integral driven
CI method9 and the GUGA method for a moderately large calculation.
The third example is a calculation of the 1B1u (V state) of ethylene. 3
Example three consists of the Hartree-Fock interacting configuration
space'from three open-shell singlet reference configurations with a
double zeta plus polarization diffuse functions basis set.
The fourth example represents a rather large calculation on the
21A' state of SO2 at an unsymmetrical geometry (Cs symmetry). For this
calculation the interacting space from three reference configurations
was included after 7 core orbitals and the 7 highest virtuals were
deleted. For the basis set used (double zeta plus polarization func-
tions on the sulfur atom) 23,613 spin-adapted Gelfand states were
required. Since only 20K real words are available to the user on the
Harris minicomputer, the large diagonalization techniques described
in section III L. were required.
These examples represent only a small subset of the types of
calculations possible with the GUGA method as currently implemented.
The timing comparisons given in Examples 1-3 indicate definite
trends. One obvious trend is that as the problem size gets larger
the GUGA becomes increasingly superior to the other methods. This ‘
increase in efficiency can be traced to an increase in the size of
the secular equation (as opposed to an increase in the number of i

molecular orbitals). This increase in efficiency can also be under-

stood very easily if the loop statistics are compared. As the number

A
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of configurations increase, the average number of total contributions
for each loop increases. Each of these contributions must be dealt

with separately for the conventional CI method and the integral driven
CI method. For the GUGA method the time required depends heavily on

the numbef 6f loops generated, not the number of contributions per

loop. For this same reason, calculations with little or no‘spatial_
symmetry will enjoy an even greater efficiency. Anofher trend that
should be mentioned is that the GUGA method becomes more efficient
compared with the other CI methods, for a given number of configurations,
as the number of electrons included in the CI increases.

The loop statistics given in Table V for each case separate the
diagonal loops, those loops that contributejto diagonal matrix elements,
from the off-diagonal loops. Since the diagonal loops are only
processed once for a given calculation and the off-diagonal loops are
processed each iteration, it is the off-diagonal loops that determine
the computational effort required for the diagonalization. For the
lower walks, two values are reported; the average number of lower walks
and the percentage of loops with only one lower walk. This is done for
upper walks, as well as for the total number of loop contributions.

The large percentage of loops with total contributions of‘unity suggests
that an alternate method of storing and processing these loops ié

worth considering.
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B. Vertical Electronic Spectrum of Ketene

Three years ago Dykstra and Schaefer reported a careful SCF
study of the low-lying electronic states of ketene69'(C2H20). However,,
no consideration was given to the effects of electron correlation.
Using the present GUGA method, it is possible to reliably evaluate
correlation effects in little more than the time required for the
original SCF studies.

The standard Huzinaga-Dunning contracted Gaussian double zeta
basis set was adopted,70 as in the previous work of Dykstra and
Schaefer and that of Harding and Goddard.71 With the three 1ls-like
orbitals frozen (dbubly occupied iﬁ all configurations), CI was
carried out including all single and double excitations. Only the
vertical (ground state equilibrium) geometry was considered, and
3 1

A A2, and 3A electronic

our study was restricted to the lowest lAl, 29 1

states.
The numbers of spin and space adapted configurations included
were 5089, 6300, 6234, and 5981, respectively. For the largest calcu-

lation, the 3A state, integral computation required 19 minutes, 20 SCF

2
iterations required 29 minutes, the integral transformation 9 minutes,
and the unitary CI a total of 54 minutes. Thus we see that the time

for the CI step is comparable to that for the relatively routine SCF
calculation. Since the formula tape required 23 mintues, further CI
calculations on the 3A2 potential energy surface would require only

40 minutes each, including the four-index transformation of two-electron

integrals.

The SCF and CI total energies obtained here are -151.67244 and

Q
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-151.94659 (lAl), -151.56305 and -151.81489 (3A2), -151.55581 and
-151.81331 (lAz), -151.49968 and -151.74846 Hartree (SAI). The best
previous variational calculations on ketene were those of Harding and
Goddard, who report a CI ground state energy of -151.8271 Hartree, or
about 0.12 Hartree above the present unitary CI result.

Relative energies are presented in Table VI and compared with
those of Dykstra and Schaefer, Harding and Goddard, and the experimental
electron impact results of Frueholz, Flicker, and Kuppermann.72 Our
results provide very strong support for the theoretical predictions
of Harding and Goddard,71 the largest difference being 0.06 eV. In
addition the agreement with the electron impact experiments is as‘good

(£0.1 eV) as could reasonably be expected at this level of theory.
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VII. CONCLUDING REMARKS

This work has demonstrated that the loop-driven graphical

BRI

unitary group approach is superior to state-of-the-art conventional

configuration interaction (CI) techniques for the description of
electron correlation in molecules. ﬁurther developments described
herein yield an additional factor of two improvement in the efficiency
of this new method when compared with the preliminary implementation.
Possibly even more important is the formulation of a method for a
analytical evaluation of the gradient of the potential energy. The
latter method allows the evaluation of all first derivatives of the
potential energy with an amount of effort not more than 2-3 times . .
that required to obtain a single CI energy on the potential surface.

Some of the material contained in this work has been presented

. 73,74
previously.
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Figure 2.

Figure 3.

Figure 4.
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FIGURE CAPTIONS

A sample Shavitt graph that describes the full CI

configuration space for a system with 3 electrons

and 4 orbitals. . =
A sample one electron loop that depicts the contribution

of the integral (i|h|j) to the matrix element <m'|H|m>.

A simplified schematic of all 14 loop types (and subtypes).
Symbols R, L, and W refer to raising, lowering, and

weight generators respectively. The solid lines refer

to the m branch of the loop and the dashed lines refer to

the m' branch. Intermediate lines'are partially indicated

to show their connections by dots where significant, even
though they are not used in the new coefficient representation.
Loop types 9, 10a, and 13a are restricted to avoid contrib-
utions to <m'|H|m> where the lexical order of m'>m.

Four sample loops that share a common loop head and depict

the effectiveness of the loop-driven algorithm. Once any

loop has been generated (solid arcs), only the differing
portions of additional loops (dashed arcs) need to be
processed.

A detailed timing.breakdown in minutes of the major

sections of the current verion of the GUGA method for

Example I. Also included is the time required to perform

the step 0 = Hc each iteration of the diagonalization.
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Figure 5.

DIAGONALIZATION TAPE PROGRAM

Generation of distinct row table,
A 0.27 setup of arrays
B 0.45 First half of integral sort
C 0.10 Second half of integral sort
D 0.50 Searching for new segments
E 0.98 Processing accepted segments
F 0.41 Processing generated loops
G 0.38 Pack loops into buffers

DIAGONALIZATION PROGRAM

H 0.54 Each iteration of the diagonalization
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Figure 6. The BUGACI System of Programs

Distinct row table generator
Integral transformation program

Adjusts the MO integral file to include more frozen core
orbitals

Diagonalization tape generation program (matrix elements)
Unitary group direct CI program
Diagonalization program

One particle density matrix program and important config-
uration listing and natural orbital generator

One electron properties
Two particle density matrix generator

Generate the Lagrangian and compute the MCSCF transformation
matrix

Integral transformation program transforming the original
MO integrals to a new MO basis

Generate the Lagrangian and transform the two particle
density matrix

Compute CI gradient contribution of integral derivatives

Solves coupled perturbed Hartree-Fock equation and computes
the CI gradient contribution
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Example IV. 802 21A' C Symmetry
s

3 single reference configurations

2
7212 8a'? 9a'2 10a'2 11a'2 1222 13a'2 22" 3a"

3am 4an

4an?

Double zeta plus sulfur d function basis set;
44 basis functions (29 orbitals included in the CI)
23,613 configurations (interacting space only)

Integral Transformation 77.96 min
Diagonalization Tape Construction 38.59 min
Sorting Diagonalization to Form a 57.51 min

Partitioned Hamiltonian

Diagonalization (9 iterations) 164.39 min




114

A small sample distinct row table (DRT).

Table I.

b e s v dwdblicdine ol dbie i ol

1

20

0 814 17

2 12 3 4

1

1

fa

N I <

— N <
=~ AN~ N
-~ O N~

~ e~ OO

—\ N M

NN N

N~ N

~ N

= ¢ 1 1

O 1 O 1

1O 1 OO

M 1

LIS o I R A |

=~ 1 N

OO
- O N —
~H~0O

002

~N AN W

G 00

= =

20

8Reference 24.

T

14
s b me ol A

1 T Y| RERE A



Table

18 2B
18 20
la 2B
18 2a
la 28
lo 2o
18 2a
la 28
la 20

la 20
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II. Coefficients of the five S=1/2 Gelfand states (configura-

tions) represented by Paldus tableaux expressed over Slater

determinants for five unpaired electrons.

[p] =

3a 4o
3B 4o
38 4a
30 48
30 48
38 48
3a 4o
3o 4o
38 4a

30 48

S50
5o
50
50
50,
50
58
58
58
58

| =

OO MNN
O OO

1/2
-1/2
-1/2

1/2

OO NN

*

S

COORFRNDN
O NFHOF
OO OHFHNN

-2/V12
1/v12

1/v/12

1/v/12
1/V/12
-2/v12

*
Hartree-Fock interacting configurations

3 4
21 zw 21
121 12
111 11
101{° |02
010 01
000 00

i L

0 1/3
-1/v/12 -1/6

1/v/12 -1/6
-1/v/12 1/6

1/v12 1/6

0 -1/3

2/V12 -1/3
-2/V/12 -1/3

0 2/3

0 0

QO O MFHN

|en

O OOOHHN
O RPN WN -
OO+ N

-1/v18
-1//18
-1/v/18
1/v/18
1/v/18
1//18
1/7/18
1//18
1/v/18
-1/v/2

-

i pﬂwrmyr T W

A TR NG R
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Table III. A sample distinct row table (DRT) that describes the con-
figurations of the Hartree-Fock interacting space from the
two open-shell reference configurations:

R

1a2 2a2 3a 4a

1a% 222 3a Sa

for a seven orbital calculation without spatial symmetry.

TR TR ST

if

71 304 00 1 - 2 3 177 1
Orbital 3a active in references
61 303 00 1 - 3 6 46 1
2 213 00 2 4 7 8 96 1
3 204 11 5 - 8 9 35 1
Orbital 4a active in references
51 302 00 1 - 2 4 18 1
2 212 00 2 3 5 6 39 1
3 212 01 2 4 5 7 21 1
4 203 01 3 - 6 8 28 1
5 203 11 4 - 6 8 18 1
6 203 12 4 - 7 - 7 1
7 122 11 5 6 - 9 15 1
8 113 12 6 8 9 - 14 2
9 104 23 8 - - - 3 1
Orbital 5a active in references
41 301 0 - - -1 3 1
2 211 0 - 2 3 10 3
3 202 0 1 3 5 15 2
4 202 1 - - 4 6 [ 4
5 121 1 - 4 - 8 4 3
6 112 1 4 6 8 9 10 6
7 112 2 - 7 -10 2 2
8 103 2 7 -10 11 3 5 .
9 022 2 - 10 - - 1 3 -

PP T U s e
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Table III. (continued)

.. .
i abc TT k0 k1 k2 k3 X X

Orbital la doubly occupied in references

w

H QoUW

=

F O O RN Sl

R WNFWAN O - W
[

MO ~ION WL LW O

1
[ B 7 B 72 R B \S I |
1

NN EENDNHFOFEOOO
1
1
=

O OO O kb b it b e N
OFHMHNOOORMFNO
WM RNDRN RO -

[~ - PN I
1
1

=
SO

Orbital 2a doubly occupied in references

21 101 1 - 2 3 3 13
2 020 - 2 - 1 8
3 011 2 3 - - 2 45
4 002 3 - - - 1 40
Orbital 6a unoccupied in references
11 100 - - -1 1 13
2 010 -1 - - 1 66
3 001 1 - - - 1 98

Orbital 7a unoccupied in references

01 00O - - - - 1177

R
11 W

qu'wn T TR

R o I SR TP TR E R R R
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