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ABSTRACT OF THE DISSERTATION 

 

Characterizing Protein Structures by Surface Mapping 
 

 
 

by 
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 As the availability of protein crystallographic structures grows, new methods 

are needed to characterize, compare, and interpret crystal structure data.  Surface 

geometry is important in molecular function, as interactions with other molecules in 

the cell happen at the protein surface.   This dissertation describes a method of 

mapping and comparing surfaces of crystallographic structures, using the protein 

kinase family as a model.  Pockets are rapidly computed using two pieces of software, 

FADE and Crevasse.  FADE uses gradients of atomic density to locate grooves and 

pockets on the molecular surface.  Crevasse, a new piece of software, segments the 

FADE output into distinct pockets that can be used in computations.   A map of 

pockets on the catalytic core of Protein Kinase A shows the ATP and peptide docking 



 

 xii

sites, locations for C-helix anchoring, the myristylation site, and sites for regulatory 

subunit interaction.  There are other sites identified where Protein Kinase A is likely to 

interact with other proteins, but the binding partners have not been identified.  

Spatially clustering pockets across a family of aligned proteins can identify similarities 

and differences within the family.  In the set of ten kinase cores studied, differences in 

the active site cleft between serine/threonine and tyrosine kinases are visible.  Shared 

mechanisms of C-helix anchoring are also evident, and a novel site at the top of the N-

lobe is present in all the kinases.  There are other pockets on the kinases that are 

strongly conserved but have not yet been mapped to a protein-protein interaction.
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Chapter 1. Introduction 

 With the advent of genomics and high-throughput crystallography, protein 

crystal structures are becoming widely available.  The National Institute of General 

Medical Sciences Protein Structure Initiative (www.nigms.nih.gov/Initiatives/PSI) has 

been providing grant support for structural biology projects.  The stated long-term goal 

of the project is to “make the three-dimensional atomic-level structures of most 

proteins easily obtainable from knowledge of their corresponding DNA sequences”.  

The first step in the PSI initiative is to make a broad sample of X-ray crystallography 

and NMR structures available in order to understand how proteins are folded.  The PSI 

is funding fourteen dedicated protein crystallography centers in an effort to advance 

the crystallography field and increase the number of crystal structures available.  

Completed crystal structures are deposited in the Worldwide Protein Data Bank 

(http://www.wwpdb.org/), an international structural data repository. Figure 1-1 shows 

the exponential growth in the number of structures archived in the RCSB Protein Data 

Bank over the past twelve years.   
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Figure 1-1.  Growth of the PDB Across Twelve Years. 
The graph shows the total number of searchable structures in the Protein Data Bank 
from 1995 to 2007. 

 Analysis of crystal structures can give insight into the structure and function of 

proteins that is not available from simple sequence analysis.  The more structures that 

are available, the more important developing analysis tools becomes.  Simple 

inspection and comparison of thousands of diverse structures is no longer possible.  

Here, a new methodology for comparing and contrasting pockets and crevices on the 

surfaces of protein crystal structures is introduced.  Computationally identified pockets 

can be clustered, and similarities and differences on the surfaces of structurally related 

proteins mapped. 

The first generation of protein comparisons was sequence-based.  Even now, 

sequence homology is a useful first step in predicting similarity of structure and 

function.  Known sequence domains can be used to rapidly classify a protein into 
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broad families.  PFAM (Finn et al. 2006) is one of the more widely used sequence-

based classification tools.  Unfortunately sequence comparison is limited in the 

absence of crystal structures.  Sequence is a weak predictor for secondary structure, 

and neither secondary structure nor sequence presently predicts folds reliably.  

Because of the importance of fold in protein function, structure based comparison 

tools for crystal structures were built as well. The SCOP classification database 

(Murzin et al., 1995) classifies proteins into families by fold and is a powerful tool for 

identifying proteins with conserved structural domains.  CATH (Greene et al., 2007) is 

another tool that automatically assigns domains to new structures that are deposited 

into the PDB.  Using these tools, scientists can often classify structures into 

subfamilies, identify evolutionarily related proteins, and make predictions about 

function based on known subdomains. 

 Analysis of primary structure and secondary structure is of limited utility in 

predicting ternary structure.  Both stable and transient interactions with other proteins, 

nucleic acids, and small ligands and substrates are essential to the function of many 

proteins.  Some complexes can be elucidated by co-crystallization, but others are 

resistant to current crystallographic techniques.  Developing tools to predict sites of 

interaction and potential binding partners is important to move beyond primary and 

secondary structure classification.  The function of a protein is strongly dependent on 

the surface properties of a protein, since the surface is what is presented to other 

proteins and ligands.  Important surface features include charge, the availability of 

hydrogen bonding, and simple geometric shape.  Shape complementarity plays an 
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important role in intramolecular interactions, and many binding sites are at pockets on 

the molecular surface.  Pockets provide protection from solvent for enzymatic 

functions, and “lock and key” style shape specificity.  Comparing pockets across 

related proteins can provide insight to shared functions, or sites of protein-protein 

interaction important to a particular protein family. 

In order to map protein surfaces and compare pockets, a good algorithm is 

necessary.  A number of pocket-finding algorithms have been developed in order to 

predict binding sites on proteins.  The most recent and comprehensive is Abagyan’s 

Pocketome (An et al. 2005), a large database of small, “druggable” pockets.  

Abagyan’s method smooths over the Lennard-Jones potential, finding small areas in 

the protein that offer high numbers of potential Van der Waals interactions.  It is 

extremely effective, and the Pocketome will prove to be a valuable source of 

information.  Abagyan’s methodology is tuned for locating small pockets, not the 

large, shallow grooves and pockets that are often involved in protein-protein 

interactions.  Another publicly available algorithm is CASTp (Liang et al. 1998).  

CASTp finds pockets on the protein surface by using Veronoi tessellation.  CASTp 

has a public server, and it finds larger pockets than Abagyan’s method, but its utility is 

limited because it fails on approximately 1% of PDB structures (http://sts-

fw.bioengr.uic.edu/castp/background.php). 

 Here, a program called FADE (Fast Atomic Density Evaluator, Mitchell et al. 

2001) is used to map the protein surface and identify crevices and pockets.  FADE is 

described in detail in Chapter 2.  Briefly, it maps a protein onto a grid and computes 
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the rate of change of atomic density with respect to an expanding sphere at each grid 

point using convolutions to accelerate the computation.  As shown in Chapter 2, the 

quantity calculated by FADE contains information about the protein surface and can 

map changes in surface curvature.  FADE was chosen for its speed, the availability of 

full source code, its ability to run successfully on any structure that fits into memory, 

and potential extensibility.  FADE was originally developed to map protein-protein 

interactions and it is able to find extended, shallow grooves on the protein surface as 

well as smaller ligand-binding pockets.  Because of the grid-based approach, FADE 

does not fail on complex or irregularly shaped geometric structures.  FADE is used in 

combination with my new piece of software, Crevasse, which segments the FADE 

output into distinct pockets that can be measured, compared, and stored in a database.  

Crevasse is also described in detail in Chapter 2.  FADE and Crevasse are able to 

rapidly process any structure that can be mapped onto a grid that fits into the 

computer’s memory. 

 Finding binding sites on a single protein is interesting and useful, but this 

thesis expands on a novel, more powerful approach.  Pockets can be used to study 

similarities and differences in molecular geometry across a group of structures.  If a 

set of related proteins is aligned and pockets are computed across the proteins, the 

pockets can be spatially clustered.  The spatial clustering can find groups of 

evolutionarily conserved pockets on the set of proteins.  A pocket with a known 

function on one protein that belongs to a cluster of conserved pockets on the rest of the 

proteins can be used to guide research into the tertiary structure of the family.  
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Similarly, a pocket present on only a subset of the proteins suggests that the pocket 

could be involved in a function that distinguishes those proteins from the rest of the 

family.  Studying pure surface geometry is particularly powerful because it can find 

relationships between proteins that are missed by sequence and fold comparison. 

 The protein kinase family was chosen as a test system for the surface mapping 

methodology.  Protein kinases are of interest because they are essential to cellular 

function and survival, and central to multiple signal transduction pathways.  Mutations 

in kinases are part of oncogenesis.  The importance of the kinase family in cancer was 

discovered in the 1970s when the oncogenic protein in Rous Sarcoma Virus, v-Src, 

was determined to be a constitutively active protein tyrosine kinase (Brickell, 1992, 

review).  Kinases have since been extensively studied and two cancer 

chemotherapeutic agents, sunitinib and imitinib, have been developed to inhibit 

tyrosine kinases.  (Review: Grimaldi et al., 2007).  Comparative studies of the kinase 

family have been undertaken both within and across species using sequence similarity.  

The human kinome has at least 518 putative kinase genes, with 244 mapped to known 

disease loci (Manning et al., 2002).  The mouse kinome is of similar size, with 540 

putative genes, including orthologs for 510 of the 518 human protein kinases 

(Caenepee et al., 2004).  The Venter Institute Global Ocean Survey contained 

thousands of kinase sequences from microbial genomes.  Those sequences have been 

classified into 45,000 genes and 20 families (Natarajan et al., 2007).  The mammalian 

protein kinases fall into only one of the identified families from the Venter data.  
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Structural comparisons of the kinase family have been undertaken, but they are 

largely limited to main chain structural alignments.  A structurally conserved catalytic 

core was identified (Hanks and Hunter, 1995) when crystal structures first became 

available.  The kinase catalytic core is comprised of an N-terminal lobe of mostly beta 

strands, and a C-terminal lobe of helices.  There is a cleft between the lobes where the 

Mg-ATP and protein substrates bind.  Near the hinge region where the lobes join, 

there is a helix, called the C-helix, that moves to position key catalytic residues when 

the kinase is activated.  The kinase is flexible, with the cleft opening to bind and 

release substrate and closing during catalysis to protect the reaction from uncontrolled 

hydrolysis.  The core and catalytic mechanism is shared in both tyrosine and 

serine/threonine mammalian kinases, despite their wide diversity of substrates.  

Because they are involved in signal transduction cascades, kinases are highly 

regulated, and most are switched on and off; constitutively active kinases are relatively 

rare and tend to show high substrate specificity.  Receptor tyrosine kinases are 

activated by extracellular ligands, while non-receptor kinases are regulated in response 

to intracellular conditions or second messengers.  Regulatory mechanisms include 

phosphorylation and dephosphorylation, ligand binding, and interaction with 

regulatory domains or other proteins.  Upon activation, the catalytic core adopts a 

characteristic conformation, recently described by Kornev. (Kornev et al., 2006, 

Ten Eyck, Taylor, and Kornev, 2008).  There are two columns of highly structurally 

conserved amino acids, described as spines, which run through the center of the kinase 
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core.  They organize the positioning of the adenine ring of the ATP substrate and the 

active site residues. 

Among mammalian kinases, cAMP dependent protein kinase (PKA) is the best 

described serine/threonine protein kinase.  PKA is one of the major effector molecules 

in cAMP mediated signal transduction and it has multiple phosphorylation substrates.  

PKA is essential to cellular function; null mutants of PKA in yeast and drosophila are 

lethal (Lane and Kalderon, 1993, Toda et al. 1987).  Multiple crystal structures of 

PKA have been solved, including apo-PKA, the binary complex with protein kinase 

inhibitor peptide (PKI), and partial holoenzyme complexes with regulatory subunits 

bound.  PKA is unusual among kinases because it crystallizes in an active 

conformation.  PKA has a unique structure, with two sequences beyond the catalytic 

core called the N-terminal and C-terminal tails.  The positioning of the tails relative to 

the kinase core is essential to activation of the protein.  Truncation of the N-terminal 

tail makes the protein more labile, and site-directed mutagenesis of the C-terminal tail 

inactivates the kinase (Johnson et al. 2001).  PKA was chosen as a test molecule for 

this study because it has been thoroughly studied and multiple high-resolution crystal 

structures of the active kinase are available.  It is possible to check the validity of the 

computation against the many known interactions with the PKA catalytic core, N- and 

C-terminal tails, and the regulatory subunits.  Chapter 3 shows the FADE and 

Crevasse computation on PKA and shows how the software can be used to identify 

potential areas of interest on the surface of a single protein crystal structure. 
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 In Chapter 4, the new methodology of pocket clustering is applied to a set of 

ten active kinase catalytic core crystal structures.  Common features on the surface of 

the kinase catalytic cores are identified and described, including the active site cleft, 

shared mechanisms for C-helix positioning, a conserved feature at the top of the N-

lobe, and potential novel sites of protein-protein interaction.  The computation also 

identifies differences in the shape of the substrate binding pocket that discriminates 

between serine/threonine and tyrosine kinases. 
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Chapter 2. FADE and Crevasse 
 

Molecular shape complementarity plays an important role in protein-protein 

and protein-ligand interactions.  I have developed a method using FADE, the Fast 

Atomic Density Evaluator (Mitchell, Kerr, and Ten Eyck, 2001) and my new piece of 

software, Crevasse, to rapidly map grooves and crevices on the protein surface.  The 

method is scriptable and scalable, and can guide research into inter- and intra-

molecular binding. 

Section 2.01  FADE - Fast Atomic Density Evaluator 
 

The protein is first mapped using FADE.  FADE uses the gradients of radial 

counting functions to characterize the shape of the molecular surface, without actually 

computing the surface.  FADE is based on counting the number of atoms within 

spheres of varying radii.  FADE maps atomic centers from a protein crystal structure 

onto a grid and computes a score at each grid point.  The FADE score at each grid 

point is the slope of log(N(r)) vs. log(r) where r is the radius of a sphere centered at the 

grid point and N(r) is the number of atoms within the sphere.  Figure 2-1 illustrates 

how FADE works.  The counting function accumulates atomic neighbors slowly at 

points next to a protrusion, shown as blue circles in the figure.  In contrast, if the 

counting function starts in a pocket there is a rapid jump in the number of atomic 

neighbors accumulated as the radius expands (shown in red).  Near flat surfaces 

(shown in green) the function accumulates atomic neighbors at an intermediate rate.  

For a perfectly uniform distribution of atoms, as found in a protein interior, the FADE 
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score should be 3; for points in a crevice, it will be larger than 3; and for points on a 

protrusion it will be less than 3.  FADE computes these with a more efficient 

algorithm than direct counting, achieving speeds proportional to nlog(n) where n is the 

number of grid points.  It takes only the atomic coordinates as input, giving the same 

effect as a curvature calculation without the necessity of computing a surface. 

 

Figure 2-1.  The relationship between the radial counting function and shape.  
The radial counting function has a rate of increase which varies according to the local 
environment. Points near a protrusion accumulate atomic neighbors slowly (blue), 
while points inside a crevice will see a rapid increase in the number of atomic 
neighbors (red). Regions near a flat edge have behavior which lies between these two 
extremes (green). (Figure courtesy of Mitchell, Kerr & Ten Eyck) 
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By restricting the output to points where the FADE score is high and removing 

interior points, FADE can output a set of grid points that lines crevices and grooves on 

the molecular surface.  In the original publication, FADE mapped crystallographic 

structures onto a grid with 1.0Å spacing. The input set included only those atoms that 

were resolved in the crystallographic structures.  Hydrogen atoms, which are not 

usually visible in X-ray crystallographic structures, were not included in the 

computation.  The software was able to map grooves on the protein surface, but it did 

not fill ligand pockets well, or flood deeper pockets differently from shallower ones.  I 

was able to improve the FADE results dramatically by using finer grids and 

computationally adding hydrogen atoms.  Because each atom is counted irrespective 

of type, adding hydrogen atoms improves the FADE computation by filling the 

interior of the protein more completely and representing the number of atoms at the 

molecular surface more accurately.  The finer grid provides a better representation of 

atomic density and more detail in the output.  With improvements in computer 

hardware, it has become practical to use 0.5 Å grids.   

FADE needed some improvements before it could be used for the 

computations.  Most importantly, I found and corrected an algebraic grid indexing 

error in the output routines.  Mike Pique rewrote the memory allocation routines to run 

more efficiently and added error checking because the smaller grid spacing is more 

likely to cause out of memory conditions.  Finally, I debugged and rewrote the output 

routines to run more efficiently and provide output that can be easily read by 

visualization programs and Crevasse.  A change log is included in Appendix A. 
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Missing side chain atoms and residues are common in crystal structures of 

proteins because the experiment is sensitive to the average electron density.  Mobile or 

disordered atoms have very low average electron density and are thus essentially 

invisible in these experiments.  Such atoms must be treated cautiously in FADE 

computations because shape of the protein surface is partly dependent on side chain 

conformation.  There are many ways to model missing atoms in a crystal structure, but 

no way to determine the crystallographic conformation of software-constructed side 

chains.  Arbitrary placement of side chain atoms is not accurate enough for the 

computation.  It is preferable to interpret FADE data very cautiously in regions of the 

protein where there are missing atoms. 

To show the dependence of the FADE computation on grid size and the input 

atom set, FADE was tested using a high-resolution Protein Kinase A structure (PDB 

file 1RDQ).  FADE was run both with and without hydrogen atoms added, and on half 

and one-ångström grids.  Reduce 3.1 (Word et. al., 1999) on default settings was used 

to add hydrogen atoms to the crystal structure before the FADE computation.  FADE 

was used on default settings, returning scores for points anywhere from zero to three 

grid points from an atomic center, summing over ten steps of sphere expansion, and 

with a maximum score cutoff of 6.0.  Zero scores are outside the protein and thus were 

excluded from the analysis.  The remaining FADE scores were between 1.0 and 5.0.  

Figure 2-2 shows a histogram of FADE scores after the four different computations 

and shows summary statistics on the returned scores.  The distribution of the FADE 

scores becomes sharper with the addition of hydrogen atoms, indicating a more 
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uniformly filled grid in the interior of the protein.  The mean FADE score also 

changes from 2.776 on a one ångström grid with no hydrogen atoms to 2.931 on a half 

ångström grid with hydrogen atoms added.  A perfectly filled grid has a theoretical 

radial counting gradient of 3.0, so the higher mean score of the computation on a half-

ångström grid with hydrogen atoms added to the protein indicates an improvement in 

the representation of the well-packed protein interior. 
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Figure 2-2.  Distribution of FADE Scores by Grid Spacing 
Distribution of FADE scores under different grid spacing and hydrogen atom 
conditions.  Open markers show the distribution of scores with hydrogen atoms are 
added to the protein.  Closed markers show the distribution of scores without added 
hydrogen atoms. 
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Table 2-1.  Summary Statistics on FADE Scores 

 
Grid Spacing (Å) Hydrogens Added Mean Min Max 

1.0 No 2.776 1.143 4.713 
0.5 No 2.819 1.247 4.804 
1.0 Yes 2.877 1.301 4.977 
0.5 Yes 2.931 1.205 4.996 

 

Section 2.02  Using FADE 
 

The FADE software has built-in filters to limit the number of points returned.  

FADE accepts five parameters, a minimum and maximum distance from atomic 

centers, minimum and maximum FADE scores, and the number of times to expand the 

radius and count atoms.  After the counting function is complete, FADE limits the 

number of points returned by filtering them to meet the user-provided criteria. The 

distribution of FADE scores changes with both the counting radius and the distance 

from atomic centers so it is important to determine settings for the software that 

provide useful output.  Setting the distance filter in FADE to return only points 1.5 Å 

(3 grid points) from grid points with an atomic center returns a tight shell around the 

molecule.  Under grid mapping error, it is a reasonable approximation of the Van der 

Waals surface of the protein, 1.7 Å from carbon atoms. 

Under the conditions of 10 counting steps and 3 grid points from atomic 

centers suggested in Mitchell, Kerr, and Ten Eyck, a minimum FADE score cutoff of 

4.6 was empirically chosen to return points that line obvious pockets.  Higher FADE 

score cutoffs produce overly sparse output, while lower thresholds can return points on 

flat surfaces.   The output from FADE is a set of grid points and scores.  Figure 2-3 
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shows a graphic representation of the output from FADE.  The structure is the 

catalytic core of PKA (PDB ID 2CPK), residues 40-300, with PKI and all solvent 

atoms removed from the structure.  The FADE output is represented with a small 

sphere at each grid point that had a FADE score above 4.6 and was 1.5 Å from a 

gridpoint where an atomic center was mapped.  The redder points indicate higher 

FADE scores, and the blue ones indicate lower scores.   The figure shows how well 

raw FADE output maps areas on the molecular surface where the exponential density 

changes rapidly.  Deep sites, including the ATP binding site (partly obscured in the 

figure) and the P+1 substrate binding are well-lined with points that pass the distance 

and exponential density filters and the centers of the sites have the highest FADE 

scores. 
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Figure 2-3.  Sample FADE Output 
Raw FADE output on Protein Kinase A residues 41-300.  FADE output is colored by 
score from blue to red, with blue representing lower scores and red representing higher 
scores. 
 

Section 2.03  Crevasse 
 

The raw FADE output is difficult to characterize and score because of the 

uninteresting isolated points and small clusters of points visible in Figure 2-3.  FADE 

output is better for computations after the signal-to-noise ratio is improved by 

discarding outlying points.  The remaining large groups of points can be segmented 
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into discrete binding sites or crevices.  Distinct crevices are useful because they can be 

computationally characterized, compared, and stored in a database.  The size, shape, 

and center of the pockets can be computed and used to identify individual sites of 

potential protein-protein interaction or ligand binding.  A piece of software, Crevasse, 

was written in C++ to segment FADE output into individual crevices.  The software 

performs the following steps: 

1. Reads FADE output into a grid.  Crevasse assumes that FADE was run with 

reasonable scoring and distance filters and stores zeros for points with no returned 

FADE data and ones for points with data. 

2. Runs a recursive depth-first search (Cormen et al., 2001) seeded at each 

nonzero grid point to identify sets of connected points.  Points that are identified as 

connected but do not meet the connectivity threshold are added to the set, but not 

queued for exploration.  The search algorithm is greedy; once a point belongs to a set, 

it can not be added to a different set. 

3. Counts the number of points in each set identified in the search and filters 

the sets by discarding sets with fewer than a threshold number of points.  If no sets 

meet the threshold size, the software terminates with a useful message. 

4. Calculates the object-oriented bounding box for each retained set of points 

using the eigenvectors of the covariance matrix of the points. 

5. Filters the groups of points a second time based on a user-specified 

minimum length for the longest axis of the bounding box.  Again, if no sets meet the 

threshold the software terminates. 
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6. Outputs sets of points and summary information for each identified set. 

 

Crevasse runs at the command line and was designed to be called using shell 

scripts.  It can be compiled and run on any platform with the GCC compiler, making it 

compatible with FADE.  Crevasse runs very quickly, with file I/O taking most of the 

run time.  There is one step where the C++ standard template library sort is called so 

increasing the stack size on the machine running crevasse can be necessary for larger 

grids.  Crevasse uses the public domain Template Numerical Toolkit library from the 

National Institute of Standards and Technology (http://math.nist.gov/tnt/index.html) 

for the eigenvector calculations.  Full source code for Crevasse is included in 

Appendix B. 

Crevasse is flexible and user-configurable.  There are command line options to 

set the minimum number of points to define a crevice, set the minimum length  

required to define a crevice, change the number of points required to add a point to the 

search queue (the connectivity threshold), and choose the way adjacent points are 

queued for exploration.  As mentioned above, the minimum length setting applies a 

lower threshold to the length of the longest axis of the bounding box.  Changes to the 

minimum number of points in a crevasse and minimum length of the long axis change 

the sensitivity of the software and should be optimized depending on the problem 

considered.  Searches for potential small ligand binding sites would require a shorter 

length setting than searches for large protein surface features.  The connectivity 

threshold controls whether adjacent patches of points are grouped into separate 
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segments.  Higher settings return more, smaller segments while lower settings can 

connect long, thin grooves on the protein surface that may have lower connectivity.  

Finally, the way points are queued can be changed.  The default setting includes 

diagonals as adjacent points, so up to twenty-six points are queued for exploration 

during the depth-first search.  There is an optional setting to queue and search only the 

six grid points at x±1, y±1 and z±1.  When FADE output is restricted to a thin layer of 

points 1.5 Å from grid points with atomic centers, searching twenty-six points 

provides better results.   

Summary output from Crevasse is shown in Table 2-2.  The axis lengths are 

the length of the major axis through the points and the two other orthogonal axes that 

define the bounding box.  Crevasse can also output the coordinates for the center of 

the bounding box, or for the eight corners.  Crevasse was run on the FADE output on 

the PKA catalytic core previously shown in Figure 2-3.  The software identified 

twenty-one distinct sets of points on the protein surface.  The site numbering is 

arbitrary; in this computation the ATP and PKI binding site is identified as site 8 and 

is the largest site identified by the computation.  Site 9, the second largest site, is 

involved in regulatory subunit binding. 

Table 2-2.  Crevasses found on PKA Core 
Output from the Crevasse computation, showing the point count, box volume, and 

length of the axes through the bounding box for each site. 
 

Arbitrary 
site ID 

Number of 
points in 

site 

Volume of 
Bounding 
Box in Å3 

Length of 
Axis 1 in Å 

Length of 
Axis 2 in Å 

Length of 
Axis 3 in Å 

1 497 798.7 4.4 12.1 14.9 
2 81 43.2 2.2 3.3 6.0 
3 259 982.4 5.4 9.3 19.4 
4 124 185.1 3.8 6.7 7.3 
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5 107 195.7 3.5 4.8 11.4 
6 149 207.8 3.6 4.5 12.8 
7 130 184.5 4.1 5.7 7.9 
8 1351 3359.1 8.0 13.4 31.3 
9 503 989.3 7.4 9.6 14.0 

10 245 312.5 5.1 7.4 8.3 
11 113 130.8 2.3 8.1 7.0 
12 314 348.6 5.4 5.5 11.8 
13 181 256.7 3.4 7.2 10.4 
14 123 133.2 2.9 6.4 7.1 
15 89 29.5 2.6 3.2 3.6 
16 115 97.4 2.3 5.3 8.2 
17 253 429.0 5.5 6.6 11.8 
18 342 340.5 5.1 6.4 10.5 
19 300 477.9 5.1 6.4 14.7 
20 321 505.2 4.4 7.8 14.7 
21 84 88.1 2.4 5.0 7.3 

 
Figure 2-4 is a graphic representation of the output.  To generate Figure 2-4, 

Crevasse wrote the sets of points as hydrogens in a pseudo-PDB file format to load 

into a molecular viewer. Each distinct set of points is given a residue number.  The 

sets of points were arbitrarily colored by residue in PyMol to show the distinct, 

computationally identified pockets.  The segmentation preserves and separates major 

sites like the ATP binding site and the P+1 peptide binding site.  The single points 

around the N-lobe and adjacent to the C-helix have been filtered out and the signal-to-

noise improved markedly. 
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Figure 2-4.  Sample Crevasse Output 
Sample Crevasse output on residues 40-300 of Protein Kinase A.  Patches of colored 
spheres are the grid points that define each separate crevice on the protein surface. 

 
The combination of FADE and Crevasse takes under a minute to map the 

surface of PKA on a 2.4 GHz Pentium III.  Most of the computation time is spent on 

the counting function, which scales at nlog(n) where in is the number of grid points.  

With a series of simple shell scripts, a family of proteins can be mapped quickly and 

efficiently for analysis of surface features. 
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The description of Crevasse and FADE in Chapter 2 and the PKA results in 

Chapter 3 will be written up for publication.  The dissertation author will be the 

primary investigator and author.  Dr. Choel Kim provided the new high-resolution 

crystal structure of PKA used in Chapter 3 and Mike Pique helped with the 

optimization of FADE detailed in Chapter 2.   Both will be co-authored.  Dr. Susan 

Taylor and Dr. Lynn Ten Eyck will also be co-authors on the paper. 
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Chapter 3. Mapping the surface of Protein Kinase A 

Section 3.01  Introduction 

cAMP dependent protein kinase (PKA) was chosen as a model molecule to test 

FADE and Crevasse.   Protein kinases regulate other proteins by covalently attaching a 

phosphate group from ATP (adenosine triphosphate) to the hydroxyl on a serine, 

threonine, or tyrosine residue of a substrate protein.  PKA phosphorylates multiple 

targets in response to intracellular increases in cAMP (3'-5'-cyclic adenosine 

monophosphate), an important second messenger molecule. As mentioned in Chapter 

1, PKA has been extensively studied, making it a good test molecule for FADE and 

Crevasse.  There is a comprehensive review published by Johnson et al. in 2001 that 

describes PKA in great detail.  Briefly, PKA is composed of two subunits, a catalytic 

subunit and a regulatory subunit.  The catalytic subunit has a structurally conserved 

catalytic core that is present in all mammalian kinases (Hanks and Hunter, 1995).  The 

cAMP binding domains are on the regulatory subunit.  Upon cAMP binding, the 

catalytic subunit dissociates from the regulatory subunit and phosphorylates target 

proteins.  The catalytic subunit can be divided into an N-terminal tail of 40 amino 

acids, a conserved catalytic core, and a C-terminal tail of 50 residues.  The catalytic 

core consists of two lobes.  The N-terminal lobe or N-lobe is made primarily of five 

antiparallel β-strands and a prominent helix, called αC or the C-helix.  The C-terminal 

lobe, or C-lobe is larger and formed primarily from α-helices.  There is a highly 

conserved loop between strands β1 and β2 called the glycine loop.  It has a glycine 

rich sequence (GXGXφG) where φ is tyrosine or phenylalanine that forms part of the 
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ATP binding site (Review: Huse and Kuryian, 2002).   The substrate ATP binds in a 

pocket formed by the two lobes and the glycine loop, and the substrate peptide binds 

in a groove formed between them.  The substrate phosphorylation site, called the P 

site, is positioned very close to the γ-phosphate of ATP. 

PKA is activated to its catalytically competent state by phosphorylation and 

conformational changes.  Figure 3-1 shows a diagram of PKA activation.  The inactive 

kinase is on the right.  T197 is not phosphorylated, the C-helix is moved away from 

the kinase.  E91 is moved out of the active site cleft.  The left-hand diagram shows the 

active kinase.  When the C-helix is in the active position, a conserved set of amino 

acids lines up between the F-helix and the active site cleft, forming a regulatory spine 

that stabilizes the kinase.  (Kornev et al., 2006).  T197 is phosphorylated and the C-

helix is positioned close enough to the enzyme to move E91 into the active site cleft to 

form a salt bridge with K72 and the conserved D184 from the DFG motif is moved 

into the active site cleft.  When the enzyme is active, it is still flexible.  There is subtle 

interdomain movement between the N- and C-lobes.  It is unclear how far the enzyme 

has to open to release ADP and bind ATP between each round of catalysis but some 

movement is likely necessary (Johnson et al. 2001). 
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Figure 3-1.  Protein Kinase A Subdomains and Conformations 
The two main conformations of PKA are illustrated.  Phosphorylation of T197 and 
positioning of the C-helix to move E91 into the active site cleft activates the kinase.  
In the inactive form, T197 is not phosphorylated and the C-helix is moved away from 
the protein, removing E91 from the active site cleft. (Figure courtesy of A. Kornev.) 
 

Protein Kinase A has regulatory subunits that associate and dissociate from the 

kinase.  There are four regulatory subunit genes, called RIα, RIβ, RIIα, and RIIβ and 

the combination of catalytic and regulatory subunit is called the PKA holoenzyme.  

The PKA holoenzyme is not catalytically active.  The kinase is activated when cAMP 

binding to the regulatory subunit causes a conformational change in the regulatory 

subunit that dissociates the holoenzyme, freeing the catalytic subunit (Review: Cheng 

et al., 2008).  When cAMP levels fall, the regulatory subunit returns to a conformation 

that binds PKA and the holoenzyme reforms.  The RI and RII subunits are 

distinguished by the sequence that binds to the active site of the catalytic subunit.  RI 

regulatory subunits have a pseudosubstrate sequence, while RII regulatory subunits 

have a substrate sequence which is phosphorylated upon binding.  Different regulatory 

subunit isoforms are expressed in different tissues.  Once the PKA holoenzyme has 

formed, it can be sequestered by interaction with A-kinase anchoring proteins 
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(AKAPs).  Another protein that will be mentioned is Protein Kinase Inhibitor (PKI).  

PKI binds to the PKA catalytic subunit and has a nuclear export sequence, moving it 

out of the nucleus.   A 20-residue inhibitor peptide from PKI has been a useful tool for 

crystallization of PKA and is seen in the structure by Knighton et al. (1991) used in 

this analysis. 

Section 3.02  Methods 

FADE and Crevasse were used as described in Chapter 2 to map the surface of 

Protein Kinase A.  Two different PKA structures were used.  One is crystallized with 

PKI but no ATP, (Knighton et al. 1991, PDB ID 2CPK), and the other is a new crystal 

of PKA with ATP and PKI (coordinates kindly provided by Dr. Choel Kim).  The 

structures were chosen because they do not contain the regulatory subunit, they have 

all of the heavy atoms resolved, the conformation is closed, and they have no 

mutations or alterations to the protein.  The N- and C-terminal tails were removed 

from the protein, and FADE and Crevasse were run over the catalytic core, residues 

41-297.  Unless mentioned otherwise, only peptide was used for the computation and 

water, ATP, PKI, and any non-biological molecules that co-crystallized with the 

kinase were removed.  Hydrogen atoms were added to the structures with Reduce 3.1 

(Word et. al., 1999) on default settings.  FADE was set to return grid points with 

scores above 4.6, 1.5Å from grid points with atomic centers.  Crevasse was set to 

require 80 points and 5Å length on the longest axis to output a pocket.  The resulting 

data allow construction of a surface map that highlights important structural features 

of the kinase. 
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Figure 3-2.  Sample Crevasse Computation on PKA Catalytic Subunut 
The PKA N-lobe is grey, C-lobe is tan, N and C-tails are red, and PKI is pictured in 
green.  The crevasse computation is shown in gold. Raw points from the computation 
are pictured on the left.  On the right, the points have been represented as a surface in 
PyMol. 

Section 3.03  ATP and Substrate Site 
 

The classical view of protein kinases separates the substrate binding pocket 

into two parts, the ATP binding site, and the substrate binding site.  FADE shows that 

there is a continuous surface that comprises the kinase active site rather than two 

separate sites for ATP and substrate.  The N and C lobes of the kinase create a space 

for substrate binding and catalysis, the active site cleft. Figure 3-3 shows the results of 

the Crevasse computation on the active site cleft with PKI and different parts of the 

ATP ligand removed.  As atoms are removed from the structure, the computed pocket 

expands to fill the resulting empty space and shows the different parts of the ATP 
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docking site.  Part A shows the computation with PKI and all ligand atoms removed 

from the coordinates.  Part B shows the results with the adenosine ring added to the 

coordinates.  The area that is no longer filled is the adenosine docking site.  Similarly, 

part C shows the results with both adenosine and ribose added to the coordinates and 

identifies the ribose docking site.  Part D has the full ATP molecule added and shows 

the phosphoryl transfer site.  Finally, in part E PKI is added.  The active site cleft is 

completely filled, and a new indentation on the surface appears over PKI. 
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Figure 3-3.  Dissection of the ATP Docking Site in PKA.  
PKA ribbons are shown with the N-lobe in grey, the C-lobe in tan.  The Crevasse 
computation is shown as surfaces.  A. Ligand removed completely.  B. Adenine ring 
included.  C. Adenine and ribose included. D. Full ATP molecule included. E. 
Computation with PKI.  The cleft is filled and a new pocket (grey) appears over PKI. 
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 Further examination of the interaction of PKI with PKA shows some of the 

specificity determinants.  Figure 3-4 shows the same Crevasse computation in Figure 

3-3, but with the amino acids in the C-terminal region of PKI shown.  The area 

identified as a pocket has been rendered as a gold surface in Pymol.  In the 

computation on this particular structure, the points overlying the surface where the C-

terminal region of PKI binds are contiguous with the active site cleft, but on some of 

the other PKA crystal structures, they segment into a separate binding site.  The P site 

pseudosubtrate alanine, P+1 isoleucine, and three arginine residues at P-2, P-3, and P-

6 fit into the computationally identified pocket.  The two arginine residues are the 

main specificity determinant for PKA and the algorithm highlights the close fit onto 

the PKA surface.   The pocket for the P-2 arginine is lined by E170 from the catalytic 

loop, Y204 from the P+1-loop, and E230 from the C terminus of the F-helix.   E203 

from the P+1-loop is at the bottom of the pocket for the P-6 arginine.  The peptide 

binding site can be split into three areas, an N-terminal docking site for the P+1 

residue, the phosphoryl transfer site, and a C-terminal docking site occupied by the 

arginine residues. 
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Figure 3-4.  Interaction between PKA and PKI 
The Crevasse computation is shown as a gold surface, computed in Pymol.  PKI was 
removed for the computation.  The P alanine, P+1 isoleucine, and the P-2, P-3 and P-6 
arginines fit tightly against the PKA surface into computationally identified pockets.  
Residues E170, E203, Y204, and E230 from PKA are also shown. 
 

 The algorithm was also run on the PKA catalytic subunit in complex 

with adenosine (Naryana et. al, 1BKX).  The crystal structure of 1BKX is in a closed, 

active conformation that is very similar to that of the crystal in Figure 3-4.  The main 

difference between the two structures is the absence of pseudosubstrate.  Nonetheless, 

the peptide binding site has very similar geometry. The binding sites for the P+1 

isoleucine, and the P-2, P-3 and P-6 arginines are formed in the absence of PKI.  This 

shows that the shape of the peptide binding site in PKA is not induced but rather that 

shape complementarity may play a role in PKA substrate recognition.  Figure 3-6 

shows an overview of the organization of the PKA active site cleft. 
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Figure 3-5.  Substrate Binding Site in the Absence of PKI. 
The gold surface is the computationally identified peptide docking site, showing that 
the large groove for the peptide backbone and the P-2 and P-3 arginines forms in the 
absence of substrate. 
 
 

 
 
Figure 3-6.  Roadmap to the Active Site 
The hierarchy of docking sites in the PKA Active Site Cleft. 
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Section 3.04  C-Helix Positioning 

PKA has a dynamic structure and has been shown to reorganize upon 

activation.  As mentioned in the introduction, positioning of the C-helix is important 

in activating the kinase.  Figure 3-7 shows the organization the kinase C-helix.  The C-

helix can be organized into four regions where inter and intra-molecular interactions 

take place, the N-lobe surface, the C-lobe surface, the N-terminal end, and the C-

terminal end. 

 

Figure 3-7.  C-Helix Organization. 
Organization of the kinase C-helix, shown on PKA ribbons.  The C-helix is shown in 
gold.  Across the kinase family, C-helix positioning is determined by inter- and 
intramolecular interactions with the four labeled regions, the N-lobe surface, C-lobe 
surface, N-terminal, and C-terminal. 
 

On the PKA catalytic core the algorithm identifies two distinct pockets 

adjacent to the C-helix, one at the middle of the N-lobe surface and a second near the 

C-terminal end of the C-lobe surface.  Figure 3-8 shows the computationally identified 

pockets on the kinase core and the how they are occupied in the complete structure. 
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The pocket on the N-lobe surface of the C-helix is filled by the FxxF motif formed by 

residues 347-350 from the C-terminal tail.  Residues F26 and W30 from the N-

terminal tail fit into the pocket on the C-lobe surface, and stabilize the C-helix from 

the C-lobe surface. 

 
Figure 3-8.  Protein Kinase A C-helix with Computation. 
Pockets indentified by the computation are shown as gold surfaces, rendered in 
PyMol.  The N-lobe is colored grey and the C and N-terminal tails are dark red.  F347 
and F350 fill the C-lobe surface site and F26 and W30 fill the the N-lobe surface site. 
 

Section 3.05  β-Sheet Cap 

The PKA catalytic core was defined as beginning at residue D41 thorough a 

combination of sequence and structure homology studies with other kinases.  When 

the Crevasse computation is run starting at residue D41, there is a pocket that appears 

at the top of the N-lobe.  It is lined by F41, M71, F110, and Y117.  L40 folds over into 
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the center of the hydrophobic pocket.  I335 from the C-terminal tail also folds into the 

same region, although it is not inside the computationally identified pocket.  The 

pocket and residues lining it are pictured in Figure 3-9 

 

Figure 3-9.  β-Sheet Cap in PKA 
The N-terminal and C-terminal tails are shown in deep red. 
 
 The function of the β-Sheet cap is unknown.  Methionine 71 at the bottom of 

the cap is adjacent to two important residues, K72 and A70.  K72 is an essential 

catalytic residue, so its positioning is critical for proper function of the kinase.  A70 is 

also conserved, and it makes a hydrophobic contact with the adenine ring.  Proper 

positioning of A70 and K72 points M71 into a hydrophobic region on top of the β-3 

strand.   This may serve to further stabilize the active form of the kinase with 

hydrophobic interactions. 
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Section 3.06  C-Lobe 

The C-Lobe on PKA is involved in protein-protein interactions with the 

regulatory subunits.  There is a pocket adjacent to the APE α-F loop, PKA residues 

206-308.  E208 in the conserved APE motif hydrogen bonds to R280 and helps to 

stabilize the activation loop (Natarajan et al. 2007).  The pocket is a site of protein-

protein interaction with the RII-β regulatory subunit. The end of the RII-β c-terminal 

helix falls over the pocket, blocking it.  There is a hydrogen bond between RII-β K263 

and the backbone amide of K213 that forms within the computationally identified 

pocket. 

 

Figure 3-10.  Conserved APE Motif and Pocket. 
The APE motif resides are shown in dark red.  Other nearby residues are also shown. 
K213 was not fully resolved in this crystal; the shape of the pocket changes slightly in 
structures with K213 but is still present. 
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Section 3.07  Myristic Acid Covalent Modification 

Purified mammalian PKA has been shown to have a myristic acid covalent 

modification (Zheng et al. 1993) on the n-terminal tail.  Zheng identified an acyl 

binding pocket adjacent to the n-terminal tail, and when nonmyristylated recombinant 

PKA crystals are grown in the presence of octanoyl-N-methylglucamide (MEGA-8) 

detergent, a detergent molecule occupies the site (Naryana et al. 1993).  When 

recombinant PKA is crystallized in the absence of detergent, the acyl pocket is still 

present, and is occupied by solvent. 

Crevasse successfully identifies the empty acyl myristylation site on the 

recombinant enzyme as a pocket.  When the algorithm is run, co-crystallized 

molecules such as detergents, water molecules, and glycerol are removed from the 

protein.  Examination of the PKA structure with MEGA-8 shows a computationally 

identified pocket in the same spot that is neatly filled by the detergent molecule.  The 

pocket is completely absent in the myristylated mammalian protein, where the 

computation was run with the myristic acid included.  The myristic acid packs well 

enough to smooth the surface of the protein and fill the acyl pocket.  This 

demonstrates the ability of Crevasse to identify potential small molecule binding sites, 

and shows the stability of the acyl site in nonmyristylated PKA.  The empty pocket 

under the N-terminal tail present in all three structures is also of interest.  It is not 

known whether the N-terminal tail always stays closely packed with the kinase core, 

or whether it is mobile.  If the N-terminal tail was to move away from the kinase, the 
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pocket visible in all three structures would be exposed for a protein-protein 

interaction. 

 

Figure 3-11.  N-terminal Tail and Acyl Pocket. 
The top left shows myristylated PKA, with the atoms from the myristic acid that were 
resolved in the crystal structure shown as yellow spheres.  The top right is PKA 
crystallized with MEGA-8.  The detergent molecule is shown as green spheres and can 
be seen occupying a computationally identified pocket.  The bottom figure is PKA 
without detergent or myristic acid, and there is an empty pocket at the same site. 
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Section 3.08  Pockets of Unknown Function 

The algorithm identifies a potentially interesting site adjacent to a highly 

conserved proline residue.  Rather than a single proline, PKA has a distinctive pro-pro 

sequence, residues P236 and P237.  The pocket is at the “bottom” of the canonical 

view of the kinase core, adjacent to the G-helix and the G-H linker.  The function of 

the proline motif is presently unknown. 

   

Figure 3-12.  Proline Motif and Associated Pocket 
P236 and P237 are shown in red.  The pocket is adjacent to the G-helix on the right of 
the figure. 
 
In Figure 3-11 in the myristylation section above, there is a pocket next to the N-

terminal tail in all three of the kinases shown.  In the myristylated structure with the 

best resolved N-terminal tail, the pocket can be seen to extend underneath the end of 

the N-terminal tail.  If the N-terminal tail were to move away from the catalytic core, 

the site would be exposed for interaction.  There is another large pocket of unknown 

function at the hinge region over the linker and αC-β4 loop, shown in Figure 3-13.  

The pocket is not occupied in any of the PKA structures solved to date. 
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Figure 3-13.  PKA Ribbbons with Hinge Region Pocket. 
PKA ribbons from 2CPK showing a large pocket at the hinge region, over the linker 
and αC-β4 loop. 
 

Finally, the algorithm is sensitive enough to detect a set of conserved, buried 

water molecules.  The pocket of water is adjacent to the F-helix inside the molecular 

surface of the kinase.  The buried pocket is present in 2CPK as well as the newer, 

high-resolution crystal structure. 

 
Figure 3-14.  Buried Water 
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High-resolution PKA structure showing water molecules in and around the structure.  
Four water molecules are included in the gold-colored pocket. 

Section 3.09  PKA Holoenzyme 

The PKA holoenzyme can also be analyzed with the pocket-finding algorithm.  

The R1-α, RII- α, and RII-β holoenzymes were analyzed by computing pockets over 

the catalytic and regulatory subunits separately and combined.   Pockets present in the 

separate subunits that disappear when the algorithm is run on the holoenzyme are 

filled, and illustrate areas of shape complementarity.  If a pocket is also present on the 

apo-enzyme it can be inferred that the fit is not induced. Pockets may be on either the 

catalytic or regulatory subunit. The computation shows considerable similarities 

between the RI-α and RII- β holoenzymes.  The RI-α and RII-β holoenzyme 

complexes are pictured in  

Figure 3-15.  There are two computationally identified pockets involved in the 

intramolecular interaction between the catalytic subunit and the fragment of RII-β in 

the crystal.  The active site clefts, pictured in Figure 3-16, and Figure 3-17, show 

surface geometry very similar to the PKI-bound enzyme in Figure 3-4.  Again, the P-2 

and P-3 arginines occupy the computationally identified peptide docking site within 

the active site cleft.  The P+1 site is occupied by a hydrophobic residue, and P+2 is 

occupied by either serine or cysteine. 
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Figure 3-15.  Overiew of PKA RI-α and RII–β Holoenzymes 
The PKA catalytic subunits are pictured in grey and tan and the regulatory subunits in 
teal.  The complex on the left is RI-α and on the right is RII–β.  The gold surface 
shows the two computationally identified pockets where there is an interaction 
between the subunits. 
 
 
 

 
Figure 3-16.  Active Site Cleft in RII-β Holoenzyme. 
The computation on the catalytic subunit is shown as a gold surface.  The peptide 
binding site is filled by the substrate peptide of RII-β. 
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Figure 3-17.  Active Site Cleft in RI-α Holoenzyme 
The computation on the catalytic subunit is shown as a gold surface.  The peptide 
binding site is filled by the pseudosubstrate of RI-α. 
 
 The other potential interaction site identified on the catalytic subunit is at the 

APE motif.  The pocket matches the one pictured in Figure 3-10 that is located on the 

catalytic subunit adjacent to the APE motif; however, the pocket is not occupied by 

any amino acids but rather water. 
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Figure 3-18.  Close-up of APE Motif and Activation Loop 
Close-up of RII-β subunit interaction at APE motif.  The pocket adjacent to the APE 
motif is not filled, but interaction with it would be blocked. 
 
 On the regulatory subunit, there is a pocket identified by the computation that 

is present on both RI-α and RII–β.  The pocket is adjacent to the BC helix and near 

phospotyrosine 197 on the C-subunit.  In both isoforms, L211, S212, and W196 from 

the catalytic subunit have atoms in the computationally identified pocket.  The RI-α 

also has K213 in the pocket, while in RII–β L198 is in the pocket. 
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Figure 3-19.  Interaction of PKA Catalytic Subunit with Regulatory Subunit 
Pockets shown in grey were calculated on the regulatory subunit.  RI-α is depicted on 
the left and RII–β on the right.  The helix running left-to-right is the BC helix.  Amino 
acids in the pockets are slightly different, with residues 211-213 and W196 interacting 
with R1-α.  Instead of K213, the RII- β pocket shows an interaction with L198 from 
the activation loop. 
 

The RII-α holoenzyme is computationally distinct from the other two 

holoenzymes.  The N-lobe of the catalytic subunit is poorly organized in the crystal 

structure, with many of the side chain heavy atoms unresolved.  Figure 3-20 shows an 

overview of the holoenzyme, with the cartoon of residues with missing atoms colored 

yellow.  The N-lobe is not ordered as well as in the other holoenzymes, and there is a 

large pocket that is partly an artifact of the missing residues.  The peptide docking site 

was resolved well in the structure, but there is not a distinct cleft as is present in the 

other two holoenzymes.  This is the only PKA structure identified thus far where there 

is a peptide crystallized in the peptide binding site, but no clear pocket when the 

peptide is removed.  The regulatory subunit has a similar BC helix pocket, shown in 

Figure 3-21.  S212 and K213 from the catalytic subunit fall in the pocket, but W196 
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does not.  The combination of the disorganized N-lobe and lack of a peptide binding 

site indicate that the organization of the catalytic subunit is fundamentally different in 

the RII-α holoenzyme crystal structure.  It is unclear whether part of the differences 

are due to lack of the B-domain of the holoenzyme. 

 

Figure 3-20.  Overview of RII-α Holoenzyme 
Overview of the RII-α holoenzyme.  The N-lobe cartoon is colored yellow where there 
are residues with missing atoms. Much of the large pocket in the N-lobe is an artifact 
of the missing atoms. 
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Figure 3-21.  Peptide docking site and BC Helix in the RII-α Holoenzyme 
The peptide docking site is on the left, with pockets in gold. Note the lack of a long 
crevice for the peptide backbone in this structure.  On the right is the BC helix pocket 
on the regulatory subunit.  S212 and K213 fall in the pocket, but W196 does not. 

 
 

Section 3.10  Conclusions 
 

The combination of FADE and Crevasse has identified many known structural 

features of PKA, and some novel regions of potential interest.  The algorithm 

identifies the binding site on the C-helix for the FxxF motif on the C-terminal tail and 

F26 and W30 from the C-terminal tail.  The binding of the tails to the C-helix is 

essential for PKA activation.  The substrate binding site is also clearly identified, and 

the algorithm shows the geometric continuity of the active site cleft.  The peptide 

binding site is formed in the closed apo structure, and the PKI bound structure shows 

how the pseudosubstrate backbone and P-2, P-3, and P-6 arginines fit into the peptide 

docking site.  There is also a pocket next to the APE motif, a site of protein-protein 

interactions, and a pocket where the myristic acid modification on the N-terminal tail 
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fits on the nonmyrstylated structures.  A buried pocket is computed where there are 

ordered water molecules in the C-lobe. 

There are other potentially interesting pockets on the PKA surface that are not 

occupied in the crystal structure.  Residue 40 fits into a pocket at the top of the N-lobe, 

on top of the kinase spine.  There is a pocket next to the conserved PP motif at residue 

236 and one under the N-terminal tail that would be exposed if the N-terminal tail 

moved away from the surface.  There is a large pocket between the lobes over the αC-

β4 loop and linker region.  The function of these sites is presently unknown. 

When the computation is run on the holoenzyme, two sets of pockets are 

computed, one on the catalytic subunit and one on the regulatory subunit.  In the RIα 

and RIIβ holoenzyems, the pseudosubstrate peptide falls into a very clear pocket at the 

peptide docking in the active site cleft.  On the regulatory subunit, there is a large 

pocket at the BC helix occupied by PKA near W196 and S212.  The computation 

shows differences in the RIβ holoenzyme.  The N-lobe is disorganized and the pocket 

at the active site cleft is absent, with the pseudosubstrate occupying a much flatter 

surface.  The BC helix pocket is present on the regulatory subunit, but it is occupied 

by slightly different amino acids from PKA. 

The combination of FADE and crevasse provides a tool to confirm interactions 

on a well-studied, conserved structure. It also is able to identify potential new regions 

of interest and potential protein-protein interactions to study experimentally. 

The description of Crevasse and FADE in Chapter 2 and the PKA results in 

Chapter 3 will be written up for publication.  The dissertation author will be the 
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primary investigator and author.  Dr. Choel Kim provided the new high-resolution 

crystal structure of PKA used in Chapter 3 and Mike Pique helped with the 

optimization of FADE detailed in Chapter 2.   Both will be co-authored.  Dr. Susan 

Taylor and Dr. Lynn Ten Eyck will also be co-authors on the paper. 
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Chapter 4. Mapping the Kinase Family 
 

A new method using spatial clustering of pockets computed with FADE and 

Crevasse was used to compare and contrast surface geometry in the protein kinase 

family.  Mammalian protein kinases have a conserved catalytic core highly 

homologous to Protein Kinase A.  There is an N-lobe, a C-lobe, a C-helix, and a 

conserved active site cleft where ATP and substrate bind and phosphoryl transfer 

occurs.  The catalytic core may be the majority of the molecule, as with PKA, or it 

may be only a small part of a much larger molecule, as in the receptor tyrosine 

kinases.  Some kinases like c-Src have multiple regulatory domains, others like PKA 

have separate regulatory subunits.  Comparing and contrasting the conserved catalytic 

core of the kinase family can provide insight into substrate recognition, activation 

mechanisms, and possible conserved sites of protein-protein interaction. 

Ten kinase core x-ray crystal structures were selected for the comaparison, six 

serine/threonine and four tyrosine kinases.  Only active structures in a closed 

conformation with the R-spine in a catalytically competent position were used 

(Kornev et al. 2006).  The structures were truncated to include only the catalytic core.  

The alignment and subdomain definition provided Hanks and Hunter (1995) was used 

to determine where to truncate the proteins.  The beginning of subdomain I was 

defined as a residue homologous to PKA D41, and the end of subdomain XI was 

defined as homologous to PKA F297.  Waters, ligands, and metals were removed, 

leaving only the polypeptide.  Alternate atom locations were also removed.  No 

attempt was made to rebuild missing side chains or side chain atoms because of the 
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difficulty of determining a location for the rebuilt atoms.  All ten kinase cores were 

pairwise structurally aligned on the backbone atoms of the F helix against 2CPK 

residues 218-230 using Pymol (DeLano Scientific).  The PDB IDs, names, and 

residues of the ten kinases are listed in Table 4-1 and the aligned kinase catalytic cores 

are shown in Figure 4-1. 

Table 4-1.  Kinases Used in the Comparison 
Type Abbrev. Name PDB ID Residues F Helix 
Ser/ CDK Cyclin Dependent Protein Kinase 1FIN (A) 2-286 183-195 
Thr DAPK Death Associated Protein Kinase 1JKK 11-275 197-209 
 PHK Phosphorylase Kinase 2PHK 17-287 209-221 
 PKA cAMP Dependent Protein Kinase 2CPK 41-297 218-230 
 Sky1P Sky1p SR Protein Kinase 1Q97 (A) 156-706 584-596 
 ERK2 MAP Kinase 2ERK 21-311 206-218 
Tyr IRK Insulin Receptor Kinase 1IR3 994-1263 1189-1201
 CSK Carboxyl Terminal Src Kinase 1K9A (A) 193-443 366-378 
 LCK Lymphocye Specific Protein Kinase 3LCK 243-494 420-432 
 c-Src c-Src Proto-oncogene 1Y57 265-516 442-454 
 

 

Figure 4-1.  Aligned Kinase Catalytic Cores 
Catalytic cores of the ten protein kinases, aligned on the F-helix.  The N-lobe is shown 
colored grey and the C-lobe is tan. 
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 After the crystal structures were aligned and processed, FADE and Crevasse 

were run on each structure as described in Chapter 2.  Crevasse was set to discard 

groups of points with fewer than 80 points or the longest axis shorter than 5Å.  As part 

of the Crevasse computation, the center of each crevice is computed as the mean of the 

points.  To identify groups of potentially conserved binding sites, the crevice centers 

were spatially clustered using the fastclus procedure in SAS software.  New clusters 

were initiated when the Euclidian distance between clusters exceeded 10 Å.  The 

pockets clustered into 30 distinct spatial clusters.  Many of the clusters highlight 

regions of known conserved function. 

 The rest of this chapter will present and then discuss the results of this 

computational experiment.  In Section 4.01 through Section 4.05, I will present all of 

the computational results. Each section will contain results from a particular area of 

the kinase molecules.  In the conclusions in Section 4.06 at the end of the chapter, I 

will discuss the interpretation of all of the data. 

Section 4.01  Active Site Cleft 

The kinase active site cleft was identified by the software as the largest crevice 

in all ten proteins and the centers of the active sites clustered tightly.  Table 4-2 shows 

the clustering results for the active site cleft.  The active site is 30 Å long and 

irregularly shaped, yet the site centers in all ten kinase cores fall no more than 2.57 Å 

from the cluster centroid. 
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Table 4-2.  Active Site Cleft Cluster Centroid Distances 
The second column is the distance in angstroms of the crevice center from the k-

means cluster centroid. 
 

Kinase Å from 
centroid 

CDK 1.16 
CSK 1.53 
DAPK 1.78 
ERK2 1.33 
IRK 1.77 
LCK 1.74 
PHK 0.74 
PKA 2.12 
Sky1P 1.01 
c-Src 2.57 

 
The results of the computation are depicted in  

Figure 4-2 and  

Figure 4-3.   

Figure 4-2 shows all ten active site clefts overlaid on PKA ribbons.  In all ten 

kinases, the nucleotide and peptide binding sites are identified as a single large, 

geometrically contiguous active site cleft with similar geometry.  Both the N-lobe and 

the C-lobe contribute to both the ATP docking site and the peptide docking site.  

There are slight differences in the specific shapes of the active site clefts, illustrated in  

Figure 4-3, with closely homologous proteins having the most similarly-shaped 

clefts.  For example, the tyrosine kinases c-Src and CSK have active site clefts that 

overlap well, and the serine/threonine kinases Sky1P, PKA, and CDK are similar. 
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Figure 4-2.  Active Site Cleft Computation 
All ten active site clefts are depicted overlaid onto ribbons from the PKA catalytic 
core.  The colored spheres represent grid points identified as lining the active site cleft.  
Points from each of the ten kinases are shown in a different color.  (Not all points are 
visible, as PyMol renders based on the order the files are loaded.) 
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Figure 4-3.  Active Site Cleft Detail, by Substrate. 
A, B. Active sites for serine/threonine kinases.  A. DAPK (maroon), PHK (magenta), 
PKA (red) B. Sky1p (yellow), CDK (orange), ERK2 (purple).  C, D.  Active sites for 
tyrosine kinases.  C. IRK (green), LCK (dark blue).  D. CSK (deep green), c-Src (light 
blue). 
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Section 4.02  Substrate Specificity 

There is a computational difference between tyrosine and serine/threonine 

kinases outside of the active site cleft where phosphorylation substrates bind.  Table 

4-1 shows the results of the clustering computation. Two different clusters of pockets 

were identified, one cluster with only serine/threonine kinases and the other with only 

tyrosine kinases.  PHK has two sites in the cluster because Crevasse separated the 

points into two small, adjacent sites rather than one larger site.   

Table 4-3.  Substrate Specificity Clusters 
Computational results for the substrate recognition site clusters. 

Serine/Threonine 
Cluster Tyrosine Cluster 

Kinase Distance (Å) Kinase Distance (Å) 
CDK 0.82 CSK 3.28 
DAPK 0.76 IRK 2.29 
ERK2 2.49 LKC 3.86 
PHK 4.87 c-Src 3.94 
PHK 1.85   
PKA 4.33   
Sky1P 1.88   

 

The two sets of clustered pockets are depicted in  

Figure 4-4.  To find out what occupies the pockets, two kinases with substrate 

co-crystallized were identified.  The substrates and pockets are depicted in  

Figure 4-5.  The PKA crystal structure used in the experiment has PKI in the 

full structure, so PKI was overlaid onto the pocket.  The pocket is occupied by the P-2 

and P-6 arginines.  The P-3 arginine falls into the large active site cleft pocket.  When 

the full IRK structure is overlaid with the core used in the computation, the backbone 

of the peptide substrate falls into the computationally identified pocket.  The pocket 
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serves to extend the active site cleft so that the substrate peptide backbone is 

positioned for the bulkier tyrosine residue to fit into the phosphorylation site.  The 

geometric fit of the peptide backbone and tyrosine residue may be part of the 

specificity determinant between serine/threonine and tyrosine kinases. 

 
 
Figure 4-4.  Substrate Specificity Determinants 
Results of the Crevasse computation.  Left: Cluster identified on serine/threonine 
kinases, pictured on PKA ribbons.  Right: Cluster identified on tyrosine kinases, 
pictured on IRK ribbons. 
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Figure 4-5.  Kinases With Bound Substrate 
PKA and IRK, co-crystallized with a peptide in the substrate site.  PKI is shown in 
dark red, and the computed pocket in gold.  The P-2 and p-6 arginines fall into the 
pocket.  A substrate peptide co-crystallized with IRK is shown in teal, with the 
computed pocket in blue.  The backbone of the P and P-1 residues are in the pocket. 

 

Section 4.03  C-Helix Stabilization 

Pockets were identified on multiple kinases at the N-lobe and C-lobe surfaces 

of the C-helix.  The points from the two computational clusters are pictured in figure 

Figure 4-6.  There are pockets on both surfaces in PKA, ERK2, IRK, and DAPK.  

There are also single pockets on c-Src, CSK, and PHK.  Since the PKA FxxF motif 

falls into the pocket on the PKA core, the other kinases were examined for similar 

interactions in the full crystal structures. 
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Figure 4-6.  C-lobe and N-lobe Surface Pocket Points 
Pockets were identified on the N-lobe and C-lobe surfaces of the C-helix on PKA 
(red), IRK(green), DAPK (dark red), PHK (magenta), ERK2 (purple), CDK (orange), 
and c-Src (light) blue.  Pockets are pictured on DAPK ribbons. 
 
 Amino acids occupy the pockets in four of the serine/threonine kinases, PKA, 

DAPK, Cyclin, and ERK2.  The C-helixes from PKA, ERK2, CDK, and DAPK are 

pictured in Figure 4-7.  As shown in Chapter 3, the pockets on PKA are occupied by 

the C-terminal and N-terminal tails.  In ERK2, a long extension of the C-terminal tail 

occupies both the N-lobe surface and C-lobe surface pockets.  Residues F327, M331 

and D334 occupy the N-lobe surface, and an α-helix formed by residues 341-350 lies 

along the C-lobe surface of the C-helix.  Residues in the pocket are L341, I345, T349, 

and F352.  T349 forms a hydrogen bond to R89; the rest of the interactions within the 

computationally defined pocket are nonpolar.  In DAPK, the short N-terminal tail 
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folds over the N-lobe and into the pocket.  Amino acids in the pocket are T1 and F3.  

In CDK, there is a similar interaction, only the C-helix pockets are occupied by amino 

acids from cyclin.  The N-lobe surface pocket is occupied by cyclin residues L299 and 

F304.  Residue H296 is not in the computational pocket, but it is next to the C-helix.  

Cyclin residues H296 and F304 are structurally homologous PKA residues F346 and 

F350.  The C-lobe surface pocket is occupied by cyclin residues F267, E268, and 

I270.  PHK has nothing occupying the pocket, but PHK has very few amino acids in 

the crystal structure beyond the kinase core.  There is no crystal packing near the C-

helix, and water molecules are in the pockets.  The pocket is absent from the 

computation in Sky1P.  In IRK, the pocket on the N-lobe surface of the C-helix is 

filled in the crystal by the N-terminus of an adjacent molecule. 

 A common feature in the amino acids packed against the N-lobe surface of the 

C-helix is the presence of at least one phenylalanine residue.  

Figure 4-8 shows the overlaid C-helices and the N-lobe surface residues.  The 

alignment is still on the F-helix, but the positioning of the C-helix is similar.  The 

residues at the N-lobe surface are highlighted, and the phenylalanine residues in each 

structure are clearly visible. 
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Figure 4-7.  C-helix Pockets and Amino Acids Filling Them 
The computed pockets are in gold, N-lobe in grey, and amino acids outside the kinase 
core are shown in red.  Cyclin is in teal.  ERK2 and CDK are in a different orientation 
to show the phenylalanine rings clearly. 
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Figure 4-8.  Overlaid Residues and C-helix on Serine/Threonine Kinases 
The overlaid C-helix is in gold.  Residues shown are PKA F347, F350 (purple), Cyclin 
H296, F304 (teal)  DAPK T2, F4 (dark red),  and ERK2 L341, I345, T348, F352 
(green). 
 
 A computationally distinct cluster was present at the c-terminal end of the C 

helix on two tyrosine kinases, c-Src and IRK.  A second computation was run with a 

4Å length cutoff for the major axis of the pockets rather than 5Å and a third pocket 

was found on LCK.  CSK shares a homologous tryptophan, but no computational 

pocket.  The computation on c-Src and IRK is pictured in Figure 4-9.  In c-Src, W260 

is positioned at the c-terminal end of the C-helix with two hydrogen bonds to D258, 

and E97 from the SH3 domain.  Active c-Src is shown overlaid with inactive c-Src 

(PDB ID 2SRC)  

Figure 4-10 to illustrate the role of W260 in C-helix positioning.  In inactive c-Src, the 

C-helix is moved away from the kinase core, and W260 is positioned between the C-

helix and the kinase core.  There is no hydrogen bond to the tryptophan nitrogen atom. 
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When the four tyrosine kinases are aligned on the C-helix rather than the F-

helix, the conserved tryptophan at the c-terminal end of the helix is tightly structurally 

conserved in c-Src, IRK, and LCK.  All three kinases also have a nearby glutamic acid 

residue within hydrogen bonding distance of the tryptophan backbone. The position of 

the CSK tryptophan is slightly different, and the glutamic acid residue is not present in 

the structure. Instead, F183 is packed next to the C-lobe surface of the C-helix similar 

to the serine/threonine kinases. 

 

Figure 4-9.  IRK and c-Src Conserved Tryptophan 
IRK with points from the computation is pictured in dark red, c-Src is pictured in 
green.  c-Src W260 hydrogen bonds to D258, and E97 from the SH3 domain.  IRK 
W989 is within hydrogen bonding distance of the homologous D987, but the hydrogen 
bond is not formed. 
 



69 

  

 
 
Figure 4-10.  C-helix and W260 on Active and Inactive C-Src. 
Active is in teal, and inactive in dark red.  Proteins are aligned on the F-helix.  The C-
helix on inactive c-Src is shifted away from the kinase core and W260 is positioned 
differently. 
 

 
 
Figure 4-11.  Conserved Tryptophan in Four Tyrosine Kinases 
Kinases are aligned on the C-helix.  Highlighted residues are c-Src E97, D258, W260 
(green) IRK D987, W990 (cyan),  LKC D236, W238 (dark red), CSK W188 (purple) 
 



70 

  

Section 4.04  N-lobe Cap 

Another shared pocket present on all ten kinases is at the top of the N-lobe.  

The pocket was shown on PKA in Chapter 3.  Table 4-4 shows the computational 

cluster.  The site was split into two smaller sites for LCK and c-Src.  Different tuning 

of the Crevasse connectivity threshold could combine the pockets if necessary. 

Table 4-4.  N-lobe Cap Cluster 
Computatonal cluster for the N-lobe Cap.  The pocket on LCK and c-Src was split into 

two separate small clusters. 
 

Kinase Distance (Å) 
CDK 1.98 
CSK 4.63 

DAPK 1.01 
ERK2 2.51 
IRK 1.34 
LCK 7.27 
LCK 3.52 
PHK 0.79 
PKA 1.13 
SLY 2.41 
c-Src 3.77 
c-Src 5.85 

 
The points from the Crevasse computation are depicted in  

Figure 4-12.  Each set of points is depicted in a different color.  Differences in the 

position of the pocket are partly reflective of subtle differences in the position of the 

glycine loop, since the kinases were aligned on the F-helix rather than the N-lobe. 

 When the kinases are examined, all of them have between one and four N-

terminal residues that occupy the computationally defined pocket.  The structures are 

shown individually in Figure 4-13.  Residues in red were removed from the 

computation as they are not considered to be part of the classical kinase core.  The first 

spine residue, catalytic lysine, and any ligands are shown as well.  The pocket tends to 
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be above the beta sheet with the catalytic lysine and the kinase spine.  The structural 

motif of residues filling the top of the N-lobe is a new feature of the kinase core.  

Table 4-5 shows the kinase sequences, aligned by homology on Subdomain I to 

sequences in Hanks and Hunter (1996).  The residues on a black background in the 

table had atoms in the computational pocket.  There is no clear sequence homology 

between the residues outside of the closely related sequences like IRK and LCK; the 

N-lobe Cap motif is purely structural. 

 
 
Figure 4-12.  N-lobe Cap Cluster on all Ten Kinases 
N-lobe Cap on all ten kinases.  Points are shown on PKA ribbons.  DAPK (maroon), 
PHK (magenta), PKA (red), Sky1p (yellow), CDK (orange), ERK2 (purple), IRK 
(green), LCK (dark blue), CSK (deep green), c-Src (light blue). 
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Figure 4-13.  N-lobe Caps on all Kinases 
The N-lobe cap is shown on all kinases.  Amino acids that were not considered part of 
the kinase core and removed in the computation are shown in dark red.  The pocket is 
shown as a gold surface. 
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Table 4-5.  N-lobe Cap Sequences 
The kinase sequences are shown with Subdomain I marked.  The residues in white on 
black have atoms that fall into the computationally identified pocket. 
 
Protein Residue    Subdomain I 
CDK    1       MENFQKVEKIGEGTYGVVYKARNKL 
ERK2   17    FDVGPRYTNLSYIGEGAYGMVCSAYDNL 
DAPK    8     NVDDYYDTGEELGSGQFAVVKKCREKS 
PHK   15      FYENYEPKEILGRGVSSVVRRCIHKP 
SRC  262     IPRESLRLEVKLGQGCFGEVWMGTWNG 
LCK  240     VPRETLKLVERLGAGQFGEVWMGYYNG 
CSK  189    ALNMKELKLLQTIGKGEFGDVMLGDYRG 
IRK  991     VSREKITLLRELGQGSFGMVYEGNARDIIKGE 
PKA   40       LDQFDRIKTLGTGSFGRVMLVKHKE 
Sky1P  153     EPYARYILVRKLGWGHFSTVWLAKDMV 
 

Section 4.05  Conserved Pockets with Unknown function 

There are some conserved pockets on the kinase core with unknown function.   

Some are present on all the kinase cores in the survey, and others show some 

selectivity.  Figure 4-14 shows a cluster of pockets over the αC-β4 loop and the N-

lobe and C-lobe linker region that is present on all ten kinases.  None of the crystal 

structures have anything occupying the pocket. 
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Figure 4-14.  Hinge Region Pocket 
Pocket present in all ten kinases.  The pocket overlays the αC-β4 loop and the linker 
between the N and C lobes. 
 

There are two pockets common to most of the kinases on the C-lobe as well.  

The pocket shown on the left in Figure 4-15 is located over the loop between the D 

and E helices, and at the C-terminal end of the F helix.  This pocket, the DEF site, is 

present in nine of the ten kinases, and is missing only in PKA.  There is nothing 

crystallized at that particular site except in c-Src. In c-Src, the last amino acid on the 

C-terminal tail, L533, folds into the identified site.  The function of the site and the 

reason it is missing on PKA are difficult to determine from these data.   
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Figure 4-15.  Common C-Lobe Sites, the DEF and EF pockets 
Left. Pocket present in all kinases except PKA.  The pocket is located at the DE loop, 
and the C-terminal end of the F helix.  Right.  Pocket in all kinases but PHK.  The 
pocket is at the N-terminal end of the F-helix. 
 

The second shared pocket in Figure 4-15 , the EF site, is on the other side of 

the C-lobe.  It is located at the N-terminal end of the F helix and the C-terminal end of 

the E helix.  The pocket is near where the PKA regulatory subunit binds in the 

holoenzyme, but is not occupied by regulatory subunit amino acids in any structure 

crystallized thus far. The EF site in Sky1P is filled by the Sky1P C-terminal tail, 

shown in Figure 4-16.  The pocket is occupied by I729, W732, and part of F733.  The 

Sky1P C-terminal tail is part of the activation of the kinase (Nolen et al., 2001).  

Deletion of the tail results in a loss of the constitutive activity. 
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Figure 4-16.  Sky1P SR Protein Kinase C-terminal Tail 
The EF pocket in Sky1P, occupied by I729, W732, and F733. 
 

Section 4.06  Conclusions 

The combination of FADE and Crevasse can be used to make comparisons and 

find new features within a related group of structurally homologous proteins.  In the 

kinase family, clustering crevasse results shows both similarities and differences 

between the serine/threonine and tyrosine kinases.  The tight active site cleft cluster 

both validates the pocket clustering methodology and demonstrates the strong degree 

of conservation of active kinase catalytic cores.  The relationship between the active 

site cleft and the F-helix has been tightly conserved in these ten kinases. 
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The cluster of pockets at the kinase C-helix shows how this method can pick 

out similar mechanisms that do not necessarily share sequence homology.  Four of the 

six serine/threonine kinases in this survey have something packed tightly against the 

C-helix, presumably to maintain the active conformation.  The pocket is conserved, 

but the mechanisms to fill it are quite diverse.  PKA has both C- and N-terminal tails 

packed against the helix.  DAPK has “solved” the problem with an N-terminal tail, 

while ERK has an extended C-terminal tail.  CDK has a fourth mechanism, with 

cyclin packed in against the helix.  There is specificity from kinase to kinase, as cyclin 

does not activate kinases other then CDK kinase tails do not promiscuously activate 

other kinases.   

There are pockets next to the C-helix on PHK, IRK and c-Src as well.  The 

pocket on the N-lobe surface of the IRK C-helix is filled by the symmetry mate.  The 

catalytic core of IRK is only part of the full insulin receptor, so the crystal packing 

results are difficult to interpret.  The pocket on the N-lobe side of the c-Src C-helix is 

completely empty as is the pocket on the C-lobe surface of the PHK C-helix.  The 

results with W260 suggest that c-Src has a different mechanism of C-helix 

stabilization.  PHK is the smallest kinase in this study, with no N- or C-terminal tails.  

Again, there is no suggestion as to whether another protein might interact at that site.  

Finally, Sky1p has no pockets at the C-helix.  Sky1P is a constitutively active protein 

kinase.  Its C-helix is unusually long and anchored in an active position by a different 

method (Nolen et al., 2001). 
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The other part of the C-helix identified by the algorithm is the C-terminal end 

in tyrosine kinases.  The highly conserved tryptophan residue pictured in Figure 4 11 

has been previously identified as important in the tyrosine kinase family.  In Hck, a 

Src family kinase, mutation of the homologous tryptophan to alanine increases activity 

and disrupts the activation by ligand binding to the SH2 and SH3 domains.  All that is 

required for full activity is autophosphorylation (LaFevre-Bernt et al., 1998).  In 

contrast, mutation of W362 in c-Raf inactivates the kinase (McPherson et al., 2000). 

The pocket at the top of the N-lobe is a new finding for the kinase family.  The 

pocket is occupied in all ten of the active structures studied.  It is tempting to speculate 

that the N-lobe cap plays a role in N-lobe stabilization because of its proximity to the 

conserved lysine (K72 in PKA) and the residue at the top of the R-spine.  Packing at 

the top of the N-lobe could help maintain the orientation of these residues in the active 

conformation.  It would be relatively simple to construct truncated versions of cyclin 

and PHK to see whether the first few amino acids are important for kinase activity.  

More kinases should be studied to see whether the top of the N-lobe is consistently 

occupied in kinase structures.  If so, the classical definition of the kinase catalytic core 

should be revised to include the amino acids that fold onto the top of the N-lobe. 

Another new finding is the difference in shape at the substrate recognition site 

and peptide docking site.  This algorithm shows an extra surface at the peptide 

docking site that positions the bulkier tyrosine residue at the phosphorylation site.  It 

also shows a conserved pocket at the PKA substrate recognition site in 

serine/threonine kinases.  This is the first method that has shown potential for 
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differentiating between serine/threonine and tyrosine kinases by purely geometric 

methods.  More structures would have to be studied to see whether the difference is 

consistent, and whether it is maintained in open conformations and inactive kinases. 

The large, conserved pockets with unknown functions are also potential areas 

of study.  There is already unpublished research underway that suggests a protein-

protein interaction at the αC-β4 loop on a kinase not included in this survey.  The EF 

site is another interesting pocket. It has a clear role in Sky1p, and is close to where the 

PKA regulatory subunit binds.  There are not full structures of all of the PKA 

holoenzymes available yet, so it remains to be seen whether the site is occupied in any 

of the PKA holoenzymes.  The DE loop pocket shows a difference between PKA and 

the rest of the kinases studied. It is a rather large pocket in the nine other kinases, but 

the surface on PKA is quite flat at that site. 

Overall, this method is an interesting way of comparing protein surfaces 

independent of amino acid sequence.  The method has identified some of the 

important motifs in the kinase family, shown a possible way of discriminating between 

serine/threonine and tyrosine kinases, and highlighted potential regions of interest on 

the molecules. 

The results in Chapter 4 will be published as a new method for comparing 

protein structures.  The dissertation author will be the primary investigator and author. 

Dr. Kannan Natarajan kindly provided me with F-helix sequences for aligning the 

kinases in Chapter 4, and both he and Dr. Alexandr Kornev helped me design and 
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interpret the experiment.  Both will be co-authored along with Dr. Susan Taylor and 

Dr. Lynn Ten Eyck. 
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Chapter 5. Further Studies 
 
 The methodology outlined here could be extended in a number of ways.  As 

outlined here, it is a valuable method of mapping single protein surfaces and 

comparing the surfaces of small groups of proteins.  It would be interesting to examine 

other families of proteins, expand the computation to other molecular properties, and 

map larger groups of proteins.  It would also be interesting to try clustering pockets 

determined with other computational methods. 

 Perhaps the most obvious follow-up study would be adding more kinase 

structures to the group of ten.  There are over 400 kinase crystal structures in the PDB, 

and the computation is fast enough to compute pockets across them all overnight.  

There would be a number of scientific and technical problems to address on the larger 

computation.  First, the proteins have to be aligned in a meaningful fashion to compare 

pockets.  The proteins chosen for this study were closed, active kinases.  The 

experiment worked because alignment on the structurally conserved F-helix also gave 

a reasonable alignment of the N-lobes of the kinases.  All of the pockets on the surface 

could be clustered without regard to their relationship to other parts of the kinase core.  

Running this methodology on dissimilar structures, like a mixture of inactive and 

active kinase structures or a mixture of open and closed form kinases, would require a 

different approach. 

 The approach for structures that are not crystallized in a similar conformation 

would be a computation over local alignments of smaller features of the protein.  For 

kinases, it might be possible to align the beta strands, the C-helix, and the F-helix 
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separately and run the computation multiple times.  Then pockets near the aligned 

feature could be compared.  Doing so would require that the conserved structural 

features be identified in each of the proteins in the study.  For this study, the F-helix 

sequences were kindly provided by Dr. Kannan Natarajan, who has extensive 

knowledge of domain homology across the kinase family.  Similar lists are available 

for other conserved features of the kinase core.  Studying a different family of proteins 

would require either similar domain knowledge, or a tool to do substructure 

alignments.  Thresholding would become important in a larger study.  First, FADE 

and Crevasse would need to be tuned.  Then there would also have to be a definition 

of what is “near” enough to a conserved feature to cluster, and how to handle 

boundary pockets. 

 Sifting through the computational results across 400 structures would also 

require some automation.  Even with only ten structures, the pockets did not cluster 

perfectly.  Inserts, small differences in the sequence, and differences in side chain 

conformations produce some noise in the results.  The study has examples of pockets 

split into two parts that fell in the same computational cluster, and one interesting 

pocket that only appeared when the threshold length for defining a pocket was 

changed.  K-means clustering algorithms are not stable on noisy data, so the clustering 

would have to be run multiple times or with a different algorithm.  Pairwise 

comparisons with a canonical structure would be one way to reveal similarities and 

differences.  It is also possible to construct a tree of pocket distances based on the 

clustering that could be compared to the sequence similarity maps. 
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 Another solution for comparing pocket centroids across a large set of proteins 

would be to find the sets of pockets with the largest common pointset (LCP).  Since 

the structures are not identical, what is actually needed is the largest common pointset 

within some acceptable degree of tolerance.  The LCP problem is NP-hard, but there 

are fast approaches designed for structural biology problems.  Choi and Goyal (2006) 

described one approach called tolerant hashing or T-hashing.  T-hashing is a geometric 

hashing method that allows a predetermined distance between matched points. 

Because it is based on geometric hashing, the T-hashing algorithm finds sets of points 

independent of geometric translation and rotation.  The output is a series of 3D 

transformations that overlay the input sets to align the most points.  Depending on the 

size of the geometric invariants relative to the point set, the alignment can be either 

local or global.  I have written software that implements a T-hashing algorithm and 

tested it on structural alignments.  I am able to align subdomanins of proteins where 

there is large interdomain movement by finding sets of common points between the 

structures.  Similarly, it would be possible to find sets of pocket centroids around 

common subdomains in a given protein.  The advantage to using T-hashing to match 

sets of pockets is that no structural alignment of the proteins is required.  The 

limitation is that the T-hashing algorithm works on pairs of point sets, rather than 

clustering like K-means.   

 There is data from the current computation that could be of use to compare 

pockets across more proteins.  The FADE grid points do not fill in the pockets, so they 

do not provide a direct measure of volume.  However, the number of grid points in a 
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pocket is a reasonable metric for the surface area of a pocket.  Crevasse also outputs 

an object-oriented bounding box for each of the pockets. For pockets that are not 

irregularly shaped, the volume of the box provides a measure of the size of the pocket.  

It may also be possible to use the magnitude of the raw FADE scores to compare the 

geometry of different pockets.  A deep, narrow pocket should have a different 

distribution of FADE scores than a broad, wide one.  Currently, the FADE scores are 

used only to choose points to input into Crevasse.  Metrics to consider would be the 

maximum score, the mean score, and the standard deviation of the scores across the 

pocket. 

  The computation can be viewed as a proof of concept for segmenting output 

from a grid-based computational method.  FADE can integrate any function that can 

be mapped onto a grid.  For example, rather than mapping atomic centers to the grid, 

the computation could be run with an electrostatic potential grid.  The integration 

limits are also flexible. FADE currently integrates the grid with respect to a discrete 

ball, but another function such as a Gaussian could be used. 

 Finally, another interesting approach would be to map protrusions instead of 

pockets.  FADE is unique among “pocket-finding” programs because it computes a 

score that is sensitive to the local surface curvature.  By taking a range of low FADE 

scores instead of high scores, FADE and Crevasse could map protrusions on protein 

surfaces for clustering.  Pockets are more predictive for small molecule binding sites, 

but protrusions often complement pockets in protein-protein interactions. 
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Appendix A  FADE Changelog 

Elaine Thompson Changes 
• Fixed algebraic grid indexing error that sometimes returned incorrect z 

coordinates for the output routines. 
• Set up bitmask to store user-requested output types, replacing if/then tests. 
• Rewrote output routines to write all files simultaneously on one pass through 

the grid.  This fixed a bug where if the user requested a file with the full grid, 
grid points that should be null were set to zeros in memory and incorrectly 
written to other files. 

• Changed PDB output of FADE to conform to PDB2 standards.  The PDB file 
now contains “residues” of 100 sequentially numbered hydrogen atoms. 

• Added grid information to .fad output files for Crevasse. 
 

Mike Pique Changes 
Memory management improvements 

• Improved error message on memory allocation failure 
• Implemented safe (checking) alloc and malloc, adapted from DOT 

"dotmem.c".  Replaced all malloc/calloc calls with malloc_t/calloc_t to check 
for allocation failures. 

• Corrected freeing of computation grid memory and improved allocation of 
grids, moved messages to proper places 

• Allocated "Count" array big enough, simplified firstPos logic and made action 
agree with comments. 

• Made sure all variables properly initialize in error conditions 
Speed improvements 

• Replaced three calls to fround() with simple macro iround, for speed. 
• Made xyzSize "double" to simplify code, removed some unnecessary runtime 

calls to "floor()" in "int" assignments 
• Removed a "sqrt()" call for trivial speedup. 

I/O Improvements 
• Made log messages to to stdout, error messages to stderr. 
• Added fflush so convolution integral progress report appears in a timely way. 
• Function writeFiles: moved 'indx' call slightly inside loop for speed, inserted 

white space into all writeFiles output fields. 
• In 'indx' function, replaced floats with doubles to reduce precision problems 

noted on big grids, where the Z value could be incorrectly calculated. 
• In writeFiles, added checking that indices (a[0], a[1], a[2]) are correctly 

computed, rearranged "if goodPoint" logic for speedup and increased clarity. 
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Appendix B  Crevasse Source Code 

 
----------------------------------------- 
Makefile 
----------------------------------------- 
 
CXX = g++ 
CXXFLAGS = -Wall -g3 
 
OBJS = Crevasse.o CrevasseMap.o Grid.o 
 
INCLUDES = -I/scratch/slocal/usr/local/include  
 
all: crevasse 
 
crevasse: $(OBJS) 
 g++ -o $@ $(OBJS) 
 
.cpp.o: 
 $(CXX) $(CXXFLAGS) $(INCLUDES) -c $*.cpp -o $@ 
 
 
clean: 
 /bin/rm *.o 
 
 
 
 
----------------------------------------- 
Crevass.cpp 
----------------------------------------- 
 
#include "Grid.h" 
#include "CrevasseMap.h" 
 
using namespace crevasse; 
 
int main(int argc, const char *argv[]) { 
 if (argc < 2) { 
  // no filename, same message but abnormal termination 
  cerr << "Error: Missing input filename" << endl; 
  cerr << "Usage crevasse filename, optional parameters" << endl; 
  cerr << "Run crevasse -h to see options" << endl; 
  return 1; 
 } 
  
 string help = argv[1]; 
 // see if user typed -h or --help 
 if (help.find("-h") < help.npos ) { 
  cerr << "Usage is crevasse filename" << endl; 
  cerr << "Add \"parameter space value\" pairs to customize."<< endl; 
  cerr << "The following options are recognized..." << endl << endl; 
  cerr << "-o output base filename (extension will be added) " << endl; 
  cerr << "-n neighbors to keep a point, defaults to 2" << endl; 
  cerr << "-s size of clusters to keep, defaults to 80" << endl; 
  cerr << "-l minimum length of longest box axis, defaults to 0" << endl; 
  cerr << "-6point (no value for this parameter) overrides default " << endl; 
  cerr << "behavior and does not explore diagonals" << endl; 
  return 0; 
 } 
 
//  string filename = argv[1]; 
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// int neighbors = 2;  // set a default 
// if (argc > 2) { 
//  neighbors = atoi(argv[2]); 
// } 
  
 string filename; 
 string outfile; 
 bool haveOutfile = false; 
 unsigned int neighbors = 2; 
 unsigned int numToCrawl = 26; 
 float minLength = 0; 
 unsigned int clustSize = 80; 
 
 for (int i = 1; i < argc; i++) { 
  string theArg = argv[i]; 
  // read the size 
  if (theArg.find("-s") < theArg.npos) { 
   i++; 
   clustSize = atoi(argv[i]); 
   if (clustSize == 0) {  
    cerr << "Error: Couldn't read size argument" << endl; 
    return 1; 
   } 
  } else if (theArg.find("-n") < theArg.npos)  { 
   i++; 
   neighbors = atoi(argv[i]); 
   if (neighbors == 0) { 
    cerr << "Error: Couldn't read number of neighbors" << endl; 
    return 1; 
   } 
  } else if (theArg.find("-l") < theArg.npos)  { 
   i++; 
   minLength = atof(argv[i]); 
   if (minLength == 0) { 
    cerr << "Error: Couldn't read length of box axis" << endl; 
    return 1; 
   } 
  } else if (theArg.find("-o") < theArg.npos) { 
   i++; 
   outfile = argv[i]; 
   haveOutfile = true; 
  } else if (theArg.find("-6point") < theArg.npos) { 
   numToCrawl = 6; 
  } else { 
  // not a parameter so it's the required filename 
   filename = theArg; 
  } 
 } 
   
 if (haveOutfile == false) { 
  outfile = filename; 
 } 
  
 cout << "Running clustering on " << filename << endl; 
 cout << "Neighbors = " << neighbors << endl; 
 cout << "Cluster size = " << clustSize << endl; 
 cout << "Minimum length for longest box axis = " << minLength << endl; 
 cout << "Writing base file name " << outfile << endl << endl; 
 cout << "Crawling " << numToCrawl << " neighboring points" << endl; 
  
 Grid* ptrGrid = new Grid(neighbors); 
 try { 
  if (filename.find(".grd") < filename.npos) { 
   ptrGrid->readFadeGrid(filename); 
  } else { 
   ptrGrid->readFade(filename); 
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  } 
 } catch (std::exception) { 
  cerr << "Couldn't find or open input file " << filename << endl; 
  delete ptrGrid; 
  return 1; 
 } 
 cerr << "Read input file." << endl; 
  
 if (numToCrawl == 6) { 
  ptrGrid->cluster6(); 
 } else { 
  ptrGrid->cluster26(); 
 } 
 cerr << "Completed depth-first search." << endl; 
 CrevasseMap * ptrCrevasseMap = new CrevasseMap(clustSize); 
 ptrGrid->fillMap(*ptrCrevasseMap); 
 cerr << "Considering " << ptrCrevasseMap->getSize() << " points for clusters" << endl; 
 ptrCrevasseMap->siftPoints(); 
 ptrCrevasseMap->calcOOB(); 
 cerr << "Writing pdb file " << outfile << ".pdb" << endl; 
 ptrCrevasseMap->writePDB(outfile); 
 // ptrCrevasseMap->writeBoxes(outfile, minLength); 
 // ptrCrevasseMap->writeMap(outfile, ptrGrid->getSize(), 
  // ptrGrid->getCenter(), ptrGrid->getSpacing()); 
 ptrCrevasseMap->writeSummary(outfile, ptrGrid->getSize(), ptrGrid->getSpacing(), 
  filename, minLength, neighbors); 
 ptrCrevasseMap->writeXyzq (outfile); 
  
 delete ptrGrid; 
 delete ptrCrevasseMap; 
 cerr << "Finished, freeing memory " << endl << endl; 
 return 0; 
} 
 
 
 
 
----------------------------------------- 
Grid.h header file 
----------------------------------------- 
 
#ifndef GRID_H_ 
#define GRID_H_ 
#include <vector> 
#include <string> 
#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <sstream> 
#include <math.h> 
#include "CrevasseMap.h" 
 
 
using namespace std; 
namespace crevasse { 
  
// Small data class for gridpoints. 
 
class Gridpoint { 
public: 
 Gridpoint() { 
  hasData_ = 0; 
  flag_ = 0; 
  fade_ = 0; 
 } 
 Gridpoint(const float & inFade) { //!< construct with fade value 
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  fade_ = inFade; 
  hasData_ = 1; 
  flag_ = -1; 
 } 
 Gridpoint(const int & inFlag) { //!< construct with flag value 
  fade_ = 0; 
  hasData_ = 1; 
  flag_ = inFlag; 
 } 
    
 const int& hasData() const { return hasData_; }  //!< return hasData 
 const int& flag() const { return flag_; } //!< return flag 
 const float& fade() const { return fade_; } //!< return fade value 
 const void flag (const int& inFlag) { flag_ = inFlag; } //!<set flag 
 const void fade (const float & inFade) { //!< set fade value and update class 
  fade_ = inFade; 
  hasData_ = 1; 
  flag_ = -1; 
 } 
 virtual ~Gridpoint() {} 
private: 
 int hasData_; 
 int flag_; 
 float fade_; 
 
}; 
 
/* 
Grid class.  Knows how fill itself from files, search itself, and describe itself 
*/ 
 
class Grid 
{ 
public: 
 Grid (const int & neighbors); 
 const void readFade ( const string& filename ); 
 const void readFadeGrid ( const string& filename ); 
 const void readCrev ( const string& filename ); 
 const void cluster26(); 
 const void cluster6(); 
 const void search26(const int & i, const int & j, const int & k, const unsigned long & clust); 
 const void search6(const int & i, const int & j, const int & k, const unsigned long & clust); 
 const unsigned long entry(const int & i, const int & j, const int & k); 
 const void indx(const unsigned long & n, int &i, int &j, int &k); 
 const void fillMap (CrevasseMap & inMap); 
 // Accessors 
 const vector<float> & getCenter() const  { return myCenter; } 
 const vector<int> & getSize() const { return mySize; } 
 const float & getSpacing() const { return mySpacing; } 
 const Gridpoint & getPoint( const int & i, const int & j, const int & k) const { 
  return myData[i][j][k]; } 
 virtual ~Grid(); 
private: 
 Array3D<Gridpoint> myData; 
 vector<float> myCenter; 
 vector<int> mySize; 
 float mySpacing; 
 int myNeighbors;  //neighbors specified by the user + 1 
}; 
 
}; 
 
#endif /*GRID_H_*/ 
 
 
----------------------------------------- 
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Grid.cpp C file 
----------------------------------------- 
 
#include "Grid.h" 
 
namespace crevasse { 
 
Grid::Grid(const int & neighbors) { 
 myNeighbors = neighbors; 
} 
 
 
// read in a fade grid, .fad.grd 
const void Grid::readFadeGrid ( const string& filename ) { 
 ifstream inFile(filename.c_str()); 
 if (!inFile.is_open()) { 
  exception err; 
  throw err; 
  return; 
 } 
 float data; 
 string line; 
 long counter = 0; 
 int i, j, k; 
 while (!inFile.eof()) { 
  line.erase(); 
  getline(inFile,line); 
   
  // ignore blank lines and read the header 
  if (line.empty()) {continue;} 
  if (line.compare(0,1,"#")== 0) { // comment or header line 
    
//  Sample fade header 
//#  FADE output grid    1STC.fad.grd 
//# 
//#  Xsize = 80, Ysize = 80, Zsize = 96 
//#  center = (8.000000, 21.000000, 25.000000) 
//#  spacing = 1.000000 
//#       
   // handle the grid size field 
   if (line.find("Xsize") < line.npos) { 
    string temp; 
    int comma; 
    line.erase(0,3); 
    // find the first comma 
    for (int i=0; i<3; i++) { 
     comma = line.find_first_of(","); 
     temp = line.substr(8, (comma-8)); 
     mySize.push_back(atoi(temp.c_str())); 
     //now chop off to one past the comma 
     line.erase(0, comma+2); 
    } 
    //now set up the grid with the sizes we read in 
    myData = TNT::Array3D<Gridpoint>(mySize.at(0), mySize.at(1), mySize.at(2)); 
   } 
    
   // read in the centers 
   if (line.find("center") < line.npos) { 
    string temp; 
    int right_paren; 
    int comma; 
    line.erase(0,13); 
    // chop off the right parenthesis for safety 
    right_paren = line.find(")"); 
    line.erase(right_paren, (line.length()-right_paren) ); 
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    for (int i=0; i<3; i++) { 
     comma = line.find_first_of(","); 
     temp = line.substr(0, comma); 
     myCenter.push_back(atof(temp.c_str())); 
     //now chop off to one past the comma 
     line.erase(0, comma+2); 
    } 
   } 
   // get the grid spacing 
   if (line.find("spacing") < line.npos) { 
    line.erase(0,13); 
    mySpacing = (atof(line.c_str())); 
   } 
     
  continue; 
  } 
  // done reading header 
  istringstream input(line, istringstream::in); 
  input >> data; 
  if (data != 0) { 
   indx(counter, i, j, k); 
   // debug 
   //if (i > mySize[0]) {cerr << "Bad x index of " << i << endl; continue;} 
   //if (j > mySize[1]) {cerr << "Bad y index of " << j << endl; continue;} 
   //if (k > mySize[2]) {cerr << "Bad z index of " << k << endl; continue;} 
   myData[i][j][k] = Gridpoint(data); 
  } 
  counter++; 
 } 
 inFile.close(); 
} 
 
// read a .fad file 
 
const void Grid::readFade ( const string& filename ) { 
 ifstream inFile(filename.c_str()); 
 if (!inFile.is_open()) { 
  exception err; 
  throw err; 
  return; 
 } 
 string line; 
 int i, j, k; 
 float x, y, z, dist, ex; 
 while (!inFile.eof()) { 
  line.erase(); 
  getline(inFile,line); 
   
  // ignore blank lines and read the header 
  if (line.empty()) {continue;} 
  if (line.compare(0,1,"#")== 0) { // comment or header line 
    
//  Sample fade header 
//#  FADE output grid    1STC.fad.grd 
//# 
//#  Xsize = 80, Ysize = 80, Zsize = 96 
//#  center = (8.000000, 21.000000, 25.000000) 
//#  spacing = 1.000000 
//#       
   // handle the grid size field 
   if (line.find("Xsize") < line.npos) { 
    string temp; 
    int comma; 
    line.erase(0,3); 
    // find the first comma 
    for (int i=0; i<3; i++) { 
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     comma = line.find_first_of(","); 
     temp = line.substr(8, (comma-8)); 
     mySize.push_back(atoi(temp.c_str())); 
     //now chop off to one past the comma 
     line.erase(0, comma+2); 
    } 
    //now set up the grid with the sizes we read in 
    myData = TNT::Array3D<Gridpoint>(mySize.at(0), mySize.at(1), mySize.at(2)); 
   } 
    
   // read in the centers 
   if (line.find("center") < line.npos) { 
    string temp; 
    int right_paren; 
    int comma; 
    line.erase(0,13); 
    // chop off the right parenthesis for safety 
    right_paren = line.find(")"); 
    line.erase(right_paren, (line.length()-right_paren) ); 
     
    for (int i=0; i<3; i++) { 
     comma = line.find_first_of(","); 
     temp = line.substr(0, comma); 
     myCenter.push_back(atof(temp.c_str())); 
     //now chop off to one past the comma 
     line.erase(0, comma+2); 
    } 
   } 
   // get the grid spacing 
   if (line.find("spacing") < line.npos) { 
    line.erase(0,13); 
    mySpacing = (atof(line.c_str())); 
   } 
     
  continue; 
  } 
  // done reading header 
  istringstream input(line, istringstream::in); 
  input >> x >> y >> z >> dist >> ex; 
 
  i = (int)(((x - myCenter[0])/mySpacing) + mySize[0]/2); 
  j = (int)(((y - myCenter[1])/mySpacing) + mySize[1]/2); 
  k = (int)(((z - myCenter[2])/mySpacing) + mySize[2]/2);  
  // debug 
  if (i > mySize[0]) {cerr << "Bad x index of " << i << endl; continue;} 
  if (j > mySize[1]) {cerr << "Bad y index of " << j << endl; continue;} 
  if (k > mySize[2]) {cerr << "Bad z index of " << k << endl; continue;} 
  myData[i][j][k] = Gridpoint(ex); 
 } 
 inFile.close(); 
} 
 
// read a file from this software back in 
const void Grid::readCrev ( const string& filename ) { 
 ifstream inFile(filename.c_str()); 
 if (!inFile.is_open()) { 
  exception err; 
  throw err; 
  return; 
 } 
 string line; 
 int i, j, k; 
 float x, y, z; 
 int flag; 
 while (!inFile.eof()) { 
  line.erase(); 
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  getline(inFile,line); 
   
  // ignore blank lines and read the header 
  if (line.empty()) {continue;} 
  if (line.compare(0,1,"#")== 0) { // comment or header line 
    
//  Sample fade header 
//#  FADE output grid    1STC.fad.grd 
//# 
//#  Xsize = 80, Ysize = 80, Zsize = 96 
//#  center = (8.000000, 21.000000, 25.000000) 
//#  spacing = 1.000000 
//#       
   // handle the grid size field 
   if (line.find("Xsize") < line.npos) { 
    string temp; 
    int comma; 
    line.erase(0,3); 
    // find the first comma 
    for (int i=0; i<3; i++) { 
     comma = line.find_first_of(","); 
     temp = line.substr(8, (comma-8)); 
     mySize.push_back(atoi(temp.c_str())); 
     //now chop off to one past the comma 
     line.erase(0, comma+2); 
    } 
    //now set up the grid with the sizes we read in 
    myData = TNT::Array3D<Gridpoint>(mySize.at(0), mySize.at(1), mySize.at(2)); 
   } 
    
   // read in the centers 
   if (line.find("center") < line.npos) { 
    string temp; 
    int right_paren; 
    int comma; 
    line.erase(0,13); 
    // chop off the right parenthesis for safety 
    right_paren = line.find(")"); 
    line.erase(right_paren, (line.length()-right_paren) ); 
     
    for (int i=0; i<3; i++) { 
     comma = line.find_first_of(","); 
     temp = line.substr(0, comma); 
     myCenter.push_back(atof(temp.c_str())); 
     //now chop off to one past the comma 
     line.erase(0, comma+2); 
    } 
   } 
   // get the grid spacing 
   if (line.find("spacing") < line.npos) { 
    line.erase(0,13); 
    mySpacing = (atof(line.c_str())); 
   } 
     
  continue; 
  } 
  // done reading header 
  istringstream input(line, istringstream::in); 
  input >> x >> y >> z >> flag; 
 
  i = (int)(((x - myCenter[0])/mySpacing) + mySize[0]/2); 
  j = (int)(((y - myCenter[1])/mySpacing) + mySize[1]/2); 
  k = (int)(((z - myCenter[2])/mySpacing) + mySize[2]/2);  
  // debug 
  if (i > mySize[0]) {cerr << "Bad x index of " << i << endl; continue;} 
  if (j > mySize[1]) {cerr << "Bad y index of " << j << endl; continue;} 
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  if (k > mySize[2]) {cerr << "Bad z index of " << k << endl; continue;} 
  myData[i][j][k] = Gridpoint(flag); 
 } 
 inFile.close(); 
} 
 
 
const void Grid::cluster26() { 
 int i, j, k; 
 long clust; 
 clust = 1; 
 for (i=0; i<mySize[0]; i++) { 
  for (j=0; j<mySize[1]; j++) { 
   for (k=0; k<mySize[2]; k++){ 
    search26 (i,j,k,clust); 
    clust++; 
   } 
  } 
 } 
} 
 
// cluster on six points, rather than 26 
 
const void Grid::cluster6() { 
 int i, j, k; 
 long clust; 
 clust = 1; 
 for (i=0; i<mySize[0]; i++) { 
  for (j=0; j<mySize[1]; j++) { 
   for (k=0; k<mySize[2]; k++){ 
    search6 (i,j,k,clust); 
    clust++; 
   } 
  } 
 } 
} 
 
// this routine searches all 26 neighbors 
 
const void Grid::search26(const int & i, const int & j, const int & k, const unsigned long & clust) {  
 Gridpoint aPoint, anotherPoint; 
 aPoint = myData[i][j][k]; 
 // zero flag = empty, positive flag = searched 
 // we only want to search points with flags of -1 
 if (aPoint.flag() >= 0) {return;} // empty or already searched 
  
 int x,y,z; // indexes for moving around the point of interest 
 // we always count the search point, so start at -1 to give a zero result  
 // if there are no neighbors 
 int sumData = -1; 
  
 // check to see whether we're in a cluster and have any neighbors 
 for (x = (i-1); x < (i+2); x++) { 
  if (x < 0) {continue;} 
  if (x >= mySize[0]) {continue;} 
  for (y = (j-1); y < (j+2); y++) { 
   if (y < 0) {continue;} 
   if (y >= mySize[1]) {continue;} 
   for (z = (k-1); z < (k+2); z++) { 
    if (z < 0) {continue;} 
    if (z >= mySize[2]) {continue;} 
    anotherPoint = myData[x][y][z]; 
    sumData += anotherPoint.hasData(); 
   } 
  } 
 } 
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 // check neighbors and set the flag before moving on - this is key! 
  
// if (sumData < myNeighbors) { 
//  aPoint.flag(0); 
//  myData[i][j][k] = aPoint; 
//  return; 
// } else { 
//  aPoint.flag(clust); 
//  myData[i][j][k] = aPoint; 
// } 
 
 // EET 21Dec06 Changed to add "hair" when neighbors is high 
  
 if (sumData == 0) { 
  // point has no connectivity and is a total dud 
  aPoint.flag(0); 
  myData[i][j][k] = aPoint; 
  return; 
 } 
 if (sumData < myNeighbors) { 
  // point has connectivity.  Add to cluster but do not explore. 
  aPoint.flag(clust); 
  myData[i][j][k] = aPoint; 
  return; 
 } 
 // point has threshold connectivity.  Explore. 
 aPoint.flag(clust); 
 myData[i][j][k] = aPoint; 
 
  
 // search neighbors recursively 
 for (x = (i-1); x < (i+2); x++) { 
  if (x < 0) {continue;} 
  if (x >= mySize[0]) {continue;} 
  for (y = (j-1); y < (j+2); y++) { 
   if (y < 0) {continue;} 
   if (y >= mySize[1]) {continue;} 
   for (z = (k-1); z < (k+2); z++) { 
    if (z < 0) {continue;} 
    if (z >= mySize[2]) {continue;} 
    // recursive call 
    search26(x,y,z,clust); 
   } 
  } 
 } 
} 
 
// search only nearest six neighbors 
// add fuzz by including all connected points in the cluster 
 
const void Grid::search6(const int & i, const int & j, const int & k, const unsigned long & clust) {  
 Gridpoint aPoint, anotherPoint; 
 aPoint = myData[i][j][k]; 
 int x = i;  
 int y = j;  
 int z = k; 
 int sumData = 0; 
 // zero flag = empty, positive flag = searched 
 // we only want to search points with flags of -1 
 if (aPoint.flag() >= 0) {return;} // empty or already searched 
  
 // check to see whether we're in a cluster and have any neighbors 
 // I can't think of a nice way to do this with loops so it's written out 
 --x; 
 if ( x >= 0) { 
  anotherPoint = myData[x][y][z]; 
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  sumData += anotherPoint.hasData();  
 } 
 x+=2; 
 if (x < mySize[0]) { 
  anotherPoint = myData[x][y][z]; 
  sumData += anotherPoint.hasData();  
 } 
 x=i; 
 --y; 
 if (y >=0) { 
  anotherPoint = myData[x][y][z]; 
  sumData += anotherPoint.hasData();  
 } 
 y+=2; 
 if (y < mySize[1]) { 
  anotherPoint = myData[x][y][z]; 
  sumData += anotherPoint.hasData();  
 } 
 y=j; 
 --z; 
 if (z >=0) { 
  anotherPoint = myData[x][y][z]; 
  sumData += anotherPoint.hasData();  
 } 
 z+=2; 
 if (z < mySize[2]) { 
  anotherPoint = myData[x][y][z]; 
  sumData += anotherPoint.hasData();  
 } 
 z=k; 
  
 // check neighbors and set the flag before moving on - this is key! 
 if (sumData == 0) { 
  // point has no connectivity and is a total dud 
  aPoint.flag(0); 
  myData[i][j][k] = aPoint; 
  return; 
 } 
 if (sumData < myNeighbors) { 
  // point has connectivity.  Add to cluster but do not explore. 
  aPoint.flag(clust); 
  myData[i][j][k] = aPoint; 
  return; 
 } 
 // point has threshold connectivity.  Explore. 
 aPoint.flag(clust); 
 myData[i][j][k] = aPoint; 
  
 // search neighbors recursively 
 --x; 
 if ( x >= 0) { 
  search6(x,y,z,clust); 
 } 
 x+=2; 
 if (x <= mySize[0]) { 
  search6(x,y,z,clust); 
 } 
 x=i; 
 --y; 
 if (y >=0) { 
  search6(x,y,z,clust); 
 } 
 y+=2; 
 if (y <= mySize[1]) { 
  search6(x,y,z,clust);  
 } 
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 y=j; 
 --z; 
 if (z >=0) { 
  search6(x,y,z,clust);  
 } 
 z+=2; 
 if (z <= mySize[2]) { 
  search6(x,y,z,clust);  
 } 
 z=k; 
} 
 
 
const void Grid::fillMap (CrevasseMap & inMap) { 
 int i, j, k; 
 float x, y, z; 
 Gridpoint aPoint; 
 for (i=0; i<mySize[0]; i++) { 
  for (j=0; j<mySize[1]; j++) { 
   for (k=0; k<mySize[2]; k++){ 
    aPoint = myData[i][j][k]; 
    if (aPoint.flag() > 0) { 
    // calculate coordinates 
    // important:  Fade flips the signs of the grid center when it 
    // writes the grid file header ADD rather than SUBTRACT the offsets 
     x = mySpacing*((float) (i - mySize[0]/2)) + (float) myCenter[0]; 
     y = mySpacing*((float) (j - mySize[1]/2)) + (float) myCenter[1]; 
     z = mySpacing*((float) (k - mySize[2]/2)) + (float) myCenter[2]; 
     inMap.addPoint(aPoint.flag(), x, y, z, aPoint.fade()); 
    } 
   } 
  } 
 } 
} 
 
 
/* ------------------------------------------------------- 
* Subroutine entry                       
* 3D index to 1D index                  
* Author: Julie C. Mitchell, mitchell@sdsc.edu            
* Last revision: 10-24-06     
*     
* Notes:        
* ------------------------------------------------------- */ 
 
const unsigned long Grid::entry(const int & i, const int & j, const int & k) {  
 long longIndex; 
 longIndex = (long) (mySize[2])*mySize[1]*i + (mySize[2])*j + k; 
return longIndex; 
} 
 
/* -------------------------------------------------------  
* Subroutine indx                    
* 1D index to 3D index   
* Author: Julie C. Mitchell, mitchell@sdsc.edu 
* Revised: Elaine E. Thompson, eethomp@sdsc.edu            
* Last revision: 10-24-06 
*     
* ------------------------------------------------------- */ 
 
const void Grid::indx(const unsigned long & n, int &i, int &j, int &k){ 
 
 float  a, b, c; 
 float  temp1,temp2; 
  
 temp1  = (float) floor((float) (n / (mySize[2]))); 
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 c   = (float) n - (float) (mySize[2])*temp1; 
 
 temp2  = (float) floor(temp1 / (float) mySize[1]); 
 b   = temp1 - (float) (mySize[1])*temp2; 
  
 a   = (n - b * (float) (mySize[2]) - c) / (float) mySize[1] / (float) (mySize[2]); 
 
//changed to floorf and added explicit casts 
 i = (int)floorf(a);  
 j = (int)floorf(b);  
 k = (int)floorf(c); 
  
return; 
} 
 
Grid::~Grid() 
{ 
} 
 
} 
 
 
----------------------------------------- 
CrevasseMap.h header file 
----------------------------------------- 
 
#ifndef CREVASSEMAP_H_ 
#define CREVASSEMAP_H_ 
#include <vector> 
#include <map> 
#include <iostream> 
#include <fstream> 
#include <tnt/tnt.h> 
#include <tnt/jama_eig.h> 
 
using namespace std; 
using namespace TNT; 
namespace crevasse { 
 
class Point { 
public: 
 Point() {} 
 //! constructor: from components 
    Point( const float& x, const float& y, const float& z, const float& fade ) : x_(x), y_(y), z_(z), fade_(fade) {} 
    const float& x() const { return x_; }  //!< return x component 
    const float& y() const { return y_; }  //!< return y component 
    const float& z() const { return z_; }  //!< return z component 
    const float& fade() const {return fade_; } //!< return fade score 
    const void x(const float& x) { x_ = x; } 
    const void y(const float& y) { y_ = y; } 
    const void z(const float& z) { z_ = z; } 
    const void fade(const float& fade) { fade_ = fade; } 
    const void xyz (const float& x, const float& y, const float& z, const float& fade) { 
     x_ = x; 
     y_ = y; 
     z_ = z; 
     fade_ = fade; 
    } 
  virtual ~Point() {} 
private: 
 float x_; 
 float y_; 
 float z_; 
 float fade_; 
}; 
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class OOB { 
public: 
 OOB() { 
  // set the size of the arrays upon instantiating the class 
  covar = TNT::Array2D<double>(3,3,0.0); 
  eVec = TNT::Array2D<double>(3,3,0.0); 
  // eVal = TNT::Array1D<double>(3,0.0); 
  means = TNT::Array1D<double>(3,0.0); 
  extents = TNT::Array1D<double>(3,0.0); 
  corners = TNT::Array2D<float>(8,3,0.0); 
  volume = 0; 
 } 
 TNT::Array2D<double> covar; 
 TNT::Array2D<double> eVec; 
 // TNT::Array1D<double> eVal; 
 TNT::Array1D<double> means; 
 TNT::Array1D<double> extents; 
 TNT::Array2D<float> corners; 
 float volume; 
 virtual ~OOB() {} 
}; 
 
 
class CrevasseMap { 
public: 
 CrevasseMap(unsigned int & clusterSize) { myClusterSize = clusterSize; } 
 const void addPoint(const unsigned long& index, const Point & inPoint); 
 const void addPoint(const unsigned long& index, const float& x, const float& y,  
  const float& z, const float& fade); 
 const void calcOOB(); 
 const void siftPoints(); 
 const void writePDB(const string& filename); 
 const void writeBoxes(const string & filename, const float & minLength); 
 const void writeMap(const string& filename, const vector<int> & gridSize,  
  const vector<float>& gridCenter, const float& gridSpacing, const float & minLength); 
 const void writeSummary(const string& filename, const vector<int> & gridSize,  
  const float& gridSpacing, const string & fadeFile, const float & minLength, const int & neighbors); 
 const void writeXyzq(const string& filename); 
 const int getSize() const {return myCrevasses.size();} 
 virtual ~CrevasseMap() {} 
  
private: 
 multimap<const unsigned long, Point> myCrevasses; 
 vector<OOB> myBoxes; 
 unsigned int myClusterSize; 
}; 
 
}; 
 
#endif /*CREVASSEMAP_H_*/ 
----------------------------------------- 
CrevasseMap.cpp source code 
----------------------------------------- 
 
#include "CrevasseMap.h" 
 
/* 
 * From: http://www.gamedev.net/community/forums/topic.asp?topic_id=328157 
 * Scale an OOB by finding the extremes in the new basis formed by the 
 * orthogonal eigenvectors 
box.extents.Zero(); 
for (int i = 0; i < points.size(); ++i) 
{ 
    Vector3 diff = points[i] - box.center; 
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    for (int j = 0; j < 3; ++j) 
    { 
        float dot = fabs(diff.Dot(box.axis[j])); 
        if (dot > box.extents[j]) 
            box.extents[j] = dot; 
    } 
} 
*/ 
 
/* 
 * http://www.gamedev.net/community/forums/topic.asp?topic_id=290417 
 * C is the box center, A[] are the axes, and E[] are the extents. 
corner[0] = C + E[0] * A[0] + E[1] * A[1] + E[2] * A[2]; 
corner[1] = C - E[0] * A[0] + E[1] * A[1] + E[2] * A[2]; 
corner[2] = C + E[0] * A[0] - E[1] * A[1] + E[2] * A[2]; 
corner[3] = C + E[0] * A[0] + E[1] * A[1] - E[2] * A[2]; 
corner[4] = C - E[0] * A[0] - E[1] * A[1] - E[2] * A[2]; 
corner[5] = C + E[0] * A[0] - E[1] * A[1] - E[2] * A[2]; 
corner[6] = C - E[0] * A[0] + E[1] * A[1] - E[2] * A[2]; 
corner[7] = C - E[0] * A[0] - E[1] * A[1] + E[2] * A[2]; 
 
where p[][] are the vertices. 
p[0][0] = ev[0][0]*hl[0] + ev[1][0]*hl[1] + ev[2][0]*hl[2] + c[0]; 
p[0][1] = ev[0][1]*hl[0] + ev[1][1]*hl[1] + ev[2][1]*hl[2] + c[1]; 
p[0][2] = ev[0][2]*hl[0] + ev[1][2]*hl[1] + ev[2][2]*hl[2] + c[2]; 
 
*/ 
 
 
 
namespace crevasse { 
  
const void CrevasseMap::addPoint(const unsigned long& index, const Point & inPoint) { 
 myCrevasses.insert(pair<const int, Point>(index, inPoint)); 
} 
 
const void CrevasseMap::addPoint(const unsigned long& index, const float& x,  
 const float& y, const float& z, const float& fade) { 
 Point aPoint(x, y, z, fade); 
 myCrevasses.insert(pair<const int, Point>(index, aPoint)); 
} 
 
const void CrevasseMap::siftPoints() { 
 // see whether this is a waste of time 
 if (myCrevasses.size() < myClusterSize) { 
  cerr << "Not enough points to consider.  No clusters in this protein." << endl; 
  myCrevasses.clear(); 
  return; 
 } 
 // OK, we may have a crevasse so sort the points and organize 
 // keys in multimaps are always const so have to copy from one map to another 
  
 multimap<const unsigned long, Point> tempMap; // new list of good points 
    multimap<const unsigned long, Point>::const_iterator lower; 
    multimap<const unsigned long, Point>::const_iterator upper; 
  
  
 // get the first key 
 lower = myCrevasses.begin(); 
 long currKey = lower->first; 
 long counter = 1; 
  
 do { 
  lower = myCrevasses.lower_bound(currKey); 
        upper = myCrevasses.upper_bound(currKey); 
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  // check to see if there's enough and copy 
  if (myCrevasses.count(currKey) >= myClusterSize) { 
      while (lower != upper) { 
          tempMap.insert(pair<const unsigned long, Point>(counter, lower->second)); 
          lower++; 
      } 
      counter++; 
  }       
 
  // now get the next key if we're not at the end of the map; 
  if (upper != myCrevasses.end()) { 
   currKey = upper->first; 
  } 
 } while (upper != myCrevasses.end()); 
  
 // replace the old map with the new, smaller one 
 cerr << "Finished sifting. Keeping " << counter-1 << " clusters." << endl; 
 myCrevasses = tempMap; 
} 
 
 
const void CrevasseMap::calcOOB() { 
  
 // make sure we have at least one data set to work on 
 if (myCrevasses.size() == 0 ) { 
  return; 
 } 
  
    multimap<const unsigned long, Point>::const_iterator lower; 
    multimap<const unsigned long, Point>::const_iterator upper; 
 Point aPoint; 
 // set the first key 
 long currKey = 1; 
  
 do { 
  OOB anOOB;   
  lower = myCrevasses.lower_bound(currKey); 
        upper = myCrevasses.upper_bound(currKey); 
        int nSize = myCrevasses.count(currKey); 
        int i, j; 
        // array of points 
        Array2D<double> myData(nSize, 3); 
        Array2D<double> myTranspose(3, nSize); 
         
        // fill the array with the raw point data 
        int counter = 0; 
        while (lower != upper) { 
         aPoint = lower->second; 
         // copy the data into a TNT array 
         myData[counter][0] = aPoint.x(); 
         myData[counter][1] = aPoint.y(); 
         myData[counter][2] = aPoint.z(); 
          
         // accumulate totals for means 
         anOOB.means[0] += aPoint.x(); 
         anOOB.means[1] += aPoint.y(); 
         anOOB.means[2] += aPoint.z(); 
         lower++; 
         counter++; 
        } 
        // calculate the means 
        anOOB.means[0] /= nSize; 
        anOOB.means[1] /= nSize; 
        anOOB.means[2] /= nSize; 
                 
        // subtract means from the point data 
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        for (i = 0; i < nSize; ++i) { 
         for (j = 0; j < 3; ++j) { 
          myData[i][j] -= anOOB.means[j]; 
         } 
        } 
        // transpose the points 
        for (i = 0; i < nSize; ++i) { 
         for (j = 0; j < 3; ++j) { 
          myTranspose[j][i] = myData[i][j]; 
         } 
        } 
        // calculate the covariance matrix, eigenvectors 
        anOOB.covar = matmult(myTranspose, myData); 
        JAMA::Eigenvalue<double> ev(anOOB.covar); 
  // ev.getRealEigenvalues(anOOB.eVal); 
  ev.getV(anOOB.eVec); 
 
  // normalize the eigenvectors, remembering that they're in the COLUMNS 
  // EET TODO Jama seems to normalize the eigenvectors in its output so  
  // this step may be unnecessary.  BUT, if the vectors are ever not 
  // normalized, the entire calculation breaks badly. 
   
  for (i = 0; i < 3; ++i) { 
   double dist = 0; 
   dist += (anOOB.eVec[0][i] * anOOB.eVec[0][i]); 
   dist += (anOOB.eVec[1][i] * anOOB.eVec[1][i]); 
   dist += (anOOB.eVec[2][i] * anOOB.eVec[2][i]); 
   dist = sqrt(dist); 
   anOOB.eVec[0][i] /= dist; 
   anOOB.eVec[1][i] /= dist; 
   anOOB.eVec[2][i] /= dist; 
  } 
   
  // find the extents of the box  
  for (i = 0; i < nSize; ++i) { 
      for (j = 0; j < 3; ++j) { 
       // check the dot product of the data minus means 
       // against each axis in turn 
          double dot = 0; 
          dot += (myData[i][0] * anOOB.eVec[0][j]); 
          dot += (myData[i][1] * anOOB.eVec[1][j]); 
          dot += (myData[i][2] * anOOB.eVec[2][j]); 
          dot = abs(dot); 
          if (dot > anOOB.extents[j]) { 
              anOOB.extents[j] = dot; 
          } 
      } 
  } 
  // calculate the box volume as it may come in handy 
  anOOB.volume = (float)((anOOB.extents[0]*2) * (anOOB.extents[1]*2) *  
        (anOOB.extents[2]*2)); 
   
  // calculate the eight box corners 
  // calculate the extents * axes and put in TNT structures 
  TNT::Array1D<double> xLength(3); 
  TNT::Array1D<double> yLength(3); 
  TNT::Array1D<double> zLength(3); 
  TNT::Array1D<double> corner(3); 
   
  for (i=0; i<3; ++i) { 
   xLength[i] = anOOB.eVec[i][0] * anOOB.extents[0]; 
   yLength[i] = anOOB.eVec[i][1] * anOOB.extents[1]; 
   zLength[i] = anOOB.eVec[i][2] * anOOB.extents[2]; 
  } 
 
  // corners are in the order specified by SLIDE 
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  corner = anOOB.means - xLength - yLength - zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[0][i] = corner[i]; 
  } 
  corner = anOOB.means + xLength - yLength - zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[1][i] = corner[i]; 
  } 
  corner = anOOB.means - xLength + yLength - zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[2][i] = corner[i]; 
  } 
  corner = anOOB.means + xLength + yLength - zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[3][i] = corner[i]; 
  } 
  corner = anOOB.means - xLength - yLength + zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[4][i] = corner[i]; 
  } 
  corner = anOOB.means + xLength - yLength + zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[5][i] = corner[i]; 
  } 
  corner = anOOB.means - xLength + yLength + zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[6][i] = corner[i]; 
  } 
  corner = anOOB.means + xLength + yLength + zLength; 
  for (i=0; i<3; ++i) { 
   anOOB.corners[7][i] = corner[i]; 
  } 
 
        // store the info and move on 
        myBoxes.push_back(anOOB); 
  currKey++; 
   
 } while (upper != myCrevasses.end()); 
 // OK. Now we've calculated and stored the eigenvalues and vectors 
  
} 
 
 
/* --------------------------------------------------------- 
* Subroutine writeBoxes             
* Write coordinates, distances and exponents            
* Author: Elaine Thompson, eethomp@sdsc.edu            
* Last revision: 6Jun07 
*     
* ------------------------------------------------------- */ 
 
 
const void CrevasseMap::writeBoxes(const string & filename, const float & minLength) { 
 int counter = 1; 
 OOB anOOB; 
 vector<OOB>::const_iterator iter; 
 for (iter = myBoxes.begin(); iter!= myBoxes.end(); iter++) { 
  anOOB = *iter; 
   
  // find the longest edge 
  double maxExtent = 0; 
  for (int i = 0; i < 3; ++i) { 
   if (maxExtent < anOOB.extents[i]*2) { 
    maxExtent = (float) anOOB.extents[i]*2; 
   } 
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  } 
  if (maxExtent < minLength) { 
   ++counter; 
   continue;} 
   
  // jump through hoops to convert the counter int to a string 
  ostringstream stream; 
     stream << counter; 
      
     // make the filename with an increment since we're writing more than one 
  string nameXYZ = filename + stream.str(); 
  nameXYZ += ".xyz"; 
  ofstream outFile(nameXYZ.c_str()); 
  for (int i = 0; i < 8; ++i) { 
   outFile << anOOB.corners[i][0] << " " << anOOB.corners[i][1] << " "; 
   outFile << anOOB.corners[i][2] << endl; 
    
  } 
  outFile.close(); 
  ++counter; 
 } 
} 
 
 
 
/* --------------------------------------------------------- 
* Subroutine writePDB             
* Write coordinates and boxes as S atoms            
* Author: Elaine Thompson, eethomp@sdsc.edu            
* Last revision: 13Nov06 
*     
* Notes: Legacy C code mixed in 
* ------------------------------------------------------- */ 
 
const void CrevasseMap::writePDB(const string& filename) { 
    int counter; 
 string type = "H"; 
 FILE *outPDB; 
    multimap<const unsigned long, Point>::const_iterator lower; 
    multimap<const unsigned long, Point>::const_iterator upper; 
    unsigned long currKey = 1; 
    Point aPoint; 
 OOB anOOB; 
 /* name and open output files */ 
 string namePDB = filename + ".pdb"; 
 outPDB = fopen(namePDB.c_str(), "w"); 
 
 /* print header */ 
 fprintf(outPDB,"REMARK  CREVASSE output file    %s\nREMARK\n",namePDB.c_str()); 
 // make sure we have some data before entering the loop 
 if (myCrevasses.size() == 0) { 
  fclose(outPDB); 
  return; 
 } 
   
 /* return points */ 
    counter = 0; 
 do { 
  OOB anOOB;   
  lower = myCrevasses.lower_bound(currKey); 
        upper = myCrevasses.upper_bound(currKey); 
        // loop through the points in this crevasse 
        while (lower !=upper) { 
   aPoint = lower->second; 
  // write pdb 
   fprintf(outPDB, 
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    "ATOM  %5.0f  %s%02d UNK  %4d    %8.3f%8.3f%8.3f  %3.2f %5.2f\n", 
    (float) counter+1, type.c_str(), counter%100, (int)currKey,  
    aPoint.x(), aPoint.y(), aPoint.z(), 1.0, 10.0);   
   ++counter; 
   lower++; 
   // print out corners as sulfurs 
   // one box to a cluster so this should be safe 
   // debug 
        } 
        // write the bounding box 
//   debug 
//  if ((currKey-1) >= myBoxes.size()) { 
//   cerr << "Trying to overrun vector of boxes; bailing out on pdb file print" << endl; 
//   fclose(outPDB); 
//   return; 
//  } 
   
  anOOB = myBoxes[currKey - 1]; 
  fprintf(outPDB, "REMARK box number %4d volume is %8.3f\n", (int)currKey, anOOB.volume); 
  fprintf(outPDB,"REMARK EXTENTS: %7.2f %7.2f %7.2f\n", 
   anOOB.extents[0]*2, anOOB.extents[1]*2, anOOB.extents[2]*2); 
   
// Uncomment this block to write corners as sulfur atoms  
//  for (int i = 0; i < 8; ++i) { 
//   fprintf(outPDB, 
//    "ATOM  %5.0f  S%02d UNK  %4d    %8.3f%8.3f%8.3f  %3.2f %5.2f\n", 
//    (float) counter+1, i, (int)currKey, anOOB.corners[i][0],  
//    anOOB.corners[i][1], anOOB.corners[i][2], 1.0, 10.0); 
//   ++counter;   
//  } 
  currKey++; 
 } while (upper != myCrevasses.end()); 
  
 /* close file */ 
 fclose(outPDB); 
 return; 
} 
 
/* --------------------------------------------------------- 
* Subroutine writeMap        
* Write coordinates in grid format         
* Author: Elaine Thompson, eethomp@sdsc.edu            
* Last revision: 3Apr07 
* ------------------------------------------------------- */ 
 
 
//  Sample fade header 
//#  Xsize = 80, Ysize = 80, Zsize = 96 
//#  center = (8.000000, 21.000000, 25.000000) 
//#  spacing = 1.000000 
//#       
 
const void CrevasseMap::writeMap(const string& filename,  
 const vector<int> & gridSize, const vector<float>& gridCenter,  
 const float& gridSpacing, const float & minLength) { 
    multimap<const unsigned long, Point>::const_iterator lower; 
    multimap<const unsigned long, Point>::const_iterator upper; 
    unsigned long currKey = 1; 
    Point aPoint; 
    int counter = 0; 
  
 /* name and open output files */ 
 string crevFile = filename + ".map"; 
 ofstream outFile(crevFile.c_str()); 
 string summaryFileName = filename + ".sum"; 
 ofstream summaryFile(summaryFileName.c_str()); 
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 /* print header */ 
 outFile << "#  CREVASSE output file " << crevFile << endl; 
 outFile << "#  Xsize = " << gridSize.at(0) << 
   ", Ysize = " << gridSize.at(1) << 
   ", Zsize = " << gridSize.at(2) << endl; 
 outFile << "#  center = (" << gridCenter.at(0) << ", " <<  
   gridCenter.at(1) << ", " << gridCenter.at(2) << ")" << endl; 
 outFile << "#  spacing = " << gridSpacing << endl; 
  
 summaryFile << "#  CREVASSE summary file " << summaryFileName << endl; 
 summaryFile << "# Cluster size threshold: " << myClusterSize << endl; 
 summaryFile << "# Wrote boxes with minimum length " << minLength << endl; 
 summaryFile << "# crevasseID points volume boxVolume sizeX sizeY sizeZ" << endl; 
  
 // make sure we have some data before entering the loop 
 if (myCrevasses.size() == 0) { 
  outFile.close(); 
  summaryFile.close(); 
  return; 
 } 
 //find the volume of a gridpoint - hack to avoid fiddly pow funcion  
 // and math libraries 
 // EET 21May07  This calculation is totally bogus! 
 float volume = gridSpacing * gridSpacing * gridSpacing; 
 /* return points */ 
 do {  
  counter = 0; 
  lower = myCrevasses.lower_bound(currKey); 
        upper = myCrevasses.upper_bound(currKey); 
        // loop through the points in this crevasse 
        while (lower !=upper) { 
   aPoint = lower->second; 
  // write xyz file 
   outFile << aPoint.x() << " " <<  aPoint.y() << " " <<   
     aPoint.z() << " " << (int)currKey << endl; 
   lower++; 
   ++counter; 
        } 
        // write summary file 
        // EET 21May07 Needed more info in summary 
        OOB anOOB = myBoxes[currKey - 1]; 
        summaryFile << currKey << " " << counter << " " << counter * volume << " "; 
        summaryFile << anOOB.volume << " " << anOOB.extents[0]*2 << " "; 
        summaryFile << anOOB.extents[1]*2 << " " << anOOB.extents[2]*2 << endl; 
  ++currKey; 
 } while (upper != myCrevasses.end()); 
  
 /* close file */ 
 outFile.close(); 
 summaryFile.close(); 
 return; 
} 
 
 
/* --------------------------------------------------------- 
* Subroutine writeSummary      
* Write a summary of the boxes we found      
* Author: Elaine Thompson, eethomp@sdsc.edu            
* Last revision: 3Apr07 
* ------------------------------------------------------- */ 
 
const void CrevasseMap::writeSummary(const string& filename, const vector<int> & gridSize, 
 const float& gridSpacing, const string & fadeFile, const float & minLength, const int & neighbors) { 
    multimap<const unsigned long, Point>::const_iterator lower; 
    multimap<const unsigned long, Point>::const_iterator upper; 
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    unsigned long currKey = 1; 
    Point aPoint; 
    int counter = 0; 
  
 /* name and open output files */ 
 string summaryFileName = filename + ".sum"; 
 ofstream summaryFile(summaryFileName.c_str()); 
  
 /* print header */ 
 summaryFile << "CREVASSE summary file " << summaryFileName << endl; 
 summaryFile << "Ran clustering on " << fadeFile << endl; 
 summaryFile << "Neighbors = " << neighbors << endl; 
 summaryFile << "Cluster size = " << myClusterSize << endl; 
 summaryFile << "Minimum length for longest box axis = " << minLength << endl; 
 summaryFile << "Grid info: Xsize = " << gridSize.at(0) << 
   ", Ysize = " << gridSize.at(1) << 
   ", Zsize = " << gridSize.at(2) << 
   ", spacing = " << gridSpacing << endl; 
 summaryFile << "Wrote boxes to base file name " << filename << endl; 
 summaryFile << "crevasseID points volume boxVolume sizeX sizeY sizeZ centerX centerY centerZ" << endl; 
  
 // make sure we have some data before entering the loop 
 if (myCrevasses.size() == 0) { 
  summaryFile << "Found no crevasses large enough " << endl; 
  summaryFile.close(); 
  return; 
 } 
 //find the volume of a gridpoint - hack to avoid fiddly pow funcion  
 // and math libraries 
 // EET 21May07  This calculation is totally bogus, because crevasses are hollow 
 // still writing because it will break scripts that run over this file 
 float volume = gridSpacing * gridSpacing * gridSpacing; 
  
 // count points in each crevasse 
 do {  
  counter = 0; 
  lower = myCrevasses.lower_bound(currKey); 
        upper = myCrevasses.upper_bound(currKey); 
        // loop through the points in this crevasse 
        while (lower !=upper) { 
   aPoint = lower->second; 
   lower++; 
   ++counter; 
        } 
        // EET write box info summary 
        OOB anOOB = myBoxes[currKey - 1]; 
        summaryFile << currKey << " " << counter << " " << counter * volume << " "; 
        summaryFile << anOOB.volume << " " << anOOB.extents[0]*2 << " "; 
        summaryFile << anOOB.extents[1]*2 << " " << anOOB.extents[2]*2 << " "; 
        // EET 24Jan08 add COM to output 
  summaryFile << anOOB.means[0] << " " << anOOB.means[1] << " " << anOOB.means[2] << endl;  
  ++currKey; 
 } while (upper != myCrevasses.end()); 
  
 // close file 
 summaryFile.close(); 
 return; 
} 
 
/* --------------------------------------------------------- 
* Subroutine writeXyzq        
* Write coordinates as an xzyq style file 
* File will be x, y, z, fade, segment         
* Author: Elaine Thompson, eethomp@sdsc.edu            
* Last revision: 19Feb08 
* ------------------------------------------------------- */ 
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const void CrevasseMap::writeXyzq(const string& filename) { 
    multimap<const unsigned long, Point>::const_iterator lower; 
    multimap<const unsigned long, Point>::const_iterator upper; 
    unsigned long currKey = 1; 
    Point aPoint; 
  
 /* name and open output file */ 
 string crevFile = filename + ".xyzq"; 
 ofstream outFile(crevFile.c_str()); 
  
 /* print header */ 
 outFile << "# CREVASSE output file " << crevFile << endl; 
 outFile << "# X Y Z fade_score segment" << endl; 
 
 // make sure we have some data before entering the loop 
 if (myCrevasses.size() == 0) { 
  outFile.close(); 
  return; 
 } 
 
 /* return points */ 
 do {  
  lower = myCrevasses.lower_bound(currKey); 
        upper = myCrevasses.upper_bound(currKey); 
        // loop through the points in this crevasse 
        while (lower !=upper) { 
   aPoint = lower->second; 
  // write to file 
   outFile << aPoint.x() << " " <<  aPoint.y() << " " <<   
     aPoint.z() << " " << aPoint.fade() << " " << (int)currKey << endl; 
   lower++; 
        } 
  ++currKey; 
 } while (upper != myCrevasses.end()); 
  
 /* close file */ 
 outFile.close(); 
 return; 
} 
 
 
 
} 
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