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Abstract Measurements are presented of the lifetimes of
the B0, B0

s , �0
b, and B+

c hadrons using the decay chan-
nels B0 → J/ψK∗(892)0, B0 → J/ψK0

S, B0
s → J/ψπ+π−,

B0
s → J/ψφ(1020), Λ0

b → J/ψ�0, and B+
c → J/ψπ+. The

data sample, corresponding to an integrated luminosity of
19.7 fb−1, was collected by the CMS detector at the LHC
in proton–proton collisions at

√
s = 8 TeV. The B0 life-

time is measured to be 453.0 ± 1.6 (stat) ± 1.8 (syst)µm
in J/ψK∗(892)0and 457.8 ± 2.7 (stat) ± 2.8 (syst)µm in
J/ψK0

S, which results in a combined measurement of cτB0 =
454.1 ± 1.4 (stat) ± 1.7 (syst)µm. The effective lifetime of
the B0

s meson is measured in two decay modes, with con-
tributions from different amounts of the heavy and light
eigenstates. This results in two different measured lifetimes:
cτB0

s →J/ψπ+π− = 502.7 ± 10.2 (stat) ± 3.4 (syst)µm and
cτB0

s →J/ψφ(1020) = 443.9 ± 2.0 (stat) ± 1.5 (syst)µm. The

�0
b lifetime is found to be 442.9 ± 8.2 (stat) ± 2.8 (syst)µm.

The precision from each of these channels is as good as or bet-
ter than previous measurements. The B+

c lifetime, measured
with respect to the B+ to reduce the systematic uncertainty,
is 162.3 ± 7.8 (stat) ± 4.2 (syst) ± 0.1 (τB+)µm. All results
are in agreement with current world-average values.

1 Introduction

Precise lifetime measurements involving the weak interac-
tion play an important role in the study of nonperturba-
tive aspects of quantum chromodynamics (QCD). The phe-
nomenology is commonly described by the QCD-inspired
heavy-quark expansion model, which provides estimates of
the ratio of lifetimes for hadrons containing a common heavy
quark [1]. In this paper, we report measurements of the life-
times of the B0, B0

s , Λ0
b, and B+

c hadrons.
The measurements are based on the reconstruction of the

transverse decay length Lxy , where �Lxy is defined as the flight
distance vector from the primary vertex to the decay vertex
of the b hadron, projected onto the transverse component �pT

� e-mail: cms-publication-committee-chair@cern.ch

(perpendicular to the beam axis) of the b hadron momentum.
The proper decay time of the b hadron times the speed of
light is measured using

ct = cLxy
M

pT
, (1)

where M is the world-average value of the mass of the b
hadron [2].

In this analysis, the b hadrons are reconstructed from
decays containing a J/ψ meson. The data were recorded by
the CMS detector [3] at the CERN LHC using dedicated trig-
gers that require two oppositely charged muons consistent
with originating from a common vertex and with an invari-
ant mass compatible with that of the J/ψ meson. Specifi-
cally, we reconstruct the decay modes B0 → J/ψK∗(892)0,
B0 → J/ψK0

S, B0
s → J/ψπ+π−, B0

s → J/ψφ(1020),
Λ0

b → J/ψ�0, and B+
c → J/ψπ+, where J/ψ → µ+µ−,

K∗(892)0 → K+π−, K0
S →π+π−, φ(1020)→ K+K−, and

�0 → pπ−. The B+ → J/ψK+ decay is used as a reference
mode and in evaluating some of the systematic uncertainties.
Charge conjugation is implied throughout, unless otherwise
indicated.

The decay rate of neutral Bq (q = s or d) mesons is
characterized by two parameters: the average decay width
Γq = (Γ

q
L + Γ

q
H)/2 and the decay width difference ΔΓq =

Γ
q

L − Γ
q

H, where Γ
q

L,H are the decay widths of the light (L)
and heavy (H) mass eigenstates. Assuming equal amounts
of Bq and its antiparticle are produced in the proton–proton
collisions, the time-dependent decay rate into a final state
f that is accessible by both particle and antiparticle can be
written as [4]:

R f
L e−Γ

q
L t + R f

He−Γ
q

H t , (2)

where R f
L and R f

H are the amplitudes of the light and heavy
mass states, respectively. Since the neutral B mesons have
two eigenstates with different lifetimes, the ct distribution
consists of the sum of two exponential contributions. The
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effective lifetime of the neutral Bq meson, produced as an
equal admixture of particle and antiparticle flavour eigen-
states and decaying into a final state f , can be written as [4]:

τeff =
R f

L(
Γ

q
L

)2 + R f
H(

Γ
q

H

)2

R f
L

Γ
q

L
+ R f

H
Γ

q
H

. (3)

Since the amplitudes R f
H and R f

L are specific to the decay
channel, the effective lifetime depends on the final state f and
is measured by fitting an exponential function to a distribu-
tion consisting of the sum of two exponential contributions.
Because the B0 system has a small lifetime difference with
respect to the average lifetime, ΔΓd/Γd = (−0.2 ± 1.0)%
[5], the ct distribution is close to an exponential, and it
is treated as such for the lifetime measurement. Following
Ref. [6], the B0 lifetimes measured in the flavour-specific
channel B0 → J/ψK∗(892)0 and the CP eigenstate channel
B0 → J/ψK0

S are used to determine values for ΔΓd, Γd, and
ΔΓd/Γd.

In the B0
s system, ΔΓs/Γs = (13.0 ± 0.9)% [5] and the

deviation from an exponential ct distribution is sizeable. In
this analysis, the two lifetimes associated with the B0

s meson
are measured in the J/ψπ+π− and J/ψφ(1020) decay chan-
nels. The B0

s → J/ψπ+π− decays are reconstructed in the
invariant mass range 0.9240 < M(π+π−) < 1.0204 GeV,
which is dominated by the f0(980) resonance [7,8], mak-
ing it a CP-odd final state. Therefore, the lifetime measured
in this channel is related to the inverse of the decay width
of the heavy B0

s mass eigenstate, τCP-odd
B0

s
≈ 1/ΓH, as CP

violation in mixing is measured to be negligible [2]. The
J/ψφ(1020) decay channel is an admixture of CP-even and
CP-odd states, corresponding to the light and heavy mass
eigenstates, respectively, neglecting CP violation in mixing.
Rewriting Eq. (3), the effective lifetime of the B0

s meson
decaying to J/ψφ(1020) can be expressed as

τeff = fHτH + (1 − fH)τL, (4)

where τL and τH are the lifetimes of the light and heavy mass
states, respectively, and fH is the heavy-component fraction,
defined as:

fH = |A⊥|2τH

|A|2τL + |A⊥|2τH
. (5)

Here, |A|2 = |A0(0)|2 + |A‖(0)|2 is the sum of the squares
of the amplitudes of the two CP-even states, and |A⊥|2 =
|A⊥(0)|2 is the square of the amplitude of the CP-odd state.
The amplitudes are determined at the production time t = 0.
Normalization constraints require |A|2 = 1 − |A⊥|2 and
therefore

fH = |A⊥|2τH

(1 − |A⊥|2)τL + |A⊥|2τH
. (6)

By combining the B0
s lifetimes obtained from the final states

J/ψφ(1020) and J/ψπ+π−, it is possible to determine the
lifetime of the light B0

s mass eigenstate. The results in this
paper are complementary to the CMS weak mixing phase
analysis in the B0

s → J/ψφ(1020) channel [9], which pro-
vided measurements of the average decay width Γs and the
decay width difference ΔΓs.

The weak decay of the B+
c meson can occur through either

the b or c quark decaying, with the other quark as a spectator,
or through an annihilation process. The latter is predicted to
contribute 10% of the decay width [10], and lifetime mea-
surements can be used to test the B+

c decay model. As fewer
and less precise measurements of the B+

c lifetime exist [11–
16] compared to other b hadrons, the B+

c lifetime measure-
ment presented in this paper is particularly valuable.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic
calorimeter, and a brass and scintillator hadron calorimeter,
each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity coverage provided by
the barrel and endcap detectors. Muons are detected in gas-
ionization chambers embedded in the steel flux-return yoke
outside the solenoid.

The main subdetectors used for this analysis are the silicon
tracker and the muon detection system. The silicon tracker
measures charged particles in the pseudorapidity range |η| <

2.5. It consists of 1440 silicon pixel and 15 148 silicon strip
detector modules. For charged particles of 1 < pT < 10 GeV
and |η| < 1.4, the track resolutions are typically 1.5% in
pT and 25–90 (45–150)µm in the transverse (longitudinal)
impact parameter [17]. Muons are measured in the pseudo-
rapidity range |η| < 2.4, with detection planes made using
three technologies: drift tubes, cathode strip chambers, and
resistive-plate chambers.

Events of interest are selected using a two-tiered trigger
system [18]. The first level, composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a time interval of less than 4µs. The second level, known as
the high-level trigger (HLT), consists of a farm of processors
running a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage. At the HLT stage, there is
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full access to the event information, and therefore selection
criteria similar to those applied offline can be used.

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [3].

3 Data and Monte Carlo simulated samples

The data used in this analysis were collected in 2012 from
proton–proton collisions at a centre-of-mass energy of 8 TeV,
and correspond to an integrated luminosity of 19.7 fb−1.

Fully simulated Monte Carlo (MC) samples of B+ →
J/ψK+, B0 →J/ψK∗(892)0, B0 →J/ψK0

S, B0
s →J/ψπ+π−,

B0
s → J/ψφ(1020), and Λ0

b → J/ψ�0 were produced with
pythia 6.424 [19] to simulate the proton–proton collisions,
and subsequent parton shower and hadronization processes.
The B+

c MC sample was produced with the dedicated gen-
erator bcvegpy 2.0 [20,21] interfaced to pythia. Decays
of particles containing b or c quarks are simulated with the
evtgen package [22], and final-state radiation is included
via photos [23]. Events are passed through the CMS detec-
tor simulation based on Geant4 [24], including additional
proton–proton collisions in the same or nearby beam cross-
ings (pileup) to match the number of multiple vertices per
event in the data. Simulated events are processed with the
same reconstruction and trigger algorithms as the data.

4 Reconstruction of b hadrons

The data are collected with a trigger that is designed to iden-
tify events in which a J/ψ meson decays to two oppositely
charged muons. The transverse momentum of the J/ψ can-
didate is required to be greater than 7.9 GeV and both muons
must be in the pseudorapidity region |η| < 2.2. The distance
of closest approach of each muon to the event vertex in the
transverse plane must be less than 0.5 cm and a fit of the
two muons to a common vertex must have a χ2 probability
greater than 0.5%. The invariant mass of the dimuon system
must lie within ±5 times the experimental mass resolution
(typically about 35 MeV) of the world-average J/ψ mass [2].

The offline selection starts from J/ψ candidates that are
reconstructed from pairs of oppositely charged muons. The
standard CMS muon reconstruction procedure [25] is used
to identify the muons, which requires multiple hits in the
pixel, strip, and muon detectors with a consistent trajectory
throughout. The offline selection requirements on the dimuon
system replicate the trigger selection. From the sample of
collected J/ψ events, candidate b hadrons are reconstructed
by combining a J/ψ candidate with track(s) or reconstructed
neutral particles, depending on the decay mode. Only tracks
that pass the standard CMS high-purity requirements [17] are

used. The b hadron candidate is fitted to a common vertex
with the appropriate masses assigned to the charged tracks
and the dimuon invariant mass constrained to the world-
average J/ψ mass [2]. In fits that include a K0

S or �0 hadron,
the world-average mass is used for those particles. Primary
vertices (PV) are fitted from the reconstructed tracks using an
estimate of the proton–proton interaction region (beamspot)
as a constraint. The PV having the smallest pointing angle,
defined as the angle between the reconstructed b hadron
momentum and the vector joining the PV with the decay
vertex, is used. As the proper decay times are measured in
the transverse plane, where the PV position is dominated by
the beamspot, the choice of PV has little effect on the analysis
and is accounted for as a systematic uncertainty.

4.1 Reconstruction of B+, B0, B0
s , and Λ0

b hadrons

The B+, B0, B0
s , and Λ0

b hadrons are reconstructed in the
decays B+ → J/ψK+, B0 → J/ψK0

S, B0 → J/ψK∗(892)0,
B0

s → J/ψπ+π−, B0
s → J/ψφ(1020), and Λ0

b → J/ψ�0.
The K∗(892)0, K0

S, φ(1020), and �0 candidates are recon-
structed from pairs of oppositely charged tracks that are con-
sistent with originating from a common vertex. Because of
the lack of charged particle identification, the labelling of
tracks as pions, kaons, and protons simply means the mass
that is assigned to the track. The mass assignments for the K0

S
and φ(1020) decay products are unambiguous (either both
pions or both kaons). For the kinematic region considered in
this analysis, simulations show that the proton always corre-
sponds to the track with the larger momentum (leading track)
from the �0 decay. The K∗(892)0 candidates are constructed
from a pair of tracks with kaon and pion mass assignments.

Since two K∗(892)0 candidates can be formed with a
single pair of tracks, we select the combination for which
the mass of the K∗(892)0 candidate is closest to the world-
average value [2]. This selects the correct combination 88%
of the time.

All tracks must have a transverse momentum greater than
0.5 GeV. The decay vertices of the K0

S and �0 particles are
required to have a transverse decay length larger than 15σ

and their two decay products must each have a transverse
impact parameter of at least 2σ , where the distances are with
respect to the beamspot and σ is the calculated uncertainty
in the relevant quantity. The intermediate candidate states
K∗(892)0, K0

S, φ(1020), and �0 are selected if they lie within
the following mass regions that correspond to 1–2 times the
experimental resolution or natural width around the nomi-
nal mass: 0.7960 < M(K+π−) < 0.9880 GeV, 0.4876 <

M(π+π−) < 0.5076 GeV, 1.0095 < M(K+K−) <

1.0295 GeV, and 1.1096 < M(pπ−) < 1.1216 GeV.
The accepted mass region of the π+π− system in B0

s →
J/ψπ+π− decay is 0.9240 < M(π+π−) < 1.0204 GeV.
The K0

S contamination in the �0 sample is removed by dis-
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carding candidates in which the leading particle in the �0

decay is assigned the pion mass and the resulting π+π−
invariant mass is in the range 0.4876 < M(π+π−) <

0.5076 GeV. Conversely, the �0 contamination is removed
from the K0

S sample by discarding candidates in the pπ−
mass region 1.1096 < M(pπ−) < 1.1216 GeV, when the
proton mass is assigned to the leading pion from the K0

S
decay. The pT of the K+ candidate track from the B+ decay
must be larger than 1 GeV. The pT of the π+π− system
in B0

s → J/ψπ+π− decays and the K∗(892)0 candidates in
B0 → J/ψK∗(892)0 decays must be greater than 3.5 GeV,
with the leading (trailing) charged hadrons in these decays
required to have a pT greater than 2.5 (1.5) GeV. The pT

of the b hadrons must be at least 13 GeV, except for the
B0

s → J/ψφ(1020) decay where no requirement is imposed.
The pT of the leading track from the K0

S and �0 decays must
be larger than 1.8 GeV. The minimum pT for the kaons form-
ing a φ(1020) candidate is 0.7 GeV.

The b hadron vertexχ2 probability is required to be greater
than 0.1% in the B0

s → J/ψφ(1020) channel only. The life-
time measurement is limited to events in which the b hadron
ct is greater than 0.02 cm to avoid resolution and reconstruc-
tion effects present in the low-ct region. No attempt is made
to select a single b hadron candidate in the relatively rare
(< 1%) events in which more than one b hadron candidate
is found.

4.2 Reconstruction of B+
c →J/ψπ+

The B+
c lifetime is measured using the method developed by

the LHCb Collaboration [12] in which the measured differ-
ence in total widths between the B+

c and B+ mesons is used in
combination with the precisely known B+ lifetime to obtain
the B+

c lifetime. This method does not require modelling the
background ct distribution, avoiding a source of systematic
uncertainty. The same reconstruction algorithm and selec-
tion criteria are used for both decays, B+

c → J/ψπ+ and
B+ →J/ψK+. As a result, the dependence of the efficiencies
on the proper decay time is similar.

The charged hadron tracks are required to have at least 2
pixel hits, at least 6 tracker hits (strips and pixels together), a
track fit χ2 less than 3 times the number of degrees of free-
dom, and |η| < 2.4. The dimuon invariant mass is required
to lie in the range ±3σ from the nominal J/ψ meson mass,
where σ is the average resolution for the J/ψ signal, which
depends on the J/ψ pseudorapidity and ranges from 35 to
50 MeV. The pT of the charged hadron tracks and the b
hadrons are required to be greater than 3.3 and 10 GeV,
respectively. The b hadrons must have a rapidity of |y| < 2.2,
a vertex χ2 probability greater than 5%, a dimuon vertex
χ2 probability greater than 1%, and cos θ > 0.98, where
cos θ = �Lxy · �pT,B/(|Lxy | · |pT,B|) and �Lxy and �pT,B refer
to the transverse decay length and momentum of the B+ or

B+
c mesons. The lifetime measurement is limited to events in

which the b hadron has ct > 0.01 cm, which ensures that the
ratio of the B+

c to B+ meson efficiencies is constant versus
ct . The analysis of the B+

c lifetime is described in Sect. 6.

5 Measurement of the B0, B0
s , and Λ0

b lifetimes

For each decay channel, we perform a simultaneous fit to
three input variables, the b hadron mass, ct , and ct uncer-
tainty (σct ). For the B+, B0, and Λ0

b hadrons, an unbinned
maximum-likelihood fit is performed with a probability den-
sity function (PDF) given by:

PDF = fs Ms(M) Ts(ct) Es(σct ) ε(ct)

+(1 − fs) Mb(M) Tb(ct) Eb(σct ), (7)

where fs is the fraction of signal events, and Ms (Mb), Ts
(Tb), and Es (Eb) are the functions describing the signal
(background) distributions of the b hadron mass, ct , and
σct , respectively, while ε is the efficiency function. These
functions are derived below. For the B0

s modes, we use an
extended maximum-likelihood fit in order to correctly incor-
porate background sources whose yields are obtained from
the fit.

5.1 Reconstruction and selection efficiency

The reconstruction and selection efficiency ε for each decay
mode is determined as a function of ct by using fully sim-
ulated MC samples. This efficiency is defined as the gener-
ated ct distribution of the selected events after reconstruction
and selection divided by the ct distribution obtained from an
exponential decay with the lifetime set to the value used to
generate the events. The efficiency for the B0

s →J/ψφ(1020)

channel is defined as the generated ct distribution of the
selected events after reconstruction divided by the sum of
the two exponentials generated with the theoretical B0

s →
J/ψφ(1020) decay rate model [26]. In the theoretical model,
the values of the physics parameters are set to those used in
the simulated sample.

Figure 1 shows the efficiency as a function of ct for the
various decay modes, with an arbitrary normalization since
only the relative efficiency is relevant. The efficiencies dis-
play a sharp rise as ct increases from 0 to 0.01 cm, followed
by a slow decrease as ct increases further. The ct efficiency
is modelled with an inverse power function.

5.2 Data modelling

Depending on the decay channel, the invariant mass distri-
bution for the signal Ms is modelled with one or two Gaus-
sian functions, and a linear polynomial or an exponential
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Fig. 1 The combined reconstruction and selection efficiency from sim-
ulation versus ct with a superimposed fit to an inverse power function
for B+ →J/ψK+ (upper left), Λ0

b →J/ψ�0 (upper right), B0 →J/ψK0
S

(centre left), B0 →J/ψK∗(892)0 (centre right), B0
s →J/ψπ+π− (lower

left), and B0
s → J/ψφ(1020) (lower right). The efficiency scale is arbi-

trary

function is used to model the combinatorial background Mb.
For the B0

s → J/ψπ+π− decay, three additional terms are
added to Mb to include specific sources of background. The
B0 → J/ψπ+π− decays are modelled by a Gaussian func-
tion, the B+ → J/ψK+ decays by a shape taken from sim-
ulation, and the B0

(d,s) → J/ψh+
1 h−

2 decays, where h+
1 and

h−
2 are charged hadron tracks that are not both pions, by a

Gaussian function.

The signal ct distribution Ts is modelled by an expo-
nential function convolved with the detector resolution and
then multiplied by the function describing the reconstruc-
tion and selection efficiency. The resolution is described
by a Gaussian function with the per-event width taken
from the ct uncertainty distribution. The backgrounds Tb
are described by a superposition of exponential functions
convolved with the resolution. The number of exponentials
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Fig. 2 Invariant mass (left) and ct (right) distributions for B+ (upper)
and for Λ0

b (lower) candidates. The curves are projections of the fit to the
data, with the contributions from signal (dashed), background (dotted),
and the sum of signal and background (solid) shown. the lower panels

of the figures on the right show the difference between the observed
data and the fit divided by the data uncertainty. The vertical bars on the
data points represent the statistical uncertainties

needed to describe the background is determined from data
events in the mass sideband regions for each decay mode.

The signal Es and background Eb σct distributions are
modelled with a sum of two gamma functions for the B0

s →
J/ψφ(1020) channel and two exponential functions con-
volved with a Gaussian function for the other channels. The
background parameters are obtained from a fit to the mass
sideband distributions. The signal parameters are obtained
from a fit to the signal region after subtracting the background
contribution using the mass sideband region to estimate the
background. The parameters of the efficiency function and
the functions modelling the σct distributions are kept con-
stant in the fit. The remaining fit parameters are allowed to
vary freely.

For the B0
s →J/ψπ+π− mode, the parameters of the mass

model for the B+ → J/ψK+ contamination are taken from
the simulation, and the yield and lifetime are determined by
the fit. The mass of the B0 → J/ψπ+π− contamination is
fixed to the weighted average of the masses measured from
our two B0 decay modes, and the width of the Gaussian func-

tion is the same as the width used for the B0
s → J/ψπ+π−

signal, corrected by a factor of MB0/MB0
s
. The lifetime of

this contamination is fixed to the world-average value, cor-
rected by the same factor as the width, and the yield is a free
parameter of the fit.

5.3 Fit results

The invariant mass and ct distributions obtained from data
are shown with the fit results superimposed in Figs. 2, 3
and 4. The ct distributions are fitted in the range 0.02–
0.50 cm for all modes except the B0

s → J/ψφ(1020) chan-
nel, where the upper limit is increased to 0.60 cm. The aver-
age lifetimes times the speed of light obtained from the fits
are: cτB+ = 490.9 ± 0.8µm, cτB0→J/ψK∗(892)0 = 453.0 ±
1.6µm, cτB0→J/ψK0

S
= 457.8 ± 2.7µm, cτB0

s →J/ψπ+π− =
502.7 ± 10.2µm, cτB0

s →J/ψφ(1020) = 445.2 ± 2.0µm, and
cτΛ0

b
= 442.9±8.2µm, where all uncertainties are statistical

only. The B0
s →J/ψφ(1020) value given here is uncorrected

for two offsets described in Sect. 7. There is good agreement
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Fig. 3 Invariant mass (left) and ct (right) distributions for B0 can-
didates reconstructed from J/ψK∗(892)0 (upper) and J/ψK0

S (lower)
decays. The curves are projections of the fit to the data, with the con-
tributions from signal (dashed), background (dotted), and the sum of

signal and background (solid) shown. the lower panels of the figures
on the right show the difference between the observed data and the fit
divided by the data uncertainty. The vertical bars on the data points
represent the statistical uncertainties

between the fitted functions and the data. The probabilities
calculated from the χ2 of the ct distributions in Figs. 2, 3
and 4 all exceed 25%.

6 Measurement of the B+
c lifetime

The decay time distribution for the signal NB(ct) can be
expressed as the product of an efficiency function εB(ct)
and an exponential decay function EB(ct) = exp(−ct/cτB),
convolved with the time resolution function of the detector
r(ct). The ratio of B+

c to B+ events at a given proper time
can be expressed as

NB+
c
(ct)

NB+(ct)
≡ R(ct) = εB+

c
(ct)[r(ct) ⊗ EB+

c
(ct)]

εB+(ct)[r(ct) ⊗ EB+(ct)] . (8)

We have verified through studies of simulated pseudo-events
that Eq. (8) is not significantly affected by the time resolution,
and therefore this equation can be simplified to

R(ct) ≈ Rε(ct) exp(−ΔΓ t), (9)

where the small effect from the time resolution is evalu-
ated from MC simulations and is included in Rε(ct), which
denotes the ratio of the B+

c and B+ efficiency functions. The
quantity ΔΓ is defined as

ΔΓ ≡ ΓB+
c

− ΓB+ = 1

τB+
c

− 1

τB+
. (10)

The B+
c → J/ψπ+ and B+ → J/ψK+ invariant mass dis-

tributions, shown in Fig. 5, are each fit with an unbinned
maximum-likelihood estimator. The J/ψπ+ invariant mass
distribution is fitted with a Gaussian function for the B+

c sig-
nal and an exponential function for the background. An addi-
tional background contribution from B+

c →J/ψK+ decays is
modelled from a simulated sample of B+

c → J/ψK+ events,
and its contribution is constrained using the value of the
branching fraction relative to J/ψπ+ [27]. The B+

c →J/ψπ+
signal yield is 1128±60 events, where the uncertainty is sta-
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Fig. 4 Invariant mass (left) and ct (right) distributions for B0
s candi-

dates reconstructed from J/ψφ(1020) (upper) and J/ψπ+π− (lower)
decays. The curves are projections of the fit to the data, with the full
fit function (solid) and signal (dashed) shown for both decays, the
total background (dotted) shown for the upper plots, and the combi-
natorial background (dotted), misidentified B+ → J/ψK+ background

(dashed-dotted), B0 → J/ψπ+π− contribution (dashed-dotted-dotted-
dotted), and partially reconstructed and other misidentified B back-
grounds (dashed-dotted-dotted) shown for the lower plots. the lower
panels of the figures on the right show the difference between the
observed data and the fit divided by the data uncertainty. The vertical
bars on the data points represent the statistical uncertainties

tistical only. The B+ meson invariant mass distribution is fit
with a sum of two Gaussian functions with a common mean
for the signal and a second-order Chebyshev polynomial
for the background. Additional contributions from partially
reconstructed B0 and B+ meson decays are parametrized
with functions determined from B+ →J/ψπ+ and inclusive
B0 →J/ψX MC samples.

6.1 The fit model and results

The B+
c lifetime is extracted through a binned χ2 fit to

the ratio of the efficiency-corrected ct distributions of the
B+

c → J/ψπ+ and B+ → J/ψK+ channels. The B+
c and

B+ ct signal distributions from data are obtained by divid-
ing the data sample into ct bins and performing an unbinned
maximum-likelihood fit to the J/ψπ+ and J/ψK+ invariant
mass distribution in each bin, in the same manner as the fit
to the full samples, except that the peak position and reso-
lution are fixed to the values obtained by the fits to the full

samples. Varied ct bin widths are used to ensure a similar
statistical uncertainty in the B+

c signal yield among the bins.
The bin edges are defined by requiring a relative statistical
uncertainty of 12% or better in each bin. The same binning
is used for the B+ ct distribution. The B+

c and B+ meson
yields are shown versus ct in the left plot of Fig. 6, where the
number of signal events is normalized by the bin width. Effi-
ciencies are obtained from the MC samples and are defined as
the ct distribution of the selected events after reconstruction
divided by the ct distribution obtained from an exponential
decay with the lifetime set to the same value used to generate
each MC sample. The ratio of the two efficiency distributions,
using the same binning scheme as for the data, is shown in
the right plot of Fig. 6.

The ratio of the B+
c to B+ efficiency-corrected ct distribu-

tions, R/Rε, is shown in Fig. 7, along with the result of a fit to
an exponential function. The fit returns ΔΓ = 1.24 ± 0.09
ps−1. Using the known lifetime of the B+ meson, cτB+ =
491.1 ± 1.2 µm [5], a measurement of the B+

c meson life-
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Fig. 5 The J/ψπ+ invariant mass distribution (left) with the solid line
representing the total fit, the dashed line the signal component, the dot-
ted line the combinatorial background, and the dashed-dotted line the
contribution from B+

c →J/ψK+ decays. The J/ψK+ invariant mass dis-
tribution (right) with the solid line representing the total fit, the dashed
line the signal component, the dotted-dashed curves the B+ → J/ψπ+
and B0 contributions, and the dotted curve the combinatorial back-
ground. The vertical bars on the data points represent the statistical
uncertainties

time, cτB+
c

= 162.3 ± 7.8 µm, is extracted, where the uncer-
tainty is statistical only.

7 Systematic uncertainties

The systematic uncertainties can be divided into uncertain-
ties common to all the measurements, and uncertainties spe-
cific to a decay channel. Table 1 summarizes the systematic
uncertainties for the sources considered below and the total
systematic uncertainty in the B0

s , B0, and Λ0
b lifetime mea-

surements. The systematic uncertainties in ΔΓ and the B+
c

meson lifetime are collected in Table 2. Using the known life-
time of the B+ meson, the uncertainties in ΔΓ are converted
into uncertainties in the B+

c meson lifetime measurement.
The uncertainty in the B+

c meson lifetime due to the uncer-
tainty in the B+ meson lifetime [5] is quoted separately.
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Fig. 6 Yields of B+
c → J/ψπ+ and B+ → J/ψK+ events (left) as a

function of ct , normalized to the bin width, as determined from fits to
the invariant mass distributions. Ratio of the B+

c and B+ efficiency distri-
butions (right) as a function of ct , as determined from simulated events.
The vertical bars on the data points represent the statistical uncertainties,
and the horizontal bars show the bin widths
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Fig. 7 Ratio of the B+
c to B+ efficiency-corrected ct distributions,

R/Rε , with a line showing the result of the fit to an exponential function.
The vertical bars give the statistical uncertainty in the data, and the
horizontal bars show the bin widths

We have verified that the results are stable against changes
in the selection requirements on the quality of the tracks and
vertices, the kinematic variables, and ct , as well as in detector
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Table 1 Summary of the sources and values of systematic uncertainties in the lifetime measurements (in µm). The total systematic uncertainty is
the sum in quadrature of the individual uncertainties

Source B0→J/ψK∗(892)0 B0→J/ψK0
S B0

s→J/ψπ+π− B0
s→J/ψφ Λ0

b→J/ψΛ0

MC statistical uncertainty 1.1 2.4 2.0 0.6 2.3

Mass modelling 0.3 0.4 0.2 0.4 0.9

ct modelling 0.1 0.1 0.4 0.0 0.1

B+ contamination – – 1.4 – –

Mass window of π+π− – – 1.8 – –

K±π∓ mass assignment 0.3 – – – –

ct range – – – 0.1 –

S-wave contamination – – – 0.4 –

Absolute ct accuracy 1.3 1.3 1.4 1.3 1.3

Total (µm) 1.8 2.8 3.4 1.5 2.8

Table 2 Summary of the systematic uncertainties in the ΔΓ and cτB+
c

measurements

Source ΔΓ (ps−1) cτB+
c

(µm)

MC statistical uncertainty 0.01 1.2

Mass modelling 0.04 3.4

PV selection 0.02 2.0

Detector alignment 0.01 0.6

Total uncertainty 0.05 4.2

regions and data-taking periods. The effect of replacing the
mass of the b hadron in the ct definition of Eq. (1) from the
world-average to the reconstructed candidate mass is found
to be negligible. The lifetimes for all decay channels were
measured by treating MC samples as data. No bias was found
and all results were consistent with the input lifetimes of the
generated samples.

7.1 Common systematic uncertainties

1. Statistical uncertainty in the MC samples
The number of events in the simulation directly affects
the accuracy of the efficiency determination. In the case
of the B0

s , B0, and Λ0
b lifetime measurements, 1000 effi-

ciency curves are generated with variations of the param-
eter values. The parameter values are sampled using a
multivariate Gaussian PDF that is constructed from the
covariance matrix of the efficiency fit. The analysis is
performed 1000 times, varying the parameters of the effi-
ciency function. The distribution of the measured life-
times is fitted with a Gaussian function, whose width is
taken as the systematic uncertainty associated with the
finite size of the simulated samples. In the measurement
of the B+

c lifetime, the bin-by-bin statistical uncertainty in
the efficiency determination is propagated to the R(ct)
distribution, the fit is performed, and the difference in

quadrature of the uncertainty in ΔΓ with respect to the
nominal value is taken as the systematic uncertainty.

2. Modelling of the mass distribution shape
Biases related to the modelling of the shapes of the b
hadron mass signal and background PDFs are quanti-
fied by changing the signal and background PDFs indi-
vidually and using the new models to fit the data. For
the B0, B0

s , and �0
b lifetime measurements, the back-

ground model is changed to a higher-degree polynomial,
a Chebyshev polynomial, or an exponential function, and
the signal model is changed from two Gaussian functions
to a single Gaussian function or a sum of three Gaussian
functions. Differences in the measured lifetime between
the results of the nominal and alternative models are used
to estimate the systematic uncertainty, with the variations
due to the modelling of signal and background compo-
nents evaluated separately and added in quadrature. For
the B+

c lifetime measurement, the signal peak is alterna-
tively modelled with a Crystal Ball distribution [28]. The
alternative description for the background is a first-order
Chebyshev distribution. The removal of the Cabibbo-
suppressed B+

c → J/ψK+ contribution is also consid-
ered. The maximum deviation of the signal yield in each
ct bin from the nominal value is propagated to the statis-
tical uncertainty in the per-bin yield. The fit to R(ct) is
performed and the difference in quadrature between the
uncertainty from this fit and the nominal measurement is
taken as the systematic uncertainty.

7.2 Channel-specific systematic uncertainties

1. Modelling of the background ct shape in the B0
s , B0, and

Λ0
b channels

To estimate a systematic uncertainty due to the ct back-
ground model, we add an additional background contri-
bution modelled with its own lifetime, and compare the
result to that obtained with the nominal fit model. The
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difference between the results of the nominal and alter-
native fit models is used as the systematic uncertainty
from the ct shape modelling.

2. The B+ contamination in the B0
s →J/ψπ+π− sample

In the nominal fit, the yield and lifetime of the B+ →
J/ψK+ contamination are determined from the fit with
the mass shape obtained from simulation. An alternative
estimate of the J/ψK+ contamination is obtained from
data by taking the leading pion of the B0

s → J/ψπ+π−
decay to be the kaon. The lifetime and yield of the
B+ →J/ψK+ decays contaminating the B0

s →J/ψπ+π−
sample are determined from a fit of the B+ signal candi-
dates in the B0

s →J/ψπ+π− sample, with the mass shape
also obtained from the data. The difference between the
B0

s lifetime found with this model and the nominal model
is considered as the systematic uncertainty due to B+
contamination.

3. Invariant mass window of the π+π− in the B0
s →

J/ψπ+π− channel
Although the events selected by the π+π− mass win-
dow are dominated by the f0(980), its width is not well
known and possible backgrounds under the f0(980) peak
could be increased or decreased, depending on the mass
window. The effect on the lifetime is studied by using
mass windows of ±30 and ±80 MeV around the signal
peak, compared to the nominal fit result with a ±50 MeV
window. The maximum variation of the lifetime is taken
as the systematic uncertainty.

4. The K+π− mass assignments for K∗(892)0 candidates
in the B0 →J/ψK∗(892)0 channel
The K∗(892)0 candidates are constructed from a pair of
tracks with kaon and pion mass assignments. The com-
bination with invariant mass closest to the world-average
K∗(892)0 mass is chosen to reconstruct the B0 candi-
date. To estimate the effect on the lifetime due to a possi-
ble misassignment of kaon and pion, both combinations
are discarded if both are within the natural width of the
K∗(892)0 mass, and the difference between the lifetime
obtained with this sample and the nominal sample is taken
as the systematic uncertainty.

5. The ct range in the B0
s →J/ψφ(1020) channel

Since the ct > 0.02 cm requirement distorts the fractions
of heavy and light mass eigenstates, the measured B0

s
effective lifetime must be corrected. The correction and
systematic uncertainty are quantified analytically. The
correction to the effective lifetime is

δct = cτ cut
eff − cτeff

= (1 − |A⊥|2)(cτL)2e−a/cτL + |A⊥|2(cτH)2e−a/cτH

(1 − |A⊥|2)cτLe−a/cτL + |A⊥|2cτHe−a/cτH

− (1 − |A⊥|2)(cτL)2 + |A⊥|2(cτH)2

(1 − |A⊥|2)cτL + |A⊥|2cτH
, (11)

where the first term represents the effective lifetime in
the presence of a ct > a requirement and the latter
term is the unbiased effective lifetime. In this analysis,
a is equal to 0.02 cm. The world-average values [2] for
cτH = 482.7 ± 3.6µm, cτL = 426.3 ± 2.4µm, and
|A⊥|2 = 0.250 ± 0.006 are used to obtain the correction
δct = 0.62 ± 0.10µm.

6. The S-wave contamination in the B0
s → J/ψφ(1020)

channel
The B0

s candidates reconstructed in the J/ψφ(1020) final
state contain a small fraction of nonresonant and CP-odd
B0

s →J/ψK+K− decays, where the invariant mass of the
two kaons happens to be near the φ meson mass. The
fraction of B0

s → J/ψK+K− decays among the selected
events is measured in the weak mixing phase analysis [9]
to be fS = (1.2+0.9

−0.7)%. Because of the different trigger
and signal selection criteria of the present analysis, the
S-wave fraction is corrected according to the simulation
to be (1.5+1.1

−0.9)%. The bias caused by the contamination
of nonresonant B0

s → J/ψK+K− decays is estimated by
generating two sets of pseudo-experiments, one with just
B0

s → J/ψφ(1020) events and one with a fraction of S-
wave events based on the measured S-wave fraction and
its uncertainty. The difference in the average of the mea-
sured lifetimes of these two samples is 0.74µm, which
is used to correct the measured lifetime. The systematic
uncertainty associated with this correction is obtained by
taking the difference in quadrature between the standard
deviation of the distribution of lifetime results from the
pseudo-experiments with and without the S-wave contri-
bution.

7. PV selection in the B+
c →J/ψπ+ channel

From the multiple reconstructed PVs in an event, one is
selected to compute the ct value of the candidate. Two
alternative methods to select the PV position are studied:
using the centre of the beamspot and selecting the PV
with the largest sum of track pT. While all three methods
are found to be effective and unbiased, there were small
differences, and the maximum deviation with respect to
the nominal choice is taken as the systematic uncertainty.
The B+ and B+

c primary vertex choices were changed
coherently.

8. Detector alignment in the B+
c →J/ψπ+ channel

Possible effects on the lifetime due to uncertainties in
the detector alignment [29] are investigated for each
decay topology using 20 different simulated samples with
distorted geometries. These distortions include expan-
sions in the radial and longitudinal dimensions, rotations,
twists, offsets, etc. The amount of misalignment is chosen
such that it is large enough to be detected and corrected
by the alignment procedure. The standard deviation of
the lifetimes for the tested scenarios is taken as the sys-
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tematic uncertainty from this source. The B+ and B+
c

geometries were changed coherently.
9. Absolute ct accuracy in the B0

s , B0, and Λ0
b lifetime mea-

surements
The lifetime of the most statistically precise mode (B+ →
J/ψK+) is used to validate the accuracy of the simu-
lation and various detector calibrations. The difference
between our measurement of 490.9 ± 0.8µm (statistical
uncertainty only) and the world-average value of 491.1±
1.2µm [5] is 0.2 ± 1.4µm. This implies a limit to the
validation of 1.4/491 = 0.3%. Four systematic effects
that we expect to be included were checked indepen-
dently. The systematic uncertainties from PV selection
and detector alignment were found to be 0.7µm and 0.3–
0.7µm, respectively. Varying the efficiency functional
form changed the lifetimes by 0.3–0.6µm, while varying
σct by factors of 0.5 and 2.0 resulted in lifetime differ-
ences of no more than 0.2µm. As the sum in quadrature
of these uncertainties is less than that obtained from the
B+ lifetime comparison, we assign a value of 0.3% as
the systematic uncertainty for the absolute ct accuracy.

8 Lifetime measurement results

Our final results for the B0, B0
s , and Λ0

b hadron lifetimes are:

cτB0→J/ψK∗(892)0 = 453.0 ± 1.6 (stat) ± 1.8 (syst)µm,

(12)

cτB0→J/ψK0
S

= 457.8 ± 2.7 (stat) ± 2.8 (syst)µm, (13)

cτB0
s →J/ψπ+π− = 502.7 ± 10.2 (stat) ± 3.4 (syst)µm, (14)

cτB0
s →J/ψφ(1020) = 443.9 ± 2.0 (stat) ± 1.5 (syst)µm, (15)

cτΛ0
b

= 442.9 ± 8.2 (stat) ± 2.8 (syst)µm. (16)

The value of the B0
s lifetime using the J/ψφ(1020) decay

has been corrected for the ct range and S-wave contamina-
tion effects described in Sect. 7. The lifetime ratios τB0

s
/τB0

and τΛ0
b
/τB0 have been determined using the decay channels

B0 → J/ψK∗(892)0, B0
s → J/ψφ(1020), and Λ0

b → J/ψ�0.
Including the statistical and correlated and uncorrelated sys-
tematic uncertainties, the results are:

τΛ0
b
/τB0→J/ψK∗(892)0

= 0.978 ± 0.018 (stat) ± 0.006 (syst), (17)

τΛ0
b
/τB0→J/ψK∗(892)0

= 0.978 ± 0.018 (stat) ± 0.006 (syst), (18)

These ratios are compatible with the current world-average
values.

The measured lifetimes for the B0 meson in the two dif-
ferent channels are in agreement. Combining the two results,

including the statistical and the correlated and uncorrelated
systematic uncertainties, gives cτB0 = 454.1 ± 1.4 (stat) ±
1.7 (syst)µm. The lifetime measurements can also be used to
estimate Γd and ΔΓd [6]. In the standard model, the effective
lifetimes of the two B0 decay modes can be written as:

τB0→J/ψK∗(892)0 = 1

Γd

(
1

1 − y2
d

)(
1+2 cos (2β)yd+y2

d

1 + cos (2β)yd

)

,

(19)

τB0→J/ψK0
S

= 1

Γd

(
1 + y2

d

1 − y2
d

)

, (20)

where yd = ΔΓd/2Γd, and β = (21.9 ± 0.7)◦ [5] is one
of the CKM unitarity triangle angles. Using our measured
values for the two B0 lifetimes, we fit for Γd and ΔΓd and
use the values to determine ΔΓd/Γd. The results are:

Γd = 0.662 ± 0.003 (stat) ± 0.003 (syst) ps−1, (21)

ΔΓd = 0.023 ± 0.015 (stat) ± 0.016 (syst) ps−1, (22)

ΔΓd/Γd = 0.034 ± 0.023 (stat) ± 0.024 (syst). (23)

Neglecting CP violation in mixing, the measured B0
s →

J/ψπ+π− lifetime can be translated into the width of the
heavy B0

s mass eigenstate:

ΓH = 1/τB0
s

= 0.596±0.012 (stat)±0.004 (syst) ps−1. (24)

Solving for cτL from Eq. (4) gives

cτL = 1

2
cτeff +

√
1

4
(cτeff)2 − |A⊥|2

1 − |A⊥|2 cτH(cτH − cτeff).

(25)

Using the B0
s → J/ψπ+π− result in Eq. (14), the measured

B0
s effective lifetime in Eq. (15), and the world-average value

of the magnitude squared of the CP-odd amplitude |A⊥|2 =
0.250±0.006 [2], the lifetime of the light component is found
to be cτL = 420.4 ± 6.2µm. The uncertainty includes all
statistical and systematic uncertainties, taking into account
the correlated uncertainties. The result is consistent with the
world-average value of 423.6 ± 1.8µm [5].

Our measured lifetimes for B0, B0
s → J/ψφ(1020), and

Λ0
b are compatible with the current world-average values [5]

of 455.7 ± 1.2, 443.4 ± 3.6, and 440.7 ± 3.0µm, respec-
tively. In addition, our measurement of the B0

s lifetime in the
B0

s → J/ψπ+π− channel is in agreement with the results
from CDF, LHCb, and D0: 510 +36

−33 (stat) ± 9 (syst)µm [30],
495.3±7.2 (stat)±7.2 (syst)µm [31], and 508±42 (stat)±
16 (syst)µm [32], respectively.

123
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Our final result for the B+
c lifetime using the J/ψπ+ mode

is:

cτB+
c

= 162.3 ± 7.8 (stat) ± 4.2 (syst) ± 0.1(τB+)µm,

(26)

where the systematic uncertainty from the B+ lifetime uncer-
tainty [5] is quoted separately in the result. This measure-
ment is in agreement with the world-average value (152.0 ±
2.7µm) [5]. Precise measurements of the B+

c lifetime allow
tests of various theoretical models, which predict values
ranging from 90 to 210µm [33–36]. Furthermore, they pro-
vide new constraints on possible physics beyond the stan-
dard model from the observed anomalies in B → D(∗)τν

decays [37].

9 Summary

The lifetimes of the B0, B0
s , Λ0

b, and B+
c hadrons have been

measured using fully reconstructed decays with a J/ψ meson.
The data were collected by the CMS detector in proton–
proton collision events at a centre-of-mass energy of 8 TeV,
and correspond to an integrated luminosity of 19.7 fb−1. The
B0 and B0

s meson lifetimes have each been measured in
two channels: J/ψK∗(892)0, J/ψK0

S for B0 andJ/ψπ+π−,
J/ψφ(1020) for B0

s . The precision from each channel is as
good as or better than previous measurements in the respec-
tive channel. The B0 lifetime results are used to obtain an
average lifetime and to measure the decay width difference
between the two mass eigenstates. The B0

s lifetime results are
used to obtain the lifetimes of the heavy and light B0

s mass
eigenstates. The precision of the Λ0

b lifetime measurement
is also as good as any previous measurement in the J/ψ�0

channel. The measured B+
c meson lifetime is in agreement

with the results from LHCb and significantly more precise
than the CDF and D0 measurements. All measured lifetimes
are compatible with the current world-average values.
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