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ABSTRACT OF THE DISSERTATION

Unsupervised Data-Driven Event Analysis of Smart Grid Time-Series

by

Armin Aligholian

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022
Dr. Hamed Mohsenian-Rad, Chairperson

There have been major advancements in recent years to enhance situational awareness

in power distribution systems by using advanced sensor technologies. Smart meters and

distribution-level phasor measurement units (D-PMUs) are among the most common sensors

that have been deployed recently in power distribution networks. Included in the captured

time-series of the measurements from these sensors, there are “events”, that are generally

unscheduled, infrequent, and often unknown in their type and nature. Therefore, in practice,

we often do not have any prior knowledge about the events until they occur. In this regard,

such sensor measurements can be seen as time series that are in form of unlabeled data.

Accordingly, in this thesis, we address the analysis of events in the selected types of smart

grid time series by using unsupervised machine learning.

We start by the analysis of time series in smart meter data to extract events and

abnormalities. Our analysis also includes extracting proper choices of features and methods.

Next, we move to the analysis of the time series data from D-PMUs that have a much higher

resolution and carry more information than the measurements from smart meters as they
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also measure phase angles. Accordingly, three versions of unsupervised event detection

methods are developed, which work based on generative adversarial networks and deep

recurrent neural networks. These methods, specifically focused on high frequency and small

time series windows of one D-PMU data. Results based on real-world sensor data show

that by learning normal behaviour of the system via the proposed methods, we can extract

the events more accurately compared to the prevalent methods. Subsequently, a two-step

unsupervised clustering method is also proposed, which works based on a linear mixed

integer programming formulation to cluster events in time series from D-PMUs. Finally,

to address the task of unsupervised event clustering for a situation within a low observable

distribution system with only a handful of available D-PMUs, a novel unsupervised graph

representation learning model is developed. The developed unsupervised clustering model,

extracts the time domain features from the time series in fundamental and harmonics phasor

measurements, and then it takes advantage of the system topology by using graph learning

models to separate, characterize, and classify the events.
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Chapter 1

Introduction

1.1 Power Distribution Networks

Electric power systems are large interconnected networks of different electric com-

ponents, which transfer the generated electricity to the consumer. A traditional power

system constitute of four sectors which are generation, transmission, distribution, and con-

sumption. Typically, electricity is generated by large power plants, then, a meshed network

of transmission lines transfer high voltage electricity to all across the network with different

distances. Afterwards, many regional networks, a.k.a. power distribution systems, deliver

the electricity to the final consumer. Common consumers are residential, commercial and

industrial loads. In this thesis, we focus on the distribution system, which can contain

many substations connected to the transmission system. An example of power distribution

system is shown in Fig. 1.1, which is a 8-bus system and it includes multiple measurement

units such as smart meters and distribution-level phasor measurement units (D-PMUs).
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Figure 1.1: An example of power distribution system.

1.2 Sensor Measurements in Power Distribution

Power distribution systems are becoming more active and dynamic due to the

increasing penetration of distributed energy sources, electric vehicles, dynamic loads, etc.

This gives rise to various monitoring and control issues. Distribution service providers

implement different sensors in the power system network to have proper system awareness

and visibility in the electric grid for better decision making. There are many different types

of sensors used in the power distribution systems, which can measure variety of quantities

such as voltage and current RMS values, power and energy consumption, voltage and current

phasors and voltage and current wave forms for power quality monitoring [1]. The reporting

rate of these sensors can be vary from hours to micro seconds. Among these sensors, smart

meters and distribution-level phasor measurement units, a.k.a, micro-PMUs are the most

common ones and we analyze them in this thesis.

2



1.3 Time Series from Smart Meters

Smart meter sensors, measure and record the electricity consumption data that

can communicate remotely with utilities. The deployment of smart meters has provided

system operators with an unprecedented level of visibility over the distribution networks

and customer loads, with a multitude of applications [2]. Depend on the type of the smart

meters the reporting rate for these devices can be vary from seconds to hours. Based on

the EIA annual electric power industry report in 2020 [3], U.S. electric utilities had about

102.9 million advanced smart metering infrastructure installations. About 88% of the smart

meter installations were in the residential sector.

Figure 1.2: One month of power consumption for a household measured by a smart meter
sensor in the Pecan street project, with an abnormality on June 30, 2013.

3



Figure 1.3: The abnormality in the power consumption for the household shown in Fig. 1.2
between June 29 and 30, 2013.

However, it is now a challenge to handle the tremendous growth in the volume and

velocity of the data that is generated by the smart meters in the load sector. Therefore, it

is necessary to find ways to extract the most useful parts of the data and transform them

to actionable information. One of the essential data analysis is to find abnormalities among

the huge stream of data. Abnormality in the context of this thesis is broadly defined as any

unusual electricity consumption instance or trend that falls outside of the normal power

consumption patterns for a load, whether in terms of magnitude, time, duration, etc.

The analysis of abnormalities in smart meter data has applications in load fore-

casting, cyber security, fault detection, electricity theft detection, demand response, etc.

Abnormality detection in smart meter data is challenging due to high volume of data, sub-

4



stantially different load profile of residential houses, they are unknown and there is no prior

knowledge about them. There are other effective factors that are effective on the result

of abnormality detection in the smart meters such as weather condition and contextual

features. To address these issues, this thesis evaluates many unsupervised data driven ap-

proaches, alongside with many different and prevalent features to find a trade off between

using appropriate features and type of data driven model for each category of abnormalities,

i.e. instance and trend. The test cases in this study are based on the smart meter data from

Pecan Street project in Austin, TX [4]. The collected data is for 92 consecutive days for

five households with resolution of 15 minutes. For instance, Fig 1.2 shows one month power

consumption in a household which captured by smart meter sensors. Also, the highlighted

orange curve is an abnormality in the data on June 30, 2013, which the magnified version

of this abnormality is shown in Fig. 1.3.

1.4 Time Series from Micro-PMUs

In order to capture the real time dynamics of the system for better situational

awareness, distribution system operators can not use smart meter data due to its limited

quantity measurement as well as low resolution data. For better power system visibility and

reliability, distribution system operators use distribution-level phasor measurement units,

a.k.a., micro-PMU [5]. Micro-PMU can be connected to single- or three-phase distribution

circuits to measure magnitudes and phase angles of the voltage and current phasors nor-

mally at 120 readings per second and it is GPS time-referenced. This is 108,000 times faster

than the reporting rate of a typical smart meter or 124,416,000 readings per micro-PMU

5



per day. One of the emerging applications of micro-PMUs is to study “events” in power

distribution systems. Here, an event is defined rather broadly and may refer to load switch-

ing, capacitor bank switching, connection or disconnection of distributed energy resources

(DERs), inverter malfunction, a minor fault, a signature for an incipient fault, etc. [6, 7, 8].

For instance, Fig. 1.4 shows magnitude of voltage phasor time series in three

phases that are captured with an actual micro-PMU in Riverside, CA. The reporting rate

of this micro-PMU is 120 Hz and Fig. 1.4 shows 15000 sample points or 125 seconds in each

time series. As we can see there is a voltage dip event in all three phases around sample

number 7025 which is magnified in Fig. 1.5.

Figure 1.4: Three phase voltage magnitude measurement that captured by a micro-PMU
for 125 seconds. A voltage dip event in all three phases highlighted in this figure which
occur around sample number 7025.

6



Figure 1.5: The voltage event highlighted in Fig. 1.2

Hence, in a common high resolution time series captured by each micro-PMU,

events are considered as anomalies as their frequency of happening is very low. It should

be mention that using anomaly to describe events in micro-PMU time series does not refer

to something extraordinary or destructive, yet any rare behaviour compare to the normal

state of the system. Event-based studies of micro-PMU measurements have a wide range

of use cases, such as in situational awareness [8], equipment health diagnostics, such as for

inverters [9], capacitor banks [10], transformers [11], distribution-level oscillation detection

and analysis [12], fault analysis and fault location [13]. Before one can do any event-based

analysis, including for the above use cases in [8, 13, 10, 11, 12, 9], one needs to first detect

and identify the events that are of value. However, this is a challenging task due to at least

7



the following three reasons: 1) most events are infrequent ; 2) most events are inherently

unscheduled ; and 3) it is often not known ahead of time, what kind of events we should seek

to find and identify; i.e., we often do not have a prior knowledge about what to look for.

1.5 Research Questions

Given the enormous size of measurement data that is generated by micro-PMUs

and smart meter data, the challenges that we listed above call for developing effective data-

driven techniques that are automated and require minimal prior knowledge. In this thesis

we want to answer the questions below:

1. By having many residential load profiles for a given period of time, how we can

extract different type abnormalities and what is the optimal combination of model

and features for this goal?

2. Considering one available micro-PMU time series data, how we can extract the events

without having any prior knowledge about the events?

3. After detecting the events from the micro-PMU time series, how we can cluster them

such that it can be useful for the system operator analysis and what are the use cases?

4. Given a distribution system with a locationally-scarce data availability (few installed

micro-PMUs in the distribution system), how we can cluster all of the detected events,

considering topology of the system and harmonics data?

8



1.6 Literature Review

This section presents the related studies in three main areas, which are: related

work in abnormality detection for smart meter time series, event detection for micro-PMU

time series and event clustering for micro-PMU time series.

1.6.1 Abnormality Detection in Smart Meter Time Series

The analysis of abnormalities in smart meter data streams is of great interest to

several applications, such as load forecasting [14], cyber attack detection [15], fault and

outage detection [16], electricity theft detection [17], demand response [14], etc.

Our approach in this thesis is based on machine learning. Accordingly, this study

is in its broad sense comparable with those in [18, 19, 20, 21]. A deep semi-supervised con-

volutional neural network with confidence sampling is proposed in [18]. Also, a supervised

ensemble-based method with sliding window is proposed in [19]. However, when it comes

to abnormality detection, we must deal with an inherently unsupervised learning problem

because abnormalities do not have a known paradigm; they are rather determined in com-

parison with the history of data. Therefore, the usage of unsupervised learning methods are

more practical than supervised and semi-supervised methods. In [20], a prediction-based un-

supervised abnormality detection method is proposed that comprises a dynamic regression

model and an adaptive abnormality threshold. In [21], an unsupervised clustering-based

algorithm on the low-dimensional dissimilarity matrix is used to detect irregular power

consumption. However, these two studies do not consider the role of feature selection in

training their model. They also only consider specific types of abnormality. Hence, in this
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thesis in order to extract events or abnormalities from smart meter data we have evaluated

combinations of different unsupervised machine learning models alongside different cate-

gories of features, to show the importance of specific combinations for detecting various

types of abnormalities.

1.6.2 Event Detection in Micro-PMU Time Series

The literature on event detection in micro-PMU data can be divided into two broad

classes; namely statistical methods, such as in [22, 8, 23], and machine learning methods,

such as in [24, 25, 26, 27]. For example, in [8], which we consider as one of the benchmarks

for performance comparison in this study, a data-driven statistical event detection method

is proposed that is based on absolute deviation around median, combined with dynamic

window sizes. In [23], the analysis of the inverse power flow problem is combined with the

turning point test method to detect events. In [22], the physical equations of the power

distribution circuits are combined with techniques from statistical quality control in order to

develop a hierarchical anomaly detection architecture that uses data from optimally placed

micro-PMUs.

On the other hand, machine learning models, including deep learning models,

are getting significant attention in different research areas due to immense increase in the

amount of measurement data. Power system is not an exception with massive data collection

by measurement units such as smart meters, micro-PMUs and smart inverters. Thus, these

large data sets make researchers capable for implementing deep learning model to address

issues that are mainly data dependent and complex to solve them with common models.

One of the promising applications of deep learning models are anomaly detection which
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has been implemented in vast scale in smart grid such as, outage detection in the network

by using GAN models [28] and fault detection [29], IoT-based occupancy sensor unusual

behaviour [30]. In [24], a machine learning method, called ensembles of bundle classifiers,

is used to train multiple classifiers based on multiple instances of the same predetermined

event, so that the patterns of that event are learned in order to detect more instances of

that event in the micro-PMU data. In [25], a hidden structure semi-supervised machine

learning model is established to combine micro-PMU data for both labeled and unlabeled

events. A parametric dual optimization procedure is used to tackle the non-convex learning

objective function.

Some of which are either supervised or semi-supervised. That means, they require

either full labeling or partial labeling of the events, e.g., in [26, 25]. The event detection

method in [24] is based on supervised machine learning. Also, the method in [25] is based on

semi-supervised machine learning. In both cases, full or partial expert knowledge is needed

in order to establish the event detection tool. Some of which are either supervised or semi-

supervised. That means, they require either full labeling or partial labeling of the events,

e.g., in [26, 25]. On the other hand, few event detection methods in the literature that are

unsupervised; they are focused on some specific types of events, such as frequency events

[31], significant known events such as three phase fault or cap bank switching [32] or cyber

attacks [33].

In contrast, the event detection method in this thesis covers a wide range of event

types which here, an event is defined rather broadly and may refer to balanced/unbalanced

load switching, capacitor bank switching, connection or disconnection of distributed energy
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resources (DERs), inverter malfunction, a minor fault, a signature for an incipient fault, etc.

[34, 7, 8]. In [33], the authors used symbolic dynamic filters to extract features and dynamic

Bayesian networks to learn the system behaviour to detect false data injection. Although

the method is unsupervised, this method requires prior knowledge about the dynamics of

the system; which is typically not available in practice; such as in the case of the field study

and the real-world data analysis in this thesis. Similarly, in [32] physical aspect of the

system needs to be available in order to detect, classify and localize the abnormalities in

the system. Some other unsupervised anomaly detection methods, such as the Generalized

Graph Laplacian (GGL) method in [35], are based on determining the graph similarity

between the sample windows of the micro-PMU data. We used the method in [35] as a

benchmark to evaluate the performance of our event detection approach.

Generative Adversarial Networks (GANs) are broadly studied in areas such as

image generation [36], high-dimensional likelihood-free inference [37], medical time-series

generation [38], and so on. These models typically focus on the sample generation capability

of the GAN model, i.e., the desirable features of the “generator” sub-system in the GAN

model. However, recent studies have shown that the GAN model can offer other applications

also through the desirable features of a “discriminator” sub-system. For instance, the GAN

model has been used in the recent study in [39] to detect bogus samples, cyber attacks,

or general time-series anomalies [40]. Here, the ultimate goal of the discriminator is to

distinguish normal from abnormal samples; Thus, in this thesis, the proposed model is

focused on carefully adjusting the GAN models for our specific purpose; which is detecting

events by discriminator, through learning the normal behaviour of the system by generator.
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1.6.3 Event Clustering in Micro-PMU Time Series

The literature on data-driven event types analysis in distribution-level phasor mea-

surements can be generally divided into two categories. First, there are studies that use

supervised learning, i.e. event classification, such as those in [41, 42, 8]. They require prior

labeling of the events in the training data set, which may not be doable in practice.

The second group are the studies that use unsupervised learning, i.e., they attempt

to cluster the events by grouping their distinctive characteristics. In [43], k -means clustering

and Ward’s clustering with focus on clustering voltage sag events is proposed. In [44], the

authors used an unsupervised clustering method, with focus on some specific faults; such

as single-line-to-ground versus line-to-line faults.

None of the unsupervised learning methods in [43, 44] takes into account the

information on the topology of the power distribution network. Furthermore, none of them

takes into account the availability of harmonic phasor measurements in addition to the

fundamental phasor measurements.

In order to consider the network topology into the process of event clustering, one

plausible way is to implement graph-based knowledge. Graph theory and more generally

graph-based analysis have been considered in power systems, such as for event detection

[45], event location identification [46, 47], data recovery and prediction [48], and the analysis

of power system dynamics [49].

Recent literature also includes the use of GNNs, to address some prevalent power

system issues, including the analysis of events. In [50], a supervised GNN-based method

is proposed for event classification in power transmission systems. No knowledge about
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the topology of the power transmission network is assumed to be available; therefore, full

connectivity is assumed in the graph-level analysis. The events are labeled based on the data

on voltage and frequency. In [51], the authors used Graph Convolutional Network (GCN)

for short term voltage stability assessment. Importantly, neither of the studies in [51] or

[50] consider the issue of locational scarcity among the sensors within a known network

topology. None of them also considers using harmonic phasor measurements.

Finally, there is a rich literature on the analysis of power quality events using

measurements related to harmonics. The focus is usually on the analysis of waveform mea-

surements, such as in [52, 53, 54]. For example, in [54], the authors proposed an AED to

extract the features for clustering the daily variations in steady-state voltage harmonics.

Interestingly, while we do use H-PMU measurements, our focus is not on the typical analysis

of steady-state harmonics. Instead, we use the harmonic phasor measurements in addition

to the fundamental phasor measurements to better capture the distinctive transient sig-

natures in various events in power distribution systems under locationally-sparse phasor

measurements. Furthermore, the prior studies in this field, including those in [52, 53, 54],

do not consider using the information about the network topology.

1.7 Summary of Contributions

The research questions in Section 1.5, are expounded in the following chapters and

a summary of contributions for each topic is mentioned below.
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1.7.1 Smart Meter Abnormality Detection

The main contributions of Chapter 2 are as follows:

1. This thesis provides a systematic comparative study of four different unsupervised

machine learning methods to understand how different methods can best serve to

detect different types of abnormalities in real-world smart meter data. Specifically,

we examine load prediction regression-based, load prediction neural-network-based,

clustered-based, and projection-based methods for abnormality detection and compare

their performance.

2. Different features are investigated for different methods to obtain the best combina-

tion of features for each method. An important conclusion is that, when it comes to

historical load features, they are useful in prediction-based methods for the purpose

of finding abnormal load trends; while they are also useful in cluster-based meth-

ods for the purpose of finding abnormal load instances. In addition, cluster-based

methods can use a proper combination of historical load features, contextual features,

and environmental features to simultaneously identify both abnormal load trends and

abnormal load instances.

3. To speed up detection, all methods are implemented in online mode, where the models

are updated upon the arrival of new data. To the best of our knowledge, this is the

first study to address the application of Isolation Forest (IF) and Lightweight On-line

Detector of Anomalies (LODA), as two computationally efficient online methods, to

do abnormality detection in smart meter data.
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1.7.2 A Single Micro-PMU Event Detection and Event Clustering

The main contributions of Chapter 3 are as follows:

4. Three novel unsupervised event detection methods are developed based on the concept

of Generative Adversarial Networks (GAN) by training deep neural networks. Given

the infrequent nature of events in micro-PMU data, the central idea is to train the

GAN models to learn the normal behavior and trends, which according to the prior ex-

perimental results account for 99.6% of the samples in micro-PMU data. Accordingly,

any pattern and signatures that deviates from the captured normal characteristics of

the micro-PMU data is marked as an event by the trained discriminator. A set of

extracted events by expert knowledge from the real-world data set is used for eval-

uation. The results show the effectiveness of the proposed event detection methods

compared to multiple state-of-the-art methods in the literature.

5. All methods are unsupervised deep learning methods, which require no or minimal

human knowledge; which makes them suitable for automated and scalable operation.

Furthermore, they can detect both point-signatures and group-signatures in micro-

PMU data. This is an important capability because of the unbalanced nature of power

distribution circuits; where many events may affect only a subset of the features on

only one or two phases.

6. Real-world micro-PMU data is used to evaluate the proposed event detection methods.

In order to create a reference, first, more than 1000 events of different kinds are

extracted manually from the micro-PMU data within a given period of time. It is
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observed that both the basic and the enhanced methods highly outperform a prevalent

statistical method. The advantage is particularly major for the events that cause small

changes in magnitude.

7. A two-step unsupervised event clustering method is proposed. In a pre-processing

step, events are categorized based on their origin (i.e., the features that are affected by

the event), which is obtained from the proposed event detection method. In the second

step, in each pre-processed category, a new clustering model is formulated and solved

in form of a mixed-integer linear programming (MILP). A rolling based similarity

measure, maximum correlation coefficient (MaxCorr), is used to compare any two

events. The proposed clustering method is active, i.e., it is capable of identifying

new clusters of events on an ongoing basis. New clusters are optimally extracted as

needed; in order to account for any unknown upcoming events. The experimental

results confirm the effectiveness of the proposed clustering model compared to the

prevalent clustering methods. The performance of the proposed clustering method is

evaluated and verified also in comparison with a reference set of clustered events that

are obtained by the expert knowledge.

8. The events in each identified cluster are scrutinized in order to unmask their engineer-

ing implications and use cases. The origin and the cause of the events are identified

to determine their value to the system operator. By implementing the proposed un-

supervised approach one can identify the frequency of happening and other statistical

characteristics of different event types, extract specific events by combining the event

clusters’ characteristics and time of occurrence; find rare and unusual events, such as
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faults and incipient failures and new major loads. It can even identify deficiency in

micro-PMU data reporting.

1.7.3 Multiple Micro-PMU Event Clustering

The main contributions of Chapter 4 are as follows:

9. A new unsupervised two-step spatio-temporal feature learning method is developed

based on Graph Neural Networks (GNN) and Auto Encoder Decoder (AED) to cap-

ture the locational and temporal information of the sensors on the distribution net-

work. The time series of the measurements at each bus are transferred to a lower

dimension latent space. Accordingly, a graph learning method is implemented to the

obtained embedding vectors to extract the topology-related features for event cluster-

ing. To the best of our knowledge, this is the first time that a physics-aware graph

learning method is used for utilizing D-PMU (or H-PMU) data in event clustering.

10. A graph-level representation learning is developed which uses local-global mutual in-

formation maximization to learn the structural connection of the event data with

its node-level representation. To extract the shared information between graph-level

and node-level embedding that is sensitive to the graph topology, a negative graph

sampling based on a random network tree structure is proposed. This makes the pro-

posed GNN more aware of the system topology, by encoding aspects of the data that

are shared across different local nodes, and proper adversarial sampling for mutual

information estimation.
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11. Incorporating the 3rd and the 5th harmonic phasor measurements along with the

fundamental phasor measurements into the above aforementioned design. This is

done by training a separate AED module is trained for each individual harmonic

order. Then, the new aggregated vectors are used as additional input to the proposed

graph learning process in order to capture the underlying locational patterns for each

event, by taking into account both fundamental and harmonic phasor measurements.
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Chapter 2

Unsupervised Abnormality

Detection in Smart Meter Time

Series

2.1 Abstract

In this section, we describe the unsupervised online abnormality detection ap-

proach for smart meter data. This section aims to evaluate the performance of four un-

supervised machine learning methods for abnormality detection on real-world smart meter

data, namely prediction-based regression, prediction-based neural network, clustered-based,

and projection-based methods. Different types of features, such as load-based, contextual,

and environmental, are investigated to construct the data-driven models. It is shown that

different abnormality detection methods have different ability for detecting different types
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of abnormalities; and their performance depends on the set of features used for training

the method. Accordingly, different types of features are scrutinized for each abnormality

detection method.

2.2 Feature Selection

A key component of any data-driven study is feature selection. Electricity power

consumption depends on diverse types of features which can be used to study its char-

acteristics. Broadly speaking, the features of electricity power consumption data can be

categorized into three generic groups: load-based features, contextual features, and envi-

ronmental features.

2.2.1 Load Based Features

These features account for the power consumption of residential household in dif-

ferent time steps. They are obtained from historical power consumption data with different

time lags. The followings are the set of load based features that we consider in this study:

Lt = {P t, P tY , P tW , P tM},

Lw = {P t−24, P t−23, · · · , P t−1},
(2.1)

where Lt is the set of historical load data at time t. In this set, P t is power consumption

at time t, P tY is power consumption yesterday at time t, P tW is power consumption in the

last two weeks at time t, and P tM is the mean of power consumption at time t. As for Lw,

it is the set of previous 24 hours.
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2.2.2 Contextual Features

These features are not specific to power consumption, but they do have indirect

impact on power consumption. Time of the day, day of the week, weekends versus weekdays

flag, holidays, and season of the year are instances of contextual information, as listed below:

C = {T td, Dt
w,W

t
s , H

t, St}. (2.2)

2.2.3 Environmental Features

Electricity consumption in some appliances such as heating ventilation and air

conditioning (HVAC) systems depend on some environmental features such as temperature.

Therefore, total power consumption of household are affected by these features which in

this study considered as set E and comprises of temperature (Tempt) and humidity (Humt)

factors as illustrated below:

E = {Tempt, Humt}. (2.3)

These three features can be correlated. This may affect the quality of the learning process.

Thus, we must study the effect of different feature combinations on each detection method,

in order to customize features with respect to each model.

2.3 Abnormality Detection Techniques

Importantly, the abnormality detection problem does not have a known paradigm;

therefore, it is inherently an unsupervised learning problem. This is more so when it comes

to smart meter data, because we must explore the type of abnormalities that may arise in
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such data streams, along with the potential applications of detecting such different abnor-

malities. It should be added that, for analyzing “unusual” load patterns of costumers, we

do not have specific pre-determined labels.

Online unsupervised learning methods are updated as soon as they see new data;

thus, they can learn new patterns and the changes in trends, such as due to seasonal changes.

Moreover, these methods can be implemented in the real time in order to detect abnormal-

ities quickly. In this study, we implement four unsupervised online abnormality detection

methods:

2.3.1 Load Prediction with Regression (LPBSVR)

This method works based on the comparison between the predicted and the actual

power consumption. Accordingly, it is required to be built upon a prediction method. In

this method, the prediction of power consumption is done using Support Vector Regression

(SVR). SVR is a regression model which tries to minimize errors associated with the support

vectors, so the prediction model is trained based on the outliers [55]. Therefore, this method

is suitable for abnormality detection, where the abnormal patterns are treated as outliers.

The SVR optimization problem can be formulated as follows [55]:

minimize
W,b,ϵi,ϵ

∗
i≥0

1

2
W 2 + C

N∑
i=1

(ϵi + ϵ∗i )

subject to yi −W.xi − b ≤ ϵ+ ϵi

W.xi + b− yi ≤ ϵ+ ϵ∗i , ϵi, ϵ
∗
i ≥ 0;

(2.4)

where W and b are the coefficient vector and intercept of the regression line which are
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Figure 2.1: The soft margin loss setting of SVR.

unknown and act as optimization variables. Parameter C is the penalty cost, and ϵi as well

as ϵ∗i are the distances of support vectors and the two marginal lines. Also, yi is the data

output and ϵ is the marginal distance.

Based on the obtained regression model using SVR, the residual can be calculated

as the difference between real electricity consumption of each data and the predicted data in

each time slots. These residuals are characterized with a probability distribution function

(PDF), which can be used to detect the outliers data. For example, given that the PDF of

residuals is a normal distribution with mean µ and variance σ, the data that falls outside of

the [µ− 3σ, µ+ 3σ] span can be considered as outliers, i.e., abnormality data and outliers.
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2.3.2 Load Prediction with Neural Network (LPBNN)

As far as sole load prediction is concerned, neural network (NN) is proven to

be a powerful data-driven tool, e.g., see [56]. Therefore, they can be used to develop a

load prediction-based abnormality detection method. Other than the method of prediction,

LPBNN is similar to LPBSVR. but the prediction is now done using a neural network [57].

We examined different neural network configurations, with 1 to seven hidden layers, three

to thirteen nodes in each hidden layer, and both Relu and sigmoid as activation functions.

The best results are then used in terms of prediction accuracy, with respect to MSE.

For each new reading from the smart meters, it first passes to the trained NN

model to predict power consumption. Next, the residual is obtained; and if it is out of

the mentioned span, then it is labeled as abnormal. The model is updated after making

decision for each new data: if the new data is labeled as normal, then it is used as a new

training data to update the NN model and residual PDF; otherwise, i.e., if the new data is

abnormal; then it is reported and is not used to update the NN model. This process exactly

implement for the regression based model which in that case SVR model are updated.

2.3.3 Clustered Based Method

In this method, the whole set of available data is clustered into two sets of “ab-

normal data” and “normal data”. Some examples of cluster base methods are K Nearest

Neighborhood (KNN) [58] and Local Outlier Factor (LOF) [59]. However, in this section,

we use the isolated forest (IF) method [60]. The basic idea of IF is to isolate instances

without calculating any type of distance among measurements. This helps enhance com-

25



putational time and online detection. IF utilizes two main characteristics when it comes

to abnormalities: a) abnormal data is very rare; b) certain features of abnormal data are

very different from those of normal data. Clustering is done using binary tree clustering.

Because of susceptibility to isolation, anomalies tend to be isolated closer to the root of

the binary tree. There are two reasons for that: first, instances with obvious feature value

are tend to be divided in the early partitioning process; Second, in different parts which

contains anomalies, less anomalies creates fewer partitions which causes shorter paths in the

tree. It is worth mentioning that path length of each terminal node in the tree is obtained

by adding together all edges in the tree from root to the terminal node which an instance

traverse in a specific tree.

2.3.4 Projection Based Method

Input space is projected to a subspace by using projection vectors mainly for

dimension reduction. Principle Component Analysis (PCA) and LODA [61] are two common

projection based methods for abnormality detection. In this study, we use LODA, due to

its computational efficiency for random sparse projection. It is based on ensemble of some

random sparse projection of feature vector. It works by first generating k sparse projection

vectors with
√
d non-zero element where, d is the number of features for the input data.

After that, for each input and projection vectors we obtain their projected value by their

inner product or zi = xTj wi, where zi is the projected value of input vector xTj on projection

vector wi.
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The projected values of a training data with respect to a projection vector wi,

give us a one-dimensional set which is used to obtain a histogram for each set. Hence, we

have k one-dimensional histogram from training data. The LODA output can be defined

as negative log-likelihood of the sample data:

f(x) = −1

k

k∑
i=1

log p̂i(x
Twi). (2.5)

A higher value of f(x) indicates a lower probability of the sample being abnormal. Also, p̂i

denotes the respective probability of projected value of vector wi and input x. For online

abnormality detection of each input data, the projection value in each wi is calculated and

the respective p̂i is found by it’s histogram. Therefore, the LODA output of input data can

be found based on trained histograms. By comparing this value with a certain threshold,

the input data is labeled as normal or abnormal data. If the input data is recognized as

abnormal, then it is used to update the histograms.

The number of bins in LODA for each histogram is calculated through the following

optimization problem [61]:

maximize
W,b

b∑
i=1

ni log
bni
N

−
[
b− 1 + (log b)2.5

]
subject to N =

b∑
i=1

ni,

(2.6)

where N is the total number of samples, ni is the number of samples in the ith bin, and

b is the total number of bins. This optimization problem is solved for each histogram

individually. As another important parameter in LODA, the number of sparse projection

vectors is calculated as:

σ̂k =
1

N

N∑
i=1

fk+1(xi)− fk(xi). (2.7)
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where k is the number of histograms and the optimum value of this parameter can be

determined by equation as arg min
k

σ̂k
σ̂1
.

2.4 Case Studies

The test cases in this section are based on the smart meter data from Pecan Street

project in Austin, TX [4]. The collected data is for 92 consecutive days for five households

with resolution of 15 minutes. After pre-processing and cleansing, the data is divided

into 70% train data and 30% test data, respectively. As we mentioned before, abnormality

detection methods in this thesis are inherently an unsupervised learning process. Therefore,

since our data has no per-determined labels for abnormality, we need to obtain a benchmark

to define unusual electricity consumption.

2.4.1 Defining Abnormality in Electricity Consumption

Unusual electricity consumption can have different signatures and different dura-

tion of time. In order to capture abnormalities of different lengths, we use moving windows

of different sizes on recent data and compare the data in the most recent window with those

in the previous windows. By examining various experimental data in the database, we fig-

ured out that the power consumption data over the last three-weeks could efficiently show

the trend of historical data. Therefore, by taking the average of each three-weeks period

of data, we can construct a model to capture the trends of data over time. By conducting

such comparison, we obtain a set of residual data for any window size and then fit a normal

distribution function to the residuals with mean µp and standard deviation σp.
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For any residual that deviates from 3σp, we consider it as an unusual trend or

abnormality data. For the points which are determined in several moving windows, we

consider the largest consecutive window. Such window can be obtained by analyzing residual

curves related to each window size. After that, we select the curve with one peak in the

detected points. Essentially, the peak point among all detected abnormalities is the size of

the largest window that detected the abnormality.

Fig. 2.2 shows two consecutive abnormalities on one day which are captured by

two different window size. This figure also depicts electricity consumption of the day, mean

of the same day for the last three-weeks, and the residuals for the two detection window

sizes. Note that, the window with size 3 detect the whole span of time slots 44 − 57 but

as the window with size 13 is a larger detector, and we have one peak (rather than several

peaks in the window with size 3) in the detected span, we choose the later window as the

period of abnormality.

2.4.2 Comparing Four Methods

All the proposed methods are applied on the available test data. In the “base

case” all the three categories of features, i.e., load related, contextual and environmental,

are applied to the models to detect abnormalities. Fig. 2.3 shows the performance of the

four methods for part of the test data. The benchmark abnormalities are marked on the

data curves using triangles. The detected abnormalities time slots for each methods have

been illustrated with different shapes below the curves.
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Captured by window size 3

Captured by window size 13 

Figure 2.2: Abnormality benchmark based on statistical model.

To compare the four methods, we use the Matthews Correlation Coefficient (MCC)

which is defined as [62]:

MCC = (TP×TN−FP×FN)√
(TP+TF )(TP+FN)(TN+FP )(TN+FN)

(2.8)

Here, TP, TN,FP, FN are true positive (correctly identified), true negative (correctly re-

jected), false positive (incorrectly identified) and false negative (incorrectly rejected), re-

spectively. MCC is broadly used as a measure of accuracy in binary classification, which

essentially includes abnormality detection as a special case. MCC score is between −1 (the

worst performance) and 1 (the best performance).

Based on the above results, IF has the best performance with MCC equal to 0.81;

while MCC for LODA, LPBSVR and LPBNN is 0.54, 0.49 and 0.47, respectively. In the

base case, all features are used which gives the best prediction result, i.e. the lowest MSE.
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Figure 2.3: Comparison of different abnormality detection methods with benchmark in the
base case when all features are utilized.

However, despite having good prediction performance, LPBSVR and LPBNN have poor

performance in detecting abnormality. This is due to comparing the consumption with its

prediction, not with the previous consumption trends, which are different at the unusual

benchmark points.

On the other hand, IF and LODA consider all features to detect abnormalities

rather than conducting prediction. IF detects many points as abnormalities even more

than benchmark. This may derive the fact that these points are different in certain feature

from the usual trends, such as humidity, temperature, higher consumption in these time

slots or even holiday flag.
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Table 2.1: The Methods Accuracy in Features Selection Scenarios

Feature scenarios IF LODA LPBSVR LPBNN

Whole features 0.8132 0.5447 0.493 0.4751

Lt 0.79156 0.7313 0.9276 0.7288

Lt + Lw 0.7666 0.7313 0.3206 0.2273

Lt + C 0.7924 0.3467 0.9276 0.7662

Lt + C + Lw 0.8783 0.7976 0.43102 0.5204

Lt + C + E 0.9196 0.43427 0.8852 0.6874

Table 2.2: MSE of prediction based methods with respect to different feature combination

Feature scenarios LPBSVR LPBNN

Whole features 0.2741 0.3016

Lt 0.6516 0.6375

Lt + Lw 0.2723 0.3893

Lt + C 0.7501 0.6770

Lt + C + Lw 1.3376 0.3778

Lt + C + E 0.7839 0.6547

2.4.3 Feature Selection and Sensitivity Analysis

In this section, we examined the impact of different features on the performance

of each method. The result of the simulation are summarized in Table 2.1. It is worth

mentioning that all methods have been examined with different thresholds and the best

MCC result is reported for each method. Also, the MSE of the prediction based methods

is given in the Table 2.2.

Recall from Section 2.4.2 that, while the use of all features can improve prediction

in prediction-based methods, it does not necessarily improve abnormality detection. This

issue is better understood in Fig. 2.4, where features Lt, C and Lw are used. Despite having

higher MSE, LPBSVR and LPBNN have lower MCC. In prediction-based methods, we need
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Figure 2.4: Comparison with benchmark based on Lt + C + Lw features

a prediction (dashed green curve) close to the previous consumption trend (red curve) and

not necessarily close to the real power consumption (blue curve). In fact, for prediction-

based methods, those features that simulate the previous consumption trends serve better

for abnormality detection. Fig. 2.5 shows the results for the case where only the Lt features

are used. Here, prediction-based methods appropriately simulate the previous consumption

trend (red curve) as its expected value (dashed green curve) for the actual load. Conversely,

for more accurate predictions, the better descriptive and complementary features should be

used. It is worth mentioning that, NN works better than SVR in most cases in predicting

the electricity consumption. However, LPBSVR has better performance than LPBNN in

detecting abnormality in most cases, except when Lt, Lw and C are all utilized. This is

because SVR is trained based on the outliers, which helps in abnormality detection.
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Figure 2.5: Comparison with benchmark based on Lt features

Another observation is that the performance of IF is not sensitive to Lw, i.e.,

window features. This is due to the cohesion of these features which are related and close to

each other. As a result, IF cannot divide them suitably in the trained model (trained trees).

In contrast, if we substitute the window features with the environmental features, the best

performance for IF is happened. This shows that the tree nodes in IF are sensitive to the

environmental features. Understanding the cause of unusual consumption can be derived

by examining diverse features which is out of the scope of this study. Analyzing simulation

results shown that prediction based method generally is more accurate for the abnormalities

with very high or very low magnitude. Conversely, other two methods, specially IF, are

more accurate for unusual trends which may does not have a high peak power consumption.
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Since LODA depends on random projection, many repetition must be considered

to test its performance. The result with Lt, C and E as features in different Houses and

time slots shows that LODA tends to detect power consumption which are really close

to zero. In other words, LODA is sensitive to the very low power consumption periods.

However, it has an acceptable performance compared to other methods when Lt is used or

it is accompanied with Lt features.
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Chapter 3

Unsupervised Event Detection and

Clustering for a Single Micro-PMU

Time Series

3.1 Abstract

In this section we introduce the proposed methods which are developed by con-

structing unsupervised deep learning anomaly detection models; thus, providing event de-

tection algorithms that require no or minimal human knowledge. First, we develop the core

components of our approach based on a Generative Adversarial Network (GAN) model. It

works by training deep neural networks that learn the characteristics of the normal trends in

micro-PMU measurements; and accordingly detect an event when there is any abnormality.

We refer to this method as the basic method. It uses the same features that are often used
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in the literature to detect events in micro-PMU data. Next, we propose a second method,

which we refer to as the enhanced method, which is enforced with additional feature analy-

sis. Both methods can detect point signatures on single features and also group signatures

on multiple features. This capability can address the unbalanced nature of power distribu-

tion circuits. The proposed methods are evaluated using real-world micro-PMU data. We

show that both methods highly outperform a state-of-the-art statistical method in terms of

the event detection accuracy. The enhanced method also outperforms the basic method.

Moreover, we develop a complete interconnected event detection and event cluster-

ing method. The unsupervised event detection method constitute of as the same number of

GAN models as the feature numbers, such that we can identify any event regarding to each

individual feature. Then we propose a two-step unsupervised clustering method, based on

a novel linear mixed integer programming formulation. It helps us categorize events based

on their origin in the first step and their similarity in the second step. The active nature

of the proposed clustering method makes it capable of identifying new clusters of events on

an ongoing basis. The proposed unsupervised event detection and clustering methods are

also applied to real-world micro-PMU data. Results show that they can outperform the

prevalent methods in the literature. These methods also facilitate our further analysis to

identify important clusters of events that lead to unmasking several use cases that could be

of value to the utility operator.

It should be mentioned that the main elements of GAN base event detection model

are introduced in the Basic model and for the other two event detection model we explain

the new elements and essential differences.
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3.2 Basic Event Detection Method

In its core, the proposed basic event detection method uses a GAN model which

has two components, a generator and a discriminator. The generator is a deep neural

network that tends to produce data samples that follow the distribution of the historical

training data. The discriminator is a deep neural network that tends to distinguish between

the data samples generated by the generator and the true historical data. By training the

generator and the discriminator subsequently and iteratively, the GAN model can achieve an

equilibrium, at which the discriminator can no longer distinguish between the distribution

of the generated samples and the historical data.

3.2.1 Features

As in [8, 22], we use the following time-series as the features to train the GAN

model in our basic method: 1) magnitude of voltage, i.e., V ; 2) magnitude of current, i.e.,

I; 3) active power, i.e., P ; and 4) reactive power, i.e., Q. All these features are defined

separately for each three phases. Therefore, in total, the GAN model is trained with 12

time-series. Note that, while micro-PMUs measure V and I directly, P and Q are obtained

rather indirectly by combining V and I with the measurements on voltage phase angle and

current phase angle, which are both provided by micro-PMUs.

3.2.2 Generator

This element is common between all of the developed event detection models. It

is a deep neural network that comprises Long Short-Term Memory (LSTM) modules [63]

38



as well as dense layers. It takes a noise vector z from a distribution function pz(z), such

as z ∼ N (µz, σ
2
z), and tries to produce samples similar to the ones from the true sample

distribution. We seek to train a neural network G(z, θg) to generate samples which follow

the distribution of the historical data. Here, θg denotes weights of the generator network.

Mathematically, we seek to minimize the following objective function [64]:

1

N

N∑
i=1

[
log(1−D(G(zi)))

]
, (3.1)

where N is the number of samples in each training batch, D is the discriminator function, G

is the generator function, and zi is the random vector for ith generated sample. In order to

train the generator, after forward propagation, we need to update the generator parameters

by calculating gradient and using a proper optimizer, such as Adam optimizer [65].

3.2.3 Discriminator

This element also is common between all of the developed event detection models.

It is meant to distinguish between the fake data samples generated by the generator and the

real measurements and it contains LSTM modules and dense layers. Our goal is to train

a neural network D(x, θd), which creates a single scalar value as its output. Here, x is the

vector of the actual measurement data and θd is the weights of the discriminator network.

The primary objective of the discriminator is to maximize the probability of distinguishing

between the true measurement data and the data generated by the generator. Therefore,

we seek to minimize [64]:

1

N

N∑
i=1

[
log(D(xi)) + log(1−D(G(zi)))

]
, (3.2)
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where xi is the ith real sample and the second term is the same as the term in (3.1).

Together, the generator and the discriminator play a min-max game with the following

value function [64]:

V (G,D) = Ex ∼ pdata(x)[log(D(x))] +

Ex ∼ pz(z)[log(1−D(G(z)))].

(3.3)

3.2.4 Training

Both the generator and discriminator are formed with Long Short-Term Memory

(LSTM) modules, which are connected back-to-back to capture the relationship between

different features and their time dependencies. The micro-PMU data is normalized and

segregated into sequences of training blocks.

The value of V (G,D) can attain its global optimum by satisfying the following

two conditions:

• C1: For any fixed G, the optimal discriminator D∗ is:

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
. (3.4)

• C2: There exists a global solution such that:

min(max
D

(V (G,D))) ⇐⇒ pg(x) = pdata(x). (3.5)

If these conditions are not satisfied at the equilibrium, then the training is repeated

with new random initial points.
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3.2.5 Event Scoring

After training the basic model, the blocks of micro-PMU data stream are passed

to the discriminator and the output is a scalar number which is defined as score. We pass

the whole training set to the discriminator and calculate the scores. A normal probability

distribution function (pdf) is fitted to the obtained scores, i.e., scores ∼ N (µ, σ2), due to

the fact that these scores must be very close to the global optimum, see (3.4) and (3.5).

This is because of the infrequent nature of the events in power distribution systems.

3.2.6 Algorithm

The proposed basic event detection method is summarized in Algorithm 1. It works

based on the fact that events in micro-PMU data are infrequent. In fact, our analysis of the

real-world micro-PMU data shows that events occur at about 0.04% of the times. Thus,

the default for the trained model must be the normal operation of the power distribution

system. As a result, the discriminator is essentially trained to distinguish between the

absence and the presence of the events, which is exactly what is needed in order to detect

the events. It should be noted that, a common choice for zp in the threshold µ± zpσ is 3,

known as the three-sigma rule [66].
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Algorithm 1 Event Detection - Basic Method

Input: Training data and test data: V , I, P and Q.

Output: Event Detection Flag F .

// Learning Phase

Train the GAN model.

Use the Discriminator as scoring function D∗(·).

Calculate the scores for the training data.

Fit a Normal PDF N (µ, σ2) to the obtained scores.

// Detection Phase

For each new micro-PMU test data Do

Calculate the score s using D∗(·).

If s /∈ (µ− zpδ, µ+ zpδ) Then

F = 1 // Event

Else

F = 0 // No Event

End

End

3.3 Enhanced Event Detection Method

The basic method in Section 3.2 requires training a single GAN model, where the

features are V , I, P , and Q. However, given the characteristics of the micro-PMU data, in

this section, we propose to develop and train two separate GAN models, one for the voltage

measurements V , and another one for the rest of the measurements, i.e., I, P , and Q.

3.3.1 Feature Analysis

After applying the basic method to real-world micro-PMU data, we observed that

Algorithm 1 sometimes fails to detect events that demonstrate signatures only in voltage
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magnitude. Such event cannot trigger the score to exceed the threshold. Further investi-

gation revealed that this is because, in power distribution systems, voltage measurements

are much less volatile than current measurements. Therefore, the GAN model sometimes

cannot properly extract the characteristics of the voltage measurements. The correlation

between four elements of micro-PMU data in 3 phase illustrate low dependency of P and

Q to V compare to I. Since, with a small variation in current, P and Q totally follow the

trend, however, in many events which related mostly to V the other variables do not show

any significant change.

3.3.2 Training Multiple GAN Models

To remedy the above issue, we propose to construct two separate GAN models that

are trained in parallel. One GAN model, denoted by GANV , has 3 features as its input,

which are the voltage magnitude measurements across the three phases. The other GAN

model, denoted by GANI,P,Q, has 9 features as its input, which are current magnitude,

active power, and reactive power measurements across the three phases. Importantly, it

is observed that I has high correlations with P and even Q, which makes it desirable to

combine I, P , and Q into one GAN model; as opposed to having four GAN models for V ,

I, P , and Q.

3.3.3 Event Scoring

Once each of the two GAN models is trained, the resulting Discriminator function

is used to generate its own scores. An example for the scores that are generated by the

two GAN models are shown in Fig. 3.1. The blue dots represent normal data. The red
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Figure 3.1: The importance of using two GAN models in the enhanced method: while the
scores from the GANI,P,Q model can detect most events; there are events that are detected
only if the scores from the GANV model are also considered. Blue dots denote normal data
while red dots denote events.

dots represent events. We can see that each of the two GAN models detects only a sub-set

of events. The events that are scattered across x-axis are the ones that are detected by

GANI,P,Q. They include the majority of the events. The events that are scattered across

y-axis are the ones that are detected by GANV . Thus, both GAN models are both needed

to enhance accuracy of event detection.

3.3.4 Algorithm

The proposed enhanced event detection method is summarized in Algorithm 2. It

works by examining the scores of the two separate GANs; thus having a dedicated deep

learning architecture to detect the events in voltage magnitude and another deep learning

architecture to detect the events that involve the current, active power, and reactive power.

The rest of the algorithm is similar to Algorithm 1.
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Algorithm 2 Event Detection - Enhanced Method

Input: Training data and test data: V , I, P and Q.

Output: Event Detection Flag F .

// Learning Phase

Train the GANI,P,Q model.

Use the Discriminator as scoring function D∗
I,P,Q(·).

Calculate the scores for the training data.

Fit a Normal PDF N (µ, σ2) to the obtained scores.

Train the GANV model.

Use the Discriminator as scoring function D∗
V (·).

Calculate the scores for the training data.

Fit a Normal PDF N (ϕ, φ2) to the obtained scores.

// Detection Phase

For each new micro-PMU test data Do

Calculate the score s1 using D∗
I,P,Q(·).

Calculate the score s2 using D∗
V (·).

If s1 /∈ (µ− zpδ, µ+ zpδ) or

s2 /∈ (ϕ− zpφ, ϕ+ zpφ) Then

F = 1 // Event

Else

F = 0 // No Event

End

End
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3.4 Proposed Event Detection Method

Same as the other two developed event detection model the proposed model in this

section is based on GAN, however, it is slightly different in terms of features and process.

The architecture and algorithm of the GAN models is as follow:

3.4.1 Features

Checking the magnitude of voltage and current in micro-PMU measurements is

a common option to detect and identify events, e.g., see [8, 22]. However, due to the

fluctuations in the frequency of the power system, the phase angles of voltage and current

are often not used directly. Instead, active power and reactive power are usually used as

the two features that involve voltage and current phase angle measurements, besides the

magnitude of voltage and current, to detect events in micro-PMU measurements. In this

section, we propose to use power factor as the feature that involves the voltage and current

phase angle measurements. Thus, the features across the three phases that we use in this

section are

|Vϕ|, |Iϕ|, cos(θϕ), ϕ = A,B,C. (3.6)

which denote the voltage magnitude, current magnitude, and power factor in each phase ϕ,

respectively. For notation simplicity, in the rest of section, we refer to the features in (3.6)

for all the three phases, without specifying subscript ϕ. Also, batch normalization have been

implemented in order to prevent internal covariate shift.
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3.4.2 Training and Convergence

In this model we train all nine separate GAN models, one model for each feature,

so as to learn the characteristics of the normal trends in micro-PMU measurements for each

feature and each phase. We detect an event when there is an abnormality. For each GAN

model, the solution of the min-max game over V (G,D) in (3.3) must satisfy the conditions

3.4 and 3.5.

The training of the GAN model and proofs are explained in details in [64]. However, train-

ing of GANs is known to be unstable and sensitive to the choices of hyper-parameters.

Hence, obtaining compelling results such as achieving global optimum and creating a sam-

ple distribution close enough to the real data distribution is challenging and requires an

assumption that the discriminator is optimal at each step [67]. Experimental results in our

case with different micro-PMU data set show that local optima and mode collapse situation

almost never happen due to non-sharp gradients of the discriminator function around real

data points [67].

The choice of the hyper-parameters of the GAN model is critical in achieving an

equilibrium. In particular, based on the two criteria in (3.4) and (3.5) and convergence

constant ϵ > 0 the equilibrium should satisfy the following conditions [64]:

| max
D

(V (G,D)) −(−log4)| < ϵ,

|Dg(x)−
1

2
| < ϵ.

(3.7)

3.4.3 Event Scoring

Once all the nine GAN models are trained, they provide us with nine distinct

event detectors; one per each feature. Each discriminator gives us a score as its output,

47



which indicates how close a given window of measurements is to the global optimum that is

obtained from (3.4) and (3.5). If, for any GAN model, the score is not close enough to the

global optimum, then it means that the given window of measurements does not match the

normal behavior that is learned by the GAN model; therefore, it is deemed to contain an

event. In this process, the D’Agostino’s K-squared test [68], with a significant level of 0.05,

is applied to the discriminator output from the training set; and the results show strong

evidence of normality. Thus, a normal probability distribution function (PDF) is fit to the

obtained scores for training set, to have ζ ∼ N (µ, σ2), where µ is almost equal to the global

optimum and σ is small.

3.4.4 Algorithm

The proposed event detection method is summarized in Algorithm 3. The algo-

rithm has two phases. First, a learning phase, in which the GAN models are trained for

each feature; and their associated normal PDF are constructed. Second, an event detection

phase, in which, for each window w of sample data, the scores are calculated by all the nine

GAN models and accordingly the detection vector is obtained:

Ew
9×1 = [ew1 , · · · , ew9 ] (3.8)

The detection vector is a 9× 1 binary vector, where 9 is the number of features as in (3.6).

Entry ewf is 1 if an event is detected in wth window and f th feature, otherwise zero. Vector

ET is the set of all detection vectors. It should be noted that, a common choice for zp in

the threshold µ± zpσ is 3, known as the three-sigma rule [66].

48



The detection vectors show us the existence of event as well as providing us with

the inputs that we need for our clustering algorithm; which we will explain in Section 3.5.

Algorithm 3 Event Detection - Proposed Method

Input: Training and test data based on the features in (3.6).

Output: Event detection vector Ew9×1 for the wth data.

// Learning Phase

Foreach feature f in (3.6):

Train the GANf model

Use discriminator as scoring function D∗
f (·).

Calculate the scores for the training data.

Fit a Normal PDF N (µf , σ
2
f ) to the obtained scores.

End

// Detection Phase

Foreach new micro-PMU test data (w):

Foreach feature f in (3.6):

Calculate score swf using D∗
f (·).

If swf /∈ (µf − zpδf , µf + zpδf ) Then

ewf = 1 // Event

Else

ewf = 0 // No Event

End

Append ewf to Ew

End

End
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3.4.5 Evaluation metric

We use the Matthews correlation coefficient (MCC) [62] as the metric to assess

accuracy; for both detection and clustering. As explained in [69], a common evaluation

criteria, such as F1-score, can sometimes be misleading and show over-optimistic inflated

results, especially on imbalanced data-sets; such as anomalies which inherently have low

frequency compared to normal samples. The MCC, instead, is a more reliable statistical

metric which produces a high score only if the obtained prediction results are adequate in all

of the four categories of the confusion matrix, i.e., true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN), proportionally both to the size of the positive

elements and the size of the negative elements in the data-set. On the other hand, for

multi-class clustering/classification problems, the general format of MCC is implemented.

Therefore, for both event detection and clustering, we use MCC as the evaluation metric:

MCC =
NsTr(ψ)−

∑K
k=1

∑K
l=1 ψkψl√

N2
s −

∑K
k=1

∑K
l=1 ψkψT

l

√
N2

s −
∑K

k=1

∑K
l=1 ψ

T
k ψl

, (3.9)

where Ns is the number of samples, K is the number of clusters, ψ is the confusion matrix

which is K ×K, ψk and ψl are the kth row and lth column of ψ, respectively. It should be

mentioned that, for event detection, a special case of general MCC with K = 2 is used in

this study. MCC is a number between −1 and 1; where 1 represents a perfect prediction.

MCC is used for the evaluation sets that are extracted by expert knowledge for both event

detection and clustering.

3.5 Unsupervised Clustering Method

Given the detection vectors in Section 3.4, in this section, we develop a two-step

event clustering method so that we can later study different types of events in details.
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3.5.1 Step I: Pre-Processing

An obvious choice for clustering is to group the events based on their detection

vector. For each measurement window w that contains an event, vector Ew
9×1 has at least

one entry that is one. Accordingly, we can put all the events with the same detection vector

in the same category; based on the nine features in (3.6). For example, we put all the events

with Ew
9×1 = [111000000] in the same category because they similarly causes abnormalities

only in voltage magnitude on all phases.

In theory the detection vector can result in 29 − 1 = 511 possible combinations;

when an event is detected. However, based on the physics of the power system; only some

of these combinations can actually happen in practice. In fact, our analysis of the real-

world micro-PMU data resulted in only a handful of such combinations across thousands of

detected events. Thus, in practice, the above clustering mainly serves as a pre-processing in

the clustering problem. We often need to further break down a category into several clusters

to expose the use case of the events in that category. This is done through a comprehensive

clustering optimization in Section 3.5.2.

3.5.2 Step II: Clustering Optimization

In this section, we explain the similarity measure, the proposed clustering opti-

mization problem formulation, its solution based on exact linearization, the cluster repre-

sentatives, and the optimum cluster numbers in each category.

51



A. Rolling-Based Similarity Measure

The key to proper clustering is to accurately measure how similar (or dissimilar)

different event signatures are within each pre-processed category. However, this is a chal-

lenging task because similar events may not have exact same duration. Events need to

be aligned with respect to their shape and their corresponding measurement windows for

appropriate similarity assessment.

To address the above two challenges, we propose to first expand the measurement

window size for each captured event to make sure that the entire event is included in the

measurement window. Once this is done, for each event i, we define:

P i =


α1,1
i · · · α1,τ

i

...
. . .

...

α9,1
i · · · α9,τ

i

 . (3.10)

There are nine rows in P i corresponding to the nine features in (3.6). The columns

correspond to the measurement time instances, where τ is the maximum expanded window

size of the two events that are compared with each other.

To determine the similarity between two events i and j, we need to align matrices

P i and P j , because we do not know where exactly the event is located within each mea-

surement window. Therefore, we propose to take matrix P i as fixed, and roll matrix P j in

the time axis, one time slot at a time. In other words, in each rolling step, the last column

is removed from P j and appended before the first column in P j ; thus, we have τ rolling

steps for each two event comparison.
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For each rolling step k, where k = 1, . . . , τ , let us define cki,j as the average of

the 9 correlation coefficients that can be calculated between each of the 9 rows in P i and

its corresponding row in P j ; where P j is rolled for k steps. We define MaxCorr as the

rolling-based measure of similarity as:

MaxCorri,j = maximum
k=1,...,τ

cki,j ; (3.11)

to be used as the similarity measure between events i and j.

B. Optimization Problem Formulation

Consider a given category of events based on the pre-processing step in Section

3.5.1. Suppose there are I detected events in this category and we want to break them

down into C clusters. We propose to solve the following clustering optimization problem:

minimize
u

I∑
i=1

I∑
j=1

C∑
c=1

ui,cuj,c(1−MaxCorri,j) (3.12a)

subject to ui,c ∈ {0, 1}, (3.12b)

C∑
c=1

ui,c = 1 ∀i. (3.12c)

where ui,c is a binary variable. It is one if event i is in cluster c; otherwise it is zero. Problem

(3.12) minimizes the sum of the distances between the events, measured as 1-MaxCorri,j ,

across different clusters. The constraint in (3.12c) assures that each event is assigned to

only one cluster. Problem (3.12) is a MINLP.
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C. Exact Linearization

To enhance computational performance, the MINLP in (3.12) is replaced with an

exact equivalent Mixed Integer Linear Programming (MILP), as follows:

minimize
u, t

I∑
i=1

I∑
j=1

C∑
c=1

ti,j,c(1−MaxCorri,j) (3.13a)

subject to ui,c, ti,j,c ∈ {0, 1}, (3.13b)

C∑
c=1

ui,c = 1 ∀i, (3.13c)

ui,c + uj,c − ti,j,c ≤ 1 ∀i, j, c, (3.13d)

−ui,c − uj,c + 2ti,j,c ≤ 0 ∀i, j, c. (3.13e)

where the nonlinear product of ui,c and uj,c in the objective function is replace with linear

term ti,j,c. The linear constraints in (3.13d) and (3.13e) are used to make sure that ti,j,c

is indeed equal to such product in order to assure an exact linearization. Problem (3.13)

can be solved using any MILP solver for a set of detected events in a given time period as

training set.

D. Cluster Representatives

Once the clusters are obtained by using the training data and solving the MILP

problem in (3.13), we define a representative for each cluster to speed up the process of

clustering incoming events. Thus, the new events are compared to a few cluster represen-

tatives rather than to all events through (3.13). To determine the optimum representative

for each cluster, we solve the following optimization problem:
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minimize
v

I∑
i=1

I∑
j=1

C∑
c=1

ui,cvj,c(1−MaxCorri,j) (3.14a)

subject to vi,c ∈ {0, 1}, (3.14b)

I∑
i=1

vi,c = 1 ∀c (3.14c)

Variable vj,c is binary. It is one, if event j is the representative event for cluster c, and

zero otherwise. Constraint (3.14c) is used to make sure that there is only one represen-

tative for each cluster. Notice that ui,c is parameter, not a variable, in this optimization

problem; because the clusters are already formed. Therefore, problem (3.14) is an MILP

by construction.

E. Number of Clusters (Nc)

So far, we have assumed that the number of clusters, i.e., parameter c is fixed.

However, we do obtain the optimal number of clusters in our proposed method. This is

done by solving the optimization problem in (3.13) with respect to different number of

clusters. Then, the optimal number of clusters is determined based on the silhouette values

of the clusters. Subsequently, cluster representatives is identified for the optimally obtained

cluster by using (3.14).

3.5.3 Active Clustering

Given the large number of events that are detected in micro-PMU measurements,

it is computationally prohibitive to cluster all of 15 days events at the same time. On

the other hand, by training a subset of the detected events and assign the new events to

the trained cluster, those new types of events would be assigned to a wrong cluster. To
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address these issues, we solved the clustering optimization problem only on the first day

in our data set to set up a base for the event clusters. The newly detected events would

be compared to each base cluster representatives and they will be assigned to the closest

cluster. Unless, if MaxCorrs of a new event is less than a threshold (φ) for every existing

cluster representative, then a new cluster is created. In practice, such new cluster is added

only occasionally, which shows the common events are almost appear in every day. However,

the newly added clusters are usually those weakly or rare events. Furthermore, the clusters

can be updated using the complete optimization-based approach periodically once every

few days in order to pick the optimal representative for each cluster (Algorithm 4).
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Algorithm 4 Unsupervised Event Clustering

Input: Event detection vectors ET from (3.8) ; Event time-series data, Number of

clusters (Nc), Similarity threshold (φ).

Output: Clusters and their representatives, Silhouette value.

// Learning Phase (Offline)

Create categories based on unique sets in ET .

Assign each event to its category.

Foreach n from 1 to Nc:

Foreach category in ET :

Cluster the events based on (3.13).

Determine the cluster representative based on (3.14).

End

End

Calculate Silhouette value for all possible combinations.

Set the number of clusters and their representatives

//Active clustering Phase (Online)

Foreach new event in test data:

If the detection vector of new event is in ET Then

Calculate MaxCorr with all representatives.

If all calculated MaxCorrs are less than φ Then

Make a new cluster in the related category.

Set new event as the cluster representative.

Else:

Assign new event to the closet cluster.

End

Else:

Create a new category.

Create a cluster with new event as representative

End

End
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3.6 Result Comparing of Basic and Enhanced Methods

In this section we compare the event detection results for basic and enhanced

methods. The proposed event detection methods are applied to the real-world data from

a distribution feeder in Riverside, CA [8]. The resolution of the data is 120 readings per

second. In total, 1.8 billion measurement points are analyzed. In particular, two weeks of

data are used to train the GAN models. One day of data is used to test the event detection

methods. Event detection is applied on windows of size 40 data points. Each window has

an overlap of size 20 data points with the next window in order to assure not missing any

event.

3.6.1 Performance Comparison

The effectiveness of the event detection methods is investigated over 1000 reference

events in micro-PMU data, that are visually extracted within a specific period of time. The

summary of the results are shown in Table 3.1. We can see that the basic method signifi-

cantly outperforms the benchmark statistical event detection method in [8]. Furthermore,

the enhanced method considerably outperforms the basic method. Next, we explain the

underlying causes for these differences by going through several examples of the events that

are detected.

Table 3.1: Event Detection Accuracy

Benchmark [8] Basic Method Enhanced Method

Accuracy 0.3640 0.6943 0.8805

F1-score 0.3614 0.7676 0.9023
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3.6.2 Assessment of the Basic Method

Figs. 3.2 to 3.6 show five examples of the events that are detected by the basic

method. Importantly, the prevalent statistical method in [8] detected only the first two of

such events. Regarding the events in Figs. 3.4 and 3.5, they are not detected by the method

in [8] because the changes in the magnitudes are relatively small and do not significantly

affect the statistical measures, such as the absolute deviation around median. As for the

event in Fig. 3.6, all the pieces of this long event are detected by the basic method at several

subsequent windows of the data. However, the statistical method in [8] only captures the

step change the beginning of this event; because the statistical characteristics remain the

same afterwards.
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Figure 3.2: Inrush current with impact on all features. This event is detected by all the
three methods: statistical, basic, and enhanced.
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Figure 3.3: Capacitor bank switching with impact on all features. This event is detected
by all the three methods: statistical, basic, and enhanced.
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Figure 3.4: An event with major impact only on current and active power. This event is
detected by the basic method, but not by the statistical method.
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Figure 3.5: An event involving oscillations. This event is detected by the basic method, but
it is not detected by the statistical method.
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Figure 3.6: A rare and long event with 20 seconds of transient signature. All pieces of this
long event are detected and captured by the basic method. The statistical method only
detects a step change at the beginning of this event.
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3.6.3 Assessment of the Enhanced Method

Figures 3.7 and 3.8 show two events that are detected by the enhanced method.

But they are not detected by either the prevalent statistical method in [8] or even the basic

method. The basic method fails to detect these two events because the main signatures are

in voltage and they are relatively small in magnitude. Therefore, only the additional GAN

model in the enhanced method can capture these events. This demonstrates the importance

of the change in the model that was proposed in the enhanced method. Regarding the event

in Fig. 3.8, it demonstrates momentary oscillations that started only after some sort of

actions, possibly a tap changing event, where the oscillations damped after a short period

of time. Events like this are important, for example, for asset monitoring. However, only

the enhanced method was able to detect such event.

0 100 200 300 400 500 600

7235

7240

7245

7250

7255

7260

7265
V (Volts)

A
B
C

0 100 200 300 400 500 600
67

68

69

70

71

I (Amps)

0 100 200 300 400 500 600
Timeslots

430

440

450

460

470

P (kW)

0 100 200 300 400 500 600
Timeslots

200

210

220

230

240

250

260

Q (kVAR)

Figure 3.7: An event with impact mainly on voltage. It is detected by the enhanced method.
But it is not detected by the basic method or the statistical method.
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Figure 3.8: An event with momentary and damping oscillations in voltage, shown on one
phase only. This event is detected by the enhanced method. But it is not detected by the
basic method or the statistical method.

3.7 Event Detection Results

The proposed event detection and clustering methods are applied to 1.2 billion

measurements over 15 days of real-world micro-PMU data. Fourteen days of data are used

for training the event detection method and one day of data is used to test it. One day of

data is used for cluster optimization; and active clustering is done for the rest of the data.

3.7.1 Parameters Detail

The architecture of the GAN model has two parts. The generator starts with a

dense layer of size 40, three layers of LSTM with 32, 64 and 128 modules, and a dense layer

of size 256. The discriminator is in reverse order; the only difference is that the last layer

in the discriminator is a dense layer with size 1. All activation functions are LeakyReLU

63



except the last layer in the discriminator; which is sigmoid. In the LeakyReLU functions,

the slope of the leak is set to 0.2 in all models. For tuning the hyper-parameters, we used

the coarse-to-fine method. In this method, we first randomly chose a set of values for each

parameter. Then we narrowed down the choices to a smaller subset based on the obtained

results. This procedure was repeated until we achieved the desired value for each parameter.

It should be mentioned that, depending on the hyper-parameter, scaling can be helpful, such

as log scale for learning rate. This can help fasten the search for suitable values of choice.

The learning rate α is set to 0.0002 for Adam optimizer and β1 is set to 0.5 for

better stability in training. A critical parameter when it comes to capturing the events

appropriately is window size, which first it should be wide enough to capture the essential

signatures of an event and second it should be small enough to prevent event synchronicity

and high computational time. By analyzing different window sizes for different set of micro-

PMU data, the best result in terms of accuracy and reasonable computational time, is 40

data points. Also, in order to assure that events are not overlooked, we consider that

each window has 20 data points overlap with the previous window. All GAN models are

developed with Tensorflow in Python by using Nvidia GTX 1050 ti GPU and a core i-7

2.2GHz CPU with 32 GB RAM.

3.7.2 Accuracy Analysis

Table 3.2 shows the MCC for the proposed event detection method, in comparison

with the benchmark methods in [8, 35] and enhanced method. A total of 1200 reference

events are visually extracted by expert knowledge within 6 hours (64800 window samples
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Table 3.2: Event Detection Information for Confusion Matrix, Precision, Recall and MCC

Metric Statistical [8] GGL [35] Enhanced Method Proposed Method

TP 311 990 1033 1132

FN 889 210 167 68

FP 210 1 56 36

TN 63390 63599 63544 63546

Precision 0.596 0.998 0.948 0.947

Recall 0.259 0.825 0.861 0.943

MCC 0.386 0.906 0.901 0.955

of 40 time-slots) to evaluate the performance of event detection. The proposed method

outperforms the methods in [8], [35] and enhanced method.

The combined training time of all 9 GAN models is 2 hours. Once the initial train-

ing is done, it takes less than 4 milliseconds to determine a new incoming sample as normal

or event; i.e., the detection time is 4 milliseconds. The detection time for [8] and enhanced

method is 3 and 10 milliseconds, respectively. Thus, the proposed method maintains the

same level of computational complexity; but it achieves much better accuracy. It should be

added that, to have a fair comparison with the model in [35], we analyzed different window

sizes for the aforementioned method; and as we increase the sample numbers, the accuracy

is improved, however, the rate of the improvement in accuracy was decreasing, in other

words, accuracy does not change significantly by extending the window at a certain point;

Also, the training time is ascending as well. Thus, the best performance with the same

training time as GAN models are considered for the method in [35]. Another point about

the [35] is that, due to the use of similarity graph, the method in [35] needs to be re-trained

every time which makes it impractical for detecting events with new upcoming data in an

online mode, however, for offline mode this method has the lowest False Positive (FP).
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An interesting observation when we compare the proposed event detection model

with enhanced method is that, the choice of the independent features in (3.6), in particular

the use of cos(θ) instead of active power and reactive power, improves the accuracy of

event detection. It also improves the independence in the outputs of the trained GAN

models. This makes the resulting detection vectors to even enhance the performance of

the subsequent clustering method. One of the main advantages of the proposed model

compared to the GGL method in [35] is the aspect of learning the normal operation of the

system. Although the GGL method has a very low false positive rate, the number of its

true positives is lower than the enhanced method as well as the proposed method in this

paper. The reason is that, when several events happen continuously, i.e., they happen back

to back, such as the events in Fig. 3.20, the GGL method would train its similarity matrix

based on the considered window sample. In this case most of the samples are events, thus,

events are not anomaly anymore for the GGL method.

As a result, there would be higher score value of similarity among such event-

containing back-to-back window samples. This leads to a lower true positive rate for the

GGL method. On the contrary, the proposed model in this paper considers each sample

individually and it compares each sample with learned signature of the normal samples by

the GAN models. This improves true positive rate. It should be noted that, the statistical

method in [8] has reasonable accuracy in detecting most of the three phase events that are

balanced ; due to the fact that the method in [8] was not designed to particularly detect

unbalanced events. The method in [8] performs poorly also to detect events with low

magnitude. Both of these issues are resolved in this paper. Given the fact that it is common
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to have unbalanced events in power distribution systems, this particular advantage of the

proposed method is of importance in real-world applications.

3.8 Event Clustering Results

The proposed event clustering method is applied to the captured events in Section

3.7.2; and its performance is compared with the following prevalent clustering methods in

the literature: kNN [70], k-Medoids [71], and fuzzy-k-Medoids [72]. Different similarity

measures are also considered: euclidean, DTW [73], soft-DTW [74], and MaxCorr. In order

to compare clustering results, different indices are implemented in the literature such as

Jaccard Index, Adjusted Rand Index, Fowlkes Mallows Index, Normalized Mutual Informa-

tion and Silhouette index; where the last one, i.e., the silhouette index is generally known

to show better results within variety of data sets [75]. However, if a labeled evaluation

set is available, the analysis and assessment of the clustering model is more intuitive and

informative. Thus, in this paper the comparison is conducted over 4000 reference events

that are visually clustered with expert knowledge. These events are clustered after being

detected by the proposed event detection method.

Table 4.2 shows the MCC for different clustering methods. Two observations

can be made based on the results in this table. First, the clustering methods are almost

always more accurate when MaxCorr is used as similarity measure. Second, our proposed

clustering method outperforms kNN, k-Medoids, and fuzzy-k-Medoids for any similarity

measure. The computational time to train the KNN, k-medoids, Fuzzy k-medoids, and

the proposed models (when MaxCorr is considered as similarity measure) are 5 minutes,
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Table 3.3: MCC in Event Clustering for Different Methods and Different Distance Criteria

Distance KNN k-medoids Fuzzy k-medoids Proposed Method

Euclidean 0.451 0.543 0.522 0.447

DTW 0.584 0.863 0.871 0.911

soft-DTW 0.579 0.861 0.871 0.888

MaxCorr 0.645 0.887 0.882 0.938

7 minutes, 15 minutes, and 65 minutes, respectively. Note that, training is done offline.

Therefore, the higher accuracy of the proposed model does not cause higher computational

time during the operation. Importantly, recall that the proposed clustering method is active.

In fact, when it comes to clustering new upcoming events that require creating new clusters,

which is done online and during operation, all of the above methods have almost the same

computational time; which are less than 4 milliseconds.

3.8.1 Analysis of Identified Clusters

A total of nine detection vectors were observed among all the events which they

are denoted by E1 to E9, as shown in Table 3.4. As part of the pre-processing step in

Section 3.5.1, these detection vectors result in five categories, denoted by Category I to

Category V, as shown on the last column in Table 3.4. Categories I, II, and III include

balanced events; while Categories IV and V include unbalanced events.

The optimization-based clustering in Section 3.5.2 is then applied to the above five

categories. It resulted in identifying a total of 16 final clusters. In this regard, Category

I is divided into six clusters; Category II is divided into three clusters; Category III is one
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Table 3.4: Cluster Categories from Pre-Processing

Detection Features Number Pre-Processing
Vector V I cos(θ) of Events Category

E1 [111 111 111] 34242 I

E2 [111 000 000] 12270 II

E3 [000 111 111] 809 III

E4 [000 100 100]
E5 [000 110 110] 13956 IV
E6 [000 011 011]

E7 [000 000 111]
E8 [000 000 110] 52 V
E9 [000 000 011]

cluster by itself; Category IV is divided into three clusters; and Category V is divided into

three clusters.

Next, we use the above clustering results to scrutinize and expose the use cases

for the events within each cluster.

3.8.2 Use Case Exposition: Six Clusters in Category I

Six clusters are identified in Category I; denoted by Clusters #1 to #6. Clusters #1

and #2 can help identify different load types. Clusters #3 and #4 can reveal malfunctions

in the operation of capacitors. Cluster #5 can help identify a specific two-step transient

events. Cluster #6 can identify oscillations.

A. Identifying Different Load Types

Fig. 3.9(a) shows an example for Cluster #1, which is the most frequent event in

this system. It is the inrush current from load switching. The transient time of these events

is less than 10 time slots, i.e., 83.3 msec, and one pinnacle which illustrates the magnitude of

inrush current. Fig. 3.10 shows the scatter plot for the change in the steady-state current,
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i.e., ∆(Iss), versus the magnitude of inrush current, i.e., Iinr during 6 different days. As it

can be seen, Cluster #1 can it self be divided into two main sub-clusters which show two

major types of loads in this cluster.

Fig. 3.9(b) shows an example for Cluster #2. It is for the load types that create

much longer transient period to switch and creates a plateau; which is very different from

the inrush current in Cluster #1 with a pinnacle. Fig. 3.11 shows a scatter plot for the

events in Cluster #2. On the y-axis it shows the change in steady-state current, before and

after the event, which is denoted by ∆(Iss). The x-axis is the length of the transient period

of the event. There is a dense concentration area, where ∆(Iss) fluctuates at around 1.5 A.

This observation empowers the system operator to more readily detect any abnormalities

in this cluster, with regard to ∆(Iss) and transient duration, such as multiple simultaneous

load switching.

B. Capacitor Bank State of Health Monitoring

Figs. 3.12(a) and (b) show examples of clusters #3 and #4, which are related

to capacitor bank switching ‘on’ and switching ‘off’ events, respectively. Capacitor bank

switching occurs on a daily basis.

Monitoring the switching actions of capacitors can not only keep the utility op-

erator informed of switching status of the capacitor banks; it can also help to evaluate

their state of health. For example, consider the capacitor bank switching off event in Fig.

3.12(b). We can see that there is a relatively long overshoot on Phase A current and a
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Figure 3.9: Examples of load switching events: (a) inrush current in Cluster #1; (b) long
transient with a plateau in Cluster #2.

relatively long undershoot on Phase B current before the capacitor is de-energized. This is

likely due to a malfunction in the switching control mechanism at the capacitor bank, c.f.

[10]. By clustering all the capacitor switching events, we can conduct statistical analysis

on the characteristics of such transient switching responses and dispatch the field crew to

examine the capacitor bank switching controller and perform repairs.

C. Two-step Events

Fig. 3.13 shows an example of the special load in Cluster #5. This special type

of load has two separate but subsequent steps. By using the proposed unsupervised event

detection and unsupervised event clustering method we were able to capture it and identify
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Figure 3.10: Identifying two major load types based on Cluster #1.

its unique switching pattern that is repeated every time this event occurs.

Oscillations in Current Induced by Step Changes

Fig. 3.14 shows an example of an oscillation event in Cluster #6. These events

always occur immediately after a particular pattern of a step up change event in the current

magnitude (as we can see at the beginning of the Fig. 3.14(b)) that also is followed by an

oscillation event which is magnified in Fig. 3.14(a). For this particular class of oscillatory

events, we have observed that the median for the frequency of the oscillations is 5.17 Hz;

while the median for the damping ratio of the oscillations is 2.64%. This information is

valuable to the utility. In particular, such information that is obtained in an unsupervised

fashion by our proposed algorithms, when combined with a subsequent field inspection by

the utility crew members, can quickly lead to the best remedial action; as deemed necessary
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Figure 3.11: Scatter plot for the events in Cluster #2 over 6 days.

by the utility. This type of event causes the highest transient power factor change at this

distribution feeder, when compared with all kinds of events that we have captured in this

study. The amount of the transient change in power factor is 0.4.

3.8.3 Use Case Exposition: Three Clusters in Category II

Three clusters are identified in Category II; denoted by Cluster #7 to Cluster

#9. Clusters #7 and #8 can help identify voltage events. Cluster #9 can identify voltage

oscillations.

A. Voltage Events

Fig. 3.15(a) shows an example of Cluster #7, which is a transformer tap changing

event. The events in this cluster inform the utility about voltage regulation status and the

operation of tap-changers. Fig. 3.15(b) shows an example event in Cluster #8, which is a
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Figure 3.12: Monitoring the operation and health of a capacitor bank based on Clusters #3
and #4: (a) switch on; (b) switch off.

voltage event with a plateau. The transient shape of the voltage in Cluster #8 is similar

to voltage changes in Cluster #2, see Fig. 3.9(b); however, these two events are different

because there is no change in current phasors (I and cos(θ)) in the events in Cluster#8.

The events in Clusters #7 and #8 are often initiated at transmission level.
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Figure 3.13: An example for the two-step event in Cluster #5.

B. Voltage Oscillation Events

Fig. 3.16 shows an example for an event in Cluster #9, which is a high frequency

low magnitude event in V . Since there is no major change in current, this event can be due

to two possible phenomena: 1) voltage oscillation from the upstream system; 2) temporary

malfunction in micro-PMU data reporting. The later can be considered as a possibility if it

persists and if other micro-PMUs do not report a similar behavior. In that case, this can be

used as an indicator to request micro-PMU diagnostics. Importantly, this cluster is a new

cluster that is added by the active clustering method; which resulted from the significant

difference between the samples in this cluster and the samples that were used during the

offline training process.
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Figure 3.14: An example for the oscillation event in Cluster #6: (a) oscillation in current;
(b) the step change prior the oscillations.

3.8.4 Use Case Exposition: One Cluster in Category III

One cluster is identified in Category III; denoted by Cluster #10. Fig. 3.17 shows

an example for this cluster. The events in this cluster affect only the current magnitude

and power factor, rather than the voltage magnitude. It should be noted that, the pre-

processing step in the proposed two-step clustering method helps to distinguish the events

in Cluster #10 from the events in Clusters #2 and #5, despite their relatively high MMC.
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Figure 3.15: Examples of voltage events: (a) transformer tap-changer in Cluster #7; (b)
voltage plateau in Cluster #8.

3.8.5 Use Case Exposition: Three Clusters in Category IV

Three clusters are identified in Category IV; denoted by Clusters #11 to #13. The

events in these clusters are unbalanced. Fig. 3.18 shows an example of the event in Cluster

#11. This event is not detected by the enhanced method; because that method fails to

notice small changes in just one feature, i.e. in IB. However, in our method, by using one

GAN model for each feature, even small events are detected.
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Figure 3.16: An example for voltage oscillation event in Cluster #9.

3.8.6 Use Case Exposition: Three Clusters in Category V

Three clusters are identified in Category V; denoted by Clusters #14 to #16. They

are all related to power factor events. An example for an event in Cluster #14 is shown

in Fig. 3.19. It shows oscillations in power factor. There are also some minor oscillations,

in the magnitudes of current and voltage during the same period. Other types of power

factor events are also captured by the clusters in this category; not shown here. It should

be mentioned that the clusters in this category were added by the active clustering; i.e.,

they were not among the initial clusters that we had obtained during the offline training

process. The creation of these new clusters was triggered mainly because of their different

detection vectors.
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Figure 3.17: An example for current oscillation event in Cluster #10.

3.8.7 Special Sequence of Events

One of the applications of the proposed unsupervised methods is to analyze the

shape, occurrence time and sequence of the detected and clustered events. Our analysis

shows that certain events come in sequence. This is an important observation to enhance

the predictability of the system, its dynamics, and its events. An example is shown in Fig.

3.20. It is a super event which consists of a sequence of several smaller events that belong

to Clusters #6 and #10. This super event is first triggered by an event that belongs to

Cluster #6, which we previously saw in Fig. 3.14. Then, after about 60 seconds, a series

of over 100 events occur that all belong to Cluster #10.The exact same sequence of events

occurred on the same day and around the same time each week.
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Figure 3.18: An example for the unbalanced events in Cluster #11. The event affects the
current magnitude of phases B and C.

3.8.8 Versatility of the Proposed Model

In order to show the versatility of the proposed event detection model, the devel-

oped model is applied to two other micro-PMU data set; which were not used to developed

the existing model. First, a new data set that was from the neighboring feeder is used

for training but during a different time of the year. In this case, all we needed to do was

to slightly fine tune the original model, i.e., we only needed to re-train the last layer in

the existing GAN models, based on the new training batches, which lead to faster model

training by using pre-trained model. Thus, the training process in terms of computational

time to achieve the equilibrium is around 14 minuets.
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Figure 3.19: An example for power factor event in Cluster #14.

Second, we used a micro-PMU data set from a completely different type of feeder.

This time we used real-world micro-PMU data from solar distribution feeder in a solar farm;

based on the data in [76]. The nature of the power distribution feeder in this second case

is drastically different from the nature of the original power distribution feeder that serves

loads; which has been the focus throughout this paper. For the case of this second data

set, we were able to keep the proposed architecture of our model; but we had to re-train

the model with the new data set. It should be mentioned that the structure and the hyper-

parameters (except for epoch and batch size numbers) remained the same as in our original

model. Nevertheless, the result was promising. The results and other details about the

analysis of the events at this solar farm are available in [76].
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Figure 3.20: An example for the special sequence of the events in the current magnitude
that are repeated occasionally. It was captured based on the collaboration of Clusters #6
and #10.
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Chapter 4

GraphPMU: Event Clustering via

Graph Representation Learning

Using Locationally-Scarce

Distribution-Level Fundamental

and Harmonic PMU Measurements

4.1 Abstract

This section is concerned with the complex task of identifying the type and cause

of the events that are captured by distribution-level phasor measurement units (D-PMUs)

in order to enhance situational awareness in power distribution systems. Our goal is to
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address two fundamental challenges in this field: a) scarcity in measurement locations due

to the high cost of purchasing, installing, and streaming data from D-PMUs; b) limited

prior knowledge about the event signatures due to the fact that the events are diverse,

infrequent, and inherently unscheduled. To tackle these challenges, we propose an unsu-

pervised graph-representation learning method, called GraphPMU, to significantly improve

the performance in event clustering under locationally-scarce data availability by proposing

the following two new directions: 1) using the topological information about the relative

location of the few available phasor measurement units on the graph of the power distribu-

tion network; 2) utilizing not only the commonly used fundamental phasor measurements,

bus also the less explored harmonic phasor measurements in the process of analyzing the

signatures of various events. Through a detailed analysis of several case studies, we show

that GraphPMU can highly outperform the prevalent methods in the literature.

4.2 Topology-Based Representation Learning

Consider a power distribution system, such as the one in Fig. 4.1. Let B denote

the set of all buses, such as {B1, . . . , B7} in Fig. 4.1 and N = B denotes the number of

buses. Also let M denote the set of those buses that are equipped with D-PMUs, such as

{B1, B7} in Fig. 4.1. For now, suppose the D-PMUs only provide the measurements for the

fundamental phasors. The case where D-PMUs also act as H-PMUs to measure harmonic

phasors will be discussed later in Section 4.5.

When an event occurs, its impact is simultanously captured by all the D-PMUs

at the buses in set M. Let Xj
i denote the time series of the phasor measurements that

84



S
u

b
st

at
io

n

B1 B2 B3 B5 B7

B4 B6

D-PMU 1 D-PMU 2

Figure 4.1: An example power distribution network with N = 7 buses. Two PMUs are
installed are installed at buses in B1 and B5. We have M = {B1, B7}.

are captured during event i by the D-PMU at bus j, where j ∈ M. Similar to [77], such

time series is assumed to be a window of the following measurements at a given D-PMU:

the per-phase magnitude of voltage Vϕ, the per-phase magnitude of current Iϕ, and the

per-phase power factor PFϕ, where ϕ is the given phase, i.e., ϕ ∈ {A,B,C}. The reason for

using these measurements is to remove the impact of off-nominal frequencies in the phase

angle measurements, see [78, pp. 113].

As for the buses in set B\M, we do not have any phasor measurement available

at these buses. Therefore, we inevitably assume a constant value, i.e., a flat time series, for

Vϕ, Iϕ, and PFϕ at these buses during the event. We obtain such constants by running a

simple steady-state power flow analysis based on the nominal load (NL) at each bus. Such

analysis is readily available in practice by using the utility’s models of its feeders in standard

software, such as CYME [79] and Synergy [80].
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4.2.1 Graph Learning Approach

In this paper, we use GNN to conduct topology-based representation learning. GNN

is the general framework for defining deep neural networks based on graph data [81].

To benefit from the GNN attributes, we need to translate the power system topol-

ogy and the measurements into graph-structured data. Suppose A is the adjacency matrix

for the graph of the power distribution network, where each node in the graph is a bus and

each link in the graph is a distribution line. For each event i, we define an event graph,

denoted by Gi, which has the same adjacency matrix A. For each node j in graph Gi, we

define Xj
i as the input matrix. In this regard, if we have the measurements for M events

in the data set, then the set of graph-structured data can be shown as:

{G1, G2, . . . , GM}. (4.1)

The main reason for using GNN is to encode the graph-structured data Gi for

each event i to a single graph-level representation vector with low dimension, which incor-

porates both the measurements at event i and the system topology. Such low-dimension

representation helps to achieve a more accurate, interpretive and distinctive event clustering

outcome.

Similar to the neural networks (NNs), GNNs can include multiple hidden layers

with trainable weights. However, GNNs also take into account the graph topology or the

adjacency matrix. This means that, each nodal vector data at any hidden layer in a GNN is

updated based on not only its own trainable weights, but also its neighboring nodes’ nodal

vector data.
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To see the importance of differences and similarities between NNs and GNNs in

the context of the analysis in this paper, let us define Xi as the input matrix for graph Gi,

such that row j of matrix Xi is the stacked vector of time series in Xj
i . Also, let us define

Hk
i as the hidden matrix data for graph Gi at hidden layer k. We note that H0

i = Xi. In

a common NN model we obtain the input matrix on the next layer by conducting forward

propagation such as:

Hk+1
i = σ(Hk

i W
k), (4.2)

where σ is the activation function, e.g., ReLU(x) = max(0, x), and W k is the trainable

weight matrix of layer k.

In the NN framework, the input matrix Xi and the hidden layer matrix Hk
i contain

different samples in their rows, which are often independent and identically distributed

random variables. However, when it comes to a GNN, these samples (rows of data) are

related to each other. In this paper, these samples are the nodal data at each bus, which are

simultaneously captured during the same event, but from the viewpoint of the sensors at

different buses on the power distribution system. These samples are related to each other

through the physics of the distribution system and the network topology. In the GNN

framework, each nodal hidden layer data is updated based on its own NN output as well as

its neighbours’ NN output by using the adjacency matrix A. The revision of the equation

in (4.2) for the case of GNN will be given in Section II-B.

In the next three sub-sections, we will explain how to implement our proposed

graph learning method. In Section 4.2.2, we will build an unsupervised GNN-based graph

encoder to transform each Gi to a single vector. In Section 4.2.3 we will set the objective
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of the graph encoder to maximize the mutual information between its node-level data and

its graph-level data. Finally, in Section 4.2.4 we will develop a discriminator module to

calculate the aforementioned mutual information.

4.2.2 Graph Encoder

In this section, we develop a GNN-based graph encoder, denoted by E , in order

to learn a single vector that summarizes the time series for each graph-structured data Gi.

Such vector will ultimately serve as the graph-level representation for each event. It is

obtained by encoding the underlying shared properties of the data based on the topology of

the system. The encoding process is based on maximizing mutual information between the

node-level representation at each bus and the graph-level representation, which involves all

of the buses.

We construct the graph encoder by using GCN [82] with the following updating

formulation in its hidden layers1:

Hk+1
i = σ(D− 1

2 ÃD− 1
2Hk

i ω
k). (4.3)

Here, Ã = A + IN is the adjacency matrix with added self-connections, D is the degree

matrix, where Daa = ΣbÃab, and ω
k is the set of trainable weights in the kth layer of the

GNN. The main difference between the formulation in (4.3) and the one in (4.2) is the use

of D− 1
2 ÃD− 1

2 , which aggregates the nodal data from neighbouring nodes. This element

also symmetrically normalizes the rows of matrix Hk+1
i cf. [82].

1Other similar modules, such as those in [83] and [84], can also be used.
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For each graphGi and each hidden layer k, let hki (j) denote row j of matrixHk
i . We

refer to hki (j) as the node-level (or local) representation of the event. Accordingly, for each

node let us put together all such node-level representations at all the layers k = 1, . . . ,K

as follows:

hωi (j) = [h1
i (j),h

2
i (j), . . . ,h

K
i (j)]. (4.4)

Superscript ω in hωi (j) indicates the set of parameters for graph encoder E . Furthermore,

let us define:

hω,gi = S({hωi (1), . . . ,hωi (N)}) (4.5)

as the graph-level (or global) representation of event i, where S is a permutation invariant

function that summarizes the node-level representation vectors to a single graph-level rep-

resentation vector, such as via element-wise mean or max functions [81]. The outputs of

graph encoder are obtained as:

{hωi (j),h
ω,g
i } = E(Gi), ∀j = 1, . . . , N, (4.6)

which include all the N node-level representations and a single graph-level representation

for each event i. The objective in the design of the graph encoder is to find the structural

dependencies among the vectors from that are listed in (4.6).

4.2.3 Mutual Information

Similar to the unsupervised learning methods in [85] and [86], the objective for

the proposed graph encoder is to maximize the average mutual information (MI) [87] of

the graph-level representation hω,gi and all of the node-level representations hωi (j) for any
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j = 1, . . . , N for each event i as:

Maximize: I =
1

M

M∑
j=1

1

N

N∑
i=1

MI(hωi (j);h
ω,g
i ). (4.7)

The above maximization enforces the GNN graph-level representation to carry the type of

information that is present in all of the nodes in the network and all the layers [86]. It should

be mentioned that, in this paper, we focus on graph-level representation learning, rather

than on substructure representation learning. The latter strictly focuses on node-level tasks,

such as for the node classification in [82].

Calculating I, in a continuous and high-dimensional settings is difficult. A solution

is suggested in [88], in which we use a mutual information estimator between the input and

the output of the deep neural networks. This method, is based on training a classifier

(a discriminator) that separates samples from the joint distribution and their product of

marginals.

4.2.4 Discriminator: Positive and Negative Graphs.

The first step in estimating the mutual information is to define the joint and

marginal distributions. The joint distribution, i.e., positive samples in this paper, are

defined as node-level/graph-level representation pairs (hωi (j),h
ω,g
i ), for each actual event

Gi. Also, we refer to Gi as positive graphs.

We also need to construct negative samples in order to define the product of

marginals. Note that, the choice of the negative samples has impact on the type of structural

information that is desirable to be captured as a byproduct of estimating MI [86]. First,

we construct the negative graphs. They have the same input node data as in the positive
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Figure 4.2: The actual (i.e., positive) topology of the power distribution network in Fig. 1 is
shown in black. Two arbitrary alternative (i.e., negative) topologies with the same number
of nodes/buses and edges/lines are shown in red.

graphs, i.e., Xj
i for event i and node j. But they have a different graph topology, which

are random trees with the same number of nodes and links. Next, we consider any pair of

a graph-level representation from an actual event graph (a positive graph) with any node-

level representation of a negative graph, that are obtained from graph encoder, as a negative

sample.

The concept of positive graphs and negative graphs is illustrated in an example

in Fig. 4.2. The positive topology represents the actual topology of the power distribution

system that we saw in Fig. 4.1. The other two arbitrary negative topologies are used

to shape two samples of negative graphs. These positive and negative samples are used

to train the discriminator-based method that is proposed in [88]. This approach enforces

the encoder to learn the structural dependency of the data, which leads to an overall MI

maximization in an average sense.
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In this study, discriminator Ψ is a neural network with a set of parameters ψ.

We set the discriminator to output 1 for a positive sample and a 0 for negative sample.

Accordingly, based on the Jensen-Shannon MI estimator that is proposed in [85], and the

method in [88], we simultaneously estimate and maximize the objective function I in (4.7)

as shown below:

Îω,ψ =
1

2MN

M∑
i=1

( N∑
j=1

EP [−σ(−Ψ(hωi (j),h
ω,g
i )]

−
N∑
j=1

EP×P ′ [σ(Ψ(hω
i
′ (j),h

ω,g
i )]

)
,

(4.8)

where Îω,ψ is the Jensen-Shannon MI estimator; and σ(x) = log(1 + ex) is the softplus

function. In this study, for each physical (i.e., positive) event i, we make a corresponding

random negative event i
′
. Accordingly, the probability distribution of the positive events,

which is denoted by P , is identical to the probability distribution of the negative events,

which is denoted by P
′
. Also, EP and EP×P ′ are the expected value for the discriminator

output related to the positive samples (or the joint distribution) and the negative samples

(or the product of marginals), respectively. Due to the summation, for both negative and

positive samples, we include the coefficient 1/2 in (4.8). Notations hωi (j),h
ω
i′
(j) and hω,gi

indicate the outputs of the graph encoder E , and represent the node-level representation of

the positive event i in node j, the node-level representation of the negative event i
′
in node

j, and the graph-level representation of the positive event i, respectively.
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Algorithm 5 Topology-Based Representation Learning

1: Input: Event time series Xj
i and network topology A.

2: Output: Graph-level representation vectors clusters.

3: // Positive and Negative Graphs

4: For each training event i Do

5: Construct the positive graphs and assign Xj
i to all nodes.

6: Construct the negative graphs and assign Xj
i to all nodes.

7: End

8: // Training Graph Encoder and Discriminator

9: For each epoch of training data Do

10: Obtain {hωgb(j), h
ω,g
gb

} = E(gb) for all positive graphs.

11: Obtain {hωg′b(j)}= E(g′b) for all negative graphs.

12: Pair each hωgb(j) with its relative hω,ggb as positive

sample; and label the discriminator’s output as 1.

13: Pair each hωg′b
(j) with its relative hω,ggb as negative

sample; and label the discriminator’s output as 0.

14: Calculate the loss function in (4.8).

15: Update the ω and ψ by conducting back propagation

and using Adam optimizer [65].

16: End

17: // Graph-level Representation

18: For each graph Gi Do

19: Obtain {hω,gi } = E(Gi).

20: End

21: // Clustering

22: Cluster the event vectors {hω,gi } using GMM.
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4.2.5 Clustering

After training the graph encoder, the graph-level representations hω,gi , are ob-

tained for all events i = 1, . . . ,M , and they are clustered by using the Gaussian Mixture

Model (GMM). The GMM uses expectation maximization algorithm for fitting a mixture

of Gaussian models to the training data set, considering a pre-defined number of clusters.

Then, each hω,gi is assigned to the most probable cluster.

Note that, the purpose of our proposed method is to properly incorporate the

topological information from the sensor measurements to learn the most distinctive repre-

sentation for the type of each event, such that we can enhance the clustering accuracy with

the already existing clustering methods. We shall note that, we did examine other clus-

tering methods, such as K-means and DBSCAN; however, GMM demonstrated the highest

average clustering performance.

4.2.6 Algorithm: Topology-Based Representation Learning

Algorithm 5 shows the summary of the steps that we took in Sections 4.2.2 to

4.2.5. It is divided into four segments. First, we generate the positive and negative graphs;

see lines 4 to 7. Next, we train the graph encoder and the discriminator; see lines 9 to

16. Third, we obtain the graph-level representations for all the events; see lines 18 to

20. Finally, we do the clustering task using GMM and based on the obtained graph-level

representations of the events; see line 22.
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4.3 Temporal Representation Learning

The design that we presented in Section 4.2 can fully incorporate the knowledge

about the topology of the network and the relative location of the measurements into the

task of event clustering. However, if we use the method in Section 4.2 as is, then it may not

result in a significant improvement compared to some benchmark methods in the literature.

The main issue here is the high dimentionality in the time series that needs to be placed at

each node of the graph in this field.

4.3.1 Tackling High Dimensionality

To address the above issue, we propose to compress the data in the time series by

learning the temporal-dependent features of the events. By compressing the event data in

time domain, we can lower the dimension of the feature space. This leads to achieving a

higher computational and clustering efficiency with less numerical challenges.

Accordingly, an Auto-Encoder-Decoder (AED) [89] model is proposed which in-

cludes Long Short Term Modules (LSTM) [63] for proper temporal-based representation

learning of each node time series for each event. AED constitutes of two main parts. The

first part is the temporal encoder (E), which tries to summarize and transfer each event

time series matrix Xj
i into a single embedding vector (Emj

i ). The second part is the tem-

poral decoder (D), which tries to reconstructs the actual time series with the mentioned

embedding vectors.
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Figure 4.3: GraphPMU: AED learns the optimal representation vectors for nodal data for all
events. Then these vectors alongside the positive and negative graphs are used as input for
the proposed graph encoder. The output of the graph encoder, node-level and graph-level
representations are paired to shape the positive and negative samples. Then, discriminator
learns to discriminate between these samples for MI maximization.

The objective function of AED is to minimize the Mean Square Error (MSE) of

the time series input to E and the time series output of D. Here are the details of the AED

model:

Emj
i = E(Xj

i ), ∀i = 1, ...,M,∀j = 1, ..., N, (4.9)

θE , θD = argmin
θE ,θD

1

M

M∑
j=1

1

N

N∑
i=1

MSE(Xj
i , D(Emj

i )), (4.10)

which θE , θD are the encoder deep neural network and decoder deep neural network param-

eters, respectively.

In this study, the parameters of AED are shared between all the buses. In other

words, instead of considering multiple AEDs for each bus, we rather implement a global

AED. This makes the training process faster. It also allows the AED model to take ad-

vantage of the learned features from different locational time series. This prevents an

over-fitting over a single bus data. After training the AED model, all event time series data

for each node Xj
i can be encoded to their Emj

i by using (4.9).
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4.3.2 Algorithm: Temporal Representation Learning

Algorithm 6 shows the steps for temporal representation learning. First, we train

the temporal encoder and decoder; see lines 4 to 8. After that, we obtain the compressed

embedding vector for all events and nodes time series; see lines 10 to 12.

Algorithm 6 Temporal Representation Learning

1: Input: Normalized event time series Xj
i .

2: Output: Embedding vectors Emj
i as in (4.9).

3: // Training Phase

4: For each epoch Do

5: Pass Xb to the temporal AED (E and D).

6: Calculate loss function from (4.10).

7: Update θE and θD through back propagation [65].

8: End

9: // Embedding Extraction

10: For each event i and node j Do

11: Emj
i = E(Xj

i ).

12: End

4.4 GraphPMU: Combining Topology-Based and Temporal

Representations

We are now ready to introduce our ultimate GraphPMU method by combining

the topology-based representation learning design in Section 4.2 with the temporal repre-
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sentation learning design in Section 4.3. Fig. 4.3 shows how these two design components

are integrated in order to achieve GraphPMU.

The architecture in Fig. 4.3 can be explained by going through its parts from

left to right. The process starts with training the time domain AED with matrices Xj
i .

This step is independent from the network topology; hence, it is the same for positive and

negative graphs, as they have the same input time series.

After the AED is trained, the obtained embedding vectors Emj
i from the temporal

encoder E, are used to train the GNN model. Subsequently, the positive and negative

graphs are shaped based on the embedding vectors and the defined topologies in Section

4.2.4. These positive and negative graphs are passed to the graph encoder E to construct

the node-level and graph-level representations. Then the obtained positive and negative

samples are used to train the discriminator ψ.

Given the models for (E and D) and (E and Ψ), the graph-level representation vec-

tors are obtained as hω,gi = E(E(Xj
i )) for all buses j ∈ B. These graph-level representations

are then clustered by the GMM method as we explained in Section 4.2.5.

4.5 Extension to Incorporate Harmonic Synchro-Phasors

So far, we have assumed that all the phasor measurements are obtained at the

fundamental frequency. This is indeed the state of practice in this field for a typical PMU.

However, as we mentioned in Section 1, it is envisioned that standard D-PMUs may in

the future also act as H-PMUs to provide the phasor measurements not only at the fun-

damental frequency but also at selected harmonic frequencies. Accordingly, in this section,
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we will expand the GraphPMU model to incorporate such emerging advancement in data

availability in this field.

4.5.1 More Distinctive Event Signatures

Without loss of generality, we assume that each D-PMU provides the synchro-

nized phasor measurements for the 3rd and 5th harmonics, in addition to the fundamental

frequency. Expanding the analysis to include higher harmonic orders would be similar,

although it may not be necessary; because most events manifest themselves properly in

either the 3rd or the 5th harmonics, or in both. At each bus j in M, we collect Vϕ, Iϕ,

and PFϕ; however, this is done not only for the fundamental frequency but also for the

3rd and the 5th harmonics. In this regard, taking into account the harmonic phasors can

be highly beneficial as they can demonstrate more distinctive signatures for the purpose

of clustering the events. This can help compensate for some of the challenges in having

locationally-scarce measurements; thus, contributing to the overall success in the proposed

GraphPMU method.

As an example, Fig. 4.4 shows the event signatures in different types of phasor

measurements during a single-line-to-ground fault. The event signature in the fundamental

frequency in Fig. 4.4(a) is a simple voltage sag and a simple inrush current. However, the

event signatures in the harmonic phasor measurements at the 3rd harmonic in Fig. 4.4(b)

and at the 5th harmonic in Fig. 4.4(c) are considerably more distinctive.
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Figure 4.4: Comparing the signatures during the same event at the fundamental phasor
measurements vs. at the 3rd and 5th harmonic phasor measurements.

4.5.2 Extended Temporal-Based Learning

Same as in the case for the fundamental phasors data, we use AED to learn time

domain representations for the time series of the harmonic phasor measurements. Accord-

ingly, we obtain the embedding vectors to use them in the clustering process. Importantly,

since the strength and the overall nature of the time series of the harmonic phasors are

different from those of the fundamental phasors, we must train different AEDs for each

fundamental or harmonic order. This makes the time domain representation learning more

reliable and more accurate than using a single AED for these different time series. The

training is done by using Algorithm 6. We concatenate all the embedding vectors to form:

Emj
i = [Emj,1

i Emj,3
i Emj,5

i ]T . (4.11)
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4.5.3 Extended Topology-Based Learning

Next, we feed the new vectors Emj
i that are derived in (4.11) as the input to

the GNN using Algorithm 5 to complete the process for the event clustering task. Since

the size and nature of the input vector is different from those in Section 4.2. We need

to re-train the GraphPMU based on the new vector of features. Last but not least, for

each bus j ∈ B\M, which does not have a sensor, we use zero padding concatenation to

the fundamental embedding vectors that the previously obtained in section 4.3). This is

because the default steady state values in unobserved locations are assumed not to have

any harmonics.

4.6 Case Studies

In this section, we conduct various case studies based on the IEEE 34-bus three-

phase power distribution test system, which is shown in Fig. 4.5. The network simulation

model is developed in PSCAD to assure capturing the transient signatures of the events

[90]. Nine different types of events are simulated:

1. Three-Phase Capacitor Bank switching at bus 840

2. Three-Phase Capacitor Bank switching at bus 849

3. Single-phase load switching at bus 858

4. Three-phase load switching at bus 836

5. Three-phase motor-load switching at bus 812
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6. Three-phase motor load switching at bus 828

7. Single-phase-to-ground fault at bus 852

8. Two-phase-to-ground fault at bus 862

9. Three-phase-to-ground fault at bus 816.

Unless stated otherwise, we assume that there are only four phasor measurement

units are available on the power distribution network. The location of the D-PMUs (H-

PMUs) are shown on Fig. 4.5. Note that, we have:

M = {806, 824, 836, 846}. (4.12)

Depending on the case study, we assume that each D-PMU either provides the phasor

measurements only for the fundamental component, or for the fundamental component

together with the 3rd and the 5th harmonics. As in practice, we assume that events occur

rarely [77]; therefore, we assume only a small number of each type of event are available

to train GraphPMU. We augmented the data from the few available events by conducting

time shifting and adding noises to the raw data. This is done for each type of event and for

all sensors. In total, we considered 50,000 events of various types for training, 5000 events

for evaluation, and 5000 events for testing.

4.6.1 Parameters of GraphPMU

The graph encoder has two layers of GCN [82], where the sizes of the vectors

for the hidden layers are 128 and 64, respectively. The discriminator contains two fully-

connected layers with 192 and 32 neurons. We concatenate the hidden layer features and
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Figure 4.5: The IEEE 34-bus test system with locationally-scarce phasor measurements.
There are only four D-PMUs (H-PMUs) available on this network, as marked on the figure.
However, the events can happen at any location.

the global graph features together; thus, the input size of discriminator is 128+64 = 192. By

intentionally choosing a naive discriminator with only two fully-connected NNs, we enforce

the GNN encoder to learn more discriminative features. This can help with event clustering.

The encoder portion of the AED has two layers of LSTM modules with 32, and

64 units, following with a 32 units fully- connected layer. The decoder portion is an almost

reverse version of the encoder, with a fully-connected 64×125 layer, followed by two LSTM

layers with 64 and 32 units.

All activation functions are LeakyReLU, where the slope of the leak is 0.2. For

tuning the hyper-parameters, we used the coarse-to-fine method [77]. The learning rate α

is 1e−3 for Adam optimizer, and β1 is 0.5 for better stability in training. All models are

developed with Pytorch. The GNN models are built with the Deep Graph Library [91], by

using Nvidia GTX 1050 ti GPU and a core i-7 2.2GHz CPU with 32 GB RAM.
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The MSE for the training and testing stages in the fundamental phasor are 0.04425

and 0.04522, respectively. This shows that the encoder is able to compress high-resolution

data to a low dimension such that the decoder can reconstruct the time series with high

accuracy. This confirms the performance of the AED sub-system for the rest of our analysis.

In this paper, Adjusted Rand Index (ARI) score [92] is used to assess accuracy in a

clustering task. ARI is a number between 0 and 1. A higher ARI means a better clustering.

4.6.2 Comparison with Temporal-Based Benchmarks

Table 4.1 shows the ARI for the proposed event clustering method (in the last row),

in comparison with several benchmark methods (in the first nine rows). In this section, our

focus is on the top segment in Table 4.1, i.e., the first five methods. These are the methods

that do not use any information about the network topology. These five methods are AED

[89], DEC [93], Kernel k-means, k-Shape clustering and k-means clustering methods [94].

Here, Time Series (TS) means that the method uses the raw time series data, without any

encoding.

From Table 4.1, among the five methods that do not use graph models, DEC and

AED have the highest accuracy. To have a fair comparison, we assume the same steady-state

constants at the buses without sensors for all the ten methods in Table 4.1.

4.6.3 Comparison with Topology-Based Benchmarks

The next five methods in the bottom segment of Table 4.1 do use the information

about the network topology. All of these combinations could have been used for our purpose.
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Table 4.1: ARI Score for Different Methods Under Locationally-Scare Phasor Measurements
at Four Buses

Method ARI

W
it
h
ou

t
G
ra
p
h
M
o
d
el AED 0.473

DEC 0.520
Kernel TS 0.237
k-shape TS 0.418
k-means TS 0.343

W
it
h

G
ra
p
h
M
o
d
el TS + N/G + NL 0.487

AED + N/G 0.423
AED + N/G + RL 0.533
AED + G + NL 0.585

GraphPMU = AED + N/G + NL 0.720

However, only the last row shows our ultimate design for GraphPMU. The rest of the

methods serve as benchmarks. Regarding the new abbreviations in Table 4.1, G means

using only the graph-level representation in the GNN, N/G means using both the node-

level and the graph-level representations, NL means using the nominal load flow model to

obtain the constants at the buses with no sensors, RL means using random loading data

instead of using nominal loading data.

A) Advantage of Using Data Compression

If we compare TS+N/G+NL versus GraphPMU in Table 4.1, we can see that

their difference is only in the use of AED instead of TS. Importantly, since the input to

the GNN is more compressed in GraphPMU, it becomes more distinctive for the GNN,

as opposed to using the raw time series in TS+N/G+NL. Thus, the overall performance

in event clustering is much better for the GraphPMU. Nevertheless, the use of topology

information in TS+N/G+NL can still outperform most of the benchmark methods in the

top segment of Table 4.1 that do not use any graph model.
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B) Advantage of Pairing Node-Level and Graph-Level Vectors

If we compare AED+G+NL versus GraphPMU in Table 4.1, we can see that their

difference is only in terms of using G versus N/G. The method with AED+G+LN considers

only the last layer of the graph learning model for the positive and the negative graphs for

the MI maximization, rather than using the node-level/graph-level pairs. However, the use

of such pair in GraphPMU is necessary to properly extract the shared structure between the

node-level and the graph-level representations, in order to have more distinctive clusters.

C) Advantage of Using Nominal Load Data

If we compare AED+N/G versus GraphPMU in Table 4.1, we can see that their

difference is only in terms of using N/L. In AED+N/G, we do not include the buses with no

sensors in graph-based learning. As a result, the accuracy of the method drops significantly.

The reason is that there are only four nodes on the graph, i.e., the four buses with sensors.

This is due to the locational scarcity of the sensors. Such a small graph does not give much

room to benefit from topology-based learning. As for AED+N/G+RL, this method too

suffers a considerable drop in performance. These results confirm that we do benefit from

conducting a simple power flow analysis based on the nominal loading data.

4.6.4 Analysis Based on Different Types of Events

Fig. 4.6 shows the t-distributed stochastic neighbor embedding (t-SNE) scatter

plot of all test events for three methods: a) DEC; b) AED+G+NL; c) GraphPMU. Each

point indicates one event. The shapes and colors indicate the true labels of the nine different
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Figure 4.6: The t-SNE scatter plots for the test events for three different methods based on
two main features. Only four D-PMUs are available.
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event types. One of the major weaknesses of the methods that do not use graph models is

their inability to properly cluster the “smaller” events, such as events types 3, 4, 5, and 6.

For example, see the area in Fig. 4.6(a) that is marked with an oval with a solid line. These

four different event types are all mixed up in this area. Accordingly, the DEC method is

not able to distinguish event types 3-6.

Next, consider the results in Fig. 4.6(b), which are for AED+G+NL. The area

that is marked with a diamond shows that AED+G+NL too is incapable of separating the

“small” events. However, its ARI is slightly higher than that of DEC due to the more

distinctive clusters for the “major” event types 1, 7, 8 and 9. However, the DEC method

has incorrectly split event type 2 into two separate groups of points, as we see in the two

separate circles with dashed lines in Fig. 4.6(b).

GraphPMU addresses all of these shortcomings, as we can see in Fig. 4.6(c). On

one hand, GraphPMU tends to separate the “major” event types as far as possible. For

example, in the dashed oval area in Fig. 4.6(c), all the points for event type 2 are close

to each other and away from the rest of the events. This highly improves the accuracy in

clustering event type 2.

On the other hand, GraphPMU also maintains the “smaller” event types reason-

ably away from each other. For example, in the circle area that is marked with a solid line

in Fig. 4.6(c), the points for event types 3, 4, 5, and 6 are separated from each other much

better compared to the other figures.
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Table 4.2: ARI Score for GraphPMU and the Top Two Methods without Graph Models
when Adding Harmonic Phasor Measurements

Method ARI

AED (Fundamental + Harmonics) 0.666

DEC (Fundamental + Harmonics) 0.694

GraphPMU (Fundamental + Harmonics) 0.814

4.6.5 Impact of Adding Harmonic Phasor Measurements

Table 4.2 shows the event clustering results for AED, DEC and GraphPMU when

we use not only the fundamental phasor measurements but also the harmonic phasor mea-

surements. By comparing Table 4.2 with Table 4.1, we can see that the performance in event

clustering has highly improved in all three methods. This is due to the more distinctive

transient signatures for different event types, as we saw in Section 4.5.

Among the nine event types, unbalanced events i.e., event types 3, 7 and 8, have

the highest accuracy improvements. Based on Tables I and II, GraphPMU significantly

outperforms the rest of the methods, whether we only use the fundamental phasor mea-

surements as in Table I, or we use both the fundamental and harmonic phasor measurements

as in Table II. An ARI of 0.814 is very high, given that we have sensors in 4 of the 34 buses,

i.e., only in 12% of the buses.

4.6.6 Impact of the Number of D-PMUs

Fig. 4.7 shows the ARI scores for GraphPMU in comparison with two other

methods versus different number of available sensors. We can identify three patterns in these

figures. First, GraphPMU always outperforms the rest of the methods. Its relative superior

performance is the highest when we have fewer sensors, i.e., under the locational-scarcity
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Figure 4.7: ARI scores for AED, AED+N/G and GraphPMU methods vs. the number of
D-PMUs, with and without using harmonic synchrophasors.

conditions. Second, as we increase the number of available sensors, the overall clustering

accuracy improves for all these methods. Third, AED+N/G always has a worse performance

than AED under severe locational-scarcity, but it surpasses AED as we increase the number

of sensors. This is due to the fact that, AED+N/G is capable of taking advantages of the

information about the network topology only when we have several sensors available. This

shortcoming is addressed by GraphPMU.

In Fig. 4.7(b), GraphPMU achieves a very high ARI score of 0.92 with only 8

H-PMUs in a network with 34 buses. Fig. 4.8 shows the performance of GraphPMU in

clustering different types of events, when there are 10 sensors available. If we compare Fig.

4.8 with Fig. 4.6(c), we see that having more D-PMUs helps GraphPMU to put almost all

events in correct separated clusters, for both “major” or “small” event types.
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Chapter 5

Conclusions and Future Work

5.1 Summary of the Conclusions

In this dissertation, we conduct a comprehensive event analysis in smart meter

and micro-PMU time series data and propose multiple unsupervised event detection and

event clustering methods.

In Chapter 2, we examine the performance of four online unsupervised machine

learning abnormality detection methods to detect abnormalities in smart meter data. The

real-world data traces are used for this purpose. Four key conclusions are made. First, it is

observed that, in general, i.e., when all available features are considered, clustering-based

methods, such as IF, have a better performance that prediction-based and projection-based

methods. Second, prediction-based methods gain their best performance when the predic-

tion model simulates the previous consumption trend accurately rather than following the

upcoming real-time electricity consumption. Third, simulation results show that prediction

based methods generally are more accurate for the abnormalities with very high or very low
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magnitude. Forth, projection-based methods, such as LODA, do not show promising per-

formance for abnormality detection in smart meter data; however, LODA can demonstrate

a slightly better performance through a better feature selection when only a certain subset

of available features are utilized. In this regard, when it comes to the detection of abnormal-

ities in smart meter data, it is better to customize the features for each method individually,

despite the fact that the common practice in the previous literature is to consider the same

set of features for all methods.

In Chapter 3, A set novel unsupervised deep learning methods are proposed to

detect an cluster events in micro-PMU data streams. The test results based on real-world

micro-PMU data confirm that the proposed event detection method, which works based

on training a novel GAN model, outperforms the existing methods, in particular when it

comes to detecting the events that may impact only a subset of the features or only a

subset of the phases. They are capable of extracting the characteristics of a wide verity of

events in large volumes of micro-PMU data. All methods are capable of detecting events

with point-signatures and group-signatures. They are particularly well-suited to detect the

events in distribution systems where the event may impact only a subset of the features

and only or two phases; in addition to the cases that all three phases are affected. Test

results also show the effectiveness of the proposed two-step clustering method, compared to

the other prevalent methods, due to the proposed choice of the similarity measure and also

the proposed architecture that improves clustering accuracy. Moreover, the active nature of

the proposed clustering method makes it capable of identifying new clusters of events on an

ongoing basis. Once the events are detected and clustered, the results are used in various use
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case analysis. Statistical analysis as well as human expert knowledge are used to scrutinize

the events in each cluster; to unmask different applications for the utility operator.

In Chapter 4, a novel unsupervised graph-representation learning method, called

GraphPMU, was proposed to cluster different types of events in power distribution sys-

tems. The proposed method does not require any prior knowledge about the events. It

is solely based on the event signatures in D-PMU (and H-PMU) measurements, as well as

the information about the network topology. Importantly, GraphPMU is meant to address

a challenging scenario, where the phasor measurements are locationally scarce. By con-

ducting a comprehensive data-driven analysis, it was shown that the proper combination

of topology-based and temporal-based representation learnings of phasor measurements can

result in very high clustering accuracy. The results of different case studies confirmed that

the proposed method outperforms the existing methods in the literature. By using the mea-

surements from not only fundamental but also the harmonic phasors, we further improved

the clustering accuracy, particularly for unbalanced event types.

5.2 Future Works

In the future, the results of Chapter 2 can be used for detecting households with less

abnormalities for demand response purposes as their loads are more predictable and reliable

for system operators. The analysis in Chapter 3 can be used in different ways. First, system

operators can extract unknown yet informative events from the high resolution micro-PMU

data without any supervision. This will enable them to get notify by the system which

can not only save them energy and time but also it will prevent human error. Second,
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the proposed active clustering method can group the events of a single micro-PMU based

on their time series shape. This gives the system operator the capability to: 1) identify

different types of event and their occurrence frequency in different time periods. 2) identify

which quantities are impacted by a certain event, for instance is it a single line fault in

phase A or a three phase event that affected all features in all phases. 3) identify enormous

and unusual events by observing the time of detected events as well as the type of event

in a sequence. The analysis in Chapter 4, future work may include: 1) extending the

analysis to also achieve unsupervised event location identification; 2) applying the proposed

method to other sensor measurements such as synchronized waveform measurements; and

3) incorporating some additional physical information to the graph-based analysis, such as

the impedance of the distribution lines.

115



Bibliography

[1] H. Mohsenian-Rad, Smart Grid Sensors: Principles and Applications. Cambridge
University Press, UK, April 2022.

[2] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of smart meter data analytics:
Applications, methodologies, and challenges,” IEEE Trans. on Smart Grid, accepted
for publication, March 2018.

[3] “EIA annual electric power industry report in 2020,”
https://www.eia.gov/electricity/data/eia861/.

[4] “Pecan street inc. (2018). pecan street dataport. austin, tx, usa. retrieved from,”
http://www.pecanstreet.org/energy/.

[5] H. Mohsenian-Rad, E. Stewart, and E. Cortez, “Distribution synchrophasors: Pairing
big data with analytics to create actionable information,” IEEE Power and Energy
Magazine, vol. 16, no. 3, pp. 26–34, May 2018.

[6] A. von Meier, E. Stewart, A. McEachern, M. Andersen, and L. Mehrmanesh, “Pre-
cision micro-synchrophasors for distribution systems: A summary of applications,”
IEEE Trans. on Smart Grid, vol. 8, no. 6, pp. 2926–2936, Nov 2017.

[7] M. F. McGranaghan and S. Santoso, “Challenges and trends in analyses of
electric power quality measurement data,” EURASIP Journal on Advances in
Signal Processing, vol. 2007, no. 1, p. 057985, Dec 2007. [Online]. Available:
https://doi.org/10.1155/2007/57985

[8] A. Shahsavari, M. Farajollahi, E. Stewart, E. Cortez, and H. Mohsenian-Rad, “Sit-
uational awareness in distribution grid using micro-pmu data: A machine learning
approach,” IEEE Trans. on Smart Grid, vol. 10, pp. 6167–6177, Nov. 2019.

[9] Y. Seyedi, H. Karimi, and S. Grijalva, “Irregularity detection in output power of
distributed energy resources using pmu data analytics in smart grids,” IEEE Trans.
on Industrial Informatics, vol. 15, no. 4, pp. 2222–2232, 2018.

116



[10] A. Shahsavari, M. Farajollahi, E. Stewart, A. von Meier, L. Alvarez, E. Cortez, and
H. Mohsenian-Rad, “A data-driven analysis of capacitor bank operation at a distri-
bution feeder using micro-pmu data,” in Proc. of the IEEE PES ISGT, Washington,
DC, Feb. 2017.

[11] E. M. Stewart, V. Hendrix, M. Chertkov, and D. Deka, “Integrated multi-scale data
analytics and machine learning for the distribution grid and building-to-grid inter-
face,” Lawrence Livermore Lab, Tech. Rep., 2017.

[12] A. Shahsavari, M. Farajollahi, E. Stewart, E. Cortez, and H. Mohsenian-Rad, “A
machine learning approach to event analysis in distribution feeders using distribution
synchrophasors,” in IEEE PES SGSMA, 2019.

[13] M. Farajollahi, A. Shahsavari, E. M. Stewart, and H. Mohsenian-Rad, “Locating the
source of events in power distribution systems using micro-pmu data,” IEEE Trans.
on Power Systems, vol. 33, no. 6, pp. 6343–6354, 2018.

[14] A. Tascikaraoglu and B. M. Sanandaji, “Short-term residential electric load forecast-
ing: A compressive spatio-temporal approach,” Energy and Buildings, vol. 111, pp.
380 – 392, 2016.

[15] E. Knorr and R. T. Ng, “Finding intentional knowledge of distance-based outliers.”
in Proc. of the international conference on very large data bases, San Francisco, CA,
Jun 1999, pp. 211–222.

[16] Y. Liao, Y. Weng, C. w. Tan, and R. Rajagopal, “Urban distribution grid line outage
identification,” in Proc. of Probabilistic Methods Applied to Power Systems (PMAPS),
2016 International Conference on, Beijing, China, 2016, pp. 1 – 8.

[17] P. Jokar, N. Arianpoo, and V. C. Leung, “Electricity theft detection in AMI using
customers’ consumption patterns.” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 216 –
226, jan 2016.

[18] N. L. Tasfi, W. A. Higashino, K. Grolinger, and M. A. M. Capretz, “Deep neural
networks with confidence sampling for electrical anomaly detection,” in Proc. of 2017
IEEE International Conference on Internet of Things, Exeter, UK, Jun 2017, pp.
1038–1045.

[19] D. B. Araya, K. Grolinger, H. F. ElYamany, M. A. Capretz, and G. Bitsuamlak, “An
ensemble learning framework for anomaly detection in building energy consumption,”
Energy and Buildings, vol. 144, pp. 191 – 206, 2017.

[20] J. LUO, T. HONG, and M. YUE”, “Real-time anomaly detection for very short-term
load forecasting,” Journal of Modern Power Systems and Clean Energy, vol. 6, no. 2,
pp. 235 – 243, Mar 2018.

[21] A. Saad and N. Sisworahardjo, “Data analytics-based anomaly detection in smart dis-
tribution network,” in Proc. of International Conference on High Voltage Engineering
and Power Systems, Sanur, Indonesia, oct 2017, pp. 1 – 5.

117



[22] M. Jamei, A. Scaglione, C. Roberts, E. Stewart, S. Peisert, C. McParland, and
A. McEachern, “Anomaly detection using optimally placedµPMUsensors in distri-
bution grids,” IEEE Trans. on Power Systems, vol. 33, no. 4, pp. 3611–3623, July
2018.

[23] O. Ardakanian, Y. Yuan, R. Dobbe, A. von Meier, S. Low, and C. Tomlin, “Event
detection and localization in distribution grids with phasor measurement units,” in
IEEE PES General Meeting, July 2017.

[24] Y. Zhou, R. Arghandeh, and C. Spanos, “Distribution network event detection with
ensembles of bundle classifiers,” in IEEE PES General Meeting, 06 2016.

[25] Y. Zhou, R. Arghandeh, and C. J. Spanos, “Partial knowledge data-driven event
detection for power distribution networks,” IEEE Trans. on Smart Grid, vol. 9, no. 5,
pp. 5152–5162, Sep. 2018.

[26] Q. Cui and Y. Weng, “Enhance high impedance fault detection and location accuracy
via µ-pmus,” IEEE Trans. on Smart Grid, vol. 11, no. 1, pp. 797–809, 2019.

[27] S. Liu, Y. Zhao, Z. Lin, Y. Liu, Y. Ding, L. Yang, and S. Yi, “Data-driven event
detection of power systems based on unequal-interval reduction of pmu data and
local outlier factor,” IEEE Trans. on Smart Grid, vol. 11, no. 2, pp. 1630–1643, 2020.

[28] Y. Yuan, K. Dehghanpour, F. Bu, and Z. Wang, “Outage detection in partially observ-
able distribution systems using smart meters and generative adversarial networks,”
arXiv preprint arXiv:1912.04992, 2019.

[29] P. Tehrani and M. Levorato, “Frequency-based multi task learning with attention
mechanism for fault detection in power systems,” arXiv preprint arXiv:2009.06825,
2020.

[30] E. Samani, P. Khaledian, A. Aligholian, E. Papalexakis, S. Cun, M. H. Nazari, and
H. Mohsenian-Rad, “Anomaly detection in iot-based pir occupancy sensors to improve
building energy efficiency,” in Proc. of IEEE PES ISGT, February 2020.

[31] N. Duan and E. M. Stewart, “Frequency event categorization in power distribution
systems using micro pmu measurements,” IEEE Transactions on Smart Grid, vol. 11,
no. 4, pp. 3043–3053, 2020.

[32] S. Pandey, A. Srivastava, and B. Amidan, “A real time event detection, classification
and localization using synchrophasor data,” IEEE Transactions on Power Systems,
2020.

[33] H. Karimipour, A. Dehghantanha, R. M. Parizi, K.-K. R. Choo, and H. Leung, “A
deep and scalable unsupervised machine learning system for cyber-attack detection
in large-scale smart grids,” IEEE Access, vol. 7, pp. 80 778–80 788, 2019.

[34] A. von Meier, E. Stewart, A. McEachern, M. Andersen, and L. Mehrmanesh, “Pre-
cision micro-synchrophasors for distribution systems: A summary of applications,”
IEEE Trans. on Smart Grid, vol. 8, no. 6, pp. 2926–2936, Nov 2017.

118



[35] M. Cui, J. Wang, A. R. Florita, and Y. Zhang, “Generalized graph laplacian based
anomaly detection for spatiotemporal micropmu data,” IEEE Transactions on Power
Systems, vol. 34, no. 5, pp. 3960–3963, 2019.

[36] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative ad-
versarial networks,” in International Conference on Machine Learning. PMLR, 2019,
pp. 7354–7363.

[37] Vinay Jethava and D. P. Dubhashi, “Gans for LIFE: generative adversarial networks
for likelihood free inference,” CoRR, vol. abs/1711.11139, 2017.
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