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~ Abstract—This paper considers training-based transmissions consumption. In addition, it has been shownlin [4], [5] that
in massive multi-input multi-output (MIMO) systems with one-  the capacity of MIMO systems is not severely reduced by the
bit analog-to-digital converters (ADCs). We assume that @ 4456 quantization and the power penalty due to the one-bit

coherent transmission block consists of a pilot training sige and tization i imatel | to oniv? at | . |
a data transmission stage. The base station (BS) first emplsy quantization is approximately equal to onty2 at low signal-

the linear minimum mean-square-error (LMMSE) method to  to-noise ratio (SNR). Therefore, one-bit ADCs can potdiytia
estimate the channel and then uses the maximum-ratio combimg make massive MIMO more viable in practice, especially in

(MRC) receiver to detect the data symbols. We first obtain an |ow SNR scenarios where such systems are likely to operate.

approximate closed-form expression for the uplink achievhle i .
rate in the low SNR region. Then based on the result, we There has been some recent work on one-bit massive

investigate the optimal training length that maximizes thesum MIMO, particularly focused on pilot-based channel estiorat
spectral efficiency for two cases: i) The training power and he [6]-[11], and several different channel estimators havenbe
data transmission power are both optimized; ii) The training proposed. In particular, [11] investigated the optimaintiray
power and the data transmission power are equal. Numerical length for uplink massive MIMO systems with low-resolution

results show that, in contrast to conventional massive MIMO . . R .
systems, the optimal training length in one-bit massive MIMD ADCs. However, it employed the additive quantization noise

systems is greater than the number of users and depends onModel (AQMN) and only considered the case where training
various parameters such as the coherence interval and the power and data transmission power are the same. In this
average transmit power. Also, unlike conventional systemsit paper, we evaluate the training duration that optimizes the
is observed that in terms of sum spectral efficiency, there is gym spectral efficiency in one-bit massive MIMO at low
(rjeellta;l\;ecl)zvg'ﬁtle benefit to separately optimizing the training and SNR by employing Bussgang decomposition. We derive an
approximate closed-form expression for the uplink achitva
I. INTRODUCTION rate with th_e Iinea_\r minimum mean-square-error (LMMSE)
channel estimate in the low SNR region. Based on the ap-
Channel state information (CSI) plays a crucial role forhhigproximation, we focus on the problem of how much of the
data rate transmission in wireless communications, eafyeci coherence interval should be spent on training to maxintiee t
for massive multi-input multi-output (MIMO) systems. It$1a sum spectral efficiency for two cases: (i) where the users can
been shown that with CSI known at the base station (B&mploy different power during training and data transnoissi
massive MIMO techniques can average out the noise agfd (ii) where the users employ the same training and data
interference among the terminals, and hence significanffgnsmission power. Numerical results show that the optima
improve the spectral efficiency even when employing simpigaining duration in one-bit massive MIMO system depends
signal processing techniques such as maximum-ratio combijh various system parameters. In particular, using the same
ing (MRC) [1], [2]. power for training and data transmission is seen to achieve a
However, with a large number of antenna elements deploy&gn spectral efficiency close to that in the case where pawer i
at the BS, system cost and power consumption will kgptimized, and hence we conclude that using the same power
excessive if each antenna element and corresponding raéifould be preferred since in practice the users often do not
frequency (RF) chain is equipped with a high-resolution anthve the luxury of varying the power during the training and
power-hungry analog-to-digital converter (ADC). In adaii, data transmission stages.
as huge bandwidths and correspondingly high sampling rates
will be required in next generation wireless systems, high-
speed ADCs are either unavailable or too costly for prakctica
implementation[[B]. Therefore, finding alternative apjtues System Model
is needed. '
One-bit ADCs are of particular interest since they condist o We consider a single-cell one-bit massive MIMO system
a simple comparator, and hence have the lowest cost and powith K single-antenna terminals and dw-antenna BS. For

II. SYSTEM MODEL AND CHANNEL ESTIMATION
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uplink data transmission, the received signal at the BS is quantization noise. For one-bit quantization, we have [10]

y = /paHs +n, (1) 2 . 1
A, = ;d|ag(Cypyp) z
where the elements of the channH are distributed as
vedH) = h ~ CN(0,I) is the M x K channel matrix, _ ﬁdiag((ﬂ,frw Io) +IMT)_% (6)
n ~ CN(0,I) € CM*1 denotes additive white Gaussian noise, @ P

ands is a vector containing the signal transmitted by each user.Remark 1:We can see fron{{6) thad,, is related to the
We assume §sx|*} = 1 and hence we define the scale factagiagonal terms ofC, ,, and therefore to the pilot matrix.
pa to be the uplink SNR. The quantized signal obtained aftg§ order to obtain a simple expression fox,, in [10]

the one-bit ADCs is represented as random pilot sequences with = K were chosen. In this
r = O(y) = O(,/pi Hs + n), (2) Paper, however, we relax this constraint and allow for the

possibility of 7 > K. In addition, we consider pilot sequences
where Q(.) represents the one-bit quantization operatiogpmposed of submatrices of the discrete Fourier transform
which is applied separately to the real and imaginary paffSFT) operator. The benefits of using DFT pilot sequences
of the signal. The outcome of the one-bit quantization thuse: i) all the elements of the matrix have the same magnitude
lies in the setR = 1/v2{1 + 14,1 — 15,—1+ 1j,—1 — 15}. which simplifies peak transmit power constraints, and i@ th

diagonal terms ofb® " are always equal té, which results

in a simple expression faA,, as follows:

B. Channel Estimation A=/ ———I=q,L @

In a practical system, the chanrilll has to be estimated According to [13] and the fact thaj, is uncorrelated with

at the BS. In the uplink transmission phase, we assume tH4f channeh [10], the LMMSE channel estimate & can be
the channel coherence interval is divided into two partg offXPressed as

dedicated to training and the other to data transmission.
For the training stage, we assume all users simultaneousljereC, ., is the auto-correlation matrix af, given by
transmit pilot sequences efsymbols to the BS, which yields 2 . 1 1
CI‘pI‘p :; (a.rCSln (2:3’1)2)’p§):e (CyPyP) Eyzfyp)

Y, = /p,H®" + N, (3) o o
y < 2 Cx 2
whereY, € CM*7 is the received signa, is the transmit +arcsin (Ey’)y’)\y (Cyy,) E””)) - O

power of each pilot symbol, an@# € C™** is the matrix of The normalized MSE of the BLMMSE channel estimate is

h=o"C.} 1, (8)

pilot symbols. Vectorizing the received signal yields thus
yp = ved/p,H®T + N,) i MSE_LE{HE—E 2}
= (®® \/ppla)h +n, = Ph + n,, @) MlK 2
1 s
wheren, = veqN,). We can see from{2) that after the =i (I -@ Crprp‘I’) - (10)

nonlinear operatiod(.) of the one-bit ADCs, the amplitude .

information of the the received signal is lost and only thgnsi Rémark 2:Each element ofh can be expressed as a
information remains. However, using the Bussgang decomp"‘(bl-mmat'onﬂﬁf a large number of random variables, i.e.,
sition [12], we can reformulate the nonlinear quantizatioth  [Mln = 32;21[®" Cr,r, Inirp.i- Although the elements of

a statistically equivalent linear operator that will siifpthe the channel estimat&](8) are not exactly Gaussian distibut
channel estimator and the resulting analysis. In particéda due to the one-bit quantization, we can approximate it as
the one-bit quantizer in12), the Bussgang decomposition Gaussian according to Crameér’s central limit theorem .[14]

written Therefore, in the sequel we model each element of the
~ 3 channel estimath as Gaussian with zero mean and variance
rp = Q(yp) = Apyp + ap = Ph + 1, G) 2=tr (@Hc;plrpé) IMK.
where theith element ofr, takes values from the seR,
® = Ay(®® /ppl) B, = Ayny + gy, A, is the linear ll. UPLINK ACHIEVABLE RATE ANALYSIS

operator of the Bussgang decomposition, apydthe statisti-

cally equivalent quantization noise. The matay, is chosen  In the data transmission stage, we assushesers simul-

to make q, uncorrelated with (but still dependent o), taneously transmit their data symbols, represented tsthe
[12], or equivalently, to minimize the power of the equivatle BS. After one-bit quantization, the signal at the BS can be



expressed as IV. OPTIMAL TRAINING LENGTH IN LOwW SNR REGION

rg = O(ya) = Q(v/paHs + ny) Although [11] investigated the optimal training length for
— VPiAHs + Ay + qg (11) uplink massive MIMO systems with low-resolutions ADCs.

However, it employed the AQMN and only considered the
where the same definitions as in previous sections apptgse where training power and data transmission power are
but with the subscriptp replaced withd. Following the the same. In the analysis below, we first derive the approxi-
same reasoning as in Section II.B, in order to minimize thmation of sum spectral efficiency at low SNR. Based on the
guantization noise (or equivalently, to make it uncorefat approximation, we then evaluate the optimal training langt
with y4), we can use the Bussgang decomposition to repres#rdat maximizes the sum spectral efficiency considering two
the model withA; = ayI andag = /2/(7(1 + Kpq))L case: i) the training power and data transmission power are

both optimized; ii) the training power and data transmissio
Next, we assume that the BS regards the LMMSE chanii@jwer are the same.

estimate as the true channel and employs the MRC receiver
to detect the data symbols transmitted by fideusers. For A. Low SNR Sum Spectral Efficiency Approximation

the MRC receiver, the quantized signal is separated o \we first define the sum spectral efficiency as the sum rate

streams by multiplying it withH = vec ' (h): per channel use. L&F be the length of the coherence interval
§=Hr, in symbols. During each coherence intervalsymbols are

used for pilot training and the remaining — 7 symbols

are used for data transmission. Therefore, the sum spectral

where £ = H — H denotes the channel estimation erroffficiency is given by
As such, thekth element ofs§ is used to decode the signal 7+ XK
transmitted from the:th user: §=— ;Rk. (17)

N ~ ~ K ~
5, =y/pahf Ash Vpahi! Agh;s; . .
Sk =V Py AdhkSk + /Pty Zi;ﬁk disi We can see that the closed-form expression for the achiev-
N K » N ble rate in Theorem 1 involves the auto-correlation matrix
+ /pahf! Ageisi +hiTAmy +hflqs, (13) 2 _ , ) _
Pk Zizl agisi + by Aana +hiqe, (13) of C,,,,, which, according to[{9), is complicated due to the
whereh; ande; are theith column ofH and €, respectively. arcsin operation. However, it is expected that massive MIMO
The last four terms in[{13) correspond respectively to usgyStems will operate at low SNR due to the availability of

interference, channel estimation error, AWGN noise and tfelarge array gain. In what follows, we show that using a
guantization noise. low SNR assumption allows us to derive an approximation for

C,,r, to avoid the arcsin operation in the low SNR region.
Note that althoughy, is not Gaussian due to the one-bit According to [$), we can rewrite the auto-correlation matri

= VpaHY Ay(Hs + Es) + HY A m, + Hqq,  (12)

quantization, the worst-case additive noise that minisiire C,,,, as
Jower bound for the achievable ree can be found by modeling  Crorr = PE MM+ Coq (D
qq as Gaussian with the same covariance matrix: where
CQde = CI‘dI‘d - AdCYdeA(I;' (14) quqp = Crprp - AprpypAf
Thus, the ergodic achievable rate of the uplink transmissio — %(arcsin(X) + jaresin(Y)) — %(X +5Y), (19)

in one-bit massive MIMO is lower bounded by {15), shown
on the top of next page. Since there is no efficient way &nd where we define

directly calculate the achievable rate [n](15), we provide a [ -1
approximation in the following theorem: X = EYPIYP% (Cypyp) Eyplyp (20)
Y = E;Pib’p% (CYPYP) E;EYP' (21)

Theorem 1 For an MRC receiver based on the LMMSE o . . _
channel estimate, the uplink achievable rate ofitieuser in ~ Note that the “arcsin” is an element-wise operation, and it
a one-bit massive MIMO system can be approximated by can be approximated as

1 a=1

2,2 9
paain (M +1) 2 ) N { ’
Ry =1 1 16 arcsin(a) & (22)

TR ( +pdaZ(K—772)+a§+1—2/7r » (16) m 2a/m, a<1

Since the non-diagonal elementsXfandY are far smaller

2 __ PHCO-1 &
wheren® = tr ((I’ Crprpi’) JMK. than 1 in the low SNR region, we can approximatel (19) as

Proof: See Appendix A. [ | Cq,q, = (1 -2/7)L (23)



S ~ 12
N Pd ’hk Adhk‘
Ry =E{logy | 1+ - — - 5 - R - (15)
pa i [BE Aah| 4 pa I [Bf Agei]” + [BE Ad|” + B Cauabi

Substituting[2B) and (18) into the expression #8r we have see that this is not the case for one-bit massive MIMO. First
5 B ) s we rewrite the sum spectral efficiency &f{25) as a function
U (CI’ (@27 + (a, +1-2/m)I) CI’) /MK with respect toy and:

=(ai7pp + ol +1—-2/m) LalTp, = 0> (24) slowgy gy = LK (1 N arr ) 28)
. . . ’ T 2 ’

The equation on the second line holds due to the matrix _ a27" T asT A
inversion identity(I+ AB)"!A = A(I+BA)~L. Therefore Where we define

inﬁj[h_e low SNR region, we can approximate the sum spectrag1 —A(M +1)(y — P2, as = (x2 + 2Pm),
etciency as a3 =4P*(—1 + )y + KPr(m — 27y + 2y(1 + P — P~))
2.2
glow _ (T -7)K logy (14 pacigo” (M +1) . (25) + 72T + 2P7T,
T paci(K —o2)+a%+1—-2/r _12p2(2 _ A2 2 _
ay =K*P*(r* = 2m)(y —v°) + KP(n® — 2m)~yT.

B. Optimal Training Duration for One-Bit Massive MIMO )
Systems Then we denote{~v*,7*} to be the solution of[{27), such

that v*P = 7*p; is the optimal energy for training, and
Let p be the average transmit power aftl= pT" be the (1 — +*)P = (T — 7*)p is the optimal amount for data
total energy budget for each user over the coherence ifteryaansmission. Next we choose = K, p, = v*P/7 and
which satisfies the constrainp, + (T'— 7)pa < P. For any 5, = (1—~*)P/(T —7). Clearly, the function ofl{28) is not a
power allocation in which some users do not expend thef{onotonic function with respect to with a giveny*. That is
full energy budget, such users could increase their trginifo say, it is difficult to compare the values St (y*, )
power to improve their own achievable rate without causingnd S'°%(~y* 7). Although we cannot obtain a closed-form
interference to other users. Thus, we can replace the ifisquaexpression for*, we can numerically determine* and~*.
constraint on the total energy budget with the equality comor the simulations in the next section, we usedfthéncon
straintrp, + (T — 7)pa = P. Thus, the optimization problem function in Matlab for the optimization. As we will show ingh
can be expressed as next section, unlike conventional MIMO systems, the optima
training duration depends on the coherence intefvahd the

maximize Slow
_ total energy budgepP.
subject to m0p + (T = 7)pa = P, Case It In this case, the optimization problem df [26)
K<r<T. (26) simplifies to
Next we focus on the optimal training duration problem maximize S'°W|pp:pd:p,
and consider two cases: (i) The training power and data subject to K<r<T. (29)

transmission power are both optimized; (ii) The trainingvpo

is equal to the data transmissign, = ps = p. The latter case Obviously, there exists a tradeoff between the trainingtion

is of interest since the users may not have the ability to gearm and the data transmission duratiéh— 7. As we increase

their transmit power from the training to the data transioiss 7. the accuracy of the channel estimate improves, thereby

phases. increasing the sum spectral efficiency. On the other hand, as
Case | For the first case, we assume the users can vapyncreases, the data transmission duration decreasesbyher

the training power and the data transmission power andyoinflécreasing the sum spectral efficiency. As in the previoss,ca

choose{r, p,, pa} to maximize the sum spectral efficiency. ToVe obtain the optimat by solving [29) numerically.

facilitate the presentation, let € (0,1) denote the fraction

of the total energy budget that is devoted to pilot training, ) ) ) _
such thatyP = rp, and (1 — v)P = (T — 7)pa. Thus the For the simulations, we assume a one-bit massive MIMO

V. NUMERICAL RESULTS

optimization problem of[{26) can be rewritten as system with}/ = 128 BS antennas and” = 8 users. In all
o o plots, the curves for conventional massive MIMO are obf@ine
maximize S W|pp:gﬁpd:%, using the approximate closed-form expression of the uplink
subject to 0<~y<l, K<7<T. 27) achievable rate from_[2].

We first evaluate the validity of our obtained approximate
Note that previous work[[15] has shown that for conexpression of the achievable rate with the ergodic exprassi
ventional MIMO systems with infinite precision ADCs, thegiven in [I%) and[(25), respectively. Figuré 1 illustratbe t
optimal training duration is always* = K. However, we will sum spectral efficiency versus SNR with different numbers
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Fig. 1.  Sum spectral efficiency versus SNR witf = {32,64,128}, Fig. 3. Optimal training duration versus average transnaivegr p for
K =38, T =200, 7 = 16. conventional and one-bit massive MIMO systems with = 128, K = 8

and T = {100, 200}.

30 T T T T T T T T T
One-Bit Massive MIMO | ___-=""7 35 T T T T
= = = Conventional Massive MIMO PP - One-Bit Massive MIMO
Conventional Massive MIMO

p=—10dB

Case II: p, = pa = p

Optimal Training Duration

Case TL: p, = po = p

p=—10dB

Y\

/Case I: Optimized p, and pg
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Length of Coherent Interval (T) 5 L L L . . . . . .
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Fig. 2. Sum spectral efficiency versus the length of the @i intervall’ % Length of Colerent Interval (1
for conventional and one-bit massive MIMO systems with= 128, K =8 Fig. 4. Optimal training duration versus the length of cemgrinterval for
andp = —10dB. two cases in conventional massive MIMO and one-bit massill®systems
with M = 128, K = 8 andp = —10dB.

of transmit antennad/ = {32,64,128} for T = 200, and ) o ) . ) )
7 = 16. The results show that the gap between the approxim#§ optimal training duration changes with transmit power i
expression and the ergodic achievable rate can be neglecRih cases. In addition, sum spectral efficiency is enhanced
and thus in the following plots we use the approximation. With more training in one-bit massive MIMO compared with

Figure[2 shows the sum spectral efficiency versus the |en§lc|1{_1v_entl_onal systems for all power levels, indicating tinatre
of the coherence interval for conventional and one-bit iimass @NiNg IS necessary to combat the quantization noise.
MIMO systems withy = —10dB. We see that the performance Figure[4 shows the optlmal training duration versus the
gap between the case of optimizegand p; and the case of length of cpherenqe interval with= —10dB for c_onvent|onal
pp = pa = p is large for conventional massive MIMO system?nd one-bit massive MIMO syste_ms._ We again see that, _for
but almost negligible for one-bit massive MIMO systems. Org@Se |, the optimal training duration in conventional massi
may conclude from this that the power optimization is nd{!lMO systems always equal&’, while in one-bit massive
useful for one-bit systems since allowing different povesels MIMO it increases withl". We also see again that the one-bit

between training and data transmission may be a complicaf¥§tem requires a larger proportion of the coherence iaterv
feature to implement at the user terminals. devoted to training than in a conventional system.

Figure[3 compares the optimal training duration versus the
average transmit power for conventional and one-bit massiv
MIMO systems assumin@ = {100,200}. For conventional  This paper has investigated the optimal training duration
massive MIMO systems, the optimal training duratiomis= and training vs. data power allocation that maximizes the su
K for Case |, while it changes with the total energy budgepectral efficiency for massive MIMO systems with one-bit
for Case Il. However, for one-bit massive MIMO systemsADCs. Assuming the BS employs LMMSE channel estimation

VI. CONCLUSIONS



and the MRC receiver to detect the data symbols, we firstNext we calculate the expectation terms shown above.
obtained an approximate expression for the uplink achievaliRecall that we model each element of the channel estimate
rate in the low SNR region. Then we optimized this expressidnas Gaussian with zero mean and varianéeHence, each
over the amount of the coherence interval spent on traiming flement of the channel estimation eri®rcan be modeled
two different power allocations: optimized training andala as Gaussian with zero mean and variahce 2. Therefore,
transmission power, and equal training and data transmnissaccording to the law of large numbers, we can obtain

power. When the power allocation is optimized, conventiona
systems always choose the number of training symbols equal
to the number of users, while for one-bit systems the optimal
training duration depends on both the coherence intervél an
the power budget. For equal power allocation, the optimal
training duration also varies with these parameters, batlmn
systems always appear to require a higher fraction of sysnbol

E{Hflk”2}:772M§ E{(fl?hi2}=n21v1, i#k (35)
E{\ﬁﬁAdekf} > 2P (1 —*)M (36)
E{(ﬁngdﬁkf} o2y (M2 4 M) . an

devoted to training in order to maximize the sum spectr@ubstituting [(36)E(37) into[(30), we arrive at the result of

efficiency.
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APPENDIXA

According to [16, Lemma 1], we can approximate theg)
ergodic achievable rat®;. by

PdE{‘B};{AdBkF} [9]

Ry, =log, | 14+ —— : . (30)
pdE{’thAdek( } Ul + AN + ON,
where we define [10]
K ~ 2
Ul = E{ |hZ Agh; 31
c=ea 3 Ef[nam} @
~ 2 ~ ~
AN = E{HthAdH } ON, = E{thquqdhk} . (32

and where the expectation is taken with respect to the chantié
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By choosingA ; = a4l according to the Bussgang decompo-
sition, qq is not only uncorrelated with the received siggal [16]
but it is also uncorrelated with the chanidl Therefore, we
have

(33)

E{bf Cayau b} = (1 —2/mE {lfu]*} . (34)
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