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This survey is based on a series of lectures that we gave at MSRI in Spring 2015 and on a series
of papers, mostly written jointly with Joan Porti [KLP1a, KLP1b, KLP2, KLP3, KLP4, KL1].
A shorter survey of our work appeared in [KLP5]. Our goal here is to:

1. Describe a class of discrete subgroups Γ < G of higher rank semisimple Lie groups, to be
called RA (regular antipodal) subgroups, which exhibit some “rank 1 behavior”.

2. Give different characterizations of the subclass of Anosov subgroups, which generalize
convex-cocompact subgroups of rank 1 Lie groups, in terms of various equivalent dynamical
and geometric properties (such as asymptotically embedded, RCA, Morse, URU).

3. Discuss the topological dynamics of discrete subgroups Γ on flag manifolds associated to
G and Finsler compactifications of associated symmetric spaces X = G/K. Find domains of
proper discontinuity and use them to construct natural bordifications and compactifications of
the locally symmetric spaces X/Γ.

The ultimate goal of this project is to find a class of geometrically finite discrete subgroups
of higher rank Lie groups which includes some natural classes of discrete subgroups such as
Anosov subgroups and arithmetic groups. One reason for looking for such a class is that one
should be able to prove structural theorems about such groups and associated quotient spaces,
analogous to theorems in the case of geometrically finite isometry groups of rank 1 symmetric
spaces. This is somewhat analogous to the subclass of hyperbolic groups among all finitely
presented groups: While there are very few general results about finitely presented groups,
there are many interesting results about hyperbolic groups. Our work is guided by the theory
of Kleinian groups and, more generally, the theory of discrete subgroups of rank 1 Lie groups and
quasiconvex subgroups of Gromov-hyperbolic groups. However, there are instances when the
“hyperbolic intuition” leads one astray and naive generalizations from rank 1 fail in the higher
rank setting: One of the earliest examples of this failure is the fact that convex cocompactness
does not have a straightforward generalization to higher rank and simply repeating the rank
1 definitions results in a too narrow class of groups, see [KL06] and [Q]. Many proofs and
constructions in the theory of Anosov subgroups are more complex than the ones for convex
cocompact subgroups of rank 1 Lie groups. Partly, this is due to the fact that in higher rank
one has to take into account the rich combinatorial structure of Tits boundaries of symmetric
spaces (the latter is trivial in rank 1).

Organization of the paper. In section 1, we review the theory of discrete isometry groups
of negatively curved symmetric spaces with main emphasis on geometrically finite groups and
their properties. Section 2 covers basics of nonpositively curved symmetric spaces X = G/K,
including visual boundaries, horofunction compactification (with respect to the Riemannian as
well as Finsler metrics), regularity of sequences, higher rank convergence dynamics as well as the
Higher Rank Morse Lemma for regular quasigeodesics in X. Some of this material is covered in
more detail in the four appendices to the paper. In section 3, we start the discussion of discrete
subgroups Γ < G. We define the class of regular subgroups in terms of the asymptotic geometry
of their orbits in X and give a dynamical characterization as generalized convergence groups
in terms of their action on the full flag manifold G/B. We then impose further restrictions (on
their dynamics at infinity, the asymptotic geometry of their orbits, their coarse geometry) and
state an equivalence theorem for the resulting classes of groups.1 We further study the coarse
geometry of Anosov subgroups: We state a local-to-global principle for the Morse property

1These classes of groups are defined in general with respect to faces τmod of the model spherical Weyl chamber
σmod, equivalently, with respect to conjugacy classes of parabolic subgroups P < G. In this survey, for simplicity,
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which leads to a new proof for structural stability. A form of the local-to-global principle
is used to construct basic examples of Anosov subgroups, namely free discrete subgroups with
controlled coarse extrinsic geometry (Morse-Schottky subgroups). Section 4 deals with domains
of discontinuity of actions of Anosov subgroups Γ < G on the full flag manifold G/B as well as
on the regular Finsler compactification of X. Our construction of domains of discontinuity is
motivated by Mumford’s Geometric Invariant Theory. One of the applications is the existence
of a certain manifold with corners compactification of the locally symmetric space X/Γ obtained
from the Finsler compactification of X. The existence of such a compactification is yet another
characterization of Anosov subgroups among uniformly regular subgroups. In section 5, we
discuss some potential future directions for the study of geometrically finite isometry groups of
higher rank symmetric spaces.

Acknowledgements. The first author was partly supported by the NSF grants DMS-
12-05312 and DMS-16-04241. He is also thankful to KIAS (the Korea Institute for Advanced
Study) for its hospitality. This paper grew out of lecture notes written during the MSRI program
“Dynamics on Moduli Spaces of Geometric Structures” in Spring 2015; we are grateful to MSRI
for conducting this program. We are also thankful to the referee for useful suggestions.

1. Kleinian groups – discrete isometry groups of negatively curved
symmetric spaces

1.1. Basics of negatively curved symmetric spaces. In this section we review basic prop-
erties of negatively curved symmetric spaces; later on, we will compare and contrast their
properties with the ones of higher rank symmetric spaces of noncompact type. We refer the
reader to [Mo] and [Park] for a detailed discussion of negatively curved symmetric spaces.

Recall that negatively curved symmetric spaces X (also known as rank 1 symmetric spaces
of noncompact type) come in four families:

Hn,CHn,HHn,OH2,

i.e., real hyperbolic spaces, complex hyperbolic spaces, quaternionic hyperbolic spaces and the
octonionic hyperbolic plane. We will normalize their Riemannian metrics so that the maximum
of the sectional curvature is −1. The identity component of the isometry group of X will be
denoted G. The basic fact of the geometry of negatively curved symmetric spaces is that
two geodesic segments in X are G-congruent if and only if they have the same length. (This
property fails in higher rank.)

The visual boundary of a symmetric space X consists of the equivalence classes of geodesic
rays in X, equipped with a suitable topology. Here two rays are equivalent if and only if they
are within finite distance from each other. The visual boundary of X is denoted S = ∂∞X.
The elements of ∂∞X are called ideal boundary points of X. A ray representing a point ξ ∈ S is
said to be asymptotic to ξ. Given any point x ∈ X, there is a unique ray emanating from x and
asymptotic to ξ; this ray is denoted xξ. Thus, after we fix a basepoint o ∈ X, we can identify
S with the unit tangent sphere UoX in ToX: Each ray oξ corresponds to its (unit) velocity
vector at o. This identification endows S with a natural smooth structure and a Riemannian
metric depending on o. The sphere S is a homogeneous G-space and the point stabilizers are
the minimal parabolic subgroups B < G.

An important feature of negatively curved symmetric spaces (which also fails in higher rank)
is:

we limit ourselves to the case τmod = σmod, equivalently, when the parabolic subgroups are minimal parabolics
(minimal parabolic in the case of complex Lie groups).
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Lemma 1.1. For any two asymptotic rays ri : [0,∞)→ X, i = 1, 2, there exist t1, t2 ∈ R+ such
that the rays ri : [ti,∞)→ X are strongly asymptotic:

lim
t→∞

d(r1(t1 + t), r2(t2 + t)) = 0.

Attaching the visual boundary to X provides the visual compactification of the symmetric
space X:

X = X t S,
where a sequence of points xn ∈ X converges to an ideal point ξ ∈ S if and only if the sequence
of geodesic segments oxn converges to the geodesic ray oξ representing ξ.

Alternatively, one can describe this compactification as the horofunction compactification of
X. This compactification is defined for a much larger class of metric spaces and we will use it
later in section 2.2 in the context of Finsler metrics on symmetric spaces. See Appendix 6. We
now return to negatively curved symmetric spaces.

Visibility property. Any two distinct ideal boundary points ξ, ξ̂ ∈ S are connected by a
(unique) geodesic line l : R→ X:

lim
t→∞

l(t) = ξ, lim
t→−∞

l(t) = ξ̂.

This property again fails in higher rank.

Isometries. The isometries g of X are classified according to their (convex) displacement
functions

dg(x) = d(x, gx).

• Hyperbolic isometries: infX dg > 0. In this case, the infimum is attained on a g-invariant
geodesic ag ⊂ X, called the axis of g. The ideal endpoints of ag are fixed by g.
• Parabolic isometries: infX dg = 0 and is not attained. Each parabolic isometry has a

unique fixed ideal boundary point ξ ∈ ∂∞X, and

ξ = lim
i→∞

xi

for every sequence xi ∈ X such that limi→∞ dg(xi) = 0. Horospheres centered at ξ are
invariant under g.
• Elliptic isometries: infX dg = 0 and is attained, i.e. g fixes a point in X.

In particular, there are no isometries g for which infX dg > 0 and the infimum is not attained.
This again fails in higher rank.

There are two fundamental facts about symmetric spaces of negative curvature which will
guide our discussion: The Morse Lemma and the Convergence Property.

Theorem 1.2 (Morse Lemma [Mo, Gr2]). Quasigeodesics in X are uniformly close to geodesics.
More precisely, given constants L,A, there exists a number D = D(L,A) such that each (L,A)
quasigeodesic q in X is within Hausdorff distance D from a geodesic.

While the Morse Lemma fails in higher rank symmetric spaces X (because it fails in euclidean
plane), an important result that we prove in [KLP2] is that uniformly regular quasigeodesics
are uniformly close to diamonds in X, see Theorem 2.33 below.

1.2. The rank 1 convergence property. Given two points α, ω ∈ S we define the quasicon-
stant map

αω : X − {ω} → {α}
which is undefined at ω. A sequence in a locally compact topological space is divergent if it has
no accumulation points in the space. We will use this in the context of sequences in Lie groups.
We say that a divergent sequence gk ∈ G is contracting if it converges to a quasiconstant map

gk → αω,



DISCRETE ISOMETRY GROUPS OF SYMMETRIC SPACES 5

i.e.
gk|X−{ω} → α

uniformly on compacts. The point α is the limit point (or the attractor) for the sequence (gk)
and ω is the exceptional point (or the repeller) of the sequence.

Remark 1.3. If (gk) converges to αω, then (g−1
k ) converges to ωα.

Theorem 1.4 (Convergence Property). Every divergent sequence (gk) in G contains a con-
tracting subsequence.

While the naive generalization of the convergence property fails for the ideal boundaries
of higher rank symmetric spaces and for flag manifolds, nevertheless, a certain version of the
convergence property continues to hold, see section 2.8.

The convergence at infinity of sequences in X yields a notion of convergence at infinity for
divergent sequences in G:

Definition 1.5. A sequence (gk) in G converges to a point α ∈ S, gk → α, if for some
(equivalently, every) x ∈ X,

lim
k→∞

gkx = α.

For instance, each contracting sequence converges to its attractor.
The convergence property implies the following equivalent dynamical characterization of the

convergence gk → α i in terms of contraction. In particular, it yields a characterization in terms
of the dynamics at infinity.

Lemma 1.6. For each α ∈ S and sequence (gk) in G the following are equivalent:
1. gk → α.
2. Every subsequence of (gk) contains a contracting subsequence which converges to αω for

some ω.
3. There exists a bounded sequence (bk) in G such that the sequence gkbk is contracting and

converges to αω for some ω.
In addition, in parts 2 and 3, it suffices to verify the convergence to αω on S − {ω}.

1.3. Discrete subgroups.

Definition 1.7. A subgroup Γ < G is called discrete if it is a discrete subset of G.

Definition 1.8 (Limit set). The limit set Λ(Γ) of a discrete subgroup Γ < G is the accumulation
set in ∂∞X of one Γ-orbit Γx in X.

All orbits Γx ⊂ X have the same accumulation set in ∂∞X. This fact is an immediate
application of the property that if (xi), (yi) are two sequences in X within bounded distance
from each other and xi → ξ ∈ S, then yi → ξ as well.

Definition 1.9. A discrete subgroup Γ < G is elementary if Λ(Γ) consists of at most two
points.

Every discrete subgroup Γ < G enjoys the convergence property, i.e. every divergent sequence
(γk) in Γ contains a contracting subsequence, compare Theorem 1.4. The convergence dynamics
leads to a definition of the limit set in terms of the dynamics at infinity and implies a dynamical
decomposition of the Γ-action into discontinuous and chaotic part:

Lemma 1.10. For each discrete subgroup Γ < G we have:
1. Λ(Γ) is the set of values α of attractors of contracting sequences of elements of Γ.
2. Λ(Γ) is the set of exceptional points of contracting sequences of elements of Γ.
3. Unless Γ is elementary, its action on Λ(Γ) is minimal: Every Γ-orbit in Λ is dense.
4. The domain Ω(Γ) := S − Λ(Γ) equals the wandering set of the action Γ y S.
5. The action Γ y X ∪ Ω(Γ) is properly discontinuous.

The subset Ω(Γ) = S − Λ(Γ) is called the domain of discontinuity of the subgroup Γ < G.
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1.4. Conical convergence. The notion of conical convergence plays a central role in describ-
ing geometric finiteness (both in rank 1 and in higher rank), so we define it below in several
different ways.

Definition 1.11. A sequence xk ∈ X converges to a point ξ ∈ S conically

xk
con−→ ξ

if xk → ξ and for every ray xξ there is R <∞ such that xk ∈ NR(xξ), the R-neighborhood of
xξ. A sequence gk ∈ G converges to a point ξ ∈ S conically

gk
con−→ ξ,

if for some (equivalently, every) x ∈ X, the sequence xk = gkx converges to ξ conically.

The name conical in this definition comes from the fact that, e.g. in the upper half space
model of Hn, tubular neighborhoods of rays resembles cones.

As in the case of convergence gk → ξ one can also characterize conical convergence in terms
of the dynamics of (gk) on S.

Lemma 1.12. Suppose that gk → ξ ∈ S, gk ∈ G. Then gk
con−→ ξ if and only if either one of

the two equivalent properties hold:
1. For some, equivalently, every complete geodesic l ⊂ X asymptotic to ξ, the sequence g−1

k l
is relatively compact in the space of all geodesics in X.

2. For some, equivalently, every ξ̂ ∈ S − {ξ} the sequence g−1
k (ξ, ξ̂) is relatively compact in

(S × S)opp = S × S −Diag(S × S).

1.5. The expansion property. The notion of conical convergence gk
con−→ ξ is closely related

to the concept of expansivity. We will use the expansivity concepts discussed in Appendix 7
for actions on S equipped with an arbitrary Riemannian metric. The choice of the metric will
not be important.

Proposition 1.13. Suppose that gk → ξ ∈ S, gk ∈ G. Then the conical convergence

gk
con−→ ξ

implies that the sequence (g−1
k ) has diverging infinitesimal expansion at ξ.

1.6. Conical limit points. We return to discussing discrete subgroups Γ < G.

Definition 1.14 (Conical limit points of Γ). A limit point ξ of Γ is conical if there exists a
sequence γk ∈ Γ which converges to ξ conically. The set of conical limit points of Γ is denoted
Λc(Γ).

In view of Lemma 1.12, one has the following characterization of conical limit points in terms
of the dynamics at infinity:

Lemma 1.15. Suppose that the limit set of Γ consists of at least two points. Then the following
are equivalent:

1. ξ ∈ Λ(Γ) is a conical limit point of Γ.

2. There exists a sequence γk → ξ in Γ such that for some ξ̂ ∈ Λ(Γ) − {ξ} the sequence of

pairs γ−1
k (ξ, ξ̂) converges to a pair of distinct points.

The situation when all limit points are conical can also be characterized in terms of the action
on the space TΛ of triples of distinct points:

Theorem 1.16 (See e.g. [Bo5]). Suppose that Γ is nonelementary. Then all limit points are
conical iff the action of Γ on the triple space TΛ is cocompact.
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The triple space is an intrinsic replacement for the convex hull of the limit set in the symmetric
space, and the theorem provides one of the characterizations of convex cocompactness to be
discussed in the next section, compare Theorem 1.21 below.

1.7. Geometrically finite groups. The notion of geometric finiteness played a critical role
in the development of the theory of Kleinian groups. It was originally introduced by Ahlfors,
who defined geometric finiteness in terms of fundamental polyhedra. Subsequent equivalent
definitions were established by Marden, Beardon and Maskit, Thurston, Sullivan and others.

In this section we will give a list of equivalent definitions of convex-cocompactness in the
rank 1 setting (equivalently, geometric finiteness without parabolic elements). In what follows,
we will only consider discrete subgroups Γ < G of rank 1 Lie groups which contain no parabolic
elements: These definitions require modifications if one allows parabolic elements, we refer the
reader to [Bo1, Bo2, Rat] for more details.

1.7.1. Finitely sided fundamental domains.

Definition 1.17 (L. Ahlfors). Γ < G is CC0 if for some point o ∈ X not fixed by any nontrivial
element of Γ the associated Dirichlet fundamental domain Do of Γ,

Do = {x ∈ X : ∀γ ∈ Γ, d(x, o) ≤ d(x, γo)},

is finite-sided. The latter means that only finitely many “half-spaces”

Bis(γo, o) = {x ∈ X : d(x, o) ≥ d(x, γo)}, γ ∈ Γ,

have nonempty intersection with Do.

This definition was proposed by L. Ahlfors in [Ah]; it was historically the first definition of
geometric finiteness and the main one, until Thurston’s work [Th].

1.7.2. Convex cocompactness.

Definition 1.18 (Convex cocompact subgroups). Γ < G is CC1 (convex cocompact) if there
exists a nonempty Γ-invariant closed convex subset C ⊂ X such that C/Γ is compact.

This definition explains the terminology “convex cocompact” since it is stated in terms of
cocompactness of the Γ-action on a certain convex subset of X.

There is a unique smallest nonempty Γ-invariant closed convex subset if |Λ(Γ)| ≥ 2, namely
the convex hull CΓ of Λ(Γ), which is the closed convex hull of the union of all geodesics con-
necting limit points of Γ, see e.g. [Bo2].2 Hence, to verify CC1, one needs to test only CΓ:

Lemma 1.19. Assume that |Λ(Γ)| ≥ 2. Then Γ is convex cocompact iff CΓ/Γ is compact.

Definitions CC0 and CC1 do not appear to be particularly useful in higher rank; below we
present definitions which, except for CC8, do generalize to higher rank (after suitable modifi-
cations).

1.7.3. Beardon–Maskit condition: Dynamics on the limit set. The next definition is motivated
by the work of Beardon and Maskit [BM] who characterized the discrete subgroups of PSL(2,C)
satisfying Ahlfors’ CC0 condition in terms of their dynamics on the limit set.

Definition 1.20 (A. Beardon, B. Maskit). Γ < G is CC2 if each limit point of Γ is conical.

Theorem 1.16 can be reformulated as:

Theorem 1.21. A nonelementary group Γ is CC2 iff Γ acts cocompactly on TΛ(Γ).

2A convex subset C ⊂ X as in Definition 1.18 contains Γ-orbits. Hence Λ(Γ) ⊆ ∂∞C, and therefore CΓ ⊆ C.
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Remark 1.22. In the presence of parabolics one requires that each limit point is either conical
or a “bounded” parabolic fixed point (A. Beardon, B. Maskit, B. Bowditch, see [BM], [Bo2];
cf. also [Bi]).

Note that the condition CC2 a priori does not even imply finite generation of Γ.

1.7.4. Asymptotically embedded groups. Recall that each word hyperbolic group Γ has a Gromov
boundary ∂∞Γ, which is a metrizable compact on which Γ acts via homeomorphisms. (One
constructs this boundary by looking at equivalence classes of geodesic rays in the Cayley graph
of Γ or via horofunctions, see [CP].)

Definition 1.23 (Asymptotically embedded). Γ < G is CC3 (asymptotically embedded) if it is
Gromov-hyperbolic and ∂∞Γ is equivariantly homeomorphic to Λ(Γ).

Equivalently:

Definition 1.24 (Boundary embedded). Γ < G is boundary embedded if it is Gromov-hyperbolic
and there exists an equivariant topological embedding β : ∂∞Γ→ ∂∞X.

The equivalence of CC3 and boundary embedded is easy to see using again the convergence
property; it is also easy to see that β(∂∞Γ) = Λ(Γ).

1.7.5. Coarse geometric definitions. The next definition involves the coarse geometry of discrete
subgroups:

Definition 1.25. Γ < G is CC4 if it is finitely generated and undistorted in G.

Here Γ < G is undistorted if the word metric on Γ is comparable to the extrinsic metric coming
from G. Equivalently, one (equivalently, each) orbit map Γ→ Γx ⊂ X is a QI (quasiisometric)
embedding of Γ into X.

A minor variation on this definition (which will become major in higher rank) is:

Definition 1.26. A discrete subgroup Γ < G is Morse, or satisfies the Morse property, if Γ is
word hyperbolic and each discrete geodesic in Γ maps (via the orbit map) to a discrete path in
X uniformly close to a geodesic.

Note that this definition does not a priori assume undistortion of Γ in G.

The implication CC4⇒Morse follows immediately from the Morse Lemma. For the converse
implication one observes that images of discrete geodesics in Γ under the orbit map are contained
in uniform neighborhoods of geodesics in X and have bounded backtracking.

1.7.6. Quasiconvexity and coarse retractions. A subset Y ⊂ X is called quasiconvex if there
exists a constant R such that for any pair of points x, y ∈ Y the (unique) geodesic xy between
x and y is contained in NR(Y ), the R-neighborhood of Y in X. Each convex subset is, of
course, also quasiconvex. While the opposite implication is false, it follows from the work of
M. Anderson that each quasiconvex subset Y ⊂ X is within finite Hausdorff distance from its
convex hull in X (see [Bo2, Proposition 2.3.4]).

Definition 1.27 (Quasiconvex subgroups). Γ < G satisfies CC5 if it is quasiconvex, i.e., one
(equivalently, every) orbit Γx ⊂ X is a quasiconvex subset.

For each nonempty closed convex subset C ⊂ X the nearest point projection X → C is
1-Lipschitz, i.e., is distance non-increasing. Similarly, if Y is a quasiconvex subset of a geodesic
Gromov-hyperbolic space then there exists an (L,A) coarse Lipschitz retraction X → Y , which
can be viewed as a coarsification of the nearest point projection. (A nearest point in Y may
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not exist, instead, one projects x ∈ X to y ∈ Y such that for all y′ ∈ Y , d(x, y′) ≤ d(x, y) + 1.)
Here a map f : X → Y between metric spaces is (L,A) coarse Lipschitz if

d(f(x1), f(x2)) ≤ Ld(x1, x2) + A, ∀x1, x2 ∈ X.

A subset Z ⊂ X is called a coarse retract if there exists a coarse Lipschitz retraction X → Z.

Definition 1.28 (Coarse retract). A finitely generated subgroup Γ < G is a coarse retract if
for one (equivalently, every) x ∈ X there exists a coarse Lipschitz map r : X → Γ such that
the composition

γ 7→ γx
r7→ γ′ ∈ Γ,

is within finite distance from the identity map. Here we equip Γ with a word metric.

Remark 1.29. This definition makes sense, of course, not only for negatively curved symmetric
spaces but for all nonpositively curved symmetric spaces X, where G is the identity component
of the isometry group of X.

In view of the Morse Lemma and the coarse Lipschitz property of nearest point projections
to quasiconvex subsets of X, one obtains:

Theorem 1.30. A finitely generated discrete subgroup Γ < G is undistorted iff it is quasiconvex
iff it is a coarse retract.

1.7.7. Expanding actions. We refer the reader to Appendix 7 for definitions of metric expansion
and infinitesimal expansion.

Definition 1.31 (Expanding subgroups, D. Sullivan, [Su]). A discrete subgroup Γ < G is CC6
(expanding) if for each ξ ∈ Λ(Γ) there exists γ ∈ Γ which is metrically expanding on S at ξ.

Below are two variations on the expansion axiom:

Theorem 1.32. The following are equivalent:
1. Γ is infinitesimally expanding at Λ(Γ): For each ξ ∈ Λ(Γ) there exists γ ∈ Γ which is

infinitesimally expanding at ξ ∈ S.
2. Γ < G is CC6 (expanding).
3. Γ is nonelementary and the action of Γ is metrically expanding on Λ(Γ) (i.e., it suffices

to check the expansion of distances only between limit points).
4. The group Γ is CC2.

Proof. It is clear that 1 ⇒ 2 ⇒ 3. The implication 3 ⇒ 4 is proven in Theorem 8.8 in the
Appendix 8. Lastly, the implication 4⇒ 1 follows from extrinsic conicality of the limit points
of Γ (Lemma 1.12) and Proposition 1.13. �

The advantage of CC6 and its variations is that they make sense for general topologi-
cal/smooth dynamical systems and, hence, are easy to extend to higher rank.

1.7.8. Natural compactification of locally symmetric space. Our next definition is formulated in
terms of existence of a natural compactification of the locally symmetric space X/Γ:

Definition 1.33 (A. Marden, [Mar]). Γ is CC7 if the space (X ∪ Ω(Γ))/Γ is compact.

This definition first appeared in Marden’s paper [Mar] where he proved its equivalence to
CC0 in the case of X = H3.
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X/ Γ

Ω  Γ/

Ω

X

Ω

Ω

Ω

Ω

Figure 1. Quotient space of a geometrically finite group.

1.7.9. Finiteness of volume. The last definition states geometric finiteness in terms of the vol-
ume of the quotient space:

Definition 1.34 (W. Thurston; B. Bowditch). A discrete subgroup Γ < G is CC8 if either
|Λ(Γ)| ≤ 1 or |Λ(Γ)| ≥ 2 and:

1. The orders of the torsion elements of Γ are bounded.
2. For some (every) ε > 0 the quotient Nε(CΓ)/Γ has finite volume.

Here CΓ is, as before, the closed convex hull of the limit set of Γ and Nε is the ε-neighborhood
of CΓ in X.

Remark 1.35. This definition is mostly due to W. Thurston [Th] who stated it for isometry
groups of the hyperbolic 3-space without the extra conditions on torsion elements. The latter
assumption was added by B. Bowditch in the general setting. The restriction on orders of torsion
elements is essential, unless X is the (real) hyperbolic space of dimension ≤ 3 (E. Hamilton,
[Ha]).

1.7.10. An equivalence theorem. The following is a combination of work of many people:

Theorem 1.36. For discrete isometry groups of rank 1 symmetric spaces (without parabolic
elements), all the conditions CC1—CC8 are equivalent.

Proof. The equivalence of conditions CC1, CC2, CC7, CC8 is in Bowditch’s paper [Bo2]; note
that Bowditch proved this result for discrete isometry groups of negatively pinched Riemannian
manifolds, not just symmetric spaces of negative curvature. The equivalence of CC2 and CC6 is
Theorem 1.32. The equivalence of CC4 and CC5 is Theorem 1.30. If Γ is CC5 then the convex
hull of Γx ⊂ X is Hausdorff-close to Γx, hence, Γ is CC1. If Γ is CC1 then, taking x ∈ C (as
in the definition of CC1), and taking into account compactness of C/Γ, we conclude that Γ is
CC5. Assume that Γ is asymptotically embedded (CC3). Then Γ is Gromov-hyperbolic and
every ξ ∈ ∂∞Γ is a conical limit point, see [Tu94]. Hence, Γ is CC2. Assume that Γ is convex-
cocompact (CC1) and acts cocompactly on the closed convex subset C = CΓ ⊂ X, the convex
hull of the limit set of Γ. Then C is a Gromov-hyperbolic geodesic metric space quasiisometric
to Γ. Hence Γ is Gromov-hyperbolic; the ideal boundary of Γ is naturally homeomorphic to
the ideal boundary of C, i.e. the limit set of Γ. Hence, Γ is asymptotically embedded. �

Remark 1.37. The equivalence of CC0 and CC1 in the case of the real hyperbolic spaces
is proven in [Bo1] and [Rat, Theorem 12.4.5]. Their proofs rely upon convexity of Dirichlet
domains. While Dirichlet domains for general negatively curved symmetric spaces are not
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convex, they are quasiconvex which can be used to extend the arguments of [Bo1] and [Rat,
Theorem 12.4.5] to this more general setting.

1.8. Consequences of geometric finiteness. The first consequence of geometric finiteness
is immediate:

Corollary 1.38 (C1). For a convex cocompact subgroup Γ < G, the quotient Ω(Γ)/Γ is compact.

The next theorem, known as the structural stability property was first proven by D. Sullivan
[Su] using methods of symbolic dynamics and later by C. Yue [Y] using Anosov flows.

Theorem 1.39 (C2). Convex cocompactness implies structural stability: If Γ < G is convex
cocompact then any homomorphism ρ : Γ→ G close to id : Γ ↪→ G is injective and ρ(Γ) < G is
a convex cocompact subgroup which is topologically conjugate to Γ on the limit set: There exists
a ρ-equivariant homeomorphism

hρ : Λ(Γ)→ Λ(ρ(Γ)).

Moreover:

Theorem 1.40 (C3). In the context of C2:
a. There exists a ρ-equivariant topological conjugation fρ : X → X, which is smooth away

from the limit set.
b. If a sequence of representations ρi converges to the identity representations, then the maps

fρi can be chosen so that
lim
i→∞

fρi = id.

Here convergence is uniform on X and C∞-uniform on compacts in the complement to the limit
set.

This stronger stability theorem is a result of combined efforts of many people, see [Bo3, Iz].3

Theorem 1.41 (C4). Convex cocompactness is semidecidable.

Recall that an algorithmic problem is semidecidable if there is an algorithm which answers
YES in finite time if and only if the answer is positive (and runs forever if the answer is negative).
Since we are dealing with computations over the reals, one has to specify the computability
model: Here and below we are using the BSS (Blum-Shub-Smale), also known as the Real
RAM, computability model. See [BCSS] for the details.

There are two ways to interpret the semidecidability of convex cocompactness.

Theorem 1.42. [KLP2]. Suppose that Γ is a word hyperbolic group defined in terms of a finite
presentation. Then there is an algorithm which, given a representation ρ : Γ → G (defined in
terms of the images of the generators) will terminate with the positive answer if and only if ρ
has finite kernel and the image ρ(Γ) is convex cocompact.

The first written proof of this theorem seems to be in [KLP2] (in the context of Morse
actions of hyperbolic groups on higher rank symmetric spaces), although some special cases of
this theorem might have been known earlier.

One drawback of the above semidecidability theorem is that we are required to know in
advance which hyperbolic group is being represented. The following theorem is limited (for
various reasons) to hyperbolic 3-space, but does not require a priori knowledge of the algebraic
structure of Γ; the algorithm appears to be first discussed (and implemented) by R. Riley, see
[Ri]; see also a paper by J. Gilman [Gi2] and one by J. Manning [Man].

3Bowditch and Izeki only consider the case of the real-hyperbolic space but the proofs go through for other
negatively curved symmetric spaces as well.
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Theorem 1.43. Geometric finiteness4 is semidecidable for subgroups of the isometry group of
hyperbolic 3-space G = Isom(H3).

Proof. The proof is in the form of a “Poincaré” algorithm for constructing a finite sided Dirichlet
domain for discrete subgroups of G.

The input for the (semi)algorithm is a tuple (g1, ..., gn) of elements of G. It attempts to
construct a finite sided Dirichlet fundamental domain of the group Γ generated by g1, ..., gn
by computing, inductively, intersections Ik in H3 of half-spaces bounded by bisectors of pairs
o, wi(o), where the wi are reduced words in g±1

1 , ..., g±1
n ,

Ik =
k⋂
i=1

Bis(o, wio),

where

Bis(o, wo) = {x ∈ H3 : d(o, x) ≤ d(x,wo)}.
See Figure 2. (There is a separate issue of making sure that o ∈ H3 is not fixed by a nontrivial
element of Γ, we will not address this problem here.) The sequence (wi) is chosen to exhaust the
free group on the generating set g1, ..., gn. After constructing Ik (by solving a system of linear
inequalities in the Lorentzian space R3,1), the algorithm checks if the conditions of Poincare’s
Fundamental domain theorem (see [Mas, Rat]) are satisfied by Ik. If they are satisfied for some
k, then Γ admits a finite sided Dirichlet domain, namely, Ik. If Γ is geometrically finite, then
this algorithm terminates (for any choice of base point). If Γ is not geometrically finite, this
algorithm will run forever. �

I

o

w  (o)

w  (o) 3
3

2

w  (o)
1

Figure 2. Constructing a Dirichlet fundamental domain.

Note that if Γ is geometrically finite, one can read off a finite presentation of Γ from the
fundamental domain.

Remark 1.44. Note that for 2-generator subgroups of PSL(2,R) there are (more efficient)
alternatives to Riley’s algorithm, due to J. Gilman and B. Maskit, see [Gi1, GM] and also [Gi2]
for comparison of the computational complexities.

4Here we allow parabolic elements.
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As an aside, we discuss the question of decidability of discreteness for finitely generated
subgroups of connected Lie groups. For instance, one can ask if a representation Fn → G
(where G is a connected algebraic Lie group) has discrete image. First of all, one has to
eliminate certain classes of representations, otherwise the discreteness problem is undecidable
already for n = 1 and G = U(1), cf. [Ka3].

Definition 1.45. Let E ⊂ Hom(Fn, G) denote the subset consisting of representations ρ such
that ρ(Fn) contains a nontrivial normal nilpotent subgroup.

For instance, in the case G = PSL(2,C), a representation ρ belongs to E if and only if
the group Γ = ρ(Fn) either has a fixed point in CP 1 or preserves a 2-point subset of CP 1.
Algebraically, (for subgroups of PSL(2,C)) this is equivalent to the condition that Γ is solvable.

Secondly, one has to specify the computability model; as before we use the BSS (Blum–Schub–
Smale) computability model. Restricting to representations in Hom(Fn, G)\E , one obtains the
following folklore theorem, see Gilman’s papers [Gi1, Gi2] in the case G = PSL(2,C):

Theorem 1.46. For a connected algebraic Lie group G, it is semidecidable whether a repre-
sentation ρ ∈ Hom(Fn, G) \ E is nondiscrete.

Proof. The key to the proof is a theorem of Zassenhaus, see e.g. [Rag, Ka1], where we regard G
as a real algebraic subgroup of GL(k,C) for some k, which we equip with the standard operator
norm:

Theorem 1.47 (H. Zassenhaus). There exists a (computable) number ε such that the neigh-
borhood U = G ∩ B(1, ε) (called a Zassenhaus neighborhood of 1 in G) satisfies the following
property: Whenever Γ < G is a subgroup, the subgroup ΓU < Γ generated by Γ ∩ U is either
nondiscrete or nilpotent.

Suppose that Γ < G is nondiscrete, Γ
0

is the identity component of 1 ∈ Γ, the closure of Γ

in G (with respect to the standard matrix topology). Then Γ
0

is a normal subgroup of Γ of

positive dimension. Therefore, the intersection Γ
0 ∩ U is nondiscrete and, hence, the subgroup

ΓU is nondiscrete as well.
There are two cases which may occur:

1. The subgroup N = Γ
0

is nilpotent. Since N is a Lie subgroup of G, there exists a
neighborhood V ⊂ U of 1 ∈ G such that Γ ∩ V is contained in N . In particular, Γ contains
a nontrivial normal nilpotent subgroup, namely Γ ∩ N . This cannot happen if Γ = ρ(Fn),
ρ ∈ Hom(Fn, G) \ E .

2. The subgroupN = Γ
0

is not nilpotent. Note that by Lie–Kolchin theorem, every connected
nilpotent subgroup of GL(k,C) is conjugate to the group of upper triangular matrices. In
particular, a connected Lie subgroup of G is nilpotent if and only if it is (at most) k − 1-step
nilpotent. Thus, in our case, there exist elements g1, ..., gk ∈ N ∩U such that the k-fold iterated
commutator

[...[[g1, g2], g3], ..., gk]

is not equal to 1 ∈ G. By continuity of the k-fold commutator map, there exist γ1, ..., γk ∈ Γ∩U
such that

[...[[γ1, γ2], γ3], ..., γk] 6= 1.

We now describe our (semi)algorithm: We enumerate k-tuples of elements (x1, ..., xk) ∈
Fn × ...× Fn and, given ρ ∈ Hom(Fn, G) \ E , look for the tuples such that

γi = ρ(xi), i = 1, ..., k

satisfy γi ∈ U, i = 1, ..., k and

[...[[γ1, γ2], γ3], ..., γk] 6= 1.
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If Γ = ρ(Fn) is nondiscrete then we eventually find such a tuple thereby verifying nondiscrete-
ness of Γ. �

In the case when G = PSL(2,R), a finitely generated subgroup of G is discrete if and
only if it is geometrically finite. Therefore, one can use Riley’s algorithm in combination with
nondiscreteness algorithm to determine if an n-generated nonsolvable subgroup of PSL(2,R)
is discrete. Hence, discreteness is decidable in PSL(2,R). On the other hand:

Theorem 1.48. [Ka3]. Being discrete is undecidable for nonsolvable 2-generated subgroups in
PSL(2,C).

2. Geometry of symmetric spaces of noncompact type

2.1. Basic geometry. We refer to [Eb, BGS] and [He] for a detailed treatment of symmetric
spaces. From now on, X is a symmetric space of noncompact type: It is a nonpositively curved
symmetric space without euclidean factor, G = Isomo(X) is the identity component of the
full isometry group of X. We will use the notation xy for (oriented) geodesic segments in X
connecting x to y. Recall that each symmetric space admits a Cartan involution sx about every
point x ∈ X; such sx fixes x and acts as −id on the tangent space TxX.

Then X ∼= G/K, where K < G is a maximal compact subgroup (the stabilizer in G of a
basepoint o in X); G is a semisimple real Lie group; the Riemannian metric on X is essentially
uniquely determined by G (up to rescaling for each simple factor of G). An important example
is

G = PSL(n,R), K = PSO(n);

the symmetric space X = G/K can in this case be identified with the projectivized space of
positive definite bilinear forms on Rn.

Remark 2.1. For our examples we will frequently use SL(n) instead of PSL(n). The difference
is that the group SL(n) acts on the associated symmetric space with finite kernel.

A symmetric space X is reducible if it metrically splits as a product X1 × X2. Each sym-
metric space X of noncompact type admits a canonical (up to permutation of factors) product
decomposition

X = X1 × . . .×Xn

into irreducible symmetric spaces.

Classification of isometries. For each g ∈ G, as in rank 1, we consider its convex dis-
placement function

dg(x) = d(x, gx).

Definition 2.2. The isometries of X are classified as follows:
1. An isometry g of X is axial or hyperbolic if infx∈X dg > 0 and the infimum is realized. In

this case, there exists a g-invariant geodesic in X, an axis of g, along which g translates.5 The
union of axes is the minimum set of the convex function dg.

2. g is mixed if infx∈X dg > 0 but the infimum is not realized.
3. g is parabolic if infx∈X dg = 0 but the infimum is not realized.
4. g is elliptic if dg = 0 and the infimum is realized. Equivalently, g has a fixed point in X.

An axial isometry g is a transvection if it preserves parallel vector fields along one and hence
any axis. Equivalently, g is a product of two different Cartan involutions. A parabolic isometry

5In general, this axis is not unique, but all axes of g are parallel.
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g is unipotent if the closure of its conjugacy class contains the neutral element, i.e. if there is a
sequence hk ∈ G such that

lim
k→∞

hkgh
−1
k = e ∈ G.

Definition 2.3. A flat in X is a (totally geodesic) isometrically embedded euclidean subspace
in X. A maximal flat is a flat in X which is not properly contained in a larger flat.

Fundamental Fact 2.4. All maximal flats in X are G-congruent.

Definition 2.5. r = rank(X) is the dimension of a maximal flat.

Note that r = rankR(G).

Fundamental Fact 2.6 (Cartan decomposition).

G = KA+K,

where A < G is a Cartan subgroup (equivalently, a maximal abelian group of transvections,
equivalently, a maximal R-split torus), and A+ ⊂ A is a certain sharp closed convex cone with
tip at e (a subsemigroup).

More precisely, the unique maximal flat F ⊂ X preserved by A contains the fixed point
o ∈ X of K, o ∈ F . The cone V = A+o ⊂ F is a euclidean Weyl chamber with tip at o. The
Cartan decomposition corresponds to the fact that every K-orbit in X intersects V in precisely
one point.

Example 2.7. For G = SL(n,R) and K = SO(n), the Cartan subgroup A < G can be chosen
as the subgroup of diagonal matrices with positive entries, and A+ ⊂ A as the subset of diagonal
matrices a = diag(a1, ..., an) with decreasing diagonal entries:

a1 ≥ a2 ≥ ... ≥ an > 0

The Cartan decomposition in this case is also known as the singular value decomposition of a
matrix: g = uav with u, v ∈ SO(n) and a ∈ A+. The diagonal entries a1, ..., an of the matrix a
are known as the singular values of the matrix g.

The G-stabilizer GF of a maximal flat F ⊂ X acts on F (in general unfaithfully); the image
of the restriction homomorphism

GF → Isom(F )

is a semidirect product

Waff = Rr oW,

where Rr ∼= A is the full group of translations of F and W is a certain finite reflection group
of isometries of F , called the Weyl group of X (and of G). In view of the G-congruence of
maximal flats, the action W y F is independent of the choices.

Remark 2.8. The subgroup Rr lifts to GF as the group of transvections (in X) along F . In
contrast, the subgroup W does in general not lift to GF .

We pick a maximal flat F ⊂ X through the base point o and regard it as the model flat Fmod.
We will assume that W fixes o and denote by ∆ = ∆+ = ∆mod ⊂ Fmod a certain fundamental
domain of W , the model euclidean Weyl chamber (see Figure 3.) It is a complete cone over a
spherical simplex σmod ⊂ ∂∞Fmod, the model spherical Weyl chamber. The tip of the cone ∆ is
the origin o ∈ Fmod. The cone A+ ⊂ A is the subsemigroup of transvections preserving the flat
Fmod and mapping ∆ into itself, i.e. acting on Fmod via translations

x 7→ x+ v, v ∈ ∆.
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o

∆

σ

mod

mod

Figure 3. Spherical and euclidean Weyl chambers.

A model Weyl sector Vτmod
is a face of ∆mod which is the complete cone over a face τmod of σmod.

Euclidean Weyl chambers and Weyl sectors in X are isometric copies of the model Weyl cone
and the model Weyl sectors under G-congruences.

We will frequently identify σmod with a spherical simplex in the unit sphere in Fmod centered
at o, the intersection of this unit sphere with ∆.

The opposition involution ι : ∆ → ∆ (also known as Chevalley or duality involution) is
defined as the composition

ι = w0 ◦ (−id),

where w0 is the longest element of W y Fmod, the one sending the positive chamber in the
model flat to the opposite one, and −id is the antipodal map of Fmod fixing o.

For each pointed maximal flat (F, x) in X there are finitely many euclidean Weyl chambers
V ⊂ F with tip x, and they tessellate F .

Theorem 2.9. The following are equivalent:
1. The symmetric space X is irreducible.
2. The action W y Rr is irreducible.
3. G is a simple Lie group.

In the irreducible case, the Weyl groups W are classified into A, B = C, D (classical types)
and G2, F4, E6, E7, E8 (exceptional types). For instance, SLn has type An−1, W ∼= Sn, the
permutation group on n symbols. The group Spn has type Cn and its Weyl group is isomorphic
to the semidirect product Zn2 o Sn where Sn acts on Zn2 by permuting its basis elements.

Walls in Fmod are the fixed hyperplanes of reflections in Waff . Walls in X are the images of
walls in Fmod under elements of G.

Regular (geodesic) segments in X are the segments not contained in any wall. Singular
segments are the segments contained in walls. Equivalently: A geodesic segment xy is regular
iff it is contained in a unique maximal flat.

Each oriented segment xy in X defines a vector v in ∆,

v = d∆(x, y),
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the ∆-valued distance from x to y.6 Namely, since G acts transitively on pointed maximal flats
in X, we can map F to the model flat Fmod and x to the point o ∈ Fmod via some g ∈ G. Now,
project the oriented segment g(xy) to the vector v in ∆ using the action of W .

The vector v is the complete G-congruence invariant of the pair (x, y): Given two pairs
(x, y), (x′, y′), there exists g ∈ G sending (x, y) to (x′, y′) iff d∆(x, y) = d∆(x′, y′).

In the case of rank 1 spaces, ∆ ∼= [0,∞) and d∆ is the usual distance function.
We refer to [KLM] for the description of a complete set of generalized triangle inequalities

for the chamber-valued distance function. The simplest of these inequalities has the form:

d∆(x, z) ≤∆∗ d∆(x, y) + d∆(y, z),

where ∆∗ is the cone dual to ∆, also known as the root cone:

∆∗ = {u : 〈u, x〉 ≥ 0 ∀x ∈ ∆}.
We also refer the reader to [Parr] for discussion of “nonpositive curvature” properties of d∆.

Remark 2.10. 1. Here, given a convex cone C with tip 0 in a vector space V , we define the
partial order ≤C on V by:

u ≤C v ⇐⇒ v − u ∈ C.
2. In general, d∆ is not symmetric, but it satisfies the identity

d∆(y, x) = ιd∆(x, y).

Remark 2.11. The theory of regular/singular segments has a relative analogue, relative to a
face τmod of σmod; we will not cover the relative version in this paper. However, the relativization
is important for the notion of τmod-Morse maps and group actions, which correspond to P -
Anosov subgroups in the sense of [La, GW] for parabolic subgroups P < G. The discrete
subgroups theory described in this survey is the one of B-Anosov subgroups, where B < G is a
minimal parabolic subgroup. We refer the reader to [KLP2] for the definition of τmod-regularity.

Example 2.12. Consider the case of the symmetric space associated with the group G =
PGL(n,R), i.e. X consists of positive definite n× n matrices with unit determinant. Assume
that o ∈ X corresponds to the identity matrix. Then, up to scaling,

d∆(o, y) =
1

2

(
log(λ1), log(λ2), . . . , log(λn)

)
,

where λ1 ≥ λ2 ≥ .... ≥ λn are the eigenvalues of the matrix y counted with multiplicity. The
segment oy is regular if and only if λi > λi+1 for all i = 1, ..., n− 1.

2.2. Finsler geometry. Each symmetric space comes with a nonpositively curved Riemannian
metric and the corresponding Riemannian distance function. Nevertheless, it turns out that
many asymptotic aspects of X (and of its quotients, locally symmetric spaces) are better
captured by suitable G-invariant polyhedral Finsler metrics on X.

Pick a regular vector θ̄ ∈ σmod (where we regard σmod as a simplex in the unit sphere in Fmod),
and define the linear functional ϕ on Fmod dual to the vector θ̄. For simplicity, we assume θ̄ to
be ι-invariant. (See [KL1] for the general treatment.)

Remark 2.13. There are several natural choices of the vectors θ̄ and, thus, of the dual linear
functionals ϕ and of the Finsler metrics defined below. For instance, one can take ϕ to be
the sum of all positive roots α ∈ R (positive with respect to the chamber ∆). This linear
functional will be regular, i.e. given by the inner product with a regular vector θ̄ in ∆, and
moreover ι-invariant. While the metric dθ̄ depends on the choice of θ̄, the compactification

X
Fins

of X is independent of θ̄, see [KL1]. For concreteness, the reader can assume that ϕ is
the sum of positive roots.

6The map µ : xy 7→ v is also known as the Cartan projection, while the map g 7→ d∆(x, gx) is sometimes
called the Lyapunov projection.
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Given ϕ (equivalently, θ̄), we define in [KL1] a Finsler distance function dθ̄ on X as follows.
First, we define a polyhedral Finsler norm on the vector space Fmod = Rr by

||v||θ̄ := ϕ(d∆(0, v)).

The unit ball Bmod for this norm is the intersection of half-spaces

{x : (w∗ϕ)(x) ≤ 1}, w ∈ W.

Since this norm is W -invariant, it extends to a G-invariant Finsler metric on X by defining the
norm ||v|| for a vector v ∈ TxX using the formula

||v|| = ||dg(v)||θ̄

where g : x 7→ o ∈ X, dg(v) ∈ ToFmod, g ∈ G. This norm on tangent spaces is a Finsler metric
on the entire symmetric space X, and one has the Finsler distance function

dθ̄(x, y) := inf

∫ 1

0

||c′(t)||dt,

where the infimum is taken over all smooth paths c : [0, 1] → X, c(0) = x, c(1) = y. This
distance function is also given by the explicit formula

dθ̄(x, y) = ϕ(d∆(x, y)), x, y ∈ X

which is the definition that we are going to use. Due to our assumption that θ̄ is ι-invariant,
the distance dθ̄ is symmetric and hence a metric in the usual sense. We will refer to any such
distance dθ̄ as a regular polyhedral Finsler metric on X.

∆φ=1

o

B
mod

Figure 4. Polyhedral Finsler norm.

Regular polyhedral Finsler metrics on X are used in [KL1] to construct a Finsler compacti-

fication X
Fins

by adding to X Finsler horofunctions in the manner similar to compactifying X
by adding to it Riemannian Busemann functions. We will discuss this in more detail in §2.7.
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2.3. Boundary theory. As in the rank 1 case, the visual boundary ∂∞X of a symmetric
space X is defined as the set of asymptotic equivalence classes of geodesic rays in X: Two
rays are asymptotic iff they are within finite distance from each other. There are two useful
G-invariant topologies on ∂∞X: The first one is the visual topology, the topology of a (the)
unit tangent sphere in X. This identification is achieved by choosing a reference point x ∈ X
and considering the set Rayx of geodesic rays ρ emanating from x: Each geodesic ray in X
is equivalent to one and only one ray of such form. The set Rayx is identified with the unit
tangent sphere UxX ⊂ TxX by sending each ray ρ to its velocity vector at x.

However, ∂∞X also carries the structure of a (spherical) simplicial complex, defined via ideal
boundary simplices of maximal flats in X. For each maximal flat F , the visual boundary ∂∞F
is identified with the unit sphere in F , and hence the W -action defines a Coxeter simplicial
complex on ∂∞F .

Fundamental Fact 2.14. For any two maximal flats F, F ′ the intersection ∂∞F ∩ ∂∞F ′ is a
(convex) subcomplex of both ∂∞F and ∂∞F

′.

This proves that the tilings of the visual boundaries of the maximal flats are compatible.
The topology of this simplicial complex is called Tits topology. It is induced by the Tits metric,
which restricts to the angular metric on the visual boundary spheres of maximal flats. The
simplicial complex is a Tits building, the Tits boundary of X, denoted ∂T itsX. Its dimension
equals rank(X)− 1. The identity map

∂T itsX → ∂∞X

is a continuous (bijection), but never a homeomorphism, i.e. the Tits topology is strictly finer
than the visual topology.

Apartments in ∂T itsX are visual boundaries of maximal flats. Facets (i.e. top-dimensional
simplices) of the apartments are called chambers.

Given a point x ∈ X and a chamber σ in ∂TitsX, we let V (x, σ) denote the euclidean Weyl
chamber in X, which is the union of geodesic rays xξ, ξ ∈ σ. Similarly, for a face τ of the
simplicial complex ∂T itsX, we let V (x, τ) denote the Weyl sector equal to the union of rays
xξ, ξ ∈ τ . A point ξ ∈ ∂∞X is regular if it belongs to the interior of a chamber σ ⊂ ∂T itsX;
equivalently, for some (every) x ∈ X the geodesic ray xξ is regular.

Fundamental Fact 2.15. Any two ideal points (equivalently, chambers) belong to a common
apartment.

Every G-orbit in ∂∞X intersects every chamber exactly once, and we have the type map

θ : ∂∞X → ∂∞X/G ∼= σmod.

For a maximal flat F ⊂ X, the G-orbits in ∂∞X intersect ∂∞F in Weyl orbits, and the
restriction θ|∂∞F : ∂∞F → σmod divides out the action of the Weyl group (of F resp. ∂∞F ).

Example: (a) Rank 1 case: ∂T itsX is a discrete space.
(b) SL(n,R) case: ∂T itsX is the incidence complex of RP n−1. Chambers are complete flags:

V• = (V1 ⊂ . . . ⊂ Vn−1 ⊂ Rn),

where dim(Vi) = i; other faces are partial flags. The incidence relation: a partial flag V ′• is a
face of a full flag V• iff the full flag is a refinement of the partial flag. For instance, if n = 3,
then full flags are pairs

V• = (V1 ⊂ V2),

and partial flags are lines V ′1 or planes V ′2 ; they yield the vertices of the incidence graph. Then
V ′1 is a vertex of V• iff V ′1 = V1; V ′2 is a vertex of V• iff V ′2 = V2. Thus, two vertices V1, V2 are
connected by an edge iff V1 ⊂ V2 (the line is contained in the plane).

Remark 2.16. rank(X) ≥ 2 iff ∂T itsX is connected.
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The Furstenberg boundary ∂F üX of X is the space of chambers in ∂T itsX. The G-action on
∂F üX is transitive and the stabilizers in G of the chambers are the minimal parabolic subgroups
B < G. Hence

∂F üX ∼= G/B.

The topology on ∂F üX induced by the visual topology coincides with its manifold topology as a
homogeneous space. From the smooth viewpoint, ∂F üX is a compact smooth homogeneous G-
space, and from the algebraic geometry viewpoint a homogeneous G-space with an underlying
projective variety.

For instance, in the case G = SL(n), the Furstenberg boundary is the full flag manifold,
and a minimal parabolic subgroup B is given by the upper-triangular matrices, which is the
stabilizer of the full flag7

〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . 〈e1, . . . , en−1〉.
More generally, for a face τmod ⊆ σmod, we define the generalized partial flag manifold Flagτmod

as the space of simplices τ ⊂ ∂T itsX of type θ(τ) = τmod. The G-action on Flagτmod
is again

transitive. The stabilizers of the simplices τ are the parabolic subgroups Pτ < G of type τmod.
They form a conjugacy class and, denoting by Pτmod

a representative, we can write

Flagτmod
∼= G/Pτmod

.

Note that Flagσmod
= ∂F üX.

For a simplex τ ∈ Flagτmod
, we define its star

st(τ) ⊂ ∂F üX

as the set of chambers of the Tits building ∂T itsX containing τ :

(2.1) st(τ) := {σ ∈ ∂F üX : τ ⊂ σ}.

Definition 2.17. Ideal boundary points ξ± ∈ ∂∞X are antipodal if they are connected by
a geodesic in X. Two chambers σ± are antipodal if they contain antipodal regular points.
Equivalently, they are swapped by a Cartan involution in X.

Notation. σopp ⊂ ∂F üX denotes the set of chambers antipodal to σ.

Remark 2.18. 1. σopp is an open subset of ∂F üX, called open (maximal) Schubert cell of σ.
2. Antipodal implies distinct but not vice versa!
3. The complement ∂F üX−σopp is a union of proper Schubert cycles in the projective variety

∂F üX ∼= G/B, and hence a proper algebraic subvariety.

Example 2.19. 1. In the SL(n) case, two full flags V•,W• are antipodal iff they are transversal:
Vi is transversal to Wn−i for each i.

2. In the rank 1 case, antipodal is equivalent to distinct. The Tits boundary of a Gromov-
hyperbolic space is a zero-dimensional building.

2.4. Quantified regularity. Fix an ι-invariant nonempty compact convex subset Θ ⊂ σomod,
where σomod = int(σmod) is the interior of σmod. Define VΘ ⊂ ∆, the Θ-cone, as the cone with
tip at the origin o over the subset Θ,

VΘ = R≥0 ·Θ.
We define Θ-regular segments in X as segments whose ∆-length is in VΘ.

More generally, given x ∈ X and a euclidean Weyl chamber V (x, σ), we define the Θ-cone

VΘ(x, σ) = {y ∈ V (x, σ) : d∆(x, y) ∈ VΘ}.

Remark 2.20. Due to the ι-invariance of Θ, the notion of Θ-regularity is independent of the
orientation of the segments.

7Here and in what follows, 〈S〉 denotes the linear span of a subset S of a vector space.
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o

Figure 5. Cone VΘ = VΘ(0, σmod).

For a negatively curved symmetric space X, a sequence xi ∈ X is divergent if and only
if the sequence of distances d(o, xi) from a basepoint o ∈ X diverges. Things become more
complicated in higher rank symmetric spaces, since the “right” notion of a distance in X is not
a number but a vector in ∆. This opens several possibilities for diverging to infinity and leads
to (several) notions of (asymptotic) regularity for sequences. In this survey we restrict to the
simplest ones.

Definition 2.21 (Regular sequence in X). A sequence (xi) in X is
1. regular if the sequence of vectors vi = d∆(o, xi) diverges away from the boundary of ∆.
2. Θ-regular if it diverges to infinity and the sequence (vi) accumulates at Θ.
3. uniformly regular if it is Θ-regular for some Θ. Equivalently, the accumulation set of the

sequence (vi) is contained in σomod. Equivalently, there exists Θ′ (a compact convex subset of
σ◦mod) such that for all but finitely many values of i the vector vi belongs to VΘ′ .

Analogously, we can define regularity for sequences of isometries gi of X:

Definition 2.22 (Regular sequence in G). A sequence (gi) in G is regular (resp. uniformly
regular, resp. Θ-regular) if for some (equivalently, every) x ∈ X the orbit sequence xi = gix
has this property.

Thus, a divergent sequence in X is uniformly regular iff all its subsequential limits in ∂∞X
are regular points. We will see later how to characterize regular sequences (gi) in G in terms
of their action on the flag manifold G/B.

Remark 2.23. 1. Our notion of regularity for sequences is different from the notion introduced
by Kaimanovich in [Kai], where a sequence inX is called regular if it diverges at most sublinearly
from a geodesic ray.

2. (Uniform) regularity of a sequence in X is independent of the choice of base point.
3. If (xi) and (yi) are sequences in X within uniformly bounded distance from each other,

supi d(xi, yi) <∞, then (xi) is (uniformly) regular iff (yi) is.

Example 2.24. Suppose that G = SL(n,R) or SL(n,C). Then for each g ∈ G we have its
vector of singular values

a(g) = (a1(g) ≥ . . . ≥ an(g))

where the aj’s are the diagonal entries of the diagonal matrix a in the Cartan resp. singular
value decomposition, cf. Example 2.7. A sequence (gi) in G is regular iff

lim
i→∞

al(gi)

al+1(gi)
=∞ for l = 1, ..., n− 1.

Remark 2.25. The singular values of a matrix depend on the choice of a euclidean/hermitian
scalar product on Rn or Cn (this amounts to choosing a base point in the symmetric space of
G), but the regularity of a sequence is independent of this scalar product.
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In line with the notion of regular sequences in X (which are maps N → X), one defines
regular maps from other metric spaces into X. The most relevant for us is the following notion:

Definition 2.26 (Regular quasiisometric embedding). An (L,A)-quasiisometric embedding
f : Y → X from a metric space Y to a symmetric space X is (Θ, B)-regular if for all y1, y2 ∈ Y
satisfying d(y1, y2) ≥ B, the segment f(y1)f(y2) is Θ-regular in X. A map f : Y → X is a
uniformly regular quasiisometric embedding if it is a (Θ, B)-regular quasiisometric embedding
for some B and Θ.

The most important cases when we will be using this definition are when Y is a finitely
generated group (equipped with a word metric) or a (possibly infinite) geodesic segment. We
will discuss regular quasiisometric embeddings and regular quasigeodesics in more details in
the next section.

r
q

Figure 6. The path q in this figure is a Finsler geodesic, it is also a regular
quasigeodesic in the model flat. The path r is a Finsler geodesic but is not a
regular quasigeodesic.

Example 2.27 (Regular and non-regular quasigeodesics). Consider the case of quasiisometric
embeddings into R2 = Fmod, the model maximal flat of SL(3). We assume that the x-axis
in R2 is a wall. Then, a piecewise linear function f : R → R, yields a Finsler geodesic
q : x 7→ (x, f(x)), which is also a uniformly regular quasigeodesic in Fmod, provided that the
slopes of linear segments in the graph of f lie in the interval [ε,

√
3 − ε] for some ε > 0. In

contrast, the graph of the function g(x) = |x| is not a regular quasigeodesic. The reason is that
for each x > 0 the segment connecting the points (−x, x), (x, x) in the graph of g is horizontal
and, hence, singular. The graph r of the function

h(x) =

{
0 if x < 0√

3x if x ≥ 0

is a Finsler geodesic which is not a regular quasigeodesic.

One of the geometric tools for studying regular quasiisometric embeddings are diamonds
which we will define now. Diamonds can be regarded as the “right” generalization of geodesic
segments when dealing with the metric d∆ and with regular polyhedral Finsler metrics on X.
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Definition 2.28 (Diamonds [KLP2, KLP4]). For a regular segment xy, the diamond ♦x,y ⊂ X
is the intersection of the two euclidean Weyl chambers with tips x and y containing xy.

Diamonds are contained in maximal flats.

Figure 7. A diamond in the model flat.

Example 2.29. 1. If X is the product of rank 1 spaces

X = X1 × . . .×Xn

then each diamond is the product of geodesic segments si ⊂ Xi.
2. If rank(X) = 2, then each diamond is a parallelogram, its faces are contained in walls.

Similarly, for Θ-regular segments xy, one defines the Θ-diamond ♦Θ
x,y ⊂ ♦x,y by

♦Θ
x,y = VΘ(x, σ) ∩ VΘ(y, σ̂),

where σ, σ̂ are the (antipodal) chambers such that xy is contained in both Θ-cones VΘ(x, σ)
and VΘ(y, σ̂). As before, xy ⊂ ♦Θ

x,y. See Figure 8.

Proposition 2.30 (Finsler description of diamonds [KL1]). ♦x,y is the union of all Finsler
geodesics8 connecting x to y.

It is quite clear that the diamond is filled out by Finsler geodesics connecting its tips. The
less part is to show that all Finsler geodesics connecting its tips are contained in the diamond.

Diamonds are enlargements of the Riemannian geodesic segments connecting their tips and,
in view of the proposition, may be regarded as their natural Finsler replacements, reflecting
the nonuniqueness of Finsler geodesics for polyhedral Finsler metrics.

2.5. Morse quasigeodesics and the Higher Rank Morse Lemma. We will now discuss
a higher rank version of the Morse Lemma for quasigeodesics in rank 1 spaces.

The Morse Lemma in rank 1 states that quasigeodesic segments are uniformly Hausdorff
close to geodesic segments. This is no longer true in higher rank, because it already fails in
euclidean plane:

8With respect to a fixed regular polyhedral Finsler metric on X.
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Figure 8. Θ-diamond in the model flat.

xy

x

y

Figure 9. Diamond as the union of Finsler geodesics.

Example 2.31 (Failure of the naive version of the Morse Lemma). Take an L-Lipschitz function
f : R→ R. Then x 7→ (x, f(x)) is a quasigeodesic in R2, which, in general, is not close to any
geodesic. For instance, take f(x) = |x|. Further examples can be obtained by using suitable
maps r 7→ (r, θ(r)) in polar coordinates.

We next define a class of quasigeodesics in X which satisfy a higher rank version of the
conclusion of the rank 1 Morse Lemma, where geodesic segments are replaced with “diamonds”,
see the previous section and Definition 2.28. That is, we require the quasigeodesics and their
subsegments to be uniformly close to Θ-diamonds with tips at their endpoints:

Definition 2.32 (Morse quasigeodesics and maps [KLP2]). Let Θ ⊂ σomod be nonempty ι-in-
variant compact convex, and let B,L,A,D, S > 0.

1. A map q : I → X from an interval I is a (Θ, B, L,A,D)-Morse quasigeodesic if it is an
(L,A)-quasigeodesic, and if the image q([s, t]) is for any subinterval [s, t] ⊂ I of length t−s > B
contained in the D-neighborhood of the Θ-diamond ♦Θ

x,y with tips x = q(s), y = q(t).
2. A map q : I → X is a (Θ, B, L,A,D, S)-local Morse quasigeodesic if its restrictions to

subintervals of length ≤ S are (Θ, B, L,A,D)-Morse quasigeodesics.
3. A map f : Y → X from a metric space Y is Morse if it sends uniform quasigeodesics in

Y to uniform Morse quasigeodesics in X.

Here, we call families of (Morse) quasigeodesics with fixed quasiisometry, respectively, Morse
constants uniform.
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Note that Morse quasigeodesics are uniformly regular in the sense of the previous section, cf.
Definition 2.26.9 Similarly, each Morse map is a uniformly regular quasiisometric embedding,
provided that Y is a quasigeodesic metric space, i.e. any two points in Y can be connected by
a uniform quasigeodesic in Y .

It is nontrivial that, vice versa, uniform regularity already forces quasigeodesics to be Morse:

Theorem 2.33 (Higher Rank Morse Lemma [KLP3]). Uniformly regular uniform quasigeodesics
in X are uniformly Morse.

In other words, uniformly regular quasigeodesics in X are Morse, with Morse data depending
on the quasiisometry constants and the uniform regularity data (and on X).

Remark 2.34. 1. The Morse Lemma holds as well for quasirays (diamonds are replaced with
euclidean Weyl chambers) and quasilines (diamonds are replaced with maximal flats10).

2. We also proved a version of our theorems with a weaker regularity assumption (relative to
a face τmod of σmod). In this setting, diamonds are replaced by certain convex subsets of parallel
sets, namely, intersections of opposite “Weyl cones.”

For maps, one obtains accordingly:

Corollary 2.35. Uniformly regular uniform quasiisometric embeddings Y → X from geodesic
metric spaces Y are uniformly Morse.

The closeness to diamonds in the Morse condition can be nicely reformulated in Finsler terms:

Proposition 2.36. Uniform Morse quasigeodesics are uniformly Hausdorff close to Finsler
geodesics.11

The Morse Lemma for quasigeodesics then becomes:

Corollary 2.37. Uniformly regular uniform quasigeodesics in X are uniformly Hausdorff close
to Finsler geodesics.

There is a basic restriction on the coarse geometry of domains of uniformly regular quasiiso-
metric embeddings into symmetric spaces:

Theorem 2.38 (Hyperbolicity of regular subsets [KLP3]). If Y is a geodesic metric space which
admits a uniformly regular quasiisometric embedding to X, then Y is Gromov-hyperbolic.

Remark 2.39. The Morse Lemma for quasirays implies that uniformly regular quasirays con-
verge at infinity to Weyl chambers in a suitable sense. For uniformly regular quasiisometric
embeddings from Gromov hyperbolic geodesic metric spaces, this leads to the existence of natu-
ral boundary maps. We will make this precise at the end of next section, see Theorem 2.44, after
introducing the notion of flag convergence of regular sequences in X to chambers at infinity.

It is a fundamental property of Morse quasigeodesics that they satisfy the following local-to-
global principle:

Theorem 2.40 (Local-to-global principle for Morse quasigeodesics [KLP2]). If a coarse Lips-
chitz path in X is locally a uniform Morse quasigeodesic on a sufficiently large scale compared
to the Morse data, then it is globally a Morse quasigeodesic (for different Morse data).

More precisely: For Morse data (Θ, B, L,A,D) and another convex compact subset Θ′ ⊂ σomod
with Θ ⊂ int(Θ′) there exist constants S,B′, L′, A′, D′ > 0 (depending also on X) such that every
(Θ, B, L,A,D, S)-local Morse quasigeodesic is a (Θ′, B′, L′, A′, D′)-Morse quasigeodesic.

9More precisely, (Θ, B, L,A,D)-Morse quasigeodesics are (Θ′, B′)-regular with Θ′ ⊂ σomod and B′ > 0 de-
pending only on X and the Morse data (Θ, B, L,A,D).

10Or with unions of opposite Weyl cones in these maximal flats.
11Clearly, these Finsler geodesics are then uniformly regular.
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This theorem parallels the local-to-global principle for quasigeodesics in Gromov-hyperbolic
spaces, see e.g. [CDP, Thm. 1.4 in ch. 3]. It is derived from a basic local-to-global principle for
straight paths which we will explain later, see Theorem 3.50 below.

2.6. Flag convergence. We introduce the following notion of convergence at infinity for reg-
ular sequences in X to chambers in ∂F üX:

Definition 2.41 (Flag convergence [KLP1a, KLP2, KLP4]). A regular sequence (xn) in X is
said to flag converge to a chamber σ ∈ ∂F üX, if for some base point o ∈ X and some sequence
(σn) in ∂F üX with

sup
n
d
(
xn, V (o, σn)

)
<∞

it holds that σn → σ (in the manifold topology of ∂F üX).

This convergence is independent of the choices of o and (σn), see [KLP1a, KLP4].
For uniformly regular sequences, flag convergence can be described in terms of the visual

compactification: A uniformly regular sequence in X flag converges to σ ∈ ∂F üX iff its accu-
mulation set in the visual compactification X is contained in σ.

Flag convergence is induced by a natural topology on X t ∂F üX, making it a partial com-
pactification of X, see [KLP3, §3.8]. If rank(X) = 1, then ∂F üX is the visual boundary of X
and the topology on X t ∂F üX is the visual topology described in §1.1, making X t ∂F üX
homeomorphic to a closed ball. The situation in higher rank is more complex, since then ∂F üX
is not even a subset of the visual boundary ∂∞X.12 The topology on X t ∂F üX is obtained
as follows. Fix a basepoint o ∈ X and define the shadow Sh(B(y,R)) of an open metric ball
B(y,R) ⊂ X in X t ∂F üX as

{x ∈ X : ox is regular and ♦ox ∩B(y,R) 6= ∅} ∪ {σ ∈ ∂F üX : V (o, σ) ∩B(y,R) 6= ∅}.
Then a basis of the shadow topology on X t ∂F üX at σ ∈ ∂F üX consists of all sets Sh(B(y,R))
with R > 0 and y ∈ V (o, σ). We retain the metric topology on X.

Proposition 2.42. 1. The shadow topology is independent of the basepoint o ∈ X.
2. The shadow topology is 2nd countable and Hausdorff.
3. The shadow topology restricts on ∂F üX ∼= G/B to the manifold topology.
4. In rank 1, the shadow topology coincides with the visual topology.

A regular sequence in X flag converges to a chamber σ ∈ ∂F üX iff it converges to σ in the
shadow topology, see [KLP3].

We extend the notion of flag convergence to sequences in G:

Definition 2.43 (Flag convergence in G). A regular sequence (gn) in G flag converges to
σ ∈ ∂F üX if for some (equivalently, every) x ∈ X the sequence (gnx) flag converges to σ.

Proposition 2.57 in section 2.8 will provide equivalent conditions for flag convergence of
sequences in G.

Now, with the flag topology at our disposal, we can formulate the following Addendum to the
Higher Rank Morse Lemma regarding boundary maps for regular quasiisometric embeddings:

Theorem 2.44 (Existence of boundary map [KLP3]). Each uniformly regular quasiisometric
embedding f : Y → X from a δ-hyperbolic geodesic metric space Y continuously extends to a
map

Y t ∂∞Y → X t ∂F üX.
The boundary extension ∂∞f : ∂∞Y → ∂F üX is antipodal, i.e. maps distinct ideal points to
opposite chambers.

12However, ∂FüX is a subset of the Finsler boundary, see § 2.7 below.
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Figure 10. Shadow topology and flag convergence: The sequence of chambers
σi flag converges to the chamber σ.

Remark 2.45. 1. The appearance of ∂F üX in the extension map comes from the fact that
the restrictions q = f ◦ r of f to geodesic rays r = yξ in Y are Morse quasirays and hence are
uniformly close to (subsets of) euclidean Weyl chambers V (f(y), σ) ⊂ X, see part 1 of Remark
2.34. The quasiray q then accumulates at the chamber σ =: ∂∞f(ξ).

2. The antipodality of the boundary map follows from the Higher Rank Morse Lemma for
quasilines, see also part 1 of Remark 2.34.

2.7. Finsler compactifications. We apply the horofunction compactification construction
(see Appendix 6) to the symmetric space X and the Finsler distance function dθ̄. The resulting
compactification

X
θ̄

= X
Fins

= X t ∂Fins∞ X

is independent of θ̄ (as long as it is regular), in the sense that the identity map X → X extends
to a homeomorphism of the compactifications

X
θ̄1 → X

θ̄2

for any two regular elements θ̄i ∈ σmod.
In the case of the horofunction compactification of symmetric spaces (equipped with their

standard Riemannian metrics), horofunctions were identified with asymptotic equivalence classes
of geodesic rays in X. A similar identification can be done in the Finsler setting, but rays are
replaced with Weyl sectors and the equivalence relation is a bit more complicated.

Two Weyl sectors V (x, τ), V (x′, τ ′) are equivalent if and only if:
1. τ = τ ′.
2. For every ε > 0 there exists y ∈ V (x, τ), y′ ∈ V (x′, τ ′) such that the Hausdorff distance

between V (y, τ), V (y′, τ ′) is < ε.

Note that if rank(X) = 1, Weyl sectors are geodesic rays in X and two sectors are equivalent
iff the rays are asymptotic. The connection of equivalence classes of sectors to Finsler horo-
functions comes from the following theorem that allows an identification of element of ∂Fins∞ X

with equivalence classes [V (x, τ)] of Weyl sectors. In this theorem we let dθ̄x be the function
sending y ∈ X to dθ̄(x, y).
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Theorem 2.46 (Weyl sector representation of points at infinity in Finsler compactification
[KL1]). 1. Let xi ∈ V (p, τ) be a sequence diverging away from the boundary faces of the

sector V (p, τ). Then the sequence of Finsler distance functions dθ̄xi − dθ̄(xi, p) converges to a

horofunction which will be denoted bθ̄p,τ . The limit horofunction is independent of the sequence
(xi).

2. Every horofunction b ∈ ∂Fins∞ X is equivalent (i.e. differ by a constant) to a horofunction

bθ̄p,τ .

3. Two Finsler horofunctions bθ̄p,τ , bθ̄p′,τ ′ are equivalent if and only if the sectors V (p, τ),
V (p′, τ ′) are equivalent.

4. The identification [
bθ̄p,τ

]
↔ [V (p, τ)]

is G-equivariant, where G acts on horofunctions by the precomposition.

This identification determines the following stratification of ∂Fins∞ X. The small strata are the
sets

Sτ = {[V (p, τ)] : p ∈ X},
where τ ’s are simplices in ∂T itsX. The big strata Sτmod

are the unions

Sτmod
=

⋃
τ∈θ−1(τmod)

Sτ .

The group G acts on each big stratum transitively. This G-invariant stratification extends to

X
Fins

by declaring the entire X to be a single big stratum, S∅. The smallest big stratum is
Sσmod

, which is G-equivariantly homeomorphic to ∂F üX. This stratum is the unique closed

G-orbit in X
Fins

;
Sσmod

∼= ∂F üX ∼= G/B.

On the opposite extreme, the orbit S∅ = X is open and dense in X
Fins

.
The strata Sτmod

for τmod 6= ∅, are blow-ups of the corresponding flag manifolds Flagτmod
=

G/Pτmod
, where Pτmod

are representatives of conjugacy classes of parabolic subgroups of G,
parameterized by faces τmod of σmod. More precisely, there are G-equivariant fibrations

Sτmod
−→ Flagτmod

with contractible fibers. The fiber Sτ ⊂ Sτmod
over τ ∈ Flagτmod

can be interpreted geometrically
as the space of strong asymptote classes of Weyl sectors V (x, τ) asymptotic to τ , cf. [KL1, §3].
In particular, it is a symmetric space of rank

dimσmod − dim τmod < rankX = 1 + dimσmod.

The topological boundary ∂Sτ = Sτ − Sτ of Sτ is the union of small strata, namely of the Sν
for the simplices ν strictly “refining” τ in the sense that ν ) τ .

Theorem 2.47 ([KL1]). X
Fins

is K-equivariantly homeomorphic to the closed unit ball in
X with respect to the dual Finsler metric d∗

θ̄
on X. This compactification is G-equivariantly

homeomorphic to the maximal Satake compactification X
S

max of the symmetric space X, see
[BJ] for the definition.

Corollary 2.48. X
Fins

is a real-analytic manifold with corners on which G acts real-analytically.

Example 2.49. We now describe the (regular polyhedral) Finsler compactification of the model
flat Fmod for SL(3,R)/SO(3), in which case θ̄ is the midpoint of the edge σmod. Let σ1, . . . , σ6

denote the spherical chambers of Fmod listed in the cyclic order. Let ζi ∈ σi denote the midpoint
of σi. Let τi denote the common vertex of σi, σi+1. Each chamber σi determines a vertex vi
of the Finsler compactification Fmod

Fins
of Fmod; each τi determines an edge ei of Fmod

Fins
. In
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terms of Finsler horofunctions: Each vertex vi corresponds to the horofunction whose restriction
to Fmod is

bζi(x) = −x · ζi.
Each edge ei corresponds to the 1-parameter (modulo additive constants) family of Finsler
horofunctions

max
(
bζi + s, bζi+1

+ t
)
, s, t ∈ R.

Using the normalization s+t = 0 (we are assuming that all Finsler horofunctions are normalized
to vanish at the origin), we can write this family as

bi,s = max
(
bζi + s, bζi+1

− s
)
− |s|, s ∈ R.

As s → +∞, bi,s converges (uniformly on compacts in Fmod) to bζi , while as s → −∞, bi,s
converges to bζi+1

, representing the two vertices of the edge ei. We, thus, obtain a description of

the stratified space Fmod
Fins

as a hexagon, dual to the unit ball Bmod of the regular polyhedral
Finsler norm on Fmod.

Regarding the small strata of X
Fins

: They are points (corresponding to the spherical cham-
bers, elements of ∂F üX) and open 2-dimensional disks, which have natural geometry of hyper-
bolic 2-planes, and X itself. Note that there are two types of open 2-disks, corresponding to
two types of vertices of the spherical building ∂∞X. Taking two opposite vertices τ, τ̂ of ∂∞X
and the parallel set P (τ, τ̂) (the union of all geodesics asymptotic to τ, τ̂) splits as H2×R. The

Finsler compactification of this parallel set contains H2×{±∞}, the open disk strata of X
Fins

which have different type. See Figure 11.

We refer the reader to [KL1] for more details and to [JS] for the description of compactifica-
tions of finite dimensional vector spaces equipped with polyhedral norms.
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Figure 11. Finsler compactification of the model flat.

Definition 2.50. We say that a subset of ∂Fins∞ X is saturated if it is a union of small strata.

It is worth noting that the stabilizers of points in the Finsler compactification are pairwise
different closed subgroups of G. The stabilizers of the points at infinity in Sτ are contained in
the parabolic subgroup Pτ , where Pτ is the stabilizer in G of the simplex τ .
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We conclude this section with the following theorem which provides a satisfying metric in-
terpretation of the shadow topology:

Theorem 2.51 (Prop. 5.41 in [KL1]). The subspace topology on Xt∂F üX induced from X
Fins

is equivalent to the shadow topology on X t ∂F üX.

2.8. The higher rank convergence property. We consider the action of G on the full flag
manifold G/B = ∂F üX. The usual convergence property, compare section 1.2, fails in this
context: In higher rank, a divergent sequence (gk) never converges to a constant map on the
complement of a point in ∂F üX. However, as we noted earlier, in higher rank distinct should
be replaced with antipodal.

Given two chambers α, ω ∈ ∂F üX we define the quasiprojective map

αω : ωopp → {α},
left undefined on the set ∂F üX−ωopp consisting of chambers which are not antipodal to ω. The
chamber α is called the attractor and ω is called the repeller. We say that a sequence (gk) in G
converges to a quasiprojective map αω if gk converges to α uniformly on compacts in ωopp.

Theorem 2.52 (The higher rank convergence property [KLP1a, KLP2, KLP4]). Each regular
sequence (gk) in G contains a subsequence (gki) which converges to the map αω for some α, ω ∈
∂F üX. Conversely, if a sequence (gk) has such a limit αω, then it is regular.

i

G/B

α

ω
opp

ω

k
g

Figure 12. The convergence property.

Remark 2.53. The complement G/B−ωopp is the exceptional set for this convergence (where
uniform limit fails locally).

This theorem gives a dynamical characterization of regular sequences in G:

Corollary 2.54. A sequence (gk) in G is regular iff every subsequence (gki) contains a further
subsequence (gkij ) which converges to some quasiprojective map αω.

As in the rank 1 case:
gk → αω ⇐⇒ g−1

k → ωα.

Remark 2.55. 1. More generally, one defines τmod-regularity of a sequence relative to a face
τmod ⊆ σmod. Each τmod determines a (partial) flag manifold

Flagτmod
= G/Pτmod

.
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Then the convergence property (for arbitrary sequences (gk) in G) reads as:
Each sequence (gk) in G contains a subsequence (gki) which is either bounded in G or is

τmod-regular for some face τmod. The latter is equivalent to convergence (uniform on compacts)
of (gki) to a quasiprojective map

αω : ωopp ⊂ Flagτmod
→ α ∈ Flagτmod

.

Here ω is a face of ∂T itsX of the type opposite to τmod. We refer to [KLP2, KLP4] for details.
2. An equivalent notion of convergence of sequences in G had been introduced earlier by

Benoist in [Ben], see in particular part (5) of his Lemma 3.5.

Example 2.56. Consider the case G = SL(n,R) and a sequence of diagonal matrices gk =
Diag(a1,k, . . . , an,k) ∈ G with a1,k ≥ . . . ≥ an,k > 0. Recall from Example 2.24 that regularity
of the sequence (gk) amounts to the conditions

lim
k→∞

ai,k
ai+1,k

=∞ for i = 1, ..., n− 1.

The attractive flag for the sequence (gk) is

α = (〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ 〈e1, ..., en−1〉) ,

and the repelling flag is

ω = (〈en〉 ⊂ 〈en, en−1〉 ⊂ . . . ⊂ 〈en, ..., e2〉) .

It is useful to reformulate the definition of flag convergence of a regular sequence (gn) to a
chamber α ∈ ∂F üX in terms of the dynamics on the flag manifold ∂F üX:

Proposition 2.57 (Flag convergence criteria, [KLP1b]). The following are equivalent for a
regular sequence (gn) in G:

1. The sequence (gn) flag converges to α ∈ ∂F üX.
2. Every subsequence in (gn) contains a further subsequence which converges to a quasipro-

jective map αω : ∂F üX → ∂F üX.
3. There exists a bounded sequence bn ∈ G such that the sequence (gnbn) converges to a

quasiprojective map αω : ∂F üX → ∂F üX.

We equip the smooth compact manifold G/B with an auxiliary Riemannian metric (not
necessarily K-invariant). This allows us to define expansion properties for elements g ∈ G at
chambers σ ∈ G/B in the same way it was done in the rank 1 situation, see section 1.5.

We can now introduce the stronger notion of conical convergence of regular sequences in G
to chambers in ∂F üX, which first appeared in [Al].

Definition 2.58 (Conical convergence in X to chambers at infinity). Let σ ∈ ∂F üX be a
chamber. A regular sequence (xk) in X converges to σ conically if there exists a constant R
and a euclidean Weyl chamber V = V (x, σ) ⊂ X such that the sequence (xk) is contained in
the R-neighborhood of V . A sequence (gk) in G converges to σ ∈ ∂F üX conically if for some
(equivalently, every) x ∈ X the orbit sequence (gkx) converges conically to σ.

Thus, conical convergence implies flag convergence, but the converse is false, as in rank 1.
We conclude with alternative formulations of the conical convergence gk → σ.

Proposition 2.59 (Conical convergence criteria, [KLP2, KLP4]). a. Suppose that a regular
sequence gk ∈ G flag converges to σ ∈ ∂F üX. Then the following are equivalent:

1. (gk) converges conically to σ.
2. For some (equivalently, every) point x ∈ X and maximal flat F ⊂ X whose visual

boundary contains σ, the sequence of maximal flats g−1
k (F ) is precompact in the space of all

maximal flats in X.
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3. For some (equivalently, every) chamber σ̂ ∈ σopp, the sequence g−1
k (σ, σ̂) is precompact in

the space of antipodal pairs of chambers in ∂F üX.
b. Conical convergence gk → σ implies that the sequence (g−1

k ) has diverging infinitesimal
expansion13 at σ.

3. Discrete subgroups: Geometric and dynamical conditions

As before, G denotes the identity component of the isometry group of a symmetric space X
of noncompact type, and Γ < G denotes a discrete subgroup.

We first define certain classes of discrete subgroups Γ < G within which we will be working
throughout most of this paper, namely of discrete subgroups which exhibit rank 1 behavior
relative to (conjugacy classes of) parabolic subgroups P < G. We then discuss and compare
various geometric and dynamical conditions for such subgroups. As we noted earlier, in this
survey we describe the theory for simplicity only in the (regular) case relative to minimal
parabolic subgroups P = B. In the general (τmod-regular) case, almost all the results go
through with suitable modifications; for the details we refer the reader to either one of the
papers [KLP1b, KLP2, KLP4]. Among the major differences in the τmod-regular case are
that one has to replace limit sets in the full flag manifold G/B with limit sets in partial flag
manifolds G/P , Weyl cones over chambers are replaced with suitable Weyl cones over stars
of τmod-type simplices, the expansion property occurs in the partial flag manifolds, various
notions of regularity have to be modified and the Bruhat order on the Weyl group is replaced
with orders on its coset spaces.

3.1. Regularity and limit sets.

Definition 3.1. The visual limit set

Λ(Γ) ⊂ ∂∞X

of Γ is the set of accumulation points of a Γ-orbit Γx ⊂ X in the visual compactification
X = X t ∂∞X. The elements of Λ(Γ) are the visual limit points. Similarly, the Finsler limit
set

ΛFins
x (Γ) ⊂ ∂Fins∞ X

of Γ is the accumulation set of the orbit Γx in the Finsler compactification X
Fins

= Xt∂Fins∞ X.

Remark 3.2. While the visual limit set is independent of the orbit Γx, the Finsler limit set
depends on it.

We define regularity of subgroups as an asymptotic geometric condition on their orbits:

Definition 3.3 (Regular subgroups [KLP1a]). A discrete subgroup Γ < G is regular (resp.
uniformly regular) if each divergent sequence of elements in Γ has this property (cf. Defs. 2.21
and 2.22).

Regularity can be read off the location of limit sets:

Remark 3.4. 1. Uniform regularity of Γ is equivalent to the property that the visual limit set
consists only of regular ideal boundary points.

2. Regularity of Γ is equivalent to the property that the Finsler limit set ΛFins
x (Γ) of some

(equivalently, any) orbit Γx is contained in the stratum ∂F üX ⊂ ∂Fins∞ X.

13See §7 for the definition.
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Remark 3.5. The notion of regularity for subgroups Γ < Isom(X) equally makes sense when
X is a euclidean building. The definition remains the same since for euclidean buildings one
also has a ∆-valued “distance” function d∆ : X × X → ∆, where ∆ is the model euclidean
Weyl chamber of X, see Appendix 9. Most of the results mentioned in this survey go through
without much change in the case when X is a locally compact euclidean building.

Definition 3.6 (Chamber limit set [KLP1a]). The chamber limit set

Λch(Γ) ⊂ ∂F üX

consists of the chambers σ ∈ ∂F üX for which there exists a sequence (γk) in Γ flag converging
to σ, γk → σ (see Definitions 2.41 and 2.43). The subgroup Γ < G is (σmod-)elementary if
Λch(Γ) consists of at most two points.

Remark 3.7. 1. More generally, in [KLP1b, section 6.4] we define the notion of τmod-limit sets
Λτmod

(Γ) ⊂ Flagτmod
= G/Pτmod

for discrete subgroups Γ < G. (One has Λch = Λσmod
.)

2. Benoist introduced in [Ben, §3.6] a notion of limit set ΛΓ for Zariski dense subgroups Γ
of reductive algebraic groups over local fields which in the case of real semisimple Lie groups
is equivalent to our concept of chamber limit set Λch.

14 What we call the τmod-limit set Λτmod

for other face types τmod ( σmod is mentioned in his Remark 3.6(3), and his work implies
that, in the Zariski dense case, Λτmod

is the image of Λch under the natural projection ∂F üX =
Flagσmod

→ Flagτmod
of flag manifolds.

Example 3.8. Consider X = X1 ×X2, the product of two real hyperbolic spaces, g = (g1, g2)
an infinite order isometry of X, where g1, g2 are isometries of X1, X2. Then the cyclic subgroup
Γ = 〈g〉 is regular if and only if neither g1 nor g2 is elliptic. The subgroup Γ is uniformly regular
if and only if both g1, g2 are hyperbolic isometries of X1, X2 or both are parabolic isometries. A
cyclic group generated by an element of mixed type is not uniformly regular. The Furstenberg
boundary of X is the product ∂∞X1×∂∞X2. If Γ, as above, is regular and λ+

i , λ
−
i are the fixed

points of gi in ∂∞Xi,
15 then Λch(Γ) = {(λ−1 , λ−2 ), (λ+

1 , λ
+
2 )}. In particular, in the mixed case

if, say, g1 is hyperbolic and g2 is parabolic with the unique fixed point λ+
2 = λ−2 =: λ2, then

Λch(Γ) = {(λ−1 , λ2), (λ+
1 , λ2)}. Note that if Γ is uniformly regular then the limit set Λch(Γ) is

antipodal, but it is not antipodal if Γ is merely regular. The limit chambers are conical limit
points if g is uniformly regular of type hyperbolic-hyperbolic, and otherwise they are not.

The next proposition gives alternative descriptions of chamber limit sets for regular and
uniformly regular subgroups in terms of Finsler and visual compactifications:

Proposition 3.9 ([KL1, KLP1a]). 1. If Γ < G is regular then Λch(Γ) ⊂ ∂F üX is the Finsler
limit set of Γ. (In this case, it is independent of the Γ-orbit.)

2. If Γ < G is uniformly regular then Λch(Γ) ⊂ ∂F üX is the set of chambers σ ∈ ∂F üX which
contain visual limit points. (These are then contained in their interiors.)

Let us mention in this context the following structural result for the visual limit set:

Theorem 3.10 ([Ben, part of Thm. 6.4]). For every Zariski dense discrete subgroup Γ < G
there exists an ι-invariant closed convex subset `(Γ) ⊂ σmod with nonempty interior, such that
for each chamber σ ∈ ∂F üX satisfying int(σ) ∩ Λ(Γ) 6= ∅ it holds that θ(σ ∩ Λ(Γ)) = `(Γ).

Thus, in the case of uniformly regular Zariski dense subgroups Γ < G, the visual limit set
Λ(Γ) is a Γ-equivariant product bundle over Λch(Γ) with fiber ∼= `(Γ).

14Benoist’s limit set ΛΓ is contained in a partial flag manifold YΓ which in the case of real Lie groups is the
full flag manifold G/B, see the beginning of §3 of his paper. In this case, ΛΓ consists of the limit points of the
sequences in Γ contracting on G/B, cf. his Definitions 3.5 and 3.6.

15I.e. λ+
i and λ−i are the attractive and repulsive fixed points if gi is hyperbolic, and λ+

i = λ−i is the unique
fixed point if gi is parabolic.
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In general, verifying (uniform) regularity of a subgroup is not an easy task. See e.g. [KLP4,
Thm 3.51] and Theorem 3.35 of this paper for results of this kind. For Zariski dense subgroups
the verification of regularity becomes easier. The next result provides a sufficient condition:

Theorem 3.11. Let ρ : Γ→ G be a representation whose image is Zariski dense in G. Suppose
that Z is a compact metrizable space, Γ y Z is a discrete convergence group action (with finite
kernel), and f : Z → ∂F üX is a ρ-equivariant topological embedding. Then ρ has finite kernel
and ρ(Γ) is regular.

Proof. In view of the Zariski density of ρ(Γ), also f(Z) is Zariski dense in ∂F üX. Consequently,
the assumption that Γ acts on Z with finite kernel implies that ρ has finite kernel.

We assume that ρ(Γ) is not regular. We will be using certain notions and a proposition from
[KL1, §9.1.2]. Given a simplex τ ∈ Flagτmod

, the subvariety

stF ü(τ) ⊂ ∂F üX

is the set of chambers σ containing τ as a face. Similarly, for τ− ∈ Flagιτmod
,

CF ü(τ−) ⊂ ∂F üX

is the Zariski open and dense subset equal to the union⋃
τ∈C(τ−)

stF ü(τ).

Suppose that for some sequence γi → ∞ in Γ, the sequence gi = ρ(γi) ∈ G is not regular.
Hence, it contains a subsequence contained in a tubular neighborhood of the boundary of ∆.
Then, after extraction, since ∆ has only finitely many faces, the sequence (gi) is τmod-pure for
some proper face τmod of σmod. This means that there exists a constant D such that for each i
the vectors vi := d∆(o, gi(o)) ∈ ∆ belong to the D-neighborhood of some proper face Vτmod

of
∆ (the Weyl sector over the face τmod). Therefore, according to [KL1, Prop. 9.4], after further
extraction, there exists a pair of simplices τ+ ∈ Flagτmod

, τ− ∈ Flagιτmod
such that the sequence

(gi) converges on the Zariski open and dense subset CF ü(τ−) ⊂ ∂F üX to a nonconstant algebraic
map φ : CF ü(τ−) → stF ü(τ+). Since φ is algebraic, it cannot be constant on a Zariski dense
subset. On the other hand, by the convergence property on Z, after extraction, (gi) converges
to a constant map on f(Z)− {f(z)} for some (exceptional) point z ∈ Z. A contradiction. �

3.2. Generalized convergence subgroups. It is useful to reformulate the concepts of (cham-
ber) limit set and regularity for discrete subgroups purely in terms of their dynamics on ∂F üX.

Definition 3.12 (Convergence subgroups [KLP1b]). A discrete subgroup Γ < G is a σmod-
convergence16 subgroup if for every divergent sequence of elements γk ∈ Γ, every subsequence
of (γk) contains a further subsequence which converges to a quasiprojective map αω : ∂F üX →
∂F üX, cf. section 2.8.

Corollary 2.54 yields:

Theorem 3.13 ([KLP2, KLP4]). A discrete subgroup Γ < G is regular iff it is a σmod-
convergence subgroup.

Furthermore, the chamber limit set Λch(Γ) is the set of chambers α ∈ ∂F üX for which there
exists a sequence γk ∈ Γ such that γk → αω for some ω ∈ ∂F üX.

We note that in [KLP1b] we formulate a more abstract notion of generalized convergence
actions of groups on topological spaces in terms of accumulation of sequences gk ∈ G at subsets,
which covers σmod-convergence groups and their limit sets above. This more abstract notion

16We add the prefix σmod in order to distinguish from the notion of abstract convergence group in topological
dynamics, cf. Appendix 8.
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explains why balanced thickenings (see Definition 4.7 and (4.3)) of limit sets appear naturally
in the study of regular subgroups of G. We also note that the convergence type behavior in
the sense of accumulation has been studied earlier by Karlsson, Papasoglu and Swenson in the
general context of nonpositive curvature, see [Kar, Thm. 1] and [PS, Thm. 4].

3.3. Rank 1 discrete subgroups Γ < G. Currently, it appears that regularity (or even
uniform regularity) alone is not enough to fully capture “rank 1” behavior of discrete subgroups
Γ < G. We introduce one extra condition on the chamber limit set:

Definition 3.14. A discrete subgroup Γ < G is antipodal (A), if its limit chambers are pairwise
antipodal.

We now can define a class of discrete subgroups which exhibit rank 1 behavior:

Definition 3.15. A discrete subgroup Γ < G is regular antipodal (RA) or a rank 1 discrete
subgroup of G if it is regular and antipodal.

The higher rank convergence property (Definition 3.12) then implies:

Corollary 3.16. If Γ is RA, then the action Γ y Λch(Γ) is an abstract convergence action.17

Proof. Suppose that (γk) is a sequence of distinct elements in Γ. In view of the regularity of Γ,
after extraction, γk → αω uniformly on compacts in ωopp for some limit chambers α, ω ∈ Λch(Γ).
Due to antipodality, Λch(Γ)−{ω} ⊂ ωopp. Therefore, γk converges to α uniformly on compacts
in Λch(Γ)− {ω}. �

Thus, restricting to the chamber limit set of an RA subgroup brings us back to the familiar
rank 1 setting!

3.4. RCA subgroups. We now begin discussing various geometric and dynamical conditions
for regular discrete subgroups. The first one concerns the asymptotic geometry of orbits, namely
whether limit chambers can be reached along orbits in a “straight” way:

Definition 3.17 (Conical). A limit chamber σ ∈ Λch(Γ) is conical if there exists a sequence
γk ∈ Γ such that γk → σ conically, cf. Definition 2.58.

A discrete subgroup Γ < G is conical if all its limit chambers are conical.

Theorem 3.18 (Extrinsic conicality is equivalent to intrinsic conicality [KLP2, KLP4]). For
nonelementary RA subgroups Γ < G, conicality is equivalent to intrinsic conicality in terms of
the action Γ y Λch(Γ), as defined in Appendix 8.

Corollary 3.19. A nonelementary RA subgroup Γ < G is conical iff the action Γ y TΛch on
triples of distinct limit chambers is cocompact.

We now arrive to the first definition of geometric finiteness in higher rank, generalizing the
Beardon-Maskit definition:

Definition 3.20 (RCA subgroups [KLP1a, KLP1b]). A discrete subgroup Γ < G is RCA if it
is regular, conical and antipodal.

Remark 3.21. An analogous definition and theory exist in the τmod-regular case. One replaces
the Γ-action on ∂F üX with the action on the partial flag manifold Flagτmod

.

Note that, a priori, it is unclear even why RCA groups are finitely generated. However,
as a consequence of Bowditch’s theorem [Bo4] about the dynamical characterization of word
hyperbolic groups, one obtains:

17See Appendix 8.
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Corollary 3.22. Each nonelementary RCA subgroup Γ is word hyperbolic and its Gromov
boundary ∂∞Γ is equivariantly homeomorphic to Λch(Γ).

For RCA groups regularity is equivalent to uniform regularity:

Theorem 3.23 (RCA implies uniform regularity [KLP2, KLP4]). If Γ < G is nonelementary
RCA then it is uniformly regular.

3.5. Expansion at infinity. The RCA condition discussed above is in terms of the asymp-
totics of the group action on the symmetric space X. Our next definition is in terms of the
dynamics at infinity, more precisely, of the action on the Furstenberg boundary ∂F üX.

Definition 3.24 (CEA subgroup [KLP1b, KLP4]). A discrete subgroup Γ < G is CEA (con-
vergence, expanding, antipodal) if:

1. Γ < G is a σmod-convergence subgroup.
2. The action Γ y ∂F üX is expanding at Λch(Γ) in the sense of Appendix 7.
3. The chamber limit set Λch(Γ) is antipodal.

We recall that the convergence condition is equivalent to regularity, see Theorem 3.13.18

For nonelementary subgroups Γ < G, the second condition is satisfied if the restricted action
Γ y Λch(Γ) is expanding, compare Theorem 8.8 in Appendix 8.

Expansivity is useful for proving cocompactness of the Γ-action on domains of discontinuity,
see [KLP1a]. We will come back to this later.

3.6. Asymptotically embedded subgroups and Anosov representations. The next con-
dition we give is in terms of boundary maps into ∂F üX. It requires the discrete subgroups
Γ < G to be intrinsically word hyperbolic, unlike our earlier conditions where hyperbolicity
was a consequence.

We will consider boundary maps of the following kind:

Definition 3.25. A map into ∂F üX is antipodal if it sends distinct points to antipodal chambers.

Remark 3.26. 1. Antipodal maps are injective.
2. An antipodal continuous map is the same thing as a transversal map in the sense of [GW].

Definition 3.27 (Asymptotically embedded subgroups [KLP1a, KLP4]). A discrete subgroup
Γ < G is asymptotically embedded if it is RA, intrinsically word hyperbolic, and if there exists
a Γ-equivariant homeomorphism

β : ∂∞Γ
∼=−→ Λch(Γ) ⊂ ∂F üX.

Note that the boundary map β is necessarily antipodal in this case. Furthermore, any orbit
map Γ→ X continuously extends by β to a map

Γ t ∂∞Γ→ X t ∂F üX
from the visual (Gromov) compactification of Γ into the partial compactification X t ∂F üX
equipped with the topology of flag convergence19, see [KLP4, Prop 3.20].

Below we present two related notions, boundary embedded subgroups and Anosov subgroups.
Instead of requiring an identification of the Gromov boundary with the chamber limit set, we
can at first require only the existence of an equivariant antipodal embedding into ∂F üX:

Definition 3.28 (Boundary embedded subgroups [KLP1a, KLP4]). A discrete subgroup Γ <
G is boundary embedded if it is intrinsically word hyperbolic and there exists an equivariant
antipodal continuous map

β′ : ∂∞Γ→ ∂F üX,

called a boundary embedding for Γ.
18We impose the convergence instead of the regularity condition in order to make the notion purely dynamical.
19Compare §2.6.
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Remark 3.29. 1. Boundary embedded is the topological part of the definition of Anosov
subgroups in [La, GW]. The dynamical part is omitted in this definition.

2. Boundary embeddings are in general not unique. This is so by trivial reasons if |∂∞Γ| = 2,
but it also happens when |∂∞Γ| ≥ 3, see e.g. [KLP2, Example 6.20].

There is the following dichotomy for the relation of boundary embeddings with the chamber
limit set:

Theorem 3.30 (Boundary embedding dichotomy [KLP4, Thm. 3.11]). Suppose that Γ < G is
a boundary embedded regular subgroup. Then for each boundary embedding β′ : ∂∞Γ → ∂F üX
we have the following dichotomy:

1. Either β′(∂∞Γ) = Λch(Γ), or
2. β′(∂∞Γ) ∩ Λch(Γ) = ∅ and

Λch(Γ) ⊂
⋂

σ∈β′(∂∞Γ)

(∂F üX − σopp).

In the first case, Γ is asymptotically embedded, while the second alternative implies that Λch(Γ)
is contained in a proper subvariety of ∂F üX.

The second alternative cannot occur in the Zariski dense case. Therefore:

Corollary 3.31. If Γ < G is regular, Zariski dense and β′ : ∂∞Γ → ∂F üX is a boundary
embedding, then β′(∂∞Γ) = Λch(Γ). In particular, Γ < G is asymptotically embedded.

We note that the last part of this corollary was already proven in [GW]. The next theorem
shows that one does not need Zariski density in order to conclude that Γ < G is asymptotically
embedded.

Theorem 3.32 ([KLP2] and [KLP4, Thm. 3.15]). A regular subgroup Γ < G is boundary
embedded iff it is asymptotically embedded.

Remark 3.33. 1. In general, there may exist several boundary embeddings for Γ, and only
one of them yields the asymptotic embedding.

2. Theorem 3.32 is one of the few results in the theory which hold only in the regular case
(as opposed to the τmod-regular case).

Now we give our versions, see [KLP2, KLP4], of the definition of Anosov subgroups, which
were originally defined in [La, GW] using expansion properties of geodesic flows. Our definitions
do not use geodesic flows of word hyperbolic groups but replace them by a simpler coarse
geometric object, namely by the space of discrete geodesics with respect to a word metric.
These were the first such definitions which are close to Anosov in spirit but do not use flows.

We fix a Riemannian metric on ∂F üX. Moreover, we will assume in the next definition that
the word hyperbolic group Γ is equipped with a fixed word metric.

Definition 3.34 (Anosov subgroups, [KLP2, §6.5]). 1. A subgroup Γ < G is Anosov if it
is boundary embedded with boundary embedding β′ and, in addition, for each normalized20

discrete geodesic ray r : k 7→ γk ∈ Γ asymptotic to ξ ∈ ∂∞Γ the sequence (γ−1
k ) is uniformly

exponentially infinitesimally expanding at β′(ξ) ∈ ∂F üX. More precisely, there are constants
C,A > 0 depending only on the subgroup Γ < G, the word metric on Γ and the Riemannian
metric on ∂F üX such that

ε(γ−1
k , β′(ξ)) ≥ AeCk

for k ≥ 0. Here, ε is the infinitesimal expansion factor defined in Appendix 7.
2. A subgroup Γ < G is non-uniformly Anosov if it is boundary embedded with boundary

embedding β′ and, in addition, for each discrete geodesic ray r : k 7→ γk ∈ Γ asymptotic to

20r(0) = 1 ∈ Γ
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ξ ∈ ∂∞Γ, the sequence (γ−1
k ) contains a subsequence with diverging infinitesimal expansion at

β′(ξ) ∈ ∂F üX,

sup
k∈N

ε(γ−1
k , β′(ξ)) =∞.

Note that due to the stability of quasigeodesics in word hyperbolic groups, the definition is
independent of the word metric on Γ.

Theorem 3.35 ([KLP2, KLP4]). Suppose that Γ < G is intrinsically word hyperbolic and not
virtually cyclic. Then:

1. Γ < G is non-uniformly Anosov iff Γ < G is Anosov iff Γ < G is asymptotically embedded.
2. If these conditions are satisfied, then the boundary maps for the Anosov and asymptotic

embeddedness conditions coincide.

Remark 3.36. Note that the original Anosov condition in [La, GW] involves the space G of
(equivalence classes) of all parameterized geodesics in Γ, equipped with a suitable topology.
This space admits two commuting actions: a left action of Γ and a right action of R (shifting
geodesics). Let (∂F üX × ∂F üX)opp denote the subset of ∂F üX × ∂F üX consisting of pairs of
opposite chambers. We regard the product space

B := G × (∂F üX × ∂F üX)opp

as a trivial bundle over G; then the boundary map β : ∂∞Γ → ∂F üX defines a section of this
bundle which projects to a section sβ of the quotient bundle

Γ\B → Γ\G.

The commuting actions of Γ and R lift to commuting actions on B, where R acts trivially on
the second factor, while Γ acts on the second factor via the restriction of the natural product
action on ∂F üX. The original Anosov axiom amounts to an expansion/contraction condition
(along sβ) for the right R-action on Γ\B. The basic dynamical duality principle suggests that
this condition can be reinterpreted as expansion/contraction property for the left Γ-action on
B/R: This is what the our interpretation of the Anosov property amounts to (after a careful
rewriting of the definitions involved), see [KLP2, §6.5] for a detailed discussion.

3.7. URU subgroups. The next set of definitions is in terms of extrinsic coarse geometric
properties.

A finitely generated subgroup Γ < G is said to be undistorted if for some (every) point x ∈ X
the orbit map

γ 7→ γx ∈ X
is a quasiisometric embedding Γ→ X, where Γ is equipped with a word metric. Equivalently,
the inclusion Γ ⊂ G is a quasiisometric embedding.

Definition 3.37 (URU subgroups, [KLP3, KL1]). A finitely generated discrete subgroup Γ < G
is URU if it is uniformly regular and undistorted.

Remark 3.38. There are regular undistorted subgroups which are not uniformly regular. Take,
for instance, the cyclic groups in Example 3.8 where g1 is hyperbolic and g2 is parabolic. There
are also finitely generated nonabelian free subgroups of this kind in PSL(2,R) × PSL(2,R);
moreover, some of such subgroups are not even P -Anosov for any P , see [GGKW1, Appendix
A]. Similar examples also exist among closed surface subgroups of PSL(2,C)×PSL(2,C) and
closed surface subgroups of Isom(T × T ), where T is a simplicial tree, see [KL2].

The next condition imposes a “Morse” property on the images of discrete geodesics in Γ. A
priori stronger than URU, it is equivalent to it because of the Higher Rank Morse Lemma and
can be viewed as describing the extrinsic coarse geometry of URU subgroups.
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Definition 3.39 (Morse subgroups, [KLP2]). A finitely generated discrete subgroup Γ < G is
Morse if some (equivalently, every) orbit map Γ→ X is Morse, cf. Definition 2.32.

The next condition is motivated by the Finsler geometric interpretation of the Morse Lemma,
see Corollary 2.37, that uniformly regular quasigeodesics in X are Finsler quasiconvex. Here,
a subset A ⊂ X is called Finsler quasiconvex if there exists a constant R > 0 such that for
any pair of points x1, x2 ∈ A there exists a Finsler geodesic21 from x1 to x2 contained in the
R-neighborhood of A.

Definition 3.40 (Finsler quasiconvex subgroups, [KL1]). A subgroup Γ < G is Finsler quasi-
convex if some (equivalently, every) Γ-orbit Γx ⊂ X is Finsler quasiconvex.

This notion mimics the notion of quasiconvexity for discrete subgroups of rank 1 Lie groups
discussed in section 1.7. The key difference with rank 1 is that, when rank(X) ≥ 2, Finsler
geodesics connecting pairs of points in X are no longer unique.

3.8. Equivalence of conditions. We can now put together a theorem which states the equiv-
alence of various geometric and dynamical notions of geometric finiteness for discrete isometry
groups of symmetric spaces exhibiting rank 1 behavior. This theorem is a combination of re-
sults of [KLP2] and [KLP3]. It will be augmented by two more equivalent notions in section
4.5 (Corollary 4.43).

Theorem 3.41 (Equivalence). For discrete subgroups Γ < G the following conditions are
equivalent in the nonelementary22 case:

1. Γ < G is RCA.
2. Γ < G is CEA.
3. Γ < G is asymptotically embedded.
4. Γ < G is boundary embedded.23

5. Γ < G is Anosov.
6. Γ < G is non-uniformly Anosov.
7. Γ < G is Morse.
8. Γ < G is URU.
9. Γ < G is uniformly regular and Finsler quasiconvex.

The most difficult step in the proof of this theorem is from URU to Morse: It follows from the
Morse Lemma for uniformly regular quasigeodesics and the companion results on hyperbolicity
and boundary maps in [KLP3].

Remark 3.42. The nonelementary assumption in the theorem most likely could be dropped.
The reason for including it is that it is currently unknown if there are RCA (or CEA) subgroups
Γ < G with Λch(Γ) consisting of a single point.

Remark 3.43 (Relation with the paper [GGKW1]). A weaker form of the equivalence of the
conditions Anosov and URU was established in [GGKW1, Thm. 1.3] after [KLP2, KLP3] had
been available. There are two major differences: First, the discussion in [GGKW1] is restricted
to word hyperbolic subgroups, while URU only assumes finite generation. Second, the URU
condition is replaced in [GGKW1] with the (a priori) stronger “CLI” (coarse linear increase)
condition, see [GGKW1, Thm 1.3(iv)]. The difference in character between the URU and CLI
conditions is, roughly, like the difference between asymptotic linear growth and quasiisometric
embedding for Lipschitz maps N→ R+; the former implies the latter but not conversely. More
precisely, to describe the difference between URU and CLI for a finitely generated subgroup

21I.e. a geodesic with respect to a fixed regular polyhedral Finsler metric dθ̄ on X.
22Here, “nonelementary” means |∂∞Γ| ≥ 3 in the Anosov conditions 5 and 6, which assume word hyperbolicity

but no regularity, and means |Λch(Γ)| ≥ 3 in all other cases.
23This, unlike the other equivalences, is limited to σmod-regular subgroups Γ < G.



40 MICHAEL KAPOVICH, BERNHARD LEEB

Γ < G, fix a word metric on Γ and a point x ∈ X. Then consider for all discrete geodesic rays
r : N→ Γ normalized by r(0) = e their ∆-distance projections

r̄ := d∆(x, rx) : N→ ∆.

The subgroup Γ < G is URU iff the paths r̄ are drifting away from ∂∆ at a uniform linear rate,
in a coarse sense.24 This is equivalent to the uniform linear growth of α ◦ r̄ for all simple roots
α. On the other hand, Γ < G is CLI iff the α◦ r̄ uniformly increase, again in a coarse sense, for
all positive roots α.25 There is the following geometric interpretation of the CLI condition from
the Morse viewpoint: CLI is equivalent to the r̄ being uniform Morse quasigeodesic rays. For
arbitrary Lipschitz paths N → ∆, the linear drift condition is strictly weaker than the Morse
condition. In particular, URU follows from CLI and, on the face of it, appears weaker. However,
it is not hard to see that the paths q̄ := d∆(q(0), q) : [0, T ] → ∆ coming from uniform Morse
quasigeodesics q : [0, T ]→ X are themselves uniform Morse quasigeodesics in ∆. In particular,
CLI is a consequence of Morse. Thus, [GGKW1, Thm. 1.3] and in particular the implication
Anosov⇒CLI follow from [KLP2, KLP3] (that also the latter implication follows is stated as
unclear in [GGKW1, §1.3 of version 5]). On the other hand, the implication URU⇒Anosov,
which is based on our Higher Rank Morse Lemma [KLP3], does not follow from [GGKW1].

3.9. Consequences. In this section, we briefly discuss some properties shared by the groups
satisfying (one of) the conditions listed in Theorem 3.41.

In some cases, it is more natural to talk about representations rather than subgroups. We
call a representation Γ → G of a word hyperbolic group Γ a Morse representation if some
(every) orbit map Γ→ X is Morse, see [KLP2].

1. Local-to-global principle. The local-to-global principle for Morse quasigeodesics (The-
orem 2.40) implies one for Morse representations:

Theorem 3.44 (Local-to-global principle for Morse representations [KLP2]). Suppose that
ρ : Γ→ G is a representation of a word hyperbolic group Γ such that some orbit map Γ→ X,
restricted to a sufficiently large ball in the Cayley graph (say, centered at 1), is locally Morse
of sufficiently good quality. Then ρ is a Morse representation.

More precisely, given Morse data (Θ, B, L,A,D) and the scale S determined by them via
Theorem 2.40 (for some Θ′), if the orbit map Γ → X sends discrete geodesic segments of
length ≤ S in the Cayley graph (say, passing through 1) to (Θ, B, L,A,D)-Morse quasigeodesic
segments in X, then ρ is a Morse representation.

2. Structural stability. Structural stability was first established for convex-cocompact
subgroups of rank 1 Lie groups by Sullivan, see section 1.8. The following theorem is a genere-
lization of Sullivan’s result:

Theorem 3.45 (Structural stability of Morse representations). For a word hyperbolic group Γ,
the space of Morse representations ρ : Γ ↪→ G is an open subset of Hom(Γ, G). On this subset,
the boundary map βρ : ∂∞Γ→ Λch(ρ(Γ)) depends continuously on the Morse representation ρ.

Here, the representation space Hom(Γ, G) is equipped with the topology of pointwise con-
vergence, i.e. limn→∞ ρn = ρ iff for every element γ of Γ

lim
n→∞

ρn(γ) = ρ(γ).

24In the general τmod-regular case, ∂∆ is replaced with ∂τmod
∆ = V (0, ∂τmod

σmod), the union of the walls of
∂∆ not containing the sector V (0, τmod).

25In the τmod-regular case, one takes the simple, respectively, positive roots which do not vanish on V (0, τmod),
equivalently, which are nonnegative on the symmetrized cone Wτmod

∆ ⊂ Fmod. Here Wτmod
< W denotes the

stabilizer of τmod.
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Remark 3.46. Structural stability of Anosov representations has first been proven in [La]
for fundamental groups of closed negatively curved manifolds, and in [GW] for general word
hyperbolic groups. Our proof in [KLP2] derives structural stability, from the Morse viewpoint,
as a direct consequence of the local-to-global principle for Morse maps (see Theorem 2.40).

3. Semidecidability.26 It is semidecidable if a representation ρ : Γ→ G of a word hyperbolic
group Γ is Morse.

The proof of semidecidability given in [KLP2] is also based on the local-to-global principle
for Morse maps: The algorithm explores finite subsets F of the Cayley graph of Γ and ranges
of Morse data (Θ, B, L,A,D) to determine if an orbit map Γ→ X is (Θ, B, L,A,D)-Morse on
F .

4. Cocompactness. Each Morse subgroup Γ < G acts properly discontinuously and co-
compactly on various domains associated with the action Γ y X. These domains are contained
in the flag manifold ∂F üX = G/B and in the Finsler compactification of X. We refer to sections
4.3 and 4.5 for the precise statements.

3.10. Examples: Morse-Schottky subgroups. Let Γ be a free group on k generators, de-
noted α1, α2,..., αk. Realize each αi as a regular hyperbolic isometry gi of X, i.e. gi preserves a
regular geodesic line and translates along it. Assume furthermore that the isometries gi are in
general position with respect to each other, in the sense that the subset of ∂F üX consisting of
the 2k attractive and repulsive chambers σ±1 , ..., σ

±
k of the isometries g1, ..., gk is antipodal.

The following theorem was proven in [KLP2, Thm. 7.40] for k = 2 (2-generated free groups),
but the same proof goes through for arbitrary k ∈ N.

Theorem 3.47. There exists N0 such that for all N ≥ N0

ρ : αi 7→ gNi , i = 1, ..., k,

defines a (faithful) Morse representation ρ : Γ→ G.

Remark 3.48. (i) Regarding earlier work on the construction of free subgroups of Lie groups,
note that Tits, when proving the Tits alternative using his ping-pong argument, only shows
the injectivity of certain representations of free groups, although his proof clearly also implies
the discreteness of their images. Benoist [Ben] improved on Tits’ result and obtained control
on the asymptotic geometry. In particular, he produced discrete free subgroups which, in our
terminology, are uniformly regular. Our construction [KLP2, Theorem 7.40] is the first to
control the coarse geometry. We prove that the resulting free subgroups are Morse, which
amounts to describing the extrinsic coarse geometry of their orbits (see Definitions 2.32(i)
and 3.39). In particular, they are undistorted.

Whereas the arguments of Tits and Benoist use the dynamics at infinity, our approach is
different. We work inside the symmetric space and build up representations of free groups using
a version of the local-to-global principle for Morse representations, see Theorem 3.50 below.

(ii) In [KLP2, Theorem 7.40] we prove a more general version of Theorem 3.47 which allows
for τmod-regular generators.

Our proof of Theorem 3.47 is based on the notion of straight paths in symmetric spaces.27

This concept is a higher rank analogue of a piecewise geodesic path in a rank 1 symmetric space,
where each edge is sufficiently long and the vertex angles are close to π; such paths are known
to be uniformly quasigeodesic. In higher rank, the angle condition has to be suitably modified,
in order to make sure that the path bends “transversally to the flat directions”. Below is the
precise definition.

26See section 1.8 for the definition of semidecidability.
27In fact, the notion of straight paths and Theorem 3.50 below are the key technical tools for proving our

local-to-global principles Theorems 2.40 and 3.44 for Morse quasigeodesics and Morse subgroups.
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Let
x0x1 . . . xn

be a piecewise geodesic path in X with vertices xi. We call such a path s-spaced if

d(xi−1, xi) ≥ s

for all i. In order to define straightness, we consider the chain of diamonds

Di = ♦xi−1xi

associated to our path and define ζ̄-angles

∠ζ̄(Di−1, Di)

between consecutive diamonds as follows. As an auxiliary datum, we fix an ι-invariant regular
type ζ̄ ∈ int(σmod). For every regular segment xy, respectively, for the associated diamond

♦xy = V (x, σ) ∩ V (y, σ̂)

we define the tangent vector vxy ∈ TxV (x, σ) as the unique unit vector of type ζ̄, i.e. such that
the geodesic ray from x in the direction vxy is asymptotic to the point ζ ∈ σ of type ζ̄, θ(ζ) = ζ̄.
Then define the ζ̄-angle between two diamonds ♦xy,♦xz at x as the Riemannian angle

∠ζ̄(♦xy,♦xz) := ∠(vxy, vxz).

Definition 3.49. Let ε > 0 and Θ ⊂ int(σmod) be compact convex. The piecewise geodesic
path x0x1 . . . xn is called (Θ, ε)-straight if for all i the segments xi−1xi are Θ-regular and

∠ζ̄(Di−1, Di) ≥ π − ε.

4
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Figure 13. A string of diamonds.

Now we can formulate:

Theorem 3.50 (Local-to-global principle for straight paths [KLP2]). Each sufficiently spaced
and sufficiently straight piecewise geodesic path in X is a uniform Morse quasigeodesic.

More precisely, given compact convex subsets Θ,Θ′ ⊂ int(σmod) with Θ ⊂ int(Θ′), there exist
numbers ε, s, B, L,A,D > 0, depending also on ζ̄, such that each s-spaced and (Θ, ε)-straight
piecewise geodesic path is (Θ′, B, L,A,D)-Morse.

Now we return to the setup of Theorem 3.47 and apply this local-to-global result to construct
Morse representations of free groups.

We let T denote the Cayley tree of Γ associated with the generating set {α1, ..., αk}; its
vertex set is identified with Γ. For a point x ∈ X, we extend the orbit map ox : Γ → Γx ⊂
X, γ 7→ ρ(γ)x, to a piecewise geodesic map fx : T → X of the Cayley tree by sending its edges
to geodesic segments in X

We would be done if we could arrange fx to be straight in the sense that it maps lines in T
to s-spaced and (Θ, ε)-straight paths in X for good data s,Θ and ε, because these image paths
would be uniformly Morse by Theorem 3.50, which means that the representation ρ would be
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Morse. However, this is impossible to arrange if k ≥ 2, due to the “lack of space” in the
unit tangent spheres: The 2k image edges connecting the orbit point x to the adjacent orbit
points ρ(β)x, β ∈ {α±1

1 , . . . , α±1
k }, cannot have pairwise ζ̄-angles close to π, equivalently, the

2k directions vxρ(β)x at x cannot have pairwise Riemannian angles close to π.28

We circumvent this difficulty by looking at midpoint paths: Let l ⊂ T be a line passing
through the sequence of consecutive vertices . . . , γ−1, γ0, γ1, . . .. Its fx-image is the biinfinite
piecewise geodesic path

. . . x−1x0x1 . . .

with vertices at the orbit points xi = ρ(γi)x. Let mi denote the midpoint of the segment xi−1xi
and consider the midpoint path

. . .m−1m0m1 . . .

We are again done if we can show that these midpoint paths for all lines l ⊂ T are uniformly
well spaced and straight.

This approach works and it is how our proof of Theorem 3.47 proceeds: The point x ∈ X
can be chosen arbitrarily. We show that for a suitable compact convex subset Θ ⊂ int(σmod)
and arbitrary ε, s > 0 the midpoint paths for all lines l ⊂ T are s-spaced and (Θ, ε)-straight,
provided that N is sufficiently large.

The s-spacedness for large N easily follows from our genericity assumption that the chambers
σ±1 , ..., σ

±
k are pairwise antipodal. Due to Γ-equivariance, the (Θ, ε)-straightness condition can

be verified locally by looking at special short midpoint paths: For every triple of generators

α, β, γ ∈ {α±1
1 , ..., α±1

k }
with α 6= β, βγ 6= 1 consider the quadruple

(γ0, γ1, γ2, γ3) := (α, 1, β, βγ)

of elements in Γ. Then the γ0γ1γ2γ3 are geodesic paths in T , and it suffices to check (Θ, ε)-
straightness for the associated midpoint paths m0m1m2. The latter is deduced from smallness
of ζ̄-angles,

∠ζ̄(♦m1m0 ,♦m1x) = ∠(vm1m0 , vm1x) <
ε

2
,

and sufficient spacing (to ensure the regularity). The smallness of angles and the regularity are
verified by a direct geometric argument using the regularity of the elements gi and their general
position. We refer the reader to [KLP2, sect. 7.6] for the details.

3.11. Further examples. Other examples of Morse, equivalently, Anosov subgroups are pro-
vided by Hitchin representations, see [La], which are the origin of the notion of Anosov repre-
sentations. Similarly, one obtains the complex version of these examples: Start with the (unique
up to isomorphism) irreducible representation

ρn : SL(2,C)→ G = SL(n,C).

Then for each discrete subgroup Γ < SL(2,C) its image ρn(Γ) = Γn < G is an RA subgroup.
If, in addition, Γ is convex-cocompact, then Γn is RCA, equivalently, Anosov. Due to structural
stability, any representation ρ sufficiently close to ρn, is also Anosov. In the case when H3/Γ
is noncompact one obtains many “interesting” deformations of ρn, cf. [Ka1, Thm. 8.44] and
[HP]. Note, that, unlike in the case of Hitchin representations, the connected component of
ρn : Γ → SL(n,C) also contains representations which are not Anosov (and some which are
not discrete and faithful), since this is already the case for SL(2,C)-representations.

Weakening the regularity condition to τmod-regularity and, accordingly, Anosov actions to
τmod-Anosov actions, one obtains more classes, e.g. groups of projective transformations acting
properly discontinuously cocompactly on bounded strictly convex solids in the affine space Rn.

28In euclidean buildings, it is easy to construct straight piecewise geodesic trees.
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Figure 14. Special short midpoint paths.

Such groups are τmod-Anosov subgroups of PGL(n + 1,R), where τmod is the edge of σmod
corresponding to the partial flag line ⊂ hyperplane, see [GW, Prop. 6.1].

4. Discrete subgroups: Domains of proper discontinuity

Note that, so far, we were only looking at limit sets and ignoring domains of discontinuity.
The first successful, but limited, treatment of domains of discontinuity was given in [GW]: It
was proven there that each Anosov subgroup Γ < G admits a (possibly empty!) domain of
proper discontinuity in a certain bundle G/AN over the full flag manifold ∂F üX ∼= G/B. These
domains were obtained by using a certain embedding of G into a larger Lie group. We will now
describe a more comprehensive and intrinsic treatment of domains of discontinuity, following
[KLP1a, KLP1b]. There are two key points in this treatment:

1. Domains of proper discontinuity are not unique and therefore not canonical (unlike in the
rank 1 case). There are several natural choices which depend on a certain auxiliary combina-
torial datum.

2. Mumford’s GIT (Geometric Invariant Theory) in algebraic geometry serves as a guiding
principle.

4.1. Digression: Mumford’s GIT. We begin with the basic topological dynamics framework
of GIT, to be found not in Mumford’s book [Mu], but e.g. in Newstead’s lectures [N] and
Dolgachev’s book [D].

GIT Mantra: Let H be a topological group (say, a discrete group or an algebraic group),
Z a compact Hausdorff space and H × Z → Z a continuous action of H on Z. We would like
to form a quotient Z//H which is again compact and Hausdorff. In order to do so, we have to
partition Z (H-invariantly) into semistable and unstable points:

Z = Zsst t Zu
so that Zu is closed. Note that Zsst could be empty. This partition is further refined as follows:

1. Zu is filtered as an increasing union of closed subsets

Z0 ⊂ Z1 ⊂ . . . ⊂ Zu,
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where Z0 is the set of maximally unstable points.
2. Zsst contains an open subset Zst of stable points, on which the H-action is proper. (There

is also a subset of nice semistable points, but we will ignore this.)
The set of maximally unstable points is, typically, canonical and depends only on the action

H y Z, while the rest of the unstable filtration (including the choice of Zu itself) depends
on an auxiliary datum. In the algebro-geometric context, this datum consists of a positive
algebraic line bundle L → Z (defined up to its tensor power29), while in our geometric group
theory context, it will be a thickening, see section 4.2 below.

One can think of this partition as: good (stable), bad (unstable) and ugly (semistable but not
stable).

The construction works best when the partition it is neat30 in the sense that stable= semistable,
i.e., ugly = ∅.

In order to form the GIT quotient Z//H do the following:
a. Remove the bad (Zu).
b. Keep the good (Zst) and take the usual topological quotient Zst/H (with the quotient

topology), it will be Hausdorff. The set Zst will be a domain of proper discontinuity (in the
framework of discrete groups), or domain of properness in general.

In the neat case, you are done. If not:
c. Deal with the ugly: For the semistable points use the extended orbit equivalence relation:

z ∼ z′ ⇐⇒ Hz ∩Hz′ 6= ∅
where the closure is taken in Zsst. For stable points this amounts to the usual orbit equivalence:

Hz = Hz′.

Equip the quotient with the quotient topology. Now, if the stars are aligned in your favor, then
the resulting quotient is both compact and Hausdorff.

Remark 4.1. One can (and should!) vary the auxiliary datum and watch how the quotient
space transforms. In the context of symplectic geometry (symplectic reduction), one sees the
variation of the symplectic structure; generically, one has the neat case and some degeneration
occurs when semistable, non-stable points appear. This is called wall-crossing.

What we managed to do in [KLP1a] is to adapt this mantra to the Morse group actions on
various flag manifolds Γ y Z = G/P . Note that:

1. [KLP1a] dealt only with the regular case, but [KLP1b] covers the general case of τmod-
regular Morse subgroups.

2. [KLP1a, KLP1b] succeeded only in the neat case: We do not have a theory dealing with
the ugly.

Basic Example 4.2. (cf. Newstead’s Example 1.1): Consider the action of Γ = 〈γ〉 ∼= Z on
the real projective plane, which, in an affine patch, is given by:

γ(x, y) = (λx, λ−1y), λ > 1.

The domain of discontinuity is the projective plane minus the three fixed points [1 : 0 : 0],
[0 : 1 : 0] and [0 : 0 : 1], which are the only points with infinite stabilizer. However, the action
on this domain is not proper and the quotient is non-Hausdorff.

The maximally unstable set consists only of the two points

[1 : 0 : 0], [0 : 1 : 0].

The projective plane minus the x- and y-axes belongs to the stable part Zst (for any choice of a
“line bundle”, or a “thickening”, in our terminology). There, the action is proper. In order to

29In the sense that L and L⊗n, n > 0, lead to the same sets of stable/semistable points.
30Note that this is our terminology, it appears that algebraic geometers do not have one.
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obtain a larger domain of proper discontinuity, one must add a suitable part of the coordinate
axes minus the origin [0 : 0 : 1].

Now, we describe three different such enlargements and the corresponding quotients (two
of which will be homeomorphic), resulting from suitable choices of auxiliary data: Left, Right
(both neat) and the Center (non-neat).

Left: Make the entire x-axis unstable and include the y-axis (minus the origin) into the set
of stable points. The action of Γ will be properly discontinuous, cocompact with the quotient
Zst/Γ ∼= T 2.

Right: Do the same, but make the y-axis unstable and add the x-axis (minus the origin) to
the stable set. The quotient is again T 2.

Both left and right partitions of the projective plane will result from what we call balanced
thickenings; these will be introduced in Definition 4.7 and equation (4.3).

Center: Declare the coordinate axes (including the origin) to be semistable but not stable.
Then the action on Zsst is not proper (of course!), but the GIT quotient Z//Γ is compact and
Hausdorff: It results from T 2 by collapsing the union of two parallel essential simple loops to a
point.

Note that in Mumford’s setting, the degree of unstability is determined by a real (actually,
rational) number, the slope, the value of the Hilbert-Mumford numerical function. The unstable
filtration is given by the standard order on the real numbers: Positive slope means unstable,
the more positive the slope is, the more unstable the point is. In the KLP setting, the real
numbers are replaced with the Weyl group W and its (partial) Bruhat order: The smaller the
value w ∈ W , the more unstable a point is. The value w will measure “how far” an element of
G/B is from the chamber limit set Λch(Γ). What corresponds to “zero” in this order is not at
all clear (and depends on the choice of a thickening). Loosely speaking, we have to “cut W in
half” in order to define an analogue of zero.

Remark 4.3. This description captures only the Γ-action on G/B; in full generality, we also
need Bruhat orders on quotients of W by its parabolic subgroups, but we will ignore this here.

4.2. Relative position, Bruhat order and thickenings. Given two chambers σ, σ′ ∈ G/B
we define their W -valued distance or the position of σ relative to σ′

δ(σ, σ′) = w ∈ W
as follows. Let κ : amod → a ⊂ ∂T itsX be a chart31 whose image is an apartment a in ∂T itsX
containing σ, σ′ and such that κ sends the model chamber σmod ⊂ amod to the chamber σ′.
Then w ∈ W = Aut(amod) is defined as the unique element sending σmod to κ−1(σ). Since
transition maps between different charts are restrictions of elements of W , it follows that w is
independent of the choice of κ.32

The relative position is G-invariant: δ(gσ, gσ′) = δ(σ, σ′) for all g ∈ G. In general, it is
nonsymmetric:

δ(σ′, σ) = δ(σ, σ′)−1.

We also define the complementary position

c-δ(σ, σ′) := w0δ(σ, σ
′),

where w0 is the longest element of W , see §2.1. In other words, if a ⊂ ∂T itsX is an apartment
containing σ, σ′ and σ̂′ ⊂ a is the chamber opposite to σ′ then

c-δ(σ, σ′) = δ(σ, σ̂′).

31See Appendix 9.
32Note that, by the convexity of apartments, a must contain the convex hull of σ′∪σ. Since κ−1 is determined

on the chamber σ′, it follows that it is determined on this convex hull, and in particular also on σ.
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Since we wish to use δ as a “distance” on G/B, we need a (partial) order on W which allows us
to compare distances. This order is the Bruhat order, which we discuss next. We first introduce
the Bruhat order combinatorially. (A very detailed discussion of the Bruhat order with many
examples can be found in [BB, ch. 2].) Afterwards we discuss a geometric way of defining it as
the folding order, which is how we use it in our papers.

Bruhat order. We fix a standard generating system S for W (its elements are called simple
reflections and they are the reflections in the faces of the positive fundamental chamber σmod),
which defines the word length ` on W . A partial order on W , called the (strong) Bruhat order,
is induced by the following convention (and transitivity):

If v = ur, where r is a reflection in W (a conjugate of one of the generators) and `(u) < `(v),
then u < v. In this case one writes

u
r−→ v.

In particular, 1 is the smallest element of W and w0 is the largest.
Equivalently, this order is given by the condition that u ≤ v iff a subword (consisting of not

necessarily consecutive letters) of a reduced word for v equals a reduced word for u.
We note that left multiplication with w0 reverses the Bruhat order.

Example 4.4. Consider W = Sn, the permutation group on n letters. As usual, we identify
permutations π with the strings π(1) . . . π(n), where we put or not put commas between the
adjacent symbols π(i), π(i+1) when convenient. The (standard) simple reflections in W are the
transpositions s1 = (1, 2), s2 = (2, 3), ..., sn−1 = (n−1, n). In the examples below we will always
equip Sn with this generating set. The reflections in W are the transpositions (i, j), i < j. For

r = (i, j), the notation π
r−→ π′ means that one moves from π to π′ by transposing π(i), π(j)

in the string π(1) . . . π(n), where π(i) < π(j). In the poset diagrams of S3 and S4 below we

connect nodes u and v whenever u
r−→ v.

Figure 15. The poset diagram of the Bruhat order for W = S3. The larger
permutations are higher in the figure, w1 ≥ w2 iff the corresponding nodes of the
poset diagram are connected by a descending edge path. The circled nodes of
the diagram constitute the unique balanced thickening.

Geometric interpretation of the Bruhat order as the folding order, see [KLP1a,
§4.2+3]. Fix a reference chamber σmod ⊂ amod. It will represent the identity element 1 ∈ W .
For each chamber σ̄ ⊂ amod we have a unique w ∈ W such that σ̄ = wσmod. Thus, we will



48 MICHAEL KAPOVICH, BERNHARD LEEB

�
�
�
�

1

a
b

ab

Figure 16. The poset diagram of the Bruhat order for W = Z2 × Z2 with the
generators a, b and w0 = ab. The larger permutations are higher in the figure.
The circled nodes of the diagram constitute one of the two balanced thickenings.
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Figure 17. The poset diagram of the Bruhat order for W = B2. The larger
permutations are higher in the figure. The circled nodes of the diagram constitute
one of the two balanced thickenings.

identify W with the set of chambers in the model apartment amod. Given a reflection sH ∈ W
whose fixed hyperplane (wall) H separates a chamber σ̄ from σmod, we set

sH σ̄ < σ̄.

Now extend this order by transitivity to the entire set of chambers in amod. The result is the
Bruhat order.
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Figure 18. The poset diagram of the Bruhat order for W = G2 which is gener-
ated by two simple reflections a, b. The action of w0 = (ab)3 is by the 180 degree
rotation of the diagram. The larger permutations are higher in the figure. The
subset {1, a, b, ab, ba} is contained in every fat thickening. The circled nodes of
the diagram constitute one of the two balanced thickenings.

It is useful to further redefine the Bruhat order non-recursively in terms of “foldings” of
the model apartment onto itself. By a folding map amod → amod, we mean a type preserving
continuous map which sends chambers isometrically onto chambers. In particular, such maps
are 1-Lipschitz. Intuitively, a folding map fixing the reference chamber σmod moves the other
chambers in amod “closer” to σmod.

The simplest examples of folding maps fixing σmod are obtained as follows: A wall m ⊂ amod
splits amod into two (simplicial) hemispheres, the inner hemisphere h+ containing σmod and the
outer hemisphere h−. This decomposition gives rise to the folding map which fixes h+ and
reflects h− onto it. We call a composition of such folding maps at walls mi a special folding.
The above geometric interpretation of the Bruhat order can thus be rephrased: Two chambers
σ̄1, σ̄2 ⊂ amod satisfy σ̄1 ≤ σ̄2 iff there exists a special folding moving σ̄2 to σ̄1.

In general, not all foldings are special. Nevertheless, there is no need of recognizing whether
or not a folding is special. Indeed, one can show that it makes no difference to the order whether
one uses all foldings fixing σmod or only the special ones:

Theorem 4.5 ([KLP1a, Cor 4.5]). For chambers σ̄1, σ̄2 ⊂ amod it holds that σ̄1 ≤ σ̄2 iff there
exists a folding map amod → amod fixing σmod and sending σ̄2 7→ σ̄1.

Thickenings. We will use special subsets Th ⊂ W , called “thickenings of 1 ∈ W inside W”.
They are defined as unions of sublevels of the Bruhat order, i.e. they satisfy the property:

v ∈ Th and u < v ⇒ u ∈ Th .
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Figure 19. The poset diagram of the Bruhat order for W = S4, see [BB, page
31]. The larger permutations are higher in the figure. The involution w0 (marked
by the 2-sided arrows) acts on this diagram by reversing the order of the labels.

For instance, 3241
w0←→ 1423. Each balanced thickening contains exactly one

vertex of each pair (1432, 2341), (2413, 3142), (3214, 4123) since the members of
each pair are swapped by w0. It follows that all balanced thickenings contain
the vertices 1234, 1243, 1324, 2134, 1342, 2143, 3124 (marked in solid black). We
describe the balanced thickenings by what other vertices they contain. (i) Includ-
ing in addition both vertices 1423, 2314 results in a “metric” balanced thickening
(see [KLP1a, §4.4] or [KLP1b, §3.4.1] for the definition). There are 8 such thick-
enings. (ii) There are two “nonmetric” balanced thickenings, each determined by
whether the vertex 3241 or 4132 is chosen. For instance, choosing 3241 forces the
thickening to contain the vertices 2341, 3142, 3214 and 2314 (these vertices are
marked in grey). In total, there are 10 balanced thickenings.

In particular, 1 ∈ Th for every nonempty thickening Th. One can think of thickenings as being
starlike with respect to 1 ∈ W (and the Bruhat order defining intervals). Simple examples of
thickenings are given by the “closed balls”

B(1, r) = {w ∈ W : w ≤ r},
where one can think of r ∈ W as the “radius” of the ball. General thickenings are unions of
such “balls”.

Remark 4.6. In the theory of posets, thickenings are called (lower) ideals and thickenings of
the form {w ≤ r} are called principal ideals.

A thickening is proper if it is nonempty and is different from the entire W . The latter
condition is equivalent to the requirement that the longest element w0 is not in the thickening.
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Definition 4.7. 1. A thickening Th ⊂ W is slim if Th∩w0 Th = ∅.
2. A thickening Th ⊂ W is fat if Th∪w0 Th = W .
3. A thickening Th ⊂ W is balanced if it is both slim and fat.

Thus, for each w ∈ W , a slim (fat, balanced) thickening contains at most (at least, exactly)
one of the pair of complementary elements w and w0w. In particular, a balanced thickening
consists of precisely half of the elements of W .

Theorem 4.8. [KLP1a, KLP1b]. Each finite Weyl group W admits at least one balanced
thickening.

Examples. Among the rank 2 Weyl groups, A2 admits exactly one balanced thickening,
whereas B2, G2 and A1 × A1 admit exactly two!

Example 4.9. Consider W = Z2 × Z2, the Coxeter group of the type A1 ×A1, see Figure 16.
We let a, b denote the generators of the direct factors of W ; these are the simple reflections and
the only reflections in W (since W is abelian). The poset graph of W is completely described
by the inequalities w0 = ab > a > 1 and w0 > b > 1. The action of the involution w0 swaps the
nodes a, b as well as the nodes 1, w0. Therefore, the thickenings B(1, a), B(1, b) are balanced.
The only other two proper thickenings are {1} and W − {w0}; these are respectively slim and
fat. In particular, the group W = Z2 × Z2 has exactly two balanced thickenings.

Example 4.10. Consider W = S3, the Coxeter group of the type A2. We refer the reader to
Figure 15 for the description of the poset graph of W . We will describe all proper thickenings
in W . Every nonempty thickening contains 1 ∈ W . Each thickening different from {1} also
contains at least one of the transpositions (12) and (23). The slim thickenings consisting of two
elements are B(1, (123)) and B(1, (231)). Since the involution w0 swaps the upper and lower
halves of the poset diagram, the thickening I := {(123), (132), (213)} is balanced. A thickening
containing either (231) or (312) also contains I. Hence I is the only balanced thickening. The
fat thickenings consisting of four elements are B(1, (231)) and B(1, (312)).

Example 4.11. Consider the Coxeter group W of the type B2. We refer the reader to Figure
17 for the poset graph of W . The action of w0 = (ab)2 swaps ab and ba, a and bab, b and aba.
Since balanced thickenings consist of exactly four elements, they can contain neither aba nor
bab. Also, a balanced thickening has to contain either ab or ba but not both. From this, we
conclude that the only two balanced thickenings in W are B(1, ab) and B(1, ba).

Example 4.12. Consider the Coxeter group W of the type G2, see Figure 18 for the poset
graph of W . The only two balanced thickenings in W are B(1, aba) and B(1, bab).

Remark 4.13. A subset R ⊂ W determines the thickening

ThR :=
⋃
r∈R

B(1, r).

Every thickening has this form. For instance, in Example 4.11 we can take R = {ab, ba} and
hence obtain the fat unbalanced thickening

ThR = {1, a, b, ab, ba}.
In order to simplify the notation we omit the symbol R in the notation ThR from now on: Th
will always denote a certain thickening.

Remark 4.14. In our work [KLP2, KLP1b, KL1], we need the folding order (and thickenings)
more generally also for 2-sided quotients WP\W/WQ, where WP and WQ are Coxeter subgroups
generated by subsets of the set of simple reflections. However, for the sake of simplicity, we
will not discuss these here.
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Question 4.15. Is there a reasonable combinatorial classification of balanced thickenings for a
given finite Coxeter group W? What are the asymptotics of the numbers of balanced thickenings
in the Weyl groups of the types

An, Bn, Dn, A1 × . . .× A1︸ ︷︷ ︸
n times

as n→∞?

We now turn to discussing flag manifolds. For each chamber σ ∈ ∂F üX ∼= G/B and r ∈ W
we define the “combinatorial δ-sphere” of the “combinatorial radius” r,

S(σ, r) = {σ′ ∈ G/B : δ(σ′, σ) = r},
also known as a Schubert cell in G/B, and the “combinatorial δ-ball”

B(σ, r) = {σ′ ∈ G/B : δ(σ′, σ) ≤ r},
also known as a Schubert cycle. The following is a basic fact of the theory of Lie groups that
plays a critical role in our analysis of discontinuity domains. It expresses that the Bruhat order
on W corresponds to the inclusion order on Schubert cycles in G/B (with respect to a fixed
reference chamber σ, respectively, minimal parabolic subgroup B):

Theorem 4.16. The distance δ is lower semicontinuous with respect to the manifold topology.
Moreover,

(4.1) S(σ, r) = B(σ, r),

where the closure is taken in the manifold topology of G/B.

Consequently, S(σ, r′) ⊆ S(σ, r) iff r′ ≤ r, and otherwise S(σ, r′) ∩ S(σ, r) = ∅.
In the case of complex Lie groups, this theorem goes back to work of Chevalley in the 1950s

[Ch], see also [BB]; for the proofs in the general case (including reductive groups over local
fields), see [BT] as well as [Mi1, Mi2]. The most general case dealing with subsets of partial
flag manifolds is established in [KLP1b].

We next use the thickenings of the neutral element inside W to produce corresponding
thickenings of (sets of) chambers inside ∂F üX ∼= G/B.

Let Th ⊂ W be a thickening. Given a chamber σ ∈ ∂F üX, define its thickening inside ∂F üX
by

(4.2) Th(σ) = {σ′ ∈ ∂F üX : δ(σ′, σ) ∈ Th}.
For a subset Λ ⊂ ∂F üX we define its Th-neighborhood or thickening as

(4.3) Th(Λ) :=
⋃
λ∈Λ

Th(λ) = {σ′ ∈ ∂F üX : ∃λ ∈ Λ, δ(σ′, λ) ∈ Th}.

It is clear (from the G-invariance of δ) that thickenings are G-invariant:

Th(gΛ) = gTh(Λ), g ∈ G.
Thus, if Γ < G is a subgroup preserving Λ, it also preserves Th(Λ).

Our motivation for introducing the notion of slimness is the observation, that the slimness
of a thickening in W is equivalent to the disjointness of the corresponding thickenings of any
two antipodal chambers in ∂F üX:

Lemma 4.17 ([KLP1b]). Let Th ⊂ W be a slim thickening. Then for any two antipodal
chambers σ, σ̂ ∈ ∂F üX it holds that

Th(σ) ∩ Th(σ̂) = ∅.
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Proof. This follows from the definition of slimness and the triangle inequality33

δ(σ′, σ̂) ≥ c-δ(σ′, σ)

for chambers σ′ ∈ ∂F üX.
Indeed, suppose that σ′ ∈ Th(σ) ∩ Th(σ̂). Then δ(σ′, σ̂), δ(σ′, σ) ∈ Th. Due to the in-

equality, also c-δ(σ′, σ) ∈ Th, equivalently, δ(σ′, σ) ∈ w0 Th. It follows that Th∩w0 Th 6= ∅,
contradicting slimness.

To verify the inequality, consider the apartment a ⊂ ∂T itsX containing σ, σ̂ and a folding
retraction r : ∂TitsX → a, i.e. a type preserving continuous map which fixes a pointwise. Such a
retraction is given e.g. by the natural projection ∂T itsX → ∂T itsX/Bσ

∼= a where Bσ denotes the
minimal parabolic subgroup fixing σ. Then δ(σ′, σ̂) ≥ δ(rσ′, σ̂) = c-δ(rσ′, σ) = c− δ(σ′, σ). �

The importance of slimness comes therefore from the following fact. Suppose Th ⊂ W is
a slim thickening and Λ ⊂ ∂F üX is an antipodal subset, i.e. a subset where any two distinct
elements are antipodal. Then for every σ ∈ Th(Λ) there exists a unique λ = λσ ∈ Λ such that
δ(σ, λ) ∈ Th. Thus, we obtain a natural projection

π : σ 7→ λσ,Th(Λ)→ Λ.

As an exercise, let us prove continuity (in the subspace topology induced from ∂F üX ) of this
projection, provided that Λ is closed: Let σi → σ in Th(Λ), where σi ∈ Th(λσi), σ ∈ Th(λσ).
After extraction, λσi → λ ∈ Λ, since Λ is compact. By the semicontinuity of δ and the fact
that Th is a thickening, we obtain that δ(σ, λ) ∈ Th and hence λ = λσ, establishing continuity.
One verifies further that the projection π is a fiber bundle over Λ with fibers homeomorphic to
Th(λ), λ ∈ Λ (see [KLP1b]).

The fatness of a thickening, in turn, does not imply that the union Th(σ) ∪ Th(σ̂) is the
entire ∂F üX, but it does imply that Th(σ)∪Th(σ̂) covers the entire chamber set of the unique
apartment a ⊂ ∂T itsX containing σ, σ̂. The importance of the notion of fatness is less immediate.
The proof of Theorem 4.24 below shows why it is useful for the proof of proper discontinuity
of discrete group actions on certain domains in flag manifolds.

Here is how one can think of thickenings Th(λ) ⊂ ∂F üX of points in the Furstenberg bound-
ary. First of all, if Th = Thr, r ∈ W , then one can think of Thr(λ) as the “combinatorial
r-neighborhood” of λ in ∂F üX, as it consists of all σ ∈ ∂F üX which are within δ-distance
≤ r from λ. However, caution is needed here, since for any proper thickening Th ⊂ W , the
corresponding thickening Th(λ) ⊂ ∂F üX is nowhere dense in the visual topology of ∂F üX.
Therefore, a better way to think of thickenings of subsets in ∂F üX is as follows. The choice of
Th describes the “degree of nongenericity” of the relative position of chambers σ ∈ ∂F üX with
respect to λ. For instance, for Th = Thr (r ∈ W ), the larger the element r, the more generic
the relative position we allow for points in B(λ, r) ⊂ ∂F üX. The most generic relative position
is achieved for points in the open Schubert cell S(λ,w0) = λopp, consisting of all chambers σ in
∂F üX opposite of λ. The closure of this open Schubert cell is the entire Furstenberg boundary,
the metric ball B(λ,w0). One implication of Theorem 4.16 is that taking limits of sequences
σi as i→∞, can only result in the decrease of genericity (the limit of a sequence can only be
“more special” with respect to λ, not “less special”).

The next lemma implies the important fact that thickenings of compact subsets are compact.

Lemma 4.18. For every thickening Th ⊂ W and every subset Λ ⊂ ∂F üX, we have

Th(Λ) = Th(Λ).

33The inequality can be regarded as a triangle inequality in G/B for the W -valued combinatorial side lengths
of the triangle with vertices σ, σ′ and σ̂.
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Proof. Suppose that (λi) is a sequence in Λ and σi ∈ Th(λi) such that σi → σ in ∂F üX. After
extraction, λi → λ ∈ Λ. In view of semicontinuity (Theorem 4.16), we have δ(σ, λ) ≤ δ(σi, λi)

for large i. Since δ(σi, λi) ∈ Th, it follows that δ(σ, λ) ∈ Th. This shows that Th(Λ) ⊂ Th(Λ).
Conversely, consider a sequence λi ∈ Λ converging to λ ∈ Λ and let σ ∈ Th(λ). Then, since

∂F üX = G/B, there exists a sequence gi → 1 in G such that λi = giλ. Then σ is the limit of

the σi := giσ ∈ Th(λi) ⊂ Th(Λ) and, therefore, belongs to Th(Λ). �

Example 4.19. Consider G = SL(3,R) and the unique balanced thickening

Th = B(1, (12)) ∪B(1, (23)).

Let λ be a chamber in the Tits building ∂T itsX of the symmetric space SL(3,R)/SO(3), which
is the incidence graph of the real projective plane. We will think of λ as a flag (p, l) (where p
is a point and l is a line in projective plane). The thickening Th(λ) consists of all chambers in
∂T itsX which share a vertex with λ. In other words, the condition that a flag (p′, l′) belongs to
Th(λ) means that either p′ ∈ l or p ∈ l′. Clearly, Th(λ) is a closed subset of the flag manifold,
homeomorphic to the wedge of two projective lines. It equals the closure of the union of two
“combinatorial spheres” S(λ, (12)) and S(λ, (23)); this union consists of chambers sharing a
vertex with λ but different from λ.

Next, take an ellipse E ⊂ R2 ⊂ RP 2. The (projectivized) tangent bundle PE of E defines a
lift Ẽ of E to the flag manifold Flag(R3), the full flag manifold of R3. It consists of the tangent
flags (p, l), p ∈ E, l is the tangent line to E at p; clearly, Ẽ is homeomorphic to E. Now, let Th
be the unique balanced thickening in the group W = S3. Then the corresponding thickening
Th(Ẽ) consists of the flags (q,m), where either q ∈ E (and m is any line through q) or m is a
line tangent to E and q is any point on m. Topologically speaking, Th(Ẽ) is the trivial bundle
over Ẽ with fibers homeomorphic to S1 ∨ S1, and Ẽ is (the image) of its distinguished section
with values in the singular points of the fibers. The projection π : Th(Ẽ)→ Ẽ sends each flag
(p,m), p ∈ E, to the corresponding tangent flag (p, l); and it sends each flag (q, l), l is tangent
to E, to the corresponding tangent flag (p, l).

q

l

E

m

q

m

p

Figure 20. The balanced thickening of Ẽ
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4.3. Domains of proper discontinuity, cocompactness and nonemptiness. We start
this section by reviewing some basic notions from topological dynamics. We consider topological
actions Γ y Z of discrete groups on metrizable locally compact topological spaces.

Recall that the Γ-action on an invariant open subset Ω ⊂ Z is properly discontinuous if for
each compact K ⊂ Ω it holds that

γK ∩K = ∅
for all but finitely many γ ∈ Γ. A weaker condition is the discontinuity of the action. A point
z ∈ Z is said to be wandering for the Γ-action if there exists a neighborhood U of z such that

γU ∩ U = ∅
for all but finitely many γ ∈ Γ. An action is called discontinuous if each point is wandering.
The domain of discontinuity Ωdisc ⊂ Z for the action Γ y Z is the set of wandering points. This
set is clearly open and invariant; in general, however, the action on the domain of discontinuity
is not proper.

Example 4.20. (Compare Example 4.2) γ ∈ SL(3,R), γ = Diag(λ, 1, λ−1), λ > 1. Then γ
has on RP 2 the three fixed points e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], e3 = [0 : 0 : 1]. The point e1

is attractive, e3 is repulsive and e2 is hyperbolic for the action of γ on RP 2. Denoting Lij the
projective line through ei, ej, i < j, we obtain that the domain of discontinuity for the action
of Γ = 〈γ〉 on RP 2 is the complement to its fixed point set, {e1, e2, e3}. However, the action of
Γ on this domain is not proper. In order to get a maximal domain of proper discontinuity, one
removes from RP 2 − {e1, e2, e3} either the entire line L12 or L23.
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Figure 21. Dynamics of a cyclic subgroup Γ = 〈γ〉 on the projective plane. The
points ξ, ξ′ are dynamically related.

Our arguments for proving proper discontinuity will be based on the fact that it is equivalent
to the absence of dynamical relations between points relative to the Γ-action.

Definition 4.21. Two points ξ, ξ′ ∈ Z are Γ-dynamically related, ξ
Γ∼ ξ′, if for each pair of

neighborhoods U,U ′ of ξ, ξ′ respectively, there are infinitely many elements γ ∈ Γ such that

γU ∩ U ′ 6= ∅.
Note that a point is wandering iff it is not dynamically related to itself.
It is straightforward that, since the space Z is Hausdorff and 1st countable, Γ-dynamical

relation ξ
Γ∼ ξ′ can be reformulated as follows: There exists a sequence of distinct elements

γn ∈ Γ and a sequence ξn → ξ in Z such that γnξn → ξ′. We will write then more precisely

ξ
(γn)∼ ξ′.

Lemma 4.22. The Γ-action on an open invariant subset Ω ⊂ Z is properly discontinuous iff
no two points of Ω are Γ-dynamically related.
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Proof. Suppose first that the action Γ y Ω is not properly discontinuous. Then there exists a
compact C ⊂ Ω and elements γn → ∞ in Γ such that γnC ∩ C 6= ∅. Hence there are points
xn ∈ C such that also γnxn ∈ C. By compactness, after extraction, we have convergence
xn → x ∈ C and γnxn → x′ ∈ C and it follows that x, x′ are Γ-dynamically related.

Conversely, suppose that the points x, x′ ∈ Ω are dynamically related. Taking U,U ′ to be
relatively compact neighborhoods of x, x′ respectively, we obtain that γU ∩U ′ 6= ∅ for infinitely
many γ ∈ Γ. For these γ and the compact C = U ∪ U ′ it holds that γC ∩ C 6= ∅. �

We now take up the discussion of the topological dynamics of discrete group actions on flag
manifolds. We will restrict to the case of actions on the full flag manifold ∂F üX ∼= G/B.

Regarding proper discontinuity, the connection between dynamical relation and the Bruhat
order and thickenings comes in the form of the following key lemma which provides a relative
position inequality for dynamically related points. Roughly speaking, it says that they cannot
be both far, in the sense of the combinatorial distance δ, from the chamber limit set Λch(Γ). The
lemma, in turn, is derived from the higher rank convergence property for the action Γ y G/B
discussed in section 2.8.

Key Lemma 4.23 ([KLP1a, KLP1b]). Suppose that Γ < G is regular and ξ, ξ′ ∈ G/B are
Γ-dynamically related. Then there exist (not necessarily distinct) limit chambers λ, λ′ ∈ Λch(Γ)
such that

δ(ξ′, λ′) ≤ c-δ(ξ, λ).

Proof. Suppose first that we have a dynamical relation ξ
(γn)∼ ξ′, γn ∈ Γ. Then, by the definition

of dynamical relation, there exists a sequence (ξn) in G/B such that ξn → ξ and γnξn → ξ′. The
regularity of the subgroup Γ < G translates via Theorem 2.52 into the higher rank convergence
property for the action Γ y G/B. Hence, after extraction, there exists a pair of limit chambers
σ± ∈ Λch(Γ) such that γn converges to σ+ uniformly on compacts in the open Schubert cell
σopp− . Let a ⊂ ∂∞X be an apartment containing σ− and ξ. Nearby apartments an containing ξn
can be obtained by using small isometries hn → 1 in G, with ξn = hnξ and putting an = hna.
Let σ̂− ⊂ a be the chamber opposite to σ−, and let σn = hnσ̂− ⊂ an. Then σn → σ̂−. Since
σ̂− ∈ σopp− , the locally uniform convergence of γn to σ+ implies that γnσn → σ+. We obtain

δ(ξ′, σ+) ≤ δ(γnξn, γnσn) = δ(ξn, σn) = δ(hnξ, hnσ̂−) = δ(ξ, σ̂−) = c-δ(ξ, σ−)

for large n, where the first inequality follows from the semicontinuity of δ, see Theorem 4.16.
Putting λ = σ− and λ′ = σ+ yields the assertion. �

As a consequence, no dynamical relations occur in domains which are far enough from the
chamber limit set in the combinatorial sense of relative position, i.e. which avoid a sufficiently
large thickening of it. (Recall that this means that the points in these domains have sufficiently
generic position with respect to all limit chambers.) We obtain:

Theorem 4.24 (Proper discontinuity [KLP1a]). Suppose that Γ < G is regular and Th ⊂ W
is a fat thickening. Then no two points in the domain

ΩTh(Γ) := G/B − Th(Λch(Γ))

are Γ-dynamically related.34 In other words, the action Γ y ΩTh(Γ) is properly discontinuous.

Proof. Suppose that ξ, ξ′ ∈ G/B are dynamically related. Then, by the lemma, there exist
λ, λ′ ∈ Λch(Γ) such that

δ(ξ′, λ′) ≤ c-δ(ξ, λ).

By the definition of fat thickening, for the relative position w := δ(ξ, λ) either

(1) w ∈ Th, or

34We recall that Th(Λch(Γ)) is compact, because Λch(Γ) is, cf. Lemma 4.18.
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(2) w0w ∈ Th.

In the former case, ξ ∈ Th(Λch). In the latter case, c-δ(ξ, λ) ∈ Th, which, by the definition of
a thickening, implies that δ(ξ′, λ′) ∈ Th, and thus ξ′ ∈ Th(Λch). Hence, ξ, ξ′ cannot be both in
ΩTh(Γ). �

Note that we are not assuming here that the chamber limit set Λch is antipodal. Antipodality
is used, in conjunction with slimness of Th and the expansion axiom, to ensure the cocompact-
ness of Γ-actions. It is an important fact that, for a slim thickening Th of an antipodal set Λ,
the natural projection Th(Λ) → Λ sending ξ ∈ Th(Λ) to the unique λ ∈ Λ with δ(ξ, λ) ∈ Th,
is a topological fibration, compare Lemma 4.17 and the discussion afterwards. We use this fact
for chamber limit sets of RA (regular and antipodal) subgroups. For RCA subgroups,35 we
have the following counterpart to the above proper discontinuity result:

Theorem 4.25 (Cocompactness [KLP1a]). Suppose that Γ < G is an RCA subgroup and
Th ⊂ W is a slim thickening. Then the action Γ y ΩTh(Γ) is cocompact.

If one works with balanced thickenings which, by definition, are both fat and slim, one can
conclude both proper discontinuity and cocompactness for suitable classes of discrete subgroups:

Corollary 4.26. If Γ < G is an RCA subgroup and Th ⊂ W is a balanced thickening, then the
action Γ y ΩTh(Γ) is properly discontinuous and cocompact.

We obtain such results more generally for τmod-RCA subgroups acting on partial flag mani-
folds G/Pτmod

, see [KLP1b].

Example 4.27. Let Γ < PO(2, 1) be a cocompact Fuchsian group. Then Γ < PO(2, 1) <
PGL(3,R) is Morse, preserves the Klein model H2 of the hyperbolic plane in RP 2. The hyper-
bolic plane H2 ⊂ RP 2 is bounded by an ellipse E, cf. Example 4.19. The group Γ acts properly
discontinuously on H2 and ergodically on the complement, since the latter is Γ-invariantly iso-
morphic to the space of unparameterized geodesics in the hyperbolic plane. In particular, Γ
does not act properly discontinuously on the complement of E in the projective plane. However,
Γ acts properly discontinuously and cocompactly on the complement Flag(R3)−Th(Ẽ), where
Ẽ = Λch(Γ) is the lift of E to the flag manifold of PGL(3,R) and Th is the unique balanced
thickening, see Example 4.19.

Given the above results, the question arises if and when ΩTh(Γ) is nonempty. Note that in
rank 1, the domain of discontinuity in G/B = ∂∞X is empty in the case of lattices Γ < G. In
contrast, it turns out that in higher rank our domains ΩTh(Γ) for RA subgroups Γ and balanced
thickenings Th have a tendency to be nonempty. Intuitively, the reason is that the emptiness
of such a domain would imply the existence of certain ball packings at infinity, e.g. of a packing
of ∂F üX by the combinatorial “balls” Th(λ) for λ ∈ Λch(Γ), and such packings do not exist for
many Weyl groups. We show:

Theorem 4.28 (Nonemptiness [KLP1a, KLP1b]). Suppose that X has at least one de Rham
factor not of the type A1, B2 or G2. Then for each RA subgroup Γ < G, there exists a balanced
thickening Th ⊂ W for which ΩTh(Γ) is nonempty.

Remark 4.29. For some Lie groups G of type B2, we can still prove nonemptiness of ΩTh(Γ)
for some balanced thickenings Th (independent of the discrete group Γ < G). This includes
O(n, 2) with n odd. See [KLP1b].

Now we can explain the analogy with GIT: For any balanced thickening Th, the domain
ΩTh(Γ) serves as the set of stable points for the Γ-action on G/B, while the thickening of the
limit set Th(Λch(Γ)) plays the role of the set of unstable points, and the limit set Λch(Γ) itself
of the set of maximally unstable points.

35Recall that, in addition to being regular and antipodal, RCA subgroups are also expanding at Λch(Γ),
compare §3.4. The RCA property is equivalent to the Anosov property, cf. Theorem 3.41.
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Remark 4.30. Comparison of our discontinuity and cocompactness results with that of [GW]:
1. Our treatment of domains of discontinuity is intrinsic, while in [GW] first a theory for

P -Anosov subgroups of Aut(F ) is developed (where the F ’s are certain bilinear and hermitian
forms) and then general semisimple Lie groups are embedded into groups O(p, q).

2. Due to the intrinsic nature of our construction, we gain much better control of the
nature of domains of proper discontinuity which allows us to get them in G/B (and other flag
manifolds) instead of G/AN as in [GW], for general semisimple Lie groups. (Note, however,
that in the case of “classical” Lie groups, [GW] also obtain a domain of cocompactness and
proper discontinuity inside G/B.)

3. While for some Lie groups of types A2, B2 the outcomes of the two constructions are
the same, it appears that our construction is more general. For instance, we expect that
discontinuity domains constructed via the two non-metric balanced thickenings for SL(4,R),
see Figure 19, cannot be obtained via the construction in [GW].

4. Theorem 4.28 is both weaker and stronger than the nonemptiness results in [GW, Thms.
1.11, 1.12 and 9.10]. It is stronger in the sense that it applies to hyperbolic groups Γ without
assumptions on their cohomological dimension, unlike the results in [GW] which require small
cohomological dimension. On the other hand, it is weaker in the sense that it addresses only
the σmod-regular case. We also note that some examples of Anosov subgroups for which some
discontinuity domains are empty are given in [GW, Remark 8.5].

4.4. Example: Thickenings in visual boundaries of products of rank one spaces. In
this section we work out in detail the case when W = Zn2 . We identify Z2 with the multiplicative
group {−1, 1}. Elements of W are identified with n-tuples of ±1’s. The model flat is Rn and
the generators of W act via reflections in the coordinate hyperplanes (walls). We choose the
fundamental chamber ∆ to be the orthant given by the inequalities xi ≥ 0, i = 1, . . . , n (it is
clearly a fundamental domain for the action of W on Rn). The central direction in ∆ is given
by the vector

ζ̄ = (1, . . . , 1).

The longest element w0 = (−1, . . . ,−1) acts as − id.
The Bruhat order is given by

w = (ε1, . . . , εn) ≤ w′ = (ε′1, . . . , ε
′
n) ⇐⇒ εi ≥ ε′i ∀i.

Examples of thickenings are given by strict and nonstrict linear inequalities as follows. Let
a = (a1, . . . , an) be a vector with (strictly) positive entries. The subsets

Tha = {w ∈ W : a · w > 0},Tha = {w ∈ W : a · w ≥ 0}
are metric thickenings. The former thickening is slim while the latter is fat. A thickening Tha
is balanced iff a does not satisfy an equation∑

i∈I

ai =
∑
j /∈I

aj,

for any subset I ⊂ {1, . . . , n}. Hence, for “generic” values of a, Tha is balanced.
Consider now a rank one symmetric space Y (e.g. Y = H2) and S = ∂∞Y . Let X = Y n, the

n-fold product of Y . Then Z := ∂F üX = S × ... × S, the n-fold product of S. Moreover, let
D ⊂ Z denote the diagonal

D = {(s, . . . , s) : s ∈ S}.
We will think of elements of Z as configurations of points in S.

The relative position of two configurations z = (si) and z′ = (s′i) equals δ(z′, z) = (εi) iff

s′i = si ⇐⇒ εi = +1,

i.e. δ records the entries i where z′ agrees with z. Consequently, δ(z′, z) ≤ (εi) iff s′i = si
whenever εi = +1.
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The vector a assigns weights ai to the i-th members of the configuration. Each weighted
configuration z = (s1, . . . , sn) thus gives rise to a finite measure µ on S,

µz =
n∑
i=1

aiδsi ,

where δs is the probability measure on S supported at the point s (masses add when points si
“collide”). The total mass of µz equals

M = a1 + . . .+ an.

A weighted configuration z is called stable if µz(s) < M/2 for all points s ∈ S, and semistable
if µz(s) ≤ M/2 for all s ∈ S. In the balanced case, these notions agree: “stable=semistable.”
It is then immediate that

z ∈ Tha(D) ⇐⇒ µz is not semistable

and
z ∈ Tha(D) ⇐⇒ µz is not stable.

The sets of stable and semistable weighted configurations are denoted Zst and Zsst. They of
course depend on a. For instance, if ai > M/2 for some i, then Zsst = ∅. On the other hand, if
ai < M/2 for all i, then Zst 6= ∅; e.g. all configurations of pairwise distince points si are stable.

Assume now that H is the isometry group of Y acting diagonally on X and, hence, on Z.
The latter action preserves the diagonal D, which we can regard as the chamber limit set of the
Lie subgroup H < G := Isom(X) ∼= Hn, D = Λch(H). Mumford’s GIT defines the Mumford
quotient

Z//aH = Zsst//H.

In the balanced case, we simply have

Z//aH = Zsst//H = Zst/H.

A nice exercise is to prove directly that Zsst//H is compact and Hausdorff in this case. For
instance, if H = PSL(2,R), Y = H2, n = 3 and a = (1, 1, 1) then Z//aH consists of exactly
two points represented by configurations of three distinct points on the circle with different
cyclic orders. Continuing with Y = H2 and letting n = 4, one verifies that for a = (2, 1, 1, 1)
the Mumford quotient is homeomorphic to S1, while for a = (5, 4, 3, 1) the Mumford quotient
is homeomorphic to the disjoint union of two circles. Taking n = 5, one obtains that for
a = (1, 1, 1, 1, 1) the Mumford quotient is the genus 4 oriented surface, while for a = (5, 4, 1, 1, 1)
the quotient is the disjoint union of two 2-spheres. Thus, we see that quotients can be non-
homeomorphic for distinct choices of a. We refer the reader to [KM, Theorem 2] for proofs of
these descriptions of Mumford quotients using their identification with polygon spaces.

Remark 4.31. The hyperplanes
∑

i∈I ai =
∑

j /∈I aj (called walls), where I runs through the

subsets of {1, . . . , n}, partition the space

A = {(a1, . . . , an) : ai > 0}
into open convex subsets called chambers (they are not fundamental domains for the Sn-action!).
The topology of Z//aH does not change as long as a varies in a single chamber; permuting
the chambers does not change the topology either; however, crossing through a wall amounts
to a certain Morse surgery on the manifold Z//aH. This can be seen by identifying the
quotients Z//aH with certain spaces of polygons with fixed side lengths: In the case when
H = PSL(2,R), these are polygons in the euclidean plane, see [KM].

It was conjectured by Kevin Walker (in his undergraduate thesis written in 1986 under
Bill Thurston; Walker was working with euclidean polygons) that, for n ≥ 5, if a, a′ belong
to chambers in distinct Sn-orbits, then the Mumford quotients are not homeomorphic. This
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conjecture was proven 20 years later in “most” cases by Farber, Hausmann and Schütz [FHS]
and in full generality by Schütz [S1]. Similar results hold when the circle is replaced by a
k-sphere; in fact, different quotients are distinguished by their intersection cohomology rings,
see [S2, S3].

Now, suppose that Γ < H is a uniform lattice. Then Λch(Γ) = D. The subgroup Γ, diagonally
embedded in G, is uniformly regular in G: Γ preserves the diagonally embedded copy of Y in
X, and any geodesic segment in it has ∆-length contained in the diagonal of ∆ ∼= [0,∞)n. We
conclude that Γ is Θ-regular with Θ consisting of a single point, namely the center of the model
spherical chamber of X, represented by the unit vector

1√
n

(1, . . . , 1).

The group Γ is quasiisometrically embedded in H and hence in G. Thus, Γ < G is URU.
Given a balanced metric thickening Th = Tha, the domain of discontinuity ΩTh(Γ) equals

the set Zst of stable weighted n-point configurations in S (stability is, of course, defined with
respect to a).

We now specialize to the case when H = PSL(2,R) or PSL(2,C) and Γ is torsion-free. Then
the group H acts freely and properly on Zst, and we have a principal H-bundle

H → Zst → Zst/H = Z//aH.

Dividing Zst by Γ instead of H, we obtain a fiber bundle

F → Zst/Γ→ Zst/H,

with fiber F = Γ\H, the oriented orthonormal frame bundle over the manifold Y/Γ. In particu-
lar, by taking non-homeomorphic Mumford quotients Zst/H, we may obtain non-homeomorphic
quotients ΩTh/Γ = Zst/Γ. For instance, taking H = PSL(2,R) and n = 4, we obtain three
distinct topological types of quotients: The empty quotient, a connected nonempty quotient
(a bundle over the circle with fiber F , the unit tangent bundle of a hyperbolic surface) and a
disconnected quotient (an F -bundle over S1 t S1).

4.5. Finsler bordifications of locally symmetric spaces. For a regular subgroup Γ < G
and a thickening Th ⊂ W , we define the Finsler thickening of the chamber limit set Λch(Γ)
as follows. First, recall the definition (4.2) of the thickening Th(σ) ⊂ ∂F üX of a chamber
σ ∈ ∂F üX inside the Furstenberg boundary, and the definition (2.1) of the star st(τ) of a
simplex τ . We then introduce the Finsler thickening of the chamber σ as the union of small
strata

ThFins(σ) =
⋃{

Sτ : st(τ) ⊂ Th(σ)
}
⊂ ∂Fins∞ X.

Finsler thickenings of antipodal chambers are disjoint if Th is slim.
We obtain the Finsler thickening of the chamber limit set Λch(Γ) by taking the union of the

Finsler thickenings of all limit chambers,

ThFins(Λch(Γ)) =
⋃

σ∈Λch(Γ)

ThFins(σ) ⊂ ∂Fins∞ X.

This subset is closed, Γ-invariant and saturated, i.e. a union of small strata Sτ . We consider
the domain at infinity

ΩFins
Th (Γ) = ∂Fins∞ X − ThFins(Λch(Γ))

and the domain

X t ΩFins
Th (Γ) = X

Fins − ThFins(Λch(Γ)).
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Recall from section 2.7 that the Furstenberg boundary sits inside the Finsler boundary (as a
big stratum), ∂F üX ⊂ ∂Fins∞ X, and note that our domains in the latter extend the domains in
the former,

ΩFins
Th (Γ) ∩ ∂F üX = ΩTh(Γ),

because ThFins(σ) ∩ ∂F üX = Th(σ).
Theorems 4.32, 4.35 and Corollary 4.36 below are Finsler extensions of Theorems 4.24, 4.25

and Corollary 4.26 about discrete group actions on the Furstenberg boundary ∂F üX ∼= G/B.

Theorem 4.32 (Finsler domains of proper discontinuity [KL1, Theorem 9.13]). Suppose that
Γ < G is regular and Th ⊂ W is a fat thickening. Then the action

Γ y X t ΩFins
Th (Γ)

is properly discontinuous.

We note that our construction of domains provides, more generally, domains of proper dis-

continuity for the action of arbitrary discrete subgroups Γ < G on X
Fins

, not only for subgroups
which are τmod-regular for some τmod (see Theorems 9.16 and 9.18 of [KL1]). These more general
domains involve complements to unions of Finsler thickenings of τmod-limit sets of the subgroups
Γ with τmod running through all the faces of σmod.

Theorem 4.33 (Nonemptiness [KL1, Prop. 9.20]). Suppose that Γ < G is an RA subgroup,
Th ⊂ W is a slim thickening and rank(X) ≥ 2. Then ΩFins

Th (Γ) is nonempty.

Note that, unlike Theorem 4.28, this result does not exclude products of symmetric spaces of
type B2 and G2. It is also not limited to σmod-regular subgroups, but holds for all τmod-regular
antipodal subgroups.

In order to address cocompactness, we convert the action Γ y X
Fins

to a topological con-
vergence group action via the following Γ-invariant collapsing procedure: Form a quotient of

X
Fins

by simultaneously collapsing the thickenings ThFins(σ) for all σ ∈ Λch(Γ) to points. Let
Z denote the resulting quotient space, and Λ the projection of ThFins(Λch(Γ)) to Z. Then Λ is
equivariantly homeomorphic to Λch(Γ).

Theorem 4.34 ([KL1, Corollary 11.7, Lemma 11.9]). If Γ < G is an RA subgroup and Th ⊂ W
is a balanced thickening, then the (obviously compact) quotient space Z is metrizable and

Γ y Z

is a convergence group action with limit set Λ.

The last theorem is yet another indication of the “rank 1 nature” of RA subgroups Γ < G.
It is used in [KL1] to prove:

Theorem 4.35 (Finsler cocompactness [KL1, Theorem 11.11]). Suppose that Γ < G is an RCA
subgroup and Th ⊂ W is a slim thickening. Then the action Γ y X t ΩFins

Th (Γ) is cocompact.

Combining Theorems 4.32 and 4.35 we obtain:

Corollary 4.36. If Γ < G is an RCA subgroup and Th ⊂ W is a balanced thickening, then the
action Γ y X t ΩFins

Th (Γ) is properly discontinuous and cocompact.

Note that in this result in the σmod-regular case one does not need antipodality of the limit set
to conclude proper discontinuity and cocompactness, provided that Th is a metric thickening
associated with a nearly root element θ̄ (see the May 2015 version of the preprint [KL1] for the
details). The RCA assumption is, however, needed in the general τmod-regular case.

We apply our construction of domains to obtain bordifications and compactifications of locally
symmetric spaces:
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Corollary 4.37. 1. For each regular subgroup Γ < G, the locally symmetric orbifold X/Γ
admits a real-analytic bordification as an orbifold with corners36(

X t ΩFins
Th (Γ)

)
/Γ,

provided that Th ⊂ W is fat. When this quotient is treated as an orbifold with boundary, the
boundary of this orbifold is (ΩFins

Th (Γ))/Γ.
2. If Γ is RCA and Th is balanced, then this bordification of X/Γ is a compact orbifold with

corners.

Remark 4.38. This corollary implies the topological tameness of the orbifold X/Γ. However,
topological tameness is a weaker property than the existence of a compactification given by
the corollary. For instance, considering finitely generated discrete subgroups Γ < PSL(2,C),
all quotient spaces H3/Γ of such groups are topologically tame, but for many groups Γ the
bordification

(H3 ∪ Ω(Γ))/Γ

is not compact. The latter happens, for instance, for singly degenerate groups.

We show furthermore a converse to the cocompactness part of Theorem 4.35, implying that
Anosov subgroups are characterized among uniformly regular subgroups by the cocompactness
of their action on complements to balanced Finsler thickenings. More generally, we consider
the following property of admitting cocompact domains of proper discontinuity in the Finsler
compactification:

Definition 4.39 (S-cocompact [KL1, Def. 12.4]). We say that a discrete subgroup Γ < G is
S-cocompact if there exists a Γ-invariant saturated open subset Ω∞ ⊂ ∂Fins∞ X such that the
action Γ y X t Ω∞ is properly discontinuous and cocompact.

Remark 4.40. The terminology S-cocompact comes from “saturated”, although the letters S
from “Satake” and “stratified” also appear naturally in this context.

A useful implication of S-cocompactness is given by:

Theorem 4.41 (Cocompactness implies retract [KL1, Thm. 12.5]). S-cocompact discrete sub-
groups Γ < G are coarse retracts37. In particular, they are undistorted.

Combining this theorem with the fact that URU subgroups are Anosov, we obtain:

Theorem 4.42 (Cocompactness implies Anosov [KL1, Thm. 1.9]). S-cocompact uniformly
regular subgroups Γ < G are Anosov.

We conclude:

Corollary 4.43 (Dynamical characterizations of Anosov subgroups II: actions on Finsler com-
pactifications [KL1, Cor. 1.10]). For uniformly regular subgroups Γ < G, the following properties
are equivalent:

(i) Anosov
(ii) S-cocompact
(iii) coarse retract

Combining Corollary 4.43 with Theorem 3.41, we obtain a higher rank analogue of the
Equivalence Theorem for convex cocompact groups of isometries of rank 1 symmetric spaces,
see Theorem 1.36, with the conditions CC0, CC1 and CC8 excluded as inappropriate in higher
rank.

36See Appendix 10 for the precise definition.
37cf. Definition 1.28
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Figure 22. The action of a cyclic subgroup Γ = 〈γ〉 on the Finsler compactifi-

cation F
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the Γ-action.

Example 4.44. We now work out an example illustrating these results. Consider an infinite
cyclic subgroup Γ = 〈γ〉 < PGL(3,R) generated by a regular hyperbolic isometry γ. For
simplicity, we only describe the action on the Finsler compactification of the unique invariant

maximal flat F ⊂ X. The Finsler compactification F
Fins

is a hexagon with vertices v1, . . . , v6

and edges e1, . . . , e6. The vertex set equals the Furstenberg boundary, ∂F üF = {v1, . . . , v6}.
We label the vertices so that v1 and v4 correspond to the repulsive and attractive chambers
σ−, σ+ ∈ ∂F üF . The vertices are fixed by γ, but γ has nontrivial dynamics on the edges: The
interior points of each edge ei = [vi, vi+1] are moved by γ towards one of the two endpoints of
ei, namely to the one which corresponds to the chamber in ∂F üF whose position relative to the
attractive chamber σ+ is smaller in the Bruhat order. This is in stark contrast with the action
of γ on the visual boundary of ∂∞F (with respect to the flat metric), which is fixed pointwise.
The chamber limit set Λch(Γ) ⊂ ∂F üX is the 2-point set {σ−, σ+} = {v1, v4} ⊂ ∂F üF . The
balanced thickening of Λch(Γ) inside ∂Fins∞ F is the union (of closed edges)

ThFins(σ−) ∪ ThFins(σ+) = (e3 ∪ e4) ∪ (e1 ∪ e6)

The intersection

Ω = Ω(Γ) = ΩFins
Th (Γ) ∩ ∂Fins∞ F

is the union of the interiors of the edges e2 and e5. The rectangle Φ in Figure 22 is a (compact)
fundamental domain for the action of Γ on F ∪ Ω. The quotient Ω/Γ is homeomorphic to the
cylinder S1 × [−1, 1]. Now, let us collapse each thickening ThFins(σ−),ThFins(σ+) to a point.
The result is a convergence action of Γ on the quotient space Q, homeomorphic to the closed
2-disk D2. Note that collapsing is natural here since, before the collapse, the mapping γ has
too many fixed points in ∂Fins∞ F , namely all vertices v1, ..., v6, while an infinite cyclic group
acting as a discrete convergence group can have at most two fixed points [Tu94]. After the
collapse only two fixed points are left, namely the projections (still denoted σ+, σ−) of v1 and
v4. On the quotient space Q we recover the familiar attractive-repulsive dynamics of hyperbolic
isometries γ of H2 acting on the visual compactification of H2: The point σ+ is the attractive
point and the point σ− is the repulsive point for the action of γ:

lim
n→∞

γn = σ+,
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uniformly on compacts in Q− {σ−}, and

lim
n→−∞

γ−n = σ−,

uniformly on compacts in Q− {σ+}.

Example 4.45 (A product example). We continue with Example 3.8 of a cyclic isometry
subgroup Γ of the product X = X1×X2 of two hyperbolic spaces. The Finsler compactification
of X is naturally homeomorphic to X1 ×X2. Assume that g = (g1, g2) where g1 is hyperbolic
(with the fixed points λ+

1 , λ
−
1 ) and g2 is parabolic (with the fixed point λ2). As we noted in

Example 3.8, the group Γ = 〈g〉 < Isom(X) is regular but not uniformly regular. Therefore, it
is not Anosov. On the other hand, it is S-cocompact. Namely, it acts properly discontinuously
and cocompactly on

(X1 − {λ−1 , λ+
1 })×X2.

In particular, Γ is a coarse retract, and hence undistorted. Thus, uniform regularity cannot be
weakened to regularity in Theorems 3.41 (item 8), 4.42 and Corollary 4.43.
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Figure 23. Collapsing thickened limit set for the action of a cyclic subgroup
Γ = 〈γ〉 on the Finsler compactification of the model flat.

Remark 4.46 (Relation with the work [GW, GGKW2]). (i) We note that the existence of an
orbifold with boundary compactification of locally symmetric quotients by Anosov subgroups
of some special classes of simple Lie groups (namely, Sp(2n,R), SU(n, n), SO(n, n)) appeared
in [GW].

(ii) The main results of this section dealing with Finsler bordifications of locally symmetric
spaces (Theorems 4.32, 4.35 and Corollaries 4.36, 4.37) are contained in the second version of
[KL1]. After that work had been completed, the e-print [GGKW2] was posted, also addressing
the compactification of locally symmetric spaces. Theorem 1.2 there provides orbifolds with
corners compactifications of X/Γ via the maximal Satake compactification of X for τmod-Anosov
subgroups Γ < G of special face types τmod. However, Theorem 1.1 of [GGKW2] dealing with
the general case still lacks a complete proof. It remains unclear whether the compactifications
constructed there are orbifolds with corners. Namely, the approach uses “generalized” Satake
compactifications, but the proof of Lemma A9, establishing that the latter are manifolds with
corners, lacks details. Note also that in the first version of [GGKW2] there was a basic mistake
in the cocompactness argument. It was corrected in the third version using methods from
[KLP1a].
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5. Future directions

Regular antipodal subgroups. One can think of the class RA of regular antipodal (or
URA: uniformly regular antipodal) subgroups of G as discrete subgroups exhibiting rank 1
behavior: We saw several examples of this at work. Dropping conicality, we obtain (ignoring
the issue of parabolic elements) an analogue of (rank 1) Kleinian groups without any geometric
finiteness assumptions. Quite likely, this class by itself deserves some attention. More generally,
one can define uniformly rank k discrete subgroups Γ < G as those whose visual limit sets
Λ(Γ) ⊂ ∂∞X are disjoint from the codimension k skeleton of the Tits boundary of X. A limit
simplex of Γ is a simplex τ ⊂ ∂∞X which contains a limit point.

Geometric finiteness by no means should be limited to subclasses of uniformly regular (and,
more generally, uniformly rank k) discrete subgroups. Here is a wish list for a good notion of
geometric finiteness in higher rank:

A. Conjectural properties of geometrically finite subgroups:
1. Geometrically finite groups should be stable under small deformations, provided that we

have the right algebraic restrictions (yet to be determined) on the deformations of representa-
tions. In rank 1, such restrictions amount to a certain control on the deformations of maximal
parabolic subgroups, see [Bo3].

2. The locally symmetric quotient spaces X/Γ of geometrically finite groups should admit
geometrically natural compactifications, by attaching quotients of domains of discontinuity at
infinity and compactifying “cusps”, incorporating (as a special case) the Borel–Serre compacti-
fications (see e.g. [BJ]) of locally-symmetric spaces of finite volume. In particular, such groups
should be finitely presented.

3. Algebraically speaking, geometrically finite groups should be (suitably relativized) semihy-
perbolic groups. Note that semihyperbolic groups (cf. [BrHa, III.Γ.4]) represent a coarsification
of the notion of CAT(0) groups. Any notion of relative semihyperbolicity should include rela-
tively hyperbolic groups as a special case. We refer the reader to [KR] for one possible definition
of relatively semyhyperbolic groups.

4. Geometric finiteness should be semidecidable.
5. Geometric finiteness should be stable under embeddings of the ambient Lie groups: If

Γ < G1 is geometrically finite and φ : G1 → G2 is an embedding of semisimple (or reductive)
Lie groups, then φ(Γ) < G2 is again geometrically finite. (Note that this fails, in general, for
Anosov subgroups.)

6. Geometric finiteness should be stable under taking finite index subgroups: If Γ1 < Γ2 is a
finite index subgroup, then Γ2 < G is geometrically finite iff Γ1 < G is geometrically finite.

B. A conjectural class of geometrically finite subgroups should include:
1. Direct products of geometrically finite groups: If Γi < Gi are geometrically finite, i = 1, 2,

then Γ1 × Γ2 < G1 ×G2 is also geometrically finite.
2. All geometrically finite groups in rank one (allowing parabolics).
3. Standard representations of Coxeter groups [Bou, Sect. V.4].
4. Groups of projective transformations acting properly discontinuously on bounded convex

domains in the affine space such that the quotient has finite volume with respect to the Hilbert
metric.

5. Lattices in semisimple algebraic Lie groups (of any rank).

At this point, the following two definitions of geometric finiteness, in the setting of discrete
groups containing no parabolic elements, appear to be most promising:

Definition 5.1. Γ is geometrically finite if it is S-cocompact.

For instance, every convex cocompact subgroup Γ < G in the sense of [KL06, Q] is S-cocom-
pact. Every Anosov subgroup Γ < G is S-cocompact as well.
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Definition 5.2. Γ < G is geometrically finite if it is an equivariant coarse retract (cf. Defini-
tion 1.28).

Note that, according to Theorem 4.41, S-cocompactness implies being an equivariant coarse
retract. In particular, either definition implies semihyperbolicity of Γ. Moreover, the definition
using retractions is clearly stable under embeddings of Lie groups as mentioned above.

6. Appendix. Horofunction compactification

Let (Y, d) be a locally compact geodesic metric space. For each y ∈ Y define the 1-Lipschitz
function dy = d(y, ·) on Y . This leads to the embedding κ : Y → C(Y ) = C(Y,R), y 7→ dy. We
let R ⊂ C(Y ) denote the linear subspace of constant functions. Composing the embedding κ
with the projection C(Y )→ C(Y )/R we obtain the Kuratowski embedding of Y ,

Y ↪→ C(Y )/R.

Then Y , the closure of Y in C(Y )/R, is the horofunction compactification of Y . Functions
representing points in ∂∞Y = Y −Y are the horofunctions on Y . In other words, horofunctions
on Y are limits (uniform on compacts in Y ) of sequences of normalized distance functions
dyi−dyi(o), where yi ∈ Y are divergent sequences in Y . Each geodesic ray r(t) in Y determines
a horofunction in Y called a Busemann function br, which is the subsequential limit

lim
i→∞

dr(i) − dr(i)(o).

If Y is a CAT(0) space, then each limit as above exists (without passing to a subsequence).
Furthermore, each horofunction is a Busemann function. This yields a topological identifica-
tion of the visual compactification of Y and its horofunction compactification. Level sets of
Busemann functions are called horospheres in X. The point r(∞) ∈ ∂∞Y is the center of the
horosphere {br = c}. We refer the reader to [Gr1, Ba] for further details and to [KL1] for the
detailed treatment of this construction in the case of nonsymmetric metrics.

7. Appendix. Expanding and relatively expanding actions

Let (Z, d) be a compact metric space. A map f : Z → Z is said to be metrically expanding
at a point z ∈ Z if there exists a neighborhood U of z in Z, a number c > 1 (an expansion
factor) such that for all z′, z′′ ∈ U ,

d(f(z′), f(z′′)) ≥ cd(z′, z′′).

A sequence of maps fn : Z → Z is said to have metrically diverging expansion at z ∈ Z if there
exists a system of neighborhoods Un of z and expansion factors cn → ∞ such that each fn|Un

expands with the expansion factor cn.
A topological action Γ y Z is said to be expanding at a Γ-invariant subset E ⊂ Z if for each

z ∈ E there exists γ ∈ Γ which is expanding at z ∈ Z.
The expansion concepts have infinitesimal versions in the case of diffeomorphisms and smooth

group actions on Riemannian manifolds. Suppose that M is a Riemannian manifold and f :
M → M is a diffeomorphism. The infinitesimal expansion factor of f at a point x ∈ M is the
number

ε(f, x) = inf
u∈UxM

|df(u)|

where UxM is the unit sphere in TxM . A smooth map f : M →M is said to be infinitesimally
expanding at x if ε(f, x) > 1. It is easily seen that a smooth map is infinitesimally expanding
at x iff it is metrically expanding at x. A sequence of smooth maps fn : M → M is said to
have diverging infinitesimal expansion at x ∈M if

lim
n→∞

ε(fn, x) =∞.
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A group of diffeomorphisms Γ < Diff(M) is infinitesimally expanding at a subset Z ⊂ M if
for every z ∈ Z there exists γ ∈ Γ which is infinitesimally expanding at z.

More generally, one defines relatively expanding actions of groups on metric spaces. Suppose
again that (Z, d) is a compact metric space, Γ y Z is a topological group action preserving
a compact subset E ⊂ Z. Suppose, furthermore, that π : E → Λ is a continuous map, which
is equivariant with respect to actions Γ y E,Γ y Λ. We let Eλ = π−1(λ) for λ ∈ Λ. The
action of Γ is said to be relatively expanding at E with respect to π (or expanding relative to
π : E → Λ) if:

For each λ ∈ Λ there exists a neighborhood Uλ of Eλ in Z, a number c > 1 and an element
γ ∈ Γ such that for all Eλ′ ⊂ U and z ∈ U ,

d(γ(z), γEλ′) ≥ cd(z, Eλ′).

Here the distance d(z,W ) froma point z ∈ Z to a subset W ⊂ Z is

d(z,W ) := inf
w∈W

d(z, w).

Such relatively expanding actions frequently appear with the sets Eλ being stable sets of
the action, when the dynamics of γ inside Eλ is complicated (say, non-expanding), but is still
relatively expanding with respect to π. One can think of this setting as actions expanding
transversally to the fibers of π.

Lemma 7.1 ([KLP1a, KLP1b]). If Γ y Z is expanding relative to π : E → Λ then (Z −E)/Γ
is compact (not necessarily Hausdorff, of course).

The idea of the proof is that, if V is a sufficiently small neighborhood of E in Z, then V
cannot contain the entire Γ-orbit as some points of the orbit will be repulsed away from E (into
the complement of V ) by an expanding element γ ∈ Γ.

Example 7.2. Below are two examples of expanding actions with non-Hausdorff quotients:
1. Z = S1, Z ∼= Γ < Isom(S1), Λ = E = ∅. Then the action of Γ is expanding relative to

π : E → Λ, but every Γ-orbit is dense in S1. In particular, S1/Γ is infinite with trivial topology.
2. A more interesting example is given by a cocompact Fuchsian subgroup Γ < PSL(2,R)

and its product action on Z = S1 × S1. We let E = Λ be the diagonal in S1 × S1 with the
identity map π : E → Λ. The action Γ y Z is expanding relative to π; this can be seen, for
instance, by observing that the action Γ y S1 is infinitesimally expanding. On the other hand,
(Z − E)/Γ is non-Hausdorff since the action Γ y Z is ergodic and, hence, almost every orbit
is dense.

8. Appendix. Abstract convergence actions and groups

Let Z be a compact metric space which consists of at least three points. We define the
space TZ to be the subset of Z3 consisting of triples of pairwise distinct points in Z. Every
topological action Γ y Z induces a topological action Γ y TZ.

Definition 8.1 (Convergence action). An action Γ y Z is called a convergence action and the
image of Γ in Homeo(Z) is said to be a convergence group if one of the following equivalent
conditions hold:

(i) The action Γ y TZ is properly discontinuous.
(ii) For every sequence γn → ∞ in Γ there exist points z± ∈ Z and a subsequence of (γn)

which converges to the constant map ≡ z+ uniformly on compacts in Z −{z−}. The points z+

and z− are called the limit point (or the attractor) and the exceptional point (or the repeller) of
this subsequence.38

A convergence action Γ y Z is said to be uniform if the action Γ y TZ is cocompact.

38Of course, it might happen that z− = z+.
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A proof for the equivalence of the definitions (i) and (ii) can be found in [Bo5].
The main example of convergence actions comes from the following fact: Every discrete group

Γ of isometries of a proper Gromov hyperbolic geodesic metric space X acts as a convergence
group on the Gromov boundary ∂∞X of X. Furthermore, every word hyperbolic group Γ acts
on its Gromov boundary ∂∞Γ as a uniform convergence group. See e.g. [Tu94].

Bowditch proved that, vice versa, this dynamical behavior characterizes the natural actions
of word hyperbolic groups on their boundaries:

Theorem 8.2 ([Bo4, Thm. 0.1]). Let Γ y Z be a uniform convergence action on a nonempty
perfect39 compact metrizable space. Then Γ is word hyperbolic and Z is equivariantly homeo-
morphic to ∂∞Γ.

For every convergence action Γ y Z one defines the limit set, the conical limit set and the
domain of discontinuity (which is the same as the domain of proper discontinuity).

Definition 8.3. A sequence (γn) in Γ is said to converge to a point z+ ∈ Z, γk → z+, if
every subsequence in (γn) contains a further subsequence, which converges to z+ uniformly on
compacts in Z − {z−}, for some z− ∈ Z (which depends on the subsubsequence).

Definition 8.4 (See Section 8 of [Bo4]). A sequence (γn) in Γ which converges to z+ is said
to converge conically to z if for every point ẑ ∈ Z − {z}, the sequence of pairs γ−1

n (z, ẑ) is
relatively compact in Z2 −Diag(Z2).

Definition 8.5. The limit set Λ(Γ) ⊂ Z of a convergence action Γ y Z is the subset consisting
of limits z of sequences γk → z, γk ∈ Γ. The conical limit set Λc(Γ) ⊂ Z is the subset consisting
of conical limits of sequences γk ∈ Γ.

Both Λ(Γ) and Λc(Γ) are Γ-invariant; the limit set Λ(Γ) is closed, while the conical limit
set Λc(Γ), in general, is not closed. The domain of discontinuity of the action Γ y Z is the
complement Z −Λ(Γ). The action of Γ on Ω(Γ) is properly discontinuous. An action Γ y Z is
called elementary if Λ(Γ) contains at most two points and nonelementary otherwise. The limit
set of every nonelementary convergence action is perfect.

In the case when Γ is a regular antipodal subgroup of the isometry group G of a symmetric
space X and Z = Λch(Γ) ⊂ ∂F üX, we refer to conical limit points for the convergence action
Γ y Z as intrinsically conical in order to distinguish this notion of conicality from the extrinsic
notion described in Sections 1.4 and 3.4.

Theorem 8.6 ([Bo4, Thm. 8.1], [Tu98]). A convergence action Γ y Z on a perfect compact
metric space Z is uniform if and only if Z = Λc(Γ), i.e., every point of Z is a conical limit
point of Γ.

We now fix a metric d on the metrizable space Z.

Definition 8.7. A convergence action Γ y (Z, d) is expanding if it is expanding at Λ = Λ(Γ)
in the sense of Section 7.

The following theorem is proven in [KLP2] using a different method:

Theorem 8.8. Each nonelementary expanding convergence action Γ y Z restricts to a uniform
action on Λ. In particular, if Z is perfect then for every expanding convergence action Γ y Z,
all limit points of Γ are conical.

Proof. Our argument will use, and will illustrate, a generalization of the the concept of thick-
ening discussed earlier in the context of group actions on higher rank symmetric spaces and
flag manifolds. For each λ ∈ Λ = Λ(Γ) define its thickening Th(λ) ⊂ Λ3,

Th(λ) = {λ} × {λ} × Λ ∪ {λ} × Λ× {λ} ∪ Λ× {λ} × {λ}.
39Recall that a topological space is called perfect if it has no isolated points.
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Clearly, Th(γλ) = γTh(λ), λ ∈ Λ, γ ∈ Γ. Note that the subsets Th(λ) are pairwise disjoint
(i.e. the thickening is slim). Then

Th(Λ) :=
⋃
λ∈Λ

Th(λ)

is the large diagonal in Λ3. Of course,

TΛ = Λ3 − Th(Λ).

We have the Γ-equivariant fibration

π : Th(Λ)→ Λ, Th(λ)→ {λ}.
We equip Λ3 with the following product metric induced from the metric d on Z:

d2((z1, z2, z3), (w1, w2, w3)) = d2(z1, w1) + d2(z2, w2) + d2(z3, w3).

The fact that the action Γ y Λ is expanding translates to the statement that the action Γ y Λ3

is expanding relative to π : Th(Λ)→ Λ. Indeed, for z = (z1, z2, z3), zi ∈ Λ, and λ′ ∈ Λ,

d(z, Th(λ′)) = min
(√

d2(z1, λ′) + d2(z2, λ′),
√
d2(z1, λ′) + d2(z3, λ′),

√
d2(z2, λ′) + d2(z3, λ′)

)
.

The expansion condition for the action of γ ∈ Γ on a neighborhood U ⊂ Λ of λ ∈ Λ (containing
the points z1, z2, z3 and λ′) implies that

d(γzi, γλ
′) ≥ cd(zi, λ

′), c > 1, i = 1, 2, 3.

From this we conclude that

d(γz, Th(γλ′)) ≥ cd(z, Th(λ′)),

which means relative expansion. Therefore, according to Lemma 7.1, applied to the action
Γ y (Λ3, Th(Λ)), the action Γ y TΛ = Λ3 − Th(Λ) is cocompact. In other words, Γ y Λ is a
uniform convergence action �

9. Appendix. Model spaces: Symmetric spaces and buildings

In these lectures we use two classes of buildings: Spherical and euclidean40. Spherical build-
ings were introduced by Tits in order to generalize incidence geometry from classical groups
to general semisimple Lie groups; they emerged as an important geometric tool for studying
geometry of symmetric spaces and Lie groups. Similarly, euclidean buildings were introduced
by Bruhat and Tits as a tool for studying algebraic groups over fields with nonarchimedean
valuations, e.g. p-adic numbers Qp. A way to think about buildings is as hybrids of simplicial
complexes and manifolds equipped with geometric structures: From manifolds they acquire an
atlas, from simplicial complexes they acquire certain discrete features. We first define model
spaces which include both symmetric spaces and buildings and then add more axioms to spe-
cialize to buildings.

Below are basic axioms of buildings. As in the case of geometric structures, one starts with
a model space and a group acting on this space. The model space in our setting is a model
apartment amod, which is either a unit sphere (in the case of spherical buildings) or a euclidean
space (for euclidean buildings). One also fixes a model Coxeter group W acting isometrically
on amod; this group is generated by reflections in hyperplanes in amod. In the case of spherical
apartment, W is required to be finite; in the euclidean case W is required to have finite linear
part. For euclidean apartments, in general, no discreteness of W is assumed. In order to avoid
the notation confusion, we will frequently use the notation Waff for the Coxeter group in the
euclidean case. The pair (amod,W ) is called a Coxeter complex.

40Although the latter are only mentioned in passing in sections 2—5.
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Example 9.1. For instance, if amod = A is an affine space and W is a finite reflection group of
isometries of A, then one takes Waff = T oW , where T is the full group of translations of A.

Hyperplanes fixed by reflections in W are called walls in amod. A (closed) half-apartment in
amod is a half-space bounded by a wall. In the spherical case, amod is divided into fundamental
domains of W , called chambers. The model chamber σmod is the quotient amod/W , it can be
identified with one of the chambers in amod. The quotient projection θ : amod → σmod is the
type map. In the spherical case one uses the notation ∠ for the angular distance on amod.

Now we can state the main axioms of model spaces:

Axiom 1. A model space is a metric space which is either a CAT(1) space (spherical case)
or a CAT(0) space (euclidean case).

Axiom 2. A model space is a metric space X equipped with an atlas where charts are
isometric embeddings amod → X, such that transition maps are restrictions of elements of the
model Coxeter group.

Note that images of charts (called apartments in the case of buildings) are not required to
be open in X (unlike the case of geometric structures on manifolds). Using this axioms one
can transport various (invariant) notions from the model apartment to the model space; in
particular, one defines walls in X as images of walls in the model apartment.

Axiom 3. For any two points x, y of a model space there is a chart whose image contains
both x and y.

Note that the model apartment clearly satisfies the first three axioms. One frequently adds
one more general axiom in order to distinguish model apartments from “more interesting”
model spaces:

Axiom 4. A model space X is thick if any wall in X equals the intersection of three half-
apartments.

Example 9.2. 1. A metric tree is a model space modeled on (A,W ), where A is the line and
W is the full group of euclidean isometries of A.

2. Each symmetric space X is a model space. Let G denote the connected component of the
identity in the isometry group of X. The model apartment is a maximal flat F in X and the
model Coxeter group acting on F is the image Waff in Isom(F ) of the stabilizer GF of F in
G.

In order to differentiate between symmetric spaces and buildings, one introduces one more
angle discreteness axiom. This axiom is void in the spherical case and we, therefore, restrict
now to the case of euclidean model spaces with the Coxeter group Waff = T oW , where W is
a finite Coxeter group. Let σmod denote the model chamber for action of W on the unit sphere
in the affine space A = amod. We let ∆ ⊂ A denote a model euclidean Weyl chamber, the cone
over σmod. We then have the ∆-distance function

d∆(x, y) ∈ ∆

defined for all points x, y ∈ X: Pick a chart φ : A→ X; φ(x′) = x, φ(y′) = y, then consider the
vector v in A represented by the directed segment x′y′ and project v to ∆ = A/W . The result
is d∆(x, y). For each nondegenerate geodesic segment xy in X, we define its σmod-direction
θ(xy) as the unit vector in the direction of d∆(x, y).

For each x ∈ X one has the space of directions ΣxX of X at x, which is the space of germs
of nondegenerate geodesic segments emanating from x. On this space we have the (metric)
notion of angle denoted ∠. We also have the type map θx : ΣxX → σmod, sending each xy to
its direction θ(xy).
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Axiom 5: Angle discreteness. Let v1, v2 be elements of ΣxX. Then we require that
∠(v1, v2) belongs to the finite set of angles

∠(θ(v1), wθ(v2)), w ∈ W.
A Riemannian manifold (of dimension ≥ 2) cannot satisfy this axiom.

Definition 9.3. A (thick) spherical building is a model space, modeled on a spherical Coxeter
complex and satisfying Axioms 1—4. A (thick) euclidean building is a model space modeled
on a euclidean Coxeter complex and satisfying Axioms 1—5.

For instance, metric trees and their products are examples of euclidean buildings. A building
is said to be discrete if the model Coxeter group is discrete. Below is an example of a discrete
euclidean building X on which PSL(3,Qp) acts isometrically. We will only describe the under-
lying simplicial complex and not the rest of the structure. Vertices of X are equivalence classes
of Zp-lattices Λ in Q3

p, where two lattices are equivalent iff they differ by a Qp-scaling. Edges
of X represented by pairs of lattices:

Λ ⊂ Λ′, |Λ′ : Λ| = p.

A 2-simplex in X is a chain of proper inclusions of lattices

Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ pΛ0

where each inclusion is necessarily of the index p (note that Λ0, pΛ0 represent the same vertex).
It turns out that for each point x in a building (spherical or euclidean), the space of directions

ΣxX has a natural structure of a spherical building. In the case of a vertex in a discrete building,
the building ΣxX (treated as a simplicial complex) is identified with the link of x.

Buildings enter naturally into the theory of symmetric spaces via two asymptotic construc-
tions:

1. The visual boundary of a symmetric space X (also, of a euclidean building) is a spherical
building, see e.g. [Eb].

2. Every asymptotic cone of a symmetric space X is again a euclidean building modeled on
the same Coxeter complex, see [KL98].

The SL(3,R) example. Below we supplement our earlier discussion of visual boundaries
with the detailed example of the symmetric space X of the group G = SL(3,R). Our treatment
follows [BGS, Appendix 5]. This symmetric space X is identified with the space P (3,R) of
conformal structures on R3, more precisely, positive definite bilinear forms b on R3 up to scalar.
After fixing the standard euclidean bilinear form q0 on R3, such structures can be identified
with symmetric positive-definite 3× 3 matrices A of the unit determinant:

b(u, v) = uTAv.

The group G acts on bilinear forms b by change of variables:

g∗b = b′, b′(u, v) = b(g(u), g(v)),

in terms of matrices, the action is given by

g∗A = gTAg, g ∈ SL(3,R).

In matrix terms, the Riemannian metric on X at the identity matrix is given by

(a, b) = tr(ab),

where a, b are symmetric traceless 3× 3 matrices.
A maximal flat F in X is given by diagonal matrices with positive diagonal entries x1, x2, x3

and unit determinant (the corresponding quadratic forms have principal axes equal to the
coordinate lines in R3). The isometry of F to the euclidean plane is given by

Diag(x1, x2, x3) 7→ (log(x1), log(x2), log(x3)) ∈ R3
0 =
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{(y1, y2, y3) ∈ R3 : y1 + y2 + y3 = 0}.
The action of W = S3 on F is by permuting the diagonal entries. The walls are given by the
equations

xi = xj, 1 ≤ i 6= j ≤ 3.

The positive chamber in F is defined by the inequalities

x1 ≥ x2 ≥ x3 > 0

and in R3
0 by the inequalities

y1 ≥ y2 ≥ y3.

(We will think of the positive chamber ∆ as sitting in R3
0 since the metric of the symmetric

space equals the euclidean metric in this setting.) If q ∈ X is a general quadratic form, then
the segment q0q is regular iff all three principal axes of the ellipsoid of q are distinct. The
∆-distance d∆(q0, q) is the vector

(log(λ1), log(λ2), log(λ3)),

where λi’s are the eigenvalues of the matrix A of q, which are arranged in the descending order.
In terms of a matrix g ∈ SL(3,R),

d∆(q0, g(q0)) = (log(µ1), log(µ2), log(µ3))

where µi’s are the singular values of the matrix g, again arranged in the descending order. A
sequence (gi) is regular iff

lim
i→∞

µ1(gi)

µ2(gi)
= lim

i→∞

µ2(gi)

µ3(gi)
=∞.

We now describe the visual boundary of X which we will identify with the space of asymptotic
classes of geodesic rays ρ(t), t ≥ 0, emanating from q0. The initial velocity of such a ray is the
matrix with the eigenvalues a ≥ b ≥ c, a+ b+ c = 0, a2 + b2 + c2 = 1; the asymptotic behavior
of the ray is determined by the parameter

r =
b− c
a− b

, r ∈ [0,∞].

Let va, vb, vc ∈ R3 denote the unit eigenvectors corresponding to the eigenvalues a, b, c. Define
the strip

sρ = Rva + [−r, r]vb.
There are three possibilities:
1. r = 0, i.e., b = c, the strip degenerates to the line Rva. We associate with the ray ρ the

line 〈va〉. Note that the vectors vb, vc are not uniquely defined. This corresponds to the fact
that there is no unique maximal flat through the ray ρ.

2. r = ∞, i.e., a = b, the strip is the plane 〈va, vb〉 spanned by va, vb. We associate with
the ray ρ the plane 〈va, vb〉. Again, the vectors va, vb are not uniquely defined (only the vector
vc and the plane 〈va, vb〉 = v⊥c are well-defined). This again corresponds to nonuniqueness of a
maximal flat through the ray ρ.

3. r ∈ (0,∞), equivalently, the direction of ρ is regular. The corresponding flag is

(L ⊂ P ) = (〈va〉 ⊂ 〈va, vb〉).
Note that in this case a > b > c and the one-dimensional eigenspaces of A are unique.

If we fix va, vb, the set of resulting geodesic rays corresponds to the set of all strips in
〈va, vb〉 interpolating between the line 〈va〉 and the plane 〈va, vb〉. This is the Weyl chamber
corresponding to the flag L ⊂ P .

If we equip the set of strips with Gromov-Hausdorff topology, then the resulting set is home-
omorphic to the set of rays emanating from q0, i.e., to the visual boundary of P (3,R). The
subspaces corresponding to the sets of singular directions are homeomorphic to the spaces of
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lines and, resp. planes, in R3. Thus we see that the Tits boundary of P (3,R) is naturally
homeomorphic to the incidence graph of the projective plane.

10. Appendix. Manifolds with corners

For simplicity we consider here only the concept of manifolds with corners and good orbifolds
with corners since only they appear in the context of this paper. We refer to [Jo] for the
definition of orbifolds with corners in general.

The concept of manifolds with corners generalizes the notion of manifolds with boundary.
Recall that the latter are defined via atlases with values in the euclidean spaces and half-spaces.
Let I denote the closed interval [0, 1] and In the n-dimensional cube. The cube In is a stratified
space where the (open) k-dimensional stratum Sk(I

n) is the union of open k-dimensional faces
of In, i.e. k-dimensional subcubes which are products of several copies of the open intervals
(0, 1) and singletons from the set {0, 1}. Dimensions of the strata range from 0 to n. We let
H(In) denote the pseudogroup of homeomorphisms between open subsets of In which preserve
the stratification of In, i.e. map points of Sk(I

n) to points of Sk(I
n) for every k = 0, ..., n.

Definition 10.1. An n-dimensional topological manifold with corners is a 2nd countable Haus-
dorff topological space X equipped with a certain atlas, which is a maximal system of homeo-
morphisms (“charts”) φα : Uα → Vα, from open subsets Uα ⊂ In to open subsets Vα ⊂ X. It is
required that the (partially defined) transition maps

gα,β = φ−1
β ◦ φα

preserve the stratification of In: gα,β ∈ H(In) for all φβ, φα. Thus, every manifold with corners
is stratified as

S0(X) t S1(X) t . . . t Sn(X),

where the strata Sk(X) consist of the points x ∈ X which are mapped to Sk(I
n) under the

maps φ−1
α .

Example 10.2. If X is a manifold with corners and Y ⊂ X is an open subset, then one obtains
a pull-back structure of the manifold with corners from X to Y , where the charts for Y are
suitable restrictions of the charts for X. Similarly, one defines the pull-back of the manifold
with corners structure via a local homeomorphism f : Y → X, where Y is Hausdorff and 2nd
countable and X is a manifold with corners.

We note that, in particular, every manifold with corners is automatically a manifold with
boundary, where Sn(X) = int(X) and the union of the rest of the strata is the boundary of
X. Conversely, every n-manifold with boundary X has a natural structure of a manifold with
corners where all strata of dimension < n− 1 are empty.

Unlike the topological boundary, the strata Sk(X) are not uniquely determined by the topol-
ogy of X.

Example 10.3. The cube X = In has a natural manifold with corners structure which is the
maximal atlas containing the identity map In → In and Sk(X) = Sk(I

n), k = 0, ..., n. On
the other hand, In is homeomorphic to the closed ball Bn which we treat as a manifold with
boundary. Hence, Sk(B

n) = ∅ for k < n− 1.

As in the case of manifolds, one defines manifolds with corners in other categories, e.g.
smooth (with smooth transition maps) or real-analytic (with real-analytic transition maps).
Here we recall that a smooth (respectively, real analytic) map of an open subset of In ⊂ Rn to
Rk is a map which admits a smooth (respectively, real analytic) extension to an open subset
of Rn. A homeomorphism f : X → Y between n-dimensional manifolds with corners is an
isomorphism if for every pair of charts φα : Uα ⊂ In → X, φβ : Uβ ⊂ In → Y the composition
φ−1
β ◦ f ◦φα belongs to the pseudogroup H(In). Similarly, one defines an isomorphism between
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smooth (respectively, real analytic) manifolds with corners as an isomorphism of the underlying
topological manifolds with corners which gives rise to local diffeomorphisms (respectively, real-
analytic diffeomorphisms) φ−1

β ◦ f ◦ φα. We let Aut(X) denote the group of automorphisms of
the topological (respectively, smooth, or real-analytic) manifold with corners X.

Definition 10.4. Let X be a real analytic manifold with corners and Γ < Aut(X) be a
subgroup which acts properly discontinuously on X. Then the quotient X/Γ is called a good
real-analytic orbifold with corners. Here X/Γ is a topological space equipped with the collection
of orbi-charts which are quotient maps of open subsets Uα ⊂ In by finite groups of real-analytic
automorphisms of Uα obtained by restrictions of subgroups of Γ.

We note that (analogously to an ordinary orbifold) the orbi-charts of a good orbifold with
corners satisfy certain compatibility conditions which are used to define an orbifold with corners
in full generality, see [Jo].
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