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Abstract—This paper considers training-based transmissions
in massive multi-input multi-output (MIMO) systems with on e-
bit analog-to-digital converters (ADCs). We assume that each
coherent transmission block consists of a pilot training stage and
a data transmission stage. The base station (BS) first employs
the linear minimum mean-square-error (LMMSE) method to
estimate the channel and then uses the maximum-ratio combining
(MRC) receiver to detect the data symbols. We first obtain an
approximate closed-form expression for the uplink achievable
rate in the low SNR region. Then based on the result, we
investigate the optimal training length that maximizes thesum
spectral efficiency for two cases: i) The training power and the
data transmission power are both optimized; ii) The training
power and the data transmission power are equal. Numerical
results show that, in contrast to conventional massive MIMO
systems, the optimal training length in one-bit massive MIMO
systems is greater than the number of users and depends on
various parameters such as the coherence interval and the
average transmit power. Also, unlike conventional systems, it
is observed that in terms of sum spectral efficiency, there is
relatively little benefit to separately optimizing the training and
data power.

I. I NTRODUCTION

Channel state information (CSI) plays a crucial role for high
data rate transmission in wireless communications, especially
for massive multi-input multi-output (MIMO) systems. It has
been shown that with CSI known at the base station (BS),
massive MIMO techniques can average out the noise and
interference among the terminals, and hence significantly
improve the spectral efficiency even when employing simple
signal processing techniques such as maximum-ratio combin-
ing (MRC) [1], [2].

However, with a large number of antenna elements deployed
at the BS, system cost and power consumption will be
excessive if each antenna element and corresponding radio-
frequency (RF) chain is equipped with a high-resolution and
power-hungry analog-to-digital converter (ADC). In addition,
as huge bandwidths and correspondingly high sampling rates
will be required in next generation wireless systems, high-
speed ADCs are either unavailable or too costly for practical
implementation [3]. Therefore, finding alternative approaches
is needed.

One-bit ADCs are of particular interest since they consist of
a simple comparator, and hence have the lowest cost and power

consumption. In addition, it has been shown in [4], [5] that
the capacity of MIMO systems is not severely reduced by the
coarse quantization and the power penalty due to the one-bit
quantization is approximately equal to onlyπ/2 at low signal-
to-noise ratio (SNR). Therefore, one-bit ADCs can potentially
make massive MIMO more viable in practice, especially in
low SNR scenarios where such systems are likely to operate.

There has been some recent work on one-bit massive
MIMO, particularly focused on pilot-based channel estimation
[6]–[11], and several different channel estimators have been
proposed. In particular, [11] investigated the optimal training
length for uplink massive MIMO systems with low-resolutions
ADCs. However, it employed the additive quantization noise
model (AQMN) and only considered the case where training
power and data transmission power are the same. In this
paper, we evaluate the training duration that optimizes the
sum spectral efficiency in one-bit massive MIMO at low
SNR by employing Bussgang decomposition. We derive an
approximate closed-form expression for the uplink achievable
rate with the linear minimum mean-square-error (LMMSE)
channel estimate in the low SNR region. Based on the ap-
proximation, we focus on the problem of how much of the
coherence interval should be spent on training to maximize the
sum spectral efficiency for two cases: (i) where the users can
employ different power during training and data transmission,
and (ii) where the users employ the same training and data
transmission power. Numerical results show that the optimal
training duration in one-bit massive MIMO system depends
on various system parameters. In particular, using the same
power for training and data transmission is seen to achieve a
sum spectral efficiency close to that in the case where power is
optimized, and hence we conclude that using the same power
should be preferred since in practice the users often do not
have the luxury of varying the power during the training and
data transmission stages.

II. SYSTEM MODEL AND CHANNEL ESTIMATION

A. System Model

We consider a single-cell one-bit massive MIMO system
with K single-antenna terminals and anM -antenna BS. For
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uplink data transmission, the received signal at the BS is

y =
√
ρd Hs+ n, (1)

where the elements of the channelH are distributed as
vec(H) = h ∼ CN (0, I) is the M × K channel matrix,
n ∼ CN (0, I) ∈ CM×1 denotes additive white Gaussian noise,
ands is a vector containing the signal transmitted by each user.
We assume E{|sk|2} = 1 and hence we define the scale factor
ρd to be the uplink SNR. The quantized signal obtained after
the one-bit ADCs is represented as

r = Q(y) = Q(
√
ρd Hs+ n), (2)

where Q(.) represents the one-bit quantization operation,
which is applied separately to the real and imaginary parts
of the signal. The outcome of the one-bit quantization thus
lies in the setR = 1/

√
2{1 + 1j, 1− 1j,−1 + 1j,−1− 1j}.

B. Channel Estimation

In a practical system, the channelH has to be estimated
at the BS. In the uplink transmission phase, we assume that
the channel coherence interval is divided into two parts: one
dedicated to training and the other to data transmission.

For the training stage, we assume all users simultaneously
transmit pilot sequences ofτ symbols to the BS, which yields

Yp =
√
ρpHΦT +Np, (3)

whereYp ∈ CM×τ is the received signal,ρp is the transmit
power of each pilot symbol, andΦ ∈ Cτ×K is the matrix of
pilot symbols. Vectorizing the received signal yields

yp = vec(
√
ρpHΦT +Np)

= (Φ⊗√
ρpIM )h+ np = Φ̄h+ np, (4)

wherenp = vec(Np). We can see from (2) that after the
nonlinear operationQ(.) of the one-bit ADCs, the amplitude
information of the the received signal is lost and only the sign
information remains. However, using the Bussgang decompo-
sition [12], we can reformulate the nonlinear quantizationwith
a statistically equivalent linear operator that will simplify the
channel estimator and the resulting analysis. In particular, for
the one-bit quantizer in (2), the Bussgang decomposition is
written

rp = Q(yp) = Apyp + qp = Φ̃h+ ñp, (5)

where theith element ofrp takes values from the setR,
Φ̃ = Ap(Φ ⊗ √

ρpI), ñp = Apnp + qp, Ap is the linear
operator of the Bussgang decomposition, andqp the statisti-
cally equivalent quantization noise. The matrixAp is chosen
to make qp uncorrelated with (but still dependent on)yp

[12], or equivalently, to minimize the power of the equivalent

quantization noise. For one-bit quantization, we have [10]

Ap =

√

2

π
diag(Cypyp

)−
1
2

=

√

2

π
diag

((

ΦΦH ⊗ ρpIM
)

+ IMτ

)− 1
2 . (6)

Remark 1:We can see from (6) thatAp is related to the
diagonal terms ofCypyp

and therefore to the pilot matrix.
In order to obtain a simple expression forAp, in [10]
random pilot sequences withτ = K were chosen. In this
paper, however, we relax this constraint and allow for the
possibility ofτ ≥ K. In addition, we consider pilot sequences
composed of submatrices of the discrete Fourier transform
(DFT) operator. The benefits of using DFT pilot sequences
are: i) all the elements of the matrix have the same magnitude,
which simplifies peak transmit power constraints, and ii) the
diagonal terms ofΦΦH are always equal toK, which results
in a simple expression forAp, as follows:

Ap =

√

2

π

1

Kρp + 1
I = αpI. (7)

According to [13] and the fact thatqp is uncorrelated with
the channelh [10], the LMMSE channel estimate ofh can be
expressed as

ĥ = Φ̃HC−1

rprp
rp, (8)

whereCrprp
is the auto-correlation matrix ofrp given by

Crprp
=
2

π

(

arcsin
(

Σ
− 1

2
ypypℜ

(

Cypyp

)

Σ
− 1

2
ypyp

)

+j arcsin
(

Σ
− 1

2
ypyp

ℑ
(

Cypyp

)

Σ
− 1

2
ypyp

))

. (9)

The normalized MSE of the BLMMSE channel estimate is
thus

MSE=
1

MK
E

{

∥

∥

∥
h− ĥ

∥

∥

∥

2

2

}

=
1

MK
tr
(

I− Φ̃HC−1

rprp
Φ̃
)

. (10)

Remark 2: Each element ofĥ can be expressed as a
summation of a large number of random variables, i.e.,
[ĥ]n =

∑Mτ

i=1
[Φ̃HCrprp

]n,irp,i. Although the elements of
the channel estimate (8) are not exactly Gaussian distribution
due to the one-bit quantization, we can approximate it as
Gaussian according to Cramér’s central limit theorem [14].
Therefore, in the sequel we model each element of the
channel estimatêh as Gaussian with zero mean and variance
η2 = tr

(

Φ̃HC−1
rprp

Φ̃
)

/MK.

III. U PLINK ACHIEVABLE RATE ANALYSIS

In the data transmission stage, we assumeK users simul-
taneously transmit their data symbols, represented ass, to the
BS. After one-bit quantization, the signal at the BS can be



expressed as

rd = Q(yd) = Q(
√
ρdHs+ nd)

=
√
ρdAdHs+Adnd + qd, (11)

where the same definitions as in previous sections apply,
but with the subscriptp replaced with d. Following the
same reasoning as in Section II.B, in order to minimize the
quantization noise (or equivalently, to make it uncorrelated
with yd), we can use the Bussgang decomposition to represent
the model withAd = αdI andαd =

√

2/(π(1 +Kρd))I.

Next, we assume that the BS regards the LMMSE channel
estimate as the true channel and employs the MRC receiver
to detect the data symbols transmitted by theK users. For
the MRC receiver, the quantized signal is separated intoK
streams by multiplying it withĤ = vec−1(ĥ):

ŝ = ĤHrd

=
√
ρdĤ

HAd(Ĥs+ Es) + ĤHAdnd + ĤHqd, (12)

where E = H − Ĥ denotes the channel estimation error.
As such, thekth element of̂s is used to decode the signal
transmitted from thekth user:

ŝk =
√
ρdĥ

H
k Adĥksk +

√
ρdĥ

H
k

∑K

i6=k
Adĥisi

+
√
ρdĥ

H
k

∑K

i=1
Adεisi + ĥH

k Adnd + ĥH
k qd, (13)

whereĥi andεi are theith column ofĤ andE , respectively.
The last four terms in (13) correspond respectively to user
interference, channel estimation error, AWGN noise and the
quantization noise.

Note that althoughqd is not Gaussian due to the one-bit
quantization, the worst-case additive noise that minimizes the
input-output mutual information is Gaussian [15], and hence a
lower bound for the achievable rate can be found by modeling
qd as Gaussian with the same covariance matrix:

Cqdqd
= Crdrd

−AdCydyd
AH

d . (14)

Thus, the ergodic achievable rate of the uplink transmission
in one-bit massive MIMO is lower bounded by (15), shown
on the top of next page. Since there is no efficient way to
directly calculate the achievable rate in (15), we provide an
approximation in the following theorem:

Theorem 1: For an MRC receiver based on the LMMSE
channel estimate, the uplink achievable rate of thekth user in
a one-bit massive MIMO system can be approximated by

Rk = log
2

(

1 +
ρdα

2

dη
2(M + 1)

ρdα2

d(K − η2) + α2

d + 1− 2/π

)

, (16)

whereη2 = tr
(

Φ̃HC−1
rprp

Φ̃
)

/MK.

Proof: See Appendix A.

IV. OPTIMAL TRAINING LENGTH IN LOW SNR REGION

Although [11] investigated the optimal training length for
uplink massive MIMO systems with low-resolutions ADCs.
However, it employed the AQMN and only considered the
case where training power and data transmission power are
the same. In the analysis below, we first derive the approxi-
mation of sum spectral efficiency at low SNR. Based on the
approximation, we then evaluate the optimal training length
that maximizes the sum spectral efficiency considering two
case: i) the training power and data transmission power are
both optimized; ii) the training power and data transmission
power are the same.

A. Low SNR Sum Spectral Efficiency Approximation

We first define the sum spectral efficiency as the sum rate
per channel use. LetT be the length of the coherence interval
in symbols. During each coherence interval,τ symbols are
used for pilot training and the remainingT − τ symbols
are used for data transmission. Therefore, the sum spectral
efficiency is given by

S =
T − τ

T

K
∑

k=1

Rk. (17)

We can see that the closed-form expression for the achiev-
able rate in Theorem 1 involves the auto-correlation matrix
of Crprp

, which, according to (9), is complicated due to the
arcsin operation. However, it is expected that massive MIMO
systems will operate at low SNR due to the availability of
a large array gain. In what follows, we show that using a
low SNR assumption allows us to derive an approximation for
Crprp

to avoid the arcsin operation in the low SNR region.
According to (5), we can rewrite the auto-correlation matrix

Crprp
as

Crprp
= Φ̃Φ̃H +ApA

H
p +Cqpqp

, (18)

where

Cqpqp
= Crprp

−ApCypyp
AH

p

=
2

π
(arcsin(X) + j arcsin(Y)) − 2

π
(X+ jY), (19)

and where we define

X = Σ
− 1

2
ypypℜ

(

Cypyp

)

Σ
− 1

2
ypyp (20)

Y = Σ
− 1

2
ypyp

ℑ
(

Cypyp

)

Σ
− 1

2
ypyp

. (21)

Note that the “arcsin” is an element-wise operation, and it
can be approximated as

2

π
arcsin(a) ∼=

{

1, a = 1
2a/π, a < 1

(22)

Since the non-diagonal elements ofX andY are far smaller
than 1 in the low SNR region, we can approximate (19) as

Cqpqp
∼= (1− 2/π)I. (23)



R̃k = E











log2






1 +

ρd

∣

∣

∣ĥ
H

k
Adĥk

∣

∣

∣

2

ρd
∑

K

i6=k

∣

∣

∣ĥ
H

k
Adĥi

∣

∣

∣

2

+ ρd
∑

K

i=1

∣

∣

∣ĥ
H

k
Adεi

∣

∣

∣

2

+
∥

∥

∥ĥ
H

k
Ad

∥

∥

∥

2

+ ĥH

k
Cqdqd

ĥk

















(15)

Substituting (23) and (18) into the expression forη2, we have

η2 ∼= tr
(

Φ̃H(Φ̃Φ̃H + (α2

p + 1− 2/π)I)−1Φ̃
)

/MK

= (α2

pτρp + α2

p + 1− 2/π)−1α2

pτρp = σ2. (24)

The equation on the second line holds due to the matrix
inversion identity(I+AB)−1A = A(I+BA)−1. Therefore
in the low SNR region, we can approximate the sum spectral
efficiency as

S low =
(T − τ)K

T
log2

(

1 +
ρdα

2

d
σ2(M + 1)

ρdα
2

d
(K − σ2) + α2

d
+ 1− 2/π

)

. (25)

B. Optimal Training Duration for One-Bit Massive MIMO
Systems

Let ρ be the average transmit power andP = ρT be the
total energy budget for each user over the coherence interval,
which satisfies the constraintτρp + (T − τ)ρd ≤ P . For any
power allocation in which some users do not expend their
full energy budget, such users could increase their training
power to improve their own achievable rate without causing
interference to other users. Thus, we can replace the inequality
constraint on the total energy budget with the equality con-
straintτρp +(T − τ)ρd = P . Thus, the optimization problem
can be expressed as

maximize S low

subject to τρp + (T − τ)ρd = P,

K ≤ τ ≤ T. (26)

Next we focus on the optimal training duration problem
and consider two cases: (i) The training power and data
transmission power are both optimized; (ii) The training power
is equal to the data transmission,ρp = ρd = ρ. The latter case
is of interest since the users may not have the ability to change
their transmit power from the training to the data transmission
phases.

Case I: For the first case, we assume the users can vary
the training power and the data transmission power and jointly
choose{τ, ρp, ρd} to maximize the sum spectral efficiency. To
facilitate the presentation, letγ ∈ (0, 1) denote the fraction
of the total energy budget that is devoted to pilot training,
such thatγP = τρp and (1 − γ)P = (T − τ)ρd. Thus the
optimization problem of (26) can be rewritten as

maximize S low|
ρp=

γP
τ

,ρd=
(1−γ)P
T−τ

,

subject to 0 < γ < 1, K ≤ τ ≤ T. (27)

Note that previous work [15] has shown that for con-
ventional MIMO systems with infinite precision ADCs, the
optimal training duration is alwaysτ∗ = K. However, we will

see that this is not the case for one-bit massive MIMO. First
we rewrite the sum spectral efficiency of (25) as a function
with respect toγ andτ :

S low(γ, τ) =
(T − τ)K

T
log2

(

1 +
a1τ

a2τ2 + a3τ + a4

)

, (28)

where we define

a1 =4(M + 1)(γ − γ2)P 2, a2 = (π2 + 2Pπγ),

a3 =4P 2(−1 + γ)γ +KPπ(π − 2πγ + 2γ(1 + P − Pγ))

+ π2T + 2PπγT,

a4 =K2P 2(π2 − 2π)(γ − γ2) +KP (π2 − 2π)γT.

Then we denote{γ∗, τ∗} to be the solution of (27), such
that γ∗P = τ∗ρ∗p is the optimal energy for training, and
(1 − γ∗)P = (T − τ∗)ρ∗d is the optimal amount for data
transmission. Next we choosēτ = K, ρ̄p = γ∗P/τ̄ and
ρ̄d = (1−γ∗)P/(T − τ̄). Clearly, the function of (28) is not a
monotonic function with respect toτ with a givenγ∗. That is
to say, it is difficult to compare the values ofS low(γ∗, τ∗)
and S low(γ∗, τ̄). Although we cannot obtain a closed-form
expression forτ∗, we can numerically determineτ∗ andγ∗.
For the simulations in the next section, we used thefmincon

function in Matlab for the optimization. As we will show in the
next section, unlike conventional MIMO systems, the optimal
training duration depends on the coherence intervalT and the
total energy budgetP .

Case II: In this case, the optimization problem of (26)
simplifies to

maximize S low|ρp=ρd=ρ,

subject to K ≤ τ ≤ T. (29)

Obviously, there exists a tradeoff between the training duration
τ and the data transmission durationT − τ . As we increase
τ , the accuracy of the channel estimate improves, thereby
increasing the sum spectral efficiency. On the other hand, as
τ increases, the data transmission duration decreases, thereby
decreasing the sum spectral efficiency. As in the previous case,
we obtain the optimalτ by solving (29) numerically.

V. NUMERICAL RESULTS

For the simulations, we assume a one-bit massive MIMO
system withM = 128 BS antennas andK = 8 users. In all
plots, the curves for conventional massive MIMO are obtained
using the approximate closed-form expression of the uplink
achievable rate from [2].

We first evaluate the validity of our obtained approximate
expression of the achievable rate with the ergodic expressions
given in (15) and (25), respectively. Figure 1 illustrates the
sum spectral efficiency versus SNR with different numbers
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Fig. 2. Sum spectral efficiency versus the length of the coherence intervalT
for conventional and one-bit massive MIMO systems withM = 128, K = 8
andρ = −10dB.

of transmit antennasM = {32, 64, 128} for T = 200, and
τ = 16. The results show that the gap between the approximate
expression and the ergodic achievable rate can be neglected,
and thus in the following plots we use the approximation.

Figure 2 shows the sum spectral efficiency versus the length
of the coherence interval for conventional and one-bit massive
MIMO systems withρ = −10dB. We see that the performance
gap between the case of optimizedρp andρd and the case of
ρp = ρd = ρ is large for conventional massive MIMO system,
but almost negligible for one-bit massive MIMO systems. One
may conclude from this that the power optimization is not
useful for one-bit systems since allowing different power levels
between training and data transmission may be a complicated
feature to implement at the user terminals.

Figure 3 compares the optimal training duration versus the
average transmit power for conventional and one-bit massive
MIMO systems assumingT = {100, 200}. For conventional
massive MIMO systems, the optimal training duration isτ∗ =
K for Case I, while it changes with the total energy budget
for Case II. However, for one-bit massive MIMO systems,
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Fig. 3. Optimal training duration versus average transmit power ρ for
conventional and one-bit massive MIMO systems withM = 128, K = 8
andT = {100, 200}.
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Fig. 4. Optimal training duration versus the length of coherent interval for
two cases in conventional massive MIMO and one-bit massive MIMO systems
with M = 128, K = 8 andρ = −10dB.

the optimal training duration changes with transmit power in
both cases. In addition, sum spectral efficiency is enhanced
with more training in one-bit massive MIMO compared with
conventional systems for all power levels, indicating thatmore
training is necessary to combat the quantization noise.

Figure 4 shows the optimal training duration versus the
length of coherence interval withρ = −10dB for conventional
and one-bit massive MIMO systems. We again see that, for
Case I, the optimal training duration in conventional massive
MIMO systems always equalsK, while in one-bit massive
MIMO it increases withT . We also see again that the one-bit
system requires a larger proportion of the coherence interval
devoted to training than in a conventional system.

VI. CONCLUSIONS

This paper has investigated the optimal training duration
and training vs. data power allocation that maximizes the sum
spectral efficiency for massive MIMO systems with one-bit
ADCs. Assuming the BS employs LMMSE channel estimation



and the MRC receiver to detect the data symbols, we first
obtained an approximate expression for the uplink achievable
rate in the low SNR region. Then we optimized this expression
over the amount of the coherence interval spent on training for
two different power allocations: optimized training and data
transmission power, and equal training and data transmission
power. When the power allocation is optimized, conventional
systems always choose the number of training symbols equal
to the number of users, while for one-bit systems the optimal
training duration depends on both the coherence interval and
the power budget. For equal power allocation, the optimal
training duration also varies with these parameters, but one-bit
systems always appear to require a higher fraction of symbols
devoted to training in order to maximize the sum spectral
efficiency.
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APPENDIX A

According to [16, Lemma 1], we can approximate the
ergodic achievable ratẽRk by

Rk = log2









1 +

ρdE

{

∣

∣

∣
ĥH

k
Adĥk

∣

∣

∣

2
}

ρdE

{

∣

∣

∣ĥ
H

k
Adεk

∣

∣

∣

2
}

+ UIk + ANk + QNk









, (30)

where we define

UIk = ρd
∑K

i6=k
E

{

∣

∣

∣ĥ
H

k
Adhi

∣

∣

∣

2
}

(31)

ANk = E

{

∥

∥

∥
ĥ
H

k
Ad

∥

∥

∥

2
}

, QNk = E
{

ĥ
H

k
Cqdqd

ĥk

}

, (32)

and where the expectation is taken with respect to the channel
realizations. For different channel realizations, the covariance
matrix of the quantization noiseqd is given by

E{qdq
H
d } = E{rdrHd } − α2

dE{ydy
H
d } = (1 − 2/π)I . (33)

By choosingAd = αdI according to the Bussgang decompo-
sition,qd is not only uncorrelated with the received signalyd,
but it is also uncorrelated with the channelH. Therefore, we
have

E
{

ĥ
H

k
Cqdqd

ĥk

}

= (1 − 2/π)E
{

‖ĥk‖
2

}

. (34)

Next we calculate the expectation terms shown above.
Recall that we model each element of the channel estimate
ĥ as Gaussian with zero mean and varianceη2. Hence, each
element of the channel estimation errorE can be modeled
as Gaussian with zero mean and variance1 − η2. Therefore,
according to the law of large numbers, we can obtain

E
{

‖ĥk‖
2

}

= η2M ; E

{

∣

∣

∣
ĥ
H

k
hi

∣

∣

∣

2
}

= η2M, i 6= k (35)

E

{

∣

∣

∣ĥ
H

k
Adεk

∣

∣

∣

2
}

∼= α2

d
η2(1− η2)M (36)

E

{

∣

∣

∣ĥ
H

k
Adĥk

∣

∣

∣

2
}

= α2

d
η4(M2 +M) . (37)

Substituting (35)-(37) into (30), we arrive at the result of
Theorem 1.
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