UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Complexity Management in a Discovery Task

Permalink
https://escholarship.org/uc/item/94n547f

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Schunn, Christian D.
Klahr, David

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/94n547fj
https://escholarship.org
http://www.cdlib.org/

Complexity Management in a Discovery Task.

Christian D. Schunn
Department of Psychology
Camegie Mellon University
Piusburgh, PA 15213
schunn@cmu.edu

Abstract

Previous psychological research about
scientific discovery has often focused on subjects’
heuristics for discovering simple concepts with
one relevant dimension or a few relevant
dimensions with simple two-way interactions.
This paper presents results from an experiment in
which subjects had to discover a concept
involving complex three-way interactions on a
multi-valued output by running experiments in a
computerized microworld. Twenty-two CMU
undergraduates attempted the task, of which
sixteen succeeded, in an average of 85 minutes.
The analyses focus on three strategies used to
regulate task complexity. First, subjects
preferred depth-first to breadth-first search, with
successful subjects regulating the number of
features varied from experiment to experiment
most effectively. Second, subjects
systematically regulated the length of their
experiments. Third, a new explicit search
heuristic (Put Upon Stack Heuristic) used by
successful subjects is described.

One of the most complex cognitive tasks that
humans face is scientific discovery. It combines the
mystery of creativity with the rigor of
experimentation and hypothesis testing. By studying
the psychological processes involved in scientific
discovery, one can test the scalability of
psychological theories developed using simpler tasks,
and develop theories of the integration process of
numerous subprocesses, which does not occur in
simple tasks.

The first psychological investigations of
scientific discovery used simple rule discovery tasks
(e.g., Bruner, Goodnow, & Austin, 1956; Wason,

'This research was funded by a scholarship from la
Formation de Chercheurs et I'Aide 2 la Recherche to the
first author, and by grants from the National Institute
of Child Health and Human Development (RO1-
HD25211) and the A.W. Mellon Foundation to the
second author.

177

David Klahr
Department of Psychology
Camnegie Mellon University

Pittsburgh, PA 15213
klahr@cmu.edu

1960). Subjects had to discover a rule for classifying
instances as either members or nonmembers of a
concept which was an arbitrary concatenation of a few
simple features. Simon & Lea (1974) proposed that
rule discovery could be viewed as search in two
problem spaces: the rule space (the set of all rules for
classification of instances) and the instance space (the
set of all instances to be examined). Rule discovery
is comprised of the set of processes, algorithms, and
heuristics for searching each of the two spaces, and
integrating the search between the spaces.

Klahr and Dunbar (1988) extended the dual search
idea by proposing that scientific discovery can be
understood in terms of search in two problem spaces:
the hypothesis space and the experiment space. A
primary difference between scientific discovery and
rule discovery is that the relationship between the
hypothesis and the experiment is very straight-forward
in rule discovery tasks, whereas it is very complex in
the real scientific discovery process (Klahr & Dunbar,
1988). To study the psychological processes in
situations with this more complex relationship, some
researchers have used computerized microworlds (e.g.,
Mynatt, Doherty, & Tweney,1977; Klahr & Dunbar,
1988; Dunbar, 1989, 1992).

As the complexity of the domain grows, it
becomes increasingly necessary to use heuristics to
simplify the search in the two spaces. Klahr &
Dunbar (1988) describe two heuristics associated with
two subgroups of subjects in their experiments: their
"experimenters” limited their search mainly to the
experiment space and their "theorists" limited their
search mainly to the hypothesis space. Klahr,
Dunbar, & Fay (1990) further identified several search
heuristics used by subjects for searching within each
of the two spaces. Example heuristics identified for
searching the experiment space included designing
experiments which maintain easy observability, and
exploiting surprising results.

Although these heuristics were identified in
contexts involving much more complexity than the
classic rule discovery tasks, there remains a question
as to whether the heuristics found will generalize to
even more complex situations. That is, as the task
becomes more complex, will subjects use other
strategies to deal with increased complexity in order

mailto:schunn@cmu.edu
mailto:klahr@cmu.edu

to make the task more tractable? This paper reports a
study designed to investigate how subjects discover a
complex concept. The analysis will focus on the
strategies used by subjects to deal with difficulties
encountered in discovering complex concepls.

Method

Overview. Subjects were shown the function of all
but one command of a device. The subjects designed,
conducted and evaluated experiments with the device
to discover how the mystery command works. The
mystery command was a complex sort operator that
took three arguments.

Subjects. Twenty-two Carnegie Mellon University
undergraduates took part in the experiment for course
credit and eight dollars. Twenty-one of the subjects
had taken at least one programming course, and all
had used a computer before.

The Computer Interface. Subjects worked in a
complex microworld in which a "milk truck" could
execute a sequence of actions associated with a dairy
delivery route. At any of 6 different locations along
its route, it could toot its horn, deliver milk or eggs,
or receive money or empties. The route of the milk

truck was programmed using the keypad to enter ¢
sequence of action-location parirs (see figure 1), A
subjects entered their programs, the steps werc
displayed on the screen in the program listing. Aftei
the route had been entered, subject pressed RUN' anc
the milk truck executed its route on the screen. The
milk truck went to each location on the programmec
route in the order that it was programmed. The milk
truck stopped at the location, and the subjects were
shown by way of animated icons what transpired at
the location. Also, as the route was being completed.
a trace listing displayed in program format whal
transpired during that run (see figure 1).

When the mystery command, § (delta), was not
used, the trace listing was identical to the program
listing. However, the 8 command could change the
order of delivery, and the resultant trace would then be
discrepant from the program listing. Subjects could
also look over the program and trace listings of their
old programs.

The effect of the & command was to reorder the
execution sequence of part of the program according
to the values of its three arguments, a number (1-6), a
triangle (white or black), and a Greek letter, (ct or).
Table 1 describes the effects of the delta command.
The first and second programs in figure 1 show the
effects of the & with white triangle and o, and with
black triangle and f.

Program| Trace 1 Program| Trace|®
= | 1] =
8995/

@veni $ I
me&&w

RN R LS

Figure 1. The keypad and three sample programs and outcomes.

QLU LA PLDO=
DO WOl

kP awe Poaw

For the last N steps in the program, 6 reorders the execution sequence of the program by...

White triangle (increasing) Black triangle (decreasing)
o (item) ...items in keypad order. ...items in reverse keypad order.
B (number) ...increasing house number order. ...decreasing house number order.

Table 1. The function of the arguments to the § command.

178

Materials. The interface was run on a Macintosh
[Icx. Subjects were given a pen and scratch paper to
take any notes that they wished during the task. A
small audio tape-recorder and lapel microphone were
used to record the verbal protocols.

Procedure. Subjects worked on the problem in two
separate sessions on consecutive days. The first day
consisted of an introduction to the task and 30
minutes of problem solving. The introduction to the
task presented each aspect of the interface
incrementally, and allowed the subjects to try a
sample program before being introduced to the &
command. After being introduced to the & command
and its three arguments, subjects began
experimentation with the explicit goal of discovering
what the 8 command and its three arguments did.

For the second session, subjects worked at the
task until they had either solved it or had given up. If
a subject falsely accepted an incorrect hypothesis, a
counter-example was presented (see program 1 in
figure 1). The same counter-example was used in all
such cases. It was designed so that no subject would
be likely to predict the actual outcome on the basis of
an incorrect hypothesis.

Results

Overview. The 22 subjects produced 1103 total
experiments over 33 hours. Analyses were conducted
at three levels of detail: final solutions, computer
protocols, and verbal protocols. The first two levels
of analysis were carried out for all 22 subjects.
Verbal protocols were carried out for only the first
five subjects. These five subjects adequately represent
the range of subjects: the second fastest solver, the
second slowest solver, an average solver, a solver
with counter-example, and a non-solver.

Subjects were grouped according to the
success of their solutions. Three solution
groups will be used for the analyses: subjects who
solved without a counter-example (Solve); subjects
who solved after receiving the counter-example
(Challenge); and subjects who quit without solving
(Quit). All subjects who received a counter-example
eventually solved the task. The counter-example was
usually given in the middle of the second day (mean
program number 34.6, s=17.6). Table 2 presents the
mean number of experiments and time on task for
each group. The task was difficult but solvable:
solution rates ranged from 30 to 179 minutes. Note
that the Quit subjects did not simply give up
prematurely: they ran slightly more experiments
(F(2,19)<1) over a slightly longer period of time

179

(F(2,19)=2.6, p<.1) than the other subjects (Quit vs.
Solve Bonferonni/Dunn (19)=2.94, p<.05).

Group n Experiments | Total time

Solve 11 | 49.5 (18.6) 78.6 (40.9)
Challenge | 5 47.8 (17.2) 97.2 (34.2)
Quit 6 54.5 (17.6) | 118.8 (17.8)
Total 22 | 504 (17.4) 93.8 (37.4)

Table 2. Mean number of experiments and time on
task for each solution group (and standard deviation).

The MilkTruck domain was significantly more
difficult for the subjects than the original BigTrak
studies reported in Klahr & Dunbar (1988): the
MilkTruck subjects ran 6 times as many programs
over 2.5 times as much time,

Subjects varied a small number of
experiment features. In the experiment space
framework, an experiment can be viewed as a vector
of features. One way to characterize a subject's search
in the experiment space is to measure the number of
features that change from one experiment to the next.
In choosing how many features to vary, the subject
must strike a balance between depth and breadth of
search. If a subject varies few features, valid
inferences can be made by comparing effects across
programs. However, few feature changes between
experiments may prevent the subject from reaching
certain very informative experiments in finite time.
On the other hand, if a subject varies many features, a
broader range of experiments are tried at the cost of
being able to make valid comparisons across
experiments. These two main strategies have been
described in concept attainment as "Conservative
Focusing" and "Focus Gambling" (Bruner, Goodnow,
& Austin, 1956).

For the following analyses four program features
were used: the programmed route, and the three delta
parameters. Since the subjects had access to more
than just the last program, there are several ways of
conducting the analyses, of which two have been
chosen: comparing each program to the previous
program, and comparing each program to the previous
seven programs and choosing the lowest feature
variation. Seven programs back represents the
number of programs on the screen at all times.
Comparison with the last program best represents the
breadth of search. Comparison with the last seven
programs is a measure of the validity of comparisons
across experiments. To set a benchmark of
comparison, the scores on these two measures by a
completely random search in the experiment space

were computed using a Monte Carlo simulation? .
The base rates for the random model were 2.49
features varied for comparing to the last program, and
1.45 features varied for comparing to the last seven
programs. Subjects varied a mean of 1.77 features
with respect to the last program, and 1.33 features
with respect to the last seven programs. Both of
these means were significantly lower than the random
model base rates (#(21)=-15.8, p<.0001, and 1(21)=-
3.52, p<.002 respectively), suggesting that subjects
preferred to do depth-first search. However, both
measures were significantly greater than 1
(1(21)=17.08, p<.0001, and 1(21)=10.01, p<.0001
respectively), indicating that subjects often chose
programs which prevented them from being able to
make valid comparisons with other programs.

Successful subjects varied features most
effectively. To investigate the changes in the
number of features varied across time, the two
measures of feature changes were taken for each
quartile of the total number of programs each subject
wrote. An ANOVA was done on the subject means
for each quartile for each solution group. Since the
analyses of the two measures produced all the same
effects, only the analyses of the measure of feature
changes with respect to the last program are reported.
Overall, the differences between the solution groups
were not significant (F(2,19)<1). The quartile
differences were significant (F(3,57)=5.99, p<.003).
Post-hoc tests revealed that only the decrease from the
first to second quartiles was significant (Scheffé
F(1,57)= 11.54, p<.001). The interaction was
marginally significant (F(6,57)=1.86, p<.10), with
the Solvers tending to vary the same number of
features across the quartiles, and the Challenge and
Quit subjects showing a decrease in the number of
features varied (See figure 2).

Since these data are correlational, the causal link
between feature changes and solution group is
ambiguous. However, one plausible account for the
differences is that the early changing of many features
in the Challenge and Quit subjects was one source of
their problems. i.e., changing too many features at
once produced ambiguous effects. For the differences
in late features changes, the use of fewer feature
changes in the Quit subjects was probably a
symptom of their difficulties. i.e., they might be
stuck investigating one particular situation. One
would expect the Challenge subjects not to have this

2 A simulation of 100 random subjects was run having 50
programs each of mean length 5. For each program, a
length was chosen randomly. For each step in the
program, a delivery item and delivery location was
chosen randomly. Similarly the delta parameters were
chosen randomly. The random choices were all based
upon a uniform distribution.

180

problem, since they all solved the task, and hence
should look like the Solve subjects at the end of the
task. Using the mean of the last five programs, the
Challenge and Quit groups did differ significantly
(1(9)=2.17, p<.06), with means of 1.88 and 1.43
feature changes respectively.

N
~

N
N
1

A

ol
(=]
1

Mean program feature changes

I
4

—
second

] |

first third fourth

Figure 2, Mean number of program features varied
with respect to the last program for each solution
group for each quartile of total experiments.

The analyses of the changes in features
emphasized the changes in & parameters at the cost of
treating all changes in the base program the same.
However, subjects did some systematic variation of
the basic program as well, as is shown in the
following analysis.

Subjects systematically varied program
length. Analyses of the program length revealed
that most of the subjects used a strategy of gradually
increasing the program length. When the length of
each program was regressed against program number,
21 of the 22 subjects showed a positive slope, with a
mean r of .56 (6=.22). To further investigate the
nature of this strategy, each subject's set of programs
was divided into four equal parts, and an ANOVA of
the means for each quartile for each solution group
were calculated. The main effect for Solution group
was not significant (F(2,19)<1). There were strong
effects of quartile (F(3,57)=9.4, p<.0001). The
quartiles increased in program length from the first to
the fourth quartile, with significant increases between
the first and second quartiles (Scheffé F(3,57)=10.89,
p<.05), and the third and four quartiles (Scheffé
F(3,57)=17.43, p<.05).

6.0
=
-
-T]
=
=
E 50+
«
ot
B
Q -
| ™
(=9
& 40
[-¥]
>
3.0 T T T T
First Second Third Fourth

Figure 3. Mean program length for each quartile of
the task for each solution group.

The interaction with Solution group was
nonsignificant (F(6,57)=1.41, p<.23). As can be
seen in figure 3, it is not simply the case that Solve
subject ran longer programs which contained more
information—although the differences were not
significant, Solve actually started with slightly
shorter programs, and were more consistent in their
gradual increase of program length.

0.5
041
03
021
0.1
0.0

0.1

021

03

0.4 -

£.5 ' T

Confused Neutral Confident

Figure 4 Mean change in program length at each
confidence level (with standard error bars).

Mean change in program length

It is possible that program length could also be
related to confidence levels. Since program length
increases during the task, and presumably subjects are
becoming more confident later in the task, one would

181

expect that subjects were trying longer, more
complex programs when they were confident. To test
for such a relationship, the post program outcome
statements from the full verbal protocols were coded
for confidence levels on a 3 point scale: confused,
neutral, and confident. The rater was blind to the
actual program being run. An ANOVA was done on
the change in program length from one program Lo
the next for each confidence level (See figure 4). The
effect of confidence level was significant
(F(2,255)=4.05, p<.02), with post-hoc tests revealing
a significant difference between the Confused and
Confident means (F(1,255)= 8.06, p<.02).

Subjects used an explicit search strategy.
When confronted with great difficulty while
investigating a particular situation, subjects explicitly
switched to investigating a different situation with the
goal of returning to the confusing situation later.
Upon completing their investigations of the new
situation, subjects returned directly to the old
situation, rather than a third, new situation. The time
spent away from the original problem proved useful
as subjects successfully then solved the old situation
as well. This heuristic of putting a problem on hold
and returning to it as soon as a different problem is
solved was labelled the Put Upon Stack Heuristic
(PUSH).

Of the five protocol subjects, only the three
Solve subjects displayed evidence of using PUSH.
Each of these subjects made explicit comments about
being confused by the particular situation that they
were currently investigating, and wanting to return to
that situation later. And this is, in fact, what each of
them did.

PUSH can be useful in three different ways.
First, by enabling the subject to work on a different
problem, PUSH allows new ideas to become activated
and the activation of old ideas to decay, thereby
reducing set effects and affecting the hypothesis space
search in the old situation.

Second, the investigation of a different problem
can suggest new operators which may be applied to
the old situation, thereby improving the experiment
space search. One subject's protocol provided
evidence for this use of PUSH. This subject indicated
that he was going to use PUSH: "Yeah. I'm just
baffled right now. OK, let's take a different tack. See
if we can figure something out from a different angle.
Let's go at it, looking at these other, what this other
triangle does." Then, for the first time, he ran two
programs which directly contrasted o with B, i.e.,
varied only o/p between two programs. This new
operator proved successful in producing useful
information to the subject, and lead the subject to
say: "Let's try the same combination with other
triangle again. I have a feeling that this might be
what I need to be doing all along. The white triangle.

We'll start with a." The subject then went on using
this operator, among others, to successfully solve the
task.

Third, in inducing a complex concept involving
an interaction such as the one used in the current
experiment, discoveries about one part of the concept
facilitate discoveries about another part of the
concept. Thus, as the predictive power of hypotheses
improve, the easier it is to resolve the remaining
ambiguities. One subject seemed to use PUSH in
this way.

Discussion

This experiment has demonstrated three strategies
used by subjects in the induction of a complex
concept. First. subjects tended to vary one or two
features at a time between programs, with those
varying the fewest features early more likely to solve.
For strictly valid comparisons, scientific
methodology states that only one feature may be
varied at a time. If one were to take this strict view,
then few subjects would be said to have used the
strategy since the mean feature change for most
subjects was well above one. However, there are two
reasons why the number of feature changes in
between program comparisons actually used by
subjects may be lower than the simple numbers
reported here: 1) the structure of the changes within a
single program provides a large portion of the
information; 2) subjects can design a sequence of
programs which do not have to follow from the
previous sequence.

Second, subjects start with short programs and
gradually increased their length. Longer programs
tend to be more informative, since they usually
produce more step changes than short programs, and
distinguish between more hypotheses. For example,
a two step program has only two possible outcomes:
the same order, or the reverse order. Thus, one would
expect the solvers to have used longer programs.
However, the use of long programs involves a high
cognitive load in program design, interpretation, and
memory. Thus, it is not necessarily better to always
use longer programs. Indeed, the fastest solver used
programs of a mean length of only 2.6 steps (1.9
standard deviations below the mean), indicating that
long programs are not necessary for solution.
Therefore, it is reasonable for subjects to start with
short programs when they are relatively unfamiliar
with the task, and use longer programs later in the
task, when they need to test subtle differences
between competing hypotheses. In fact, subjects did
use shorter programs when they were less confident.

Third, subjects successfully made use of PUSH.
Previous research has identified the Investigate
Surprising Phenomena (ISP) strategy (Kulkarni &

182

Simon, 1990). On the surface, the two strategies
would seem to be incompatible: in the face of
difficulty, one strategy (PUSH) advises breadth-first
search, whereas the other strategy (ISP) advises depth-
first search. However, the two apply to slightly
different situations. When the surprising
phenomenon has some unique, salient characteristics
or features which can be tested in follow-up
experiments, then ISP applies. On the other hand,
when all the salient possible reasons for the
surprising phenomena have been investigated, then
PUSH applies. The strategy is to delay investigation
until new information has been gathered. From the
described mechanisms that may underlie the
effectiveness of PUSH, it can be seen that PUSH
may be related to incubation phenomena, especially
those described in the history of science literature,

In sum, by extending the complexity of the
microworld domain, several new heuristics used in
scientific discovery have been revealed. Future
studies need to address the applicability of these
heuristics in other contexts, as well as assess the
effects of the increased domain complexity on the use
and effectiveness of previously described discovery
heuristics.

References

Bruner, J. S., Goodnow, J. J. & Austin, G. A.
(1956). A study of thinking. New York: Wiley.

Dunbar, K. (1989). Scientific reasoning strategies in
a simulated Molecular genetics environment. In
the proceedings of the 11th annual meeting of the
Cognitive Science society, M1 Ann Arbor, 426-
433,

Dunbar, K. (1992). Concept Discovery in a scientific
domain. Manuscript submitted for publication to
Cognitive Science.

Klahr, D. & Dunbar, K. (1988). Dual space search
during scientific reasoning. Cognitive Science,
12, 1-48.

Klahr, D., Dunbar, K., & Fay, A. (1990). Designing
Good Experiments to Test "Bad" Hypotheses. In
J. Shrager & P. Langley (Eds.), Computational
Models of Discovery and Theory Formation.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Kulkamni, D. & Simon, H.A. (1988). The process of
Scientific Discovery: The strategy of
Experimentation. Cognitive Science, 12, 139-
176.

Simon, H. A., & Lea, G. (1974). Problem solving
and rule induction: A unified view. In L. W,
Gregg (Ed.), Knowledge and cognition.
Hillsdale, NJ: Lawrence Erlbaum Associates.

	cogsci_1992_177-182

