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STATISTICAL AND SCIENTIFIC DATABASE ISSUES 

Arie Shoshani and Harry K.T. Wong 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Abstract 

The purpose of this paper is to summarize the research issues of Statistical and Scientific 

Databases (SSDBs). It organizes the issues into four major groups: physical organization and 

access methods, operators, logical organization and user interfaces, and miscellaneous issues. It 

emphasizes the differences between SSDBs and traditional database applications, and motivates 

the need for new and innovative techniques for the support of SSDBs. In addition to describing 

current work in this field, it discusses open research areas and proposes possible approaches to 

their solution. 

I. Introduction 

Over the last several years there has been growing interest in Statistical and Scientific Data-

base (SSDB) research. This interest is due, in part, to the inadequacy of commercial database 

management systems to support statistical and scientific applications. A similar situation exists 

in other application areas such as CAD/CAM, VLSI design, and knowledge-based systems. The 

main reason for this situation is that most of the commercial systems available today were 

designed primarily to support transactions for business applications (such as marketing and bank-

ing), while other applications have different data characteristics and processing requirements. 

Another reason for the interest is the large amount of data that exist in SSDB applications. 

A single scientific experiment can generate hundreds of megabytes of data within days. Many 

scientific simulations are not carried out to the desired granularity level, only because it is 

impractical to process and analyze the large amount of data that would be generated. Many 
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practical databases collected for statistical purposes, such as trade data between countries, or the 

various census data, are too large to be handled with conventional data management techniques 

efficiently. But, in addition, there is a large amount of data that was not collected originally for 

experimental or statistical purposes, that has tremendous potential when used for statistical pur­

poses. For example, routine patient records in hospitals can be used for statistical "cause and 

effect" studies. Business transactions can be statistically analyzed for policy setting and 

econometric models. For the most part, such sources of routine collections of data are left unused 

because adequate data management and analysis facilities do not exist. 

SSDB applications differ from commercial applications both in the properties of the data 

and in the operations over the data. For example, SSDBs often contain sparse data (usually in a 

multi-dimensional matrix form) that need to be efficiently compressed. They often contain special 

data types such as vectors or time series. Similarly, statistical analysis requires different types of 

operations over the data. Typically, only a few variables are examined over a large number of 

the- cases (asjs the case in determining cross-correlation). This suggests a.transposed file organi­

zation where all the values of a single variable are stored together, as opposed to the "horizontal" 

record structure found in most commercial systems. In addition to statistical operators, such as 

sampling and aggregation, the access of the data is of a different nature. For example, it is quite 

common to access a region in multi-dimensional space, such as finding materials with certain 

approximate properties, or cases that fit a statistical pattern. For such cases multi-dimensional 

data structures and search methods are desirable. 

Statistical and scientific applications have many similar properties, which is the reason for 

exploring_ such applications together. Most scientific databases· are eventually statistically 

analyzed. Consider, for example, a- particle physics experiment, where particles are collided in 

order to generate sub-particles. Such collisions can occur millions of times, and the results cap­

tured by special detectors. The data from the detectors passes many stages of analysis. The first 

few ,stages reconstruct the tracks of sub-particles produced. Eventually, collections of tracks for 

certain sub-particles are analyzed statistically in order to characterize the collisions. In general, 

scientific data have more complexity than strictly statistical data (such as survey data), because 

-2-



• 

in addition to the measured data, it contains data about the instruments, the environment of the 

experiment, and the configuration of the experiment. Configuration data can be quite complex, as 

is the case, for example, in describing a wing configuration for an airplane simulation. 

It is not the purpose of this paper to present a survey of current work, or to characterize the 

properties and access requirements of SSDBs. Such work was previously presented in [1] and [2], 

for example. Rather, it's purpose is to summarize the areas of research. Most areas have only 

been partially addressed by current research. We found it convenient to group the research areas 

into four groups: physical organization and access methods, operators, logical organization and 

user interfaces, and miscellaneous issues. It is hoped that the delineation of issues in these areas 

will spur further research interest. Since our purpose is not to survey existing research work, but 

rather to delineate the research areas, we only mention here a few references tpat have extensive 

reference lists or a few representative papers that introduce new approaches. 

U. On the Role of Multi-Dimensionality 

Multi-dimensionality is a dominant feature in SSDBs. Many of the characteristics and 

requirements of SSDBs can be traced to this feature. It greatly affects both logical and physical 

data management design considerations, and deserves special support in systems that are intended 

to manage SSDBs. While in other applications the concept of an "entity" (e.g. employee, depart­

ment, bank account) is common, it is more convenient in SSDBs to think about "cases," which 

are instances of an experiment, a simulation, or a survey. While cases can be given unique 

identification numbers (so that they can be thought of as instances of entities), they are com­

monly characterized by a set of parameters or categories. For example, trade data can be 

identified in terms of the exporting country, importing country, commodity, year, and month. 

Similarly, a corrosion experiment can be described in terms of the temperature, acidity, salinity, 

length of exposure, and the material used. Another common characterization of physical experi­

ments is in terms of space and time. In all such examples there exists naturally a multi­

dimensional space for which measured data is collected. Many issues discussed later involve 

multi-dimensionality. 
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One can dismiss multi-dimensionality as nothing more than a composite key that can be 

handled simply by defining it as such in the data definition section of the data management sys­

tem. However, in reality, data definition alone is not sufficient; the system should provide the 

corresponding physical support, the query facilities and query optimization algorithms to handle 

multi-dimensionality properly. At the physical level special data structures for organizing multi­

dimensional data are needed, as well as special access methods and compression techniques. At 

the logical level, special models to represent the multi-dimensional aspects of the data are neces­

sary, and the corresponding user interfaces- to express·queries over them are needed. The 

difficulty of dealing with multi-dimensional spaces is further compounded by the fact that each 

dimension can itself have a complex (usually hierarchical) structure. For example, a trade com­

modity can be broken into categories of food, energy, clothing, etc. Each category can be further 

broken into sub-categories, such as energy into the sub-categories of oil, coal, and gas. This sub­

categorization of a. single dimension can continue into many levels, and sometimes overlaps may 

exist. Representing such complexity requires special facilities at the logical and user interface 

level. Finally, the query optimization of data structures involving multi-dimensional spaces has 

the additional complexity of dealing with special physical structures and operators over such data. 

m. Physical Organi•ation and Access Methods 

In this section we are concerned with physical organization techniques that take advantage 

of data properties and access patterns to provide efficient data storage and access. 

1. Compression 

There are several reasons for the need of compression in SSDBs, two of which are related to 

the multi-dimensionality property described in the previous section. 

The first reason is that the multi-dimensional space created by the cross product of the 

values of the dimensions can be naturally sparse. For example, in the trade statistics database 

mentioned previously, where the dimensions are exporting country, importing country, material, 

year, and month, only a small number of the materials are exported from a given country to other 
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countries. Similarly, in a physics experiment of colliding particles only a small percentage of the 

detectors would actually record a measurement, since only those in the path ~f sub-particles will 

have a measurable reading. 

The second reason for compression is the need to compress the descriptors of the multi­

dimensional space. Suppose, for example, that the trade database mentioned above is to be put 

into a relational database system. The five dimensions organized in this tabular form will create 

a great repetition of the values of each dimension. In fact, in the extreme, but often realistic case 

that the full cross product is stored, the number of times that each value of a given dimension 

repeats is equal to the product of the cardinalities of the remaining dimensions. In addition, the 

descriptors of some of the dimensions can be hierarchical to several levels as was explained in sec­

tion IT. This further cqmplicates their storage in a compressed form. 

It is interesting to note that the data in a multi-dimensional space can be reorganized to 

yield better compression. Multi-dimensional data can be thought of as being organized as an n­

dimensional matrix. The rearrangement of rows and columns of the matrix can result in better 

clustering of the data into regions that are highly sparse or highly dense. Methods that take 

advantage of such clustering can thus become quite effective. Determining the optimal ordering 

of the data to achieve maximum compression is a difficult problem that probably cannot be solved 

without probabilistic and/or heuristic method. 

Other reasons for compression in SSDBs result from the properties of the data values. Often 

the data values are skewed, where there are a few large values and many small values. Tech­

niques such as front compression may be applied in such cases. When data values are large but 

close to each other, difference (or delta) encoding methods can be used. When certain values tend 

to appear repeatedly, techniques such as Huffman encoding that assign the smaller codes to the 

most frequent values, can be used. Such techniques as well as techniques to support multi­

dimensional data are described in a compression survey paper appearing in this issue [3]. 
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2. Efficient Access and Manipulation of Compressed Data 

The access and manipulation of compressed data requires the decompression of the data, 

which is an inefficient process when only part of the data is needed. The problem is that a large 

amount of data needs to be decompressed in order to locate the desired data values. This is par-

ticularly true for operations over the data which require random access such as sampling. But 

even when the operators are over a large subset of the data set, such as aggregation operators, it v 
is still necessary to locate and assemble the .subsets of the data as specified by a restriction opera-

tor. 

Traditional compression techniques are only concerned with the efficiency of compression. It 

is generally -true that the gains achieved by compression in terms of the total amount of data that 

have to be accessed and manipulated are large enough to offset the decompression cost. However, 

it is still desirable to develop techniques that can access the data in their compressed form and 

that can perform logical. operations on the compressed data. Such techniques should. provide 

efficient indexing capabilities that access only that portion of the compressed data that is 

requested. Such techniques can range from the ability to find the location of every data. item 

(which was not compressed. out), to locating blocks. of compressed data which are then 

decompressed. The later is important for efficient 1/0 access, while the former reduces, in addi-

~ion, the CPU processing time. 

3. Multi-Dimensional Data Structures 

The property of multi-dimensionality makes multi-dimensional data structures, such as grid 

files, quad trees, or K-D trees {for references see [4]), attractive data structures for SSDBs. These 

data structures are especially effective when the data values in a region of the multi-dimensional 

space are needed together. There are many applications where SSDBs tend to be accessed in local 

clusters, such as searching for nearest neighbors of a given point in space. For example, in order 

to find a material with certain properties, we need to perform a nearest neighbor search in the 

multi-dimensional space representing these properties. Similarly, identifying a particle track in 

physical space requires locating the readings from detectors that are in the neighborhood of the 
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path of the particle. Such applications suggest that data should be organized into cells along the 

dimensions of the data. 

Algorithms for determining the cell boundaries and the indexing structures for accessing the 

cells efficiently should provide more efficient access than conventional indexing techniques. An 

example of work whose purpose is to optimize the selection of boundaries of multi-dimensional 

cells according to their access pattern, was recently reported in [5]. 

4. Alternative File Organizations 

Statistical analysis typically involves only a few of the variables at each analysis step. 

When data is organized horizontally (all variables of each event stored together), then the access 

of a few of the variables requires the access of the entire data set. Partitioning of the data verti­

cally (i.e. the values of a variable for all events stored together) is a more efficient method in such 

cases. Such a file organization, called a transposed file, has been used in several statistical data­

base system (see references in [1]). A more extreme version of transposed files has been proposed 

in [6], where the transposition of files is carried to the bit level (i.e. even values within each attri­

bute are further transposed into "vertical" bit partitions). 

Such methods can be naturally enhanced with compression methods. Each partition of the 

transposed files can be compressed separately. The challenge is then to design access methods 

that can search and manipulate the compressed partitions efficiently. 

The combination of the above methods for file organization are not well understood. An 

effective system will have to combine the ideas of transposed files, compression of multi­

dimensional data, and multi-dimensional access methods, as well as more conventional indexing 

techniques (such as B-tree indexing). Accordingly, physical database design techniques which 

select the best file structure for a given application will also need to be developed. 

5. Buffer Management 

The effective use of the primary memory buffer (called buffer management) can greatly 

reduce the 1/0 from secondary storage. In SSDBs the buffer management is very important 
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because of the large size of data that needs to be manipul~ted. Even for the simplest operations, 

such as linear aggregations (e.g., sum) it is necessary to devise methods that minimize reading 

data from secondary storage repeatedly. For such simple cases, it is sufficient to use simple 

methods, such as keeping running sums and counts. But other operations, such as transposing a 

large matrix, or multiplying matrices, require more complex buffer management methods. Several 

examples of such methods are discussed in a paper appearing in this issue on the efficient support 

of statistical operations [7]. 

Buffer management methods may also be required as a result of the file organizations dis­

cussed above. An example is tuple assembly of transposed files. Once the selection of data values 

from the transp~ed files have been performed, it may be necessary to assemble tuples (records) 

for output purposes. This may require scanning over large partitions of the data in a limited 

buffer, which poses a buffer management problem. 

IV. Database Operators 

Certain operators are particularly important for SSDBs. Some of the operators are not trad-· 

itionally considered,part of the data management functions but are needed for SSDB data. Exam­

ples are sampling and multi-dimensional data structure operators such as transposition and aggre­

gation. Lack of operators forces the user to program the operators repeatedly in an unnatural 

manner resulting often in large inefficiencies. In order to achieve better efficiency, all important 

operators should be supported directly by the underlying DBMS as close to the physical storage 

level as possible. For example, if the data is compressed, then the operators should operate 

directly on the compressed data, without having to decompress them first, and then compress the 

results. Also, the query optimizer should take the availability of these operators into account in 

generating query processing strategies. 

1. Sampling 

Sampling is often left for an application level program, such as a statistical analysis pack­

age. However, it is more efficient to perform sampling by the data access routines, since only the 
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sampled data is passed to the application program. If at all possible, sampling should be done as 

early as possible in the query processing stage and as close to the physical storage level as possi-

ble, as stated earlier. For example, it is desirable to "push" the sampling operator as far down 

the query tree as possible as long as the result is statistically sound. Another sampling example is 

• sampling from joined sets. It is desirable to develop methods that sample from each data set 

without the need to join the entire data sets before sampling can be done. 
v 

There are a large number of sampling techniques in use by data analysts, such as simple 

random sampling, stratified sampling, cluster sampling, probability sampling, subsampling, etc. 

The sampling may be with or without replacement and it may have a fixed sample size or fraction 

with respect to the SSDB. Accommodating all these techniques in the context of SSDB manage-

ment is an important and challenging research direction. 

2. Nearest Neighbor Seareh 

Operators for nearest neighbor search are important for SSDBs. Many applications require 

such a search for finding matching cases. For example, in a hospital patient study, we may be 

interested in patients that have similar characteristics as a given patient being observed. 

There are basically two types or nearest neighbor search. One is finding the closest point 

(or several closest points) to a given point. The other is finding all points within a certain "dis-

tance" of the given point. In both cases, techniques for finding elements in multi-dimensional 

cells are necessary, and then a "selection" criterion applied to the set retrieved. 

The efficient support of nearest neighbor techniques requires appropriate data structures. 

The multi-dimensional data structures mentioned in Section III are designed to support such 

operators efficiently. However, other indexing techniques that support range queries well can also 

be useful for nearest neighbor operators. 

..... 3. Estimation and Interpolation 

Data analysis on SSDBs often requires making estimates on missing data values. An exam-

ple is the coal production and consumption where estimation techniques on missing data range 
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from a simple guess to elaborate interpolation techniques. Scientific data usually describe con­

tinuous physical phenomena, but only a finite number of discrete data points are actually stored. 

As a result, data do not always exist for all desirable points. In such cases, estimation and inter­

polation routines could be incorporated into the data access mechanisms. Methods performing 

these operators efficiently are necessary. Such methods require efficient access of nearest neigh­

bors. 

4. Transposition 

The output and display of scientific data often requires transposition of the data, because 

the data is stored according to certain dimensionS and needed for output along other dimensions. 

Efficient transposition techniques need to be developed, under the constraint of a limited buffer 

space. Techniques exist for multi-dimensional matrix transposition, but they are optimized with 

respect to the number of instructions, and not to the more relevant database criterion of the 

number of 1/0 page fetches. Another important research issue for transposition is the direct 

manipulation of compressed data so that a minimal number of passes are made over the data 

without having to decompress the data and compress the results·again. 

5. Aggregation 

Aggregation is another common operation in SSDB processing. An example of the applica­

tion of the aggregation operation that is often used in SSDB applications is the generation of sum­

mary data from micro data by tabulation. Another example of aggregation is the "collapsing" of 

multi-dimensional data structures in order to remove a certain dimension. Most commercial 

DBMSs provide some aggregation capability, but it is inadequately supported both at the logical 

as well as the physical level as pointed .out in the paper on query languages for SSDBs in this 

issue [8]. In addition to the usual aggregate functions provided by most DBMSs such as· max, 

min, sum, average, and count, an SSDB system should provide more complex aggregation func­

tions such as tabulation, binning, and median. Again, these functions should be implemented 

directly over compressed data and designed to run efficiently with a limited buffer size. 
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6. Relational Operations 

Data analysts often require operations over multiple data sets, such as subsetting, intersect­

ing, and combining of cases. Set operations such as subsetting, union, and intersection are 

needed. These operations are more complicated than those available in commercial DBMSs 

because of the additional meta-data information attached to the data, such as the different types 

of missing data and the reliability level of the data. These conditions require resolution before 

the set operations can be applied. 

In addition, the traditional sort-merge and nested loop join methods may not be appropriate 

for large databases (which is often the case for SSDBs) because of the excessive I/0 and sorting 

costs. Hash join methods may be a more viable altematin because they have linear complexity 

with respect to 1/0. Hash join methods essentially partition the two data sets that need to be 

joined by a hash function on the join attribute and the partitions are then joined pairwise. 

Multiple-pass hash join methods can be used to reduce the size of the partitions to fit the avail­

able memory. Evaluation of hash joins and other join methods is an important research topic. 

7: Support of Other Statistical Operators 

The emphasis of current SSDB research has been on the discovery of supplementary struc­

tures to conventional database systems, such as file structures, modeling constructs, and data 

management operators. This development trend still follows the traditional DBMSs paradigm. 

As a result, research on data management support of computational statistical operators is lack­

ing. These operators are now considered the responsibility of the statistical packages, where they 

are supported less efficiently because the optimization opportunity of using the physical storage 

structures for these operations is not available. Efficient implementation of these operations 

should rely on the availability of the underlying physical storage structures, buffer management 

strategies, and optimization techniques. The companion paper in this issue on data management 

support of statistical operators motivates this problem and introduces the potential benefits of 

this approach [7]. 
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V. Logical Modeling·and User lnterfaees 

In this section we discuss issues relating to the logical representation of information and the 

query facilities available to the user. 

1. Complex Data Types 

Conventional data management systems support the concept of a set of entity instances in 

one form or another. Most ~isting modeling approaches such as the relational, hierarchical, net­

work, and entity-relationship, support only simple data types for the attributes of the entities.-- In 

SSDBs there are many examples of the need to support complex data types, such as vectors, 

matrices, and time-series. These complex data types should be, in general, extendible so that the 

value of a complex data type can itself be complex. Consider, for example, the need to represent 

the boundaries of geographical regions. A boundary can be represented as a variable size vector, 

where each of its elements is a pair made of the longitude and latitude of the points making up 

the boundaries. 

SSDBs are a good example of the need to support a large diversity of data types. The usual 

character and numeric data types are needed, including high precision Boating point for numeric 

measurements. In addition to vectors and matrices ~entioned above, more complex table 

representation of multi-dimensional spaces are needed. Graphs and histograms are common 

results of statistical analysis, and support for textual data for bibliographies, descriptions of exper­

iments, and statistical collection methods are often needed. It is difficult to imagine a single sys­

tem that can handle all these data types concurrently, but there are some attempts of ,using new 

techniques to extend existing systems, such as the use of "abstract data types." In the final 

analysis, the efficiency of such approaches will determine their success. 

2. SeJnantically Rich Models 

In addition to modeling the variety of complex data types discussed above, logical models 

for SSDBs need to be able to represent higher level semantic concepts. For example, modeling of 

multi-dimensional spaces where the dimensions themselves can be represented as a hierarchy of 

-12-

v 



terms is a very desirable feature for some applications. Similarly, some statistical analysis opera­

tions can result in multiple data sets that require special modeling capabilities. For example, the 

results of a linear regression analysis may include a coefficient vector, a covariance matrix, and a 

residuals vector. The data model should be capable of representing the semantic fact that these 

data sets belong together. 

Many SSDBs do not represent a homogeneous collection of data. In fact, they can be 

thought of as multiple databases. For example, a scientific experiment may be composed of the 

measured data, another data set which records the temperature and pressure conditions over time, 

and another data set that represents the calibrations of the different detectors. Each of these data 

sets can be thought of as a separate database, but they are all needed together when the data is 

analyzed. It is therefore necessary that the data model permits the description of the relation­

ships between these data sets so that the analysis can be properly specified. In the above exam­

ple, it is necessary for a given measurement to be interpreted according to the characteristics of 

the detector used, and the actual temperature and pressure at the time of the measurement. Such 

modeling capabilities should form the basis for efficient query languages and powerful user inter­

faces. 

3. Temporal Data 

Temporal data are crucial to SSDBs since quite often they represent a collection of informa­

tion over time. This aspect may not be as important in commercial databases since usually only 

the most updated information is needed. Even in the case that historical information is kept in 

commercial applications, they are not typically accessed across the time dimension; rather one 

slice of the data for a certain point in time is accessed. Indeed, there are no commercial systems 

that explicitly model or support temporal data. However, recently there is renewed interest in 

modeling time for business applications [e.g., 9]. 

It is usually possible to model the time element of measurement data as one more dimension 

in the multi-dimensional space formed by other parameters. This is especially true if the meas­

urements are taken at regular intervals over time. The difficulty of dealing with temporal data 
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are most pronounced when events occur in discrete but non-regular sequences, such as the break­

down or the replacement of detectors. The other difficulty is that different data sets may vary at 

different rates. For example, the drift of a magnetic field may be taken every minute, while the 

measurements are taken every second. Similarly, the rate of collecting trade data varies for the 

different commodities. Even worse, the rate can vary for the same commodity over different time 

intervals and over different countries. During the data analysis process, it is necessary to corre­

late both kinds of measurements. 

In general, modeling temporal data requires the integration of static data, data that change 

m regular intervals, and data that appear as irregular discrete events. From a logical point of 

view it is necessary to model the various types of temporal d-ata, so that their semantics are clear 

to the user. It is also necessary to provide query facilities that permit users to specify conditions 

in the time dimension, as well as correlate data that may be varying at different rates. 

4. Meta-Data 

There is a large amount of information which describe the data in SSDBs that is kept in an 

ad-hoc fashion in log books, text files, or even hand-written notes. Examples are the failure logs of 

devices, the date and method used in generating a new analyzed data set", the identity· of people 

who generated the data sets, the description of materials that were encoded in the database, the 

data units used, etc. Such information, which is referred to collectively as meta-data, can be 

quite complex and is just as important as the database itself for analysis purposes. In addition, 

such meta-data are particularly important for archival purposes. 

In a typical statistical analysis process an analyst may generate a large number of subsets 

over the data. He/she may first take large samples that are further refined, select subsets of the 

database which may be successively reduced, and generate new data sets as a result of the 

analysis. This proliferation of data sets, and the information on who generated them, when they 

were generated, and why they were generated, needs to be kept track of. In general, these data 

sets have a hierarchical relationship between them. From the above comments it can be seen that 

supporting meta-data can require the full support of data management tools. 
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While in commercial systems there is a tendency to restrict meta-data to the data 

definition/ directory facilities, the distinction between meta-data and data in SSDBs is not that 

obvious. It seems that the best solution for SSDBs is to blur the distinction between the two 

types of data, and to handle both types with the same data management facilities. & a result, 

the meta-data can be searched, modified and associated with the rest of the data in a single sys­

tem. 

5. User Interface Facilities 

From the discussion above of special modeling facilities, complex data types, and the 

integration of data and meta-data, it follows that special user interfaces and query facilities are 

needed. But in addition to providing the ability to access the data, the query facilities need to 

provide special operators over the data. In Section IV above, we discussed several classes of 

operators that are especially important to SSDBs. The query facilities should provide easy to use 

constructs for such operators. 

There are many approaches that researchers have proposed for user interfaces to SSDBs. 

They include extensions to current languages to support special operators, menu facilities to 

browse the hierarchies of multi-dimensional spaces, graphical user interfaces that help narrow 

down the area of interest, query-by-example methods, table manipulation methods, and new query 

languages. A survey of query facilities for SSDBs which discusses these approaches is given in 

another paper in this issue [8]. While the different approaches are important steps in achieving 

good user interface facilities for SSDBs, it is still unclear whether a single joint facility can 

emerge, or whether having a collection of tools for different purposes is the only practical 

approach. 

VI. Miscellaneous Issues 

1. Data Integrity and Quality 
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Because of the size of SSDBs, users often derive subsets from the original database and per­

form statistical analysis on the subsets. Subsets of the subsets are derived by other users, and so 

on. When a new subset is generated and manipulated, the integrity rules of the original set may 

not be valid for the new subset. The procedure by which new subsets are generated and their 

implied integrity rules need to be maintained by the system. Otherwise, further operations over 

the subsets may be incorrect. For example, suppose that a subset was selected, its missing values 

interpolated, and outliers- removed. These facts have to be known for subsequent processing. 

Often analysts take an existing•subset, assume its correctness and proceed to analyze it, perhaps 

getting incorrect results. Powerful integrity control mechanisms are needed in order to enforce 

the validity rules among the subsets. Facilities for expressing integrity constraints by the users as 

they generate subsets are also needed. 

The data in SSDBs often come from many sources with a varying degree of quality and 

"believability." Using such data for data analysis should,take this important aspect into account. 

For example, the accuracy and resolution of the instruments -that generate data in a scientific 

experiment provide a vital. clue to the data quality collected. Another example is the World 

Bank's economic data on developing countries where a significant amount of data is derived by 

estimates. This concept of data quality is not supported by commercial DBMSs. An SSDB sys­

tem needs an efficient way of "tagging" the data with data quality flags, and integrating the con­

cept of data quality into the data model, query language, and operators over the data. 

The validation facilities in current DBMSs are not powerful enough to express the correct­

ness conditions of incoming data. The validation of SSDB data may involve complex computa­

tions -that check cross correlation of data values. Techniques that automate data validation both 

at the data collection and the-data generation stages.are necessary. 
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2. Analysis Process Management 

Data analysis on SSDBs is an iterative and evolutionary process. A facility that records the 

analysis steps automatically would be very helpful to the analyst. Using this information, the 

different paths of the analysis can be pursued, and past steps of the analysis can be recovered 

without having to recreate the analysis over again. This kind of analysis process management 

facility represents a new concept of "logging" where the intermediate objects of temporary files, 

permanent files, and hard copies, as well as the analysis procedures are maintained. In addition 

to serving as a documentation aid, this facility can also be used to implement repetitive analysis 

processes. To support facilities of this nature, efficient storage structures are needed because of 

the large amount of data that need to be stored. Also, user interface techniques are n~eded for 

the users of this facility during the analysis process. 

3. Intelligent Data Analysis 

A large part of the data analysis activity is relatively well understood. This suggests that 

automatic data analysis may be a feasible possibility. Examples include the automation of data 

validity checking (such as outlier detection), the derivation of summary statistics, the suggestion 

of applicable statistical procedures to the analyst, etc. This kind of intelligent data analysis tools 

require representation and application of extensive knowledge about statistical data and the 

analysis process. The expert systems approach used in Artificial Intelligence applications seems to 

be a viable paradigm for this kind of activity. The paper in this issue on antisampling for estima­

tion is an example of this approach [10]. 

4. Query Optimization 

Query optimization is an important research area in conventional DBMSs. In the area of 

SSDBs, there are many useful file and data structures (such as transposed files, multi-dimensional 

data structures, etc.), operators (such as sampling, transposition, and aggregation, etc.), and query 

facilities {such as summary table query languages, graphical languages, etc.), that the query 

optimizer has to explore a very different (and sometimes much larger) solution space for stra-
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tegies. Traditional query optimization techniques may have to be extensively expanded. A more 

thorough understanding of the complexity and behavior of these file structures, operators, and 

languages have to be gained before they can be integrated into a query optimizer. 

5. Special Hardware 

Since the cost of producing special purpose hardware is rapidly coming down, it is appropri-

ate to consider whether specialized hardware could significantly benefit SSDBs. There is almost 

no research work to-date on this possibility, but this approach looks promising because of the spe-

cial nature of the data and the operators in SSDBs. 

There are several file organizations and operators that are intuitively appealing. The 

management of multi-dimensional spaces could benefit from specialized hardware that performs 

"array linearization." Such hardware would compute the position of points in multi-dimensional 

space from the positions of each dimension, and could access blocks of data accordingly. Another 

possibility is the use of special hardware for compression, so that sparse data can be accessed 

more efficiently in their compressed form. 

Special hardware can also be used to process the data in parallel. Two possibilities come to 

mind. One is the processing of partitions of transposed files in parallel, and assembling the 

results. In the extreme case of file transposition to the bit level discussed in [6], the special 

hardware is quite simple since it deals with partitions that represent bit streams. File transposi-

tion hardware can also be designed in conjunction with compression so that each partition can be 

accessed in its compressed form. 

The other possibility for parallel processing is for data that is organized into multi-

dimensional cells. It is often the case that the data in each cell can be processed independently 

from the other cells, and thus in parallel. A case in point is simulation data that often requires .. , 
only nearest neighbors data for their computations. 

v 
Finally, special hardware can be designed for special operators, such as transposition, aggre-

gation, or matrix multiplication. Here again, performing such operations on compressed data is a 

challenge that is worth investigating. So far, the benefits of special hardware are only 
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speculative, but SSDBs seem to offer the opportunities for such an approach. 

6. Security 

There is a large body of literature that deals with the security of statistical databases (see 

[11] for references). The interest in statistical database security stems from the desire of protect­

ing information about individuals while releasing aggregate information about groups of individu­

als. 

Statistical database security is a difficult problem. It has been demonstrated that simple 

techniques, such as restricting the number of individuals that qualify in an aggregate query to be 

above a chosen threshold, do not work. Thus a variety of other techniques were proposed. They 

include keeping track of previous queries, pre-partitioning the data sets into cells whose boun­

daries cannot be crossed by aggregate queries (this method is most popular for census data), 

estimating the aggregate values from samples over the data, and perturbing either the input or 

output values. A detailed discussion of these methods is beyond the scope of this paper. It is 

worth noting that such security issues do not usually arise in scientific databases, but they can be 

essential for some statistical applications. 

Conclusions 

In this paper we described the different issues that arise in the context of statistical and 

scientific database applications. The usual areas of physical organization, access methods, logical 

models, and user interfaces are discussed, but in addition needs that are unique to these applica­

tions are described. These include special operators, managing the statistical analysis process, 

special hardware, interpolation and estimation, and statistical security. 

The purpose of this paper is not to survey existing work, but rather to bring up relevant 

issues even if little or no research on them yet exists. It is our hope that our discussion of such 

issues would bring to the attention of researchers the gap that exists between available commer­

cial data management software and the tools needed to support statistical and scientific database 

applications. Such applications abound but they are often not visible because they are handled 
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with special purpose software. In other cases, data that could be statistically analyzed yielding 

important benefits, are left idle {usually archived) because of the lack of appropriate tools or man­

power for writing special purpose software. General purpose statistical and scientific data 

management tools could benefit both situations, by saving work to those who handle them with 

special purpose software, and by the ability to analyze important data that would be otherwise 

wasted. 
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