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A Model-Based Investigation of the Biological Origin of Human Social Perception
of Faces

Sophia J. Huang and Chaitanya K. Ryali and Jianling Liu and Dalin Guo
Jinyan Guan and Yvonne Li and Angela J. Yu

University of California San Diego
9500 Gilman Drive La Jolla, CA 92093 USA

Abstract

Humans readily form social impressions of faces at a glance,
whether assessing trustworthiness, attractiveness, or domi-
nance. However, little is understood about how such compu-
tations are carried out neurally. Here, we leverage a computa-
tional model of human face perception to quantify and charac-
terize the extent to which macaque monkey face patch neurons
encode information relevant for social trait perception. Specif-
ically, we use a social trait prediction model to estimate the
social trait ratings for face stimuli viewed by monkeys during
a neural recording experiment. We find that, while the monkey
face patch neurons are linearly tuned to facial features differ-
ent from those used by humans to make social judgments, the
subspace spanned by the face patch neurons and the subspace
spanned by the facial features supporting human social percep-
tion are highly overlapping. This result implies that the infor-
mation present in the monkey face patch neurons are largely
sufficient, after linear decoding, to support human social per-
ception, thus shedding light on the biological origin of human
social processing of faces.

Keywords: face perception; social perception; representation;
neural recording; face modeling

Introduction
Face processing plays a special role in human life, as it un-
derpins social interactions essential for survival and reproduc-
tive success (Olivola, Funk, & Todorov, 2014). Psychological
studies have shown that humans effortlessly and consistently
derive social characteristics (social, demographic, emotional
traits) from the appearance of faces of strangers (Willis &
Todorov, 2006). However, little is known about how such as-
sessments are represented or computed in the brain. In this
work, we leverage a computational model of human face per-
ception (Guan, Ryali, & Yu, 2018) to quantify and charac-
terize the extent to which face patch neurons in the macaque
monkey brain (Freiwald & Tsao, 2010) encode information
relevant for human social perception of faces.

One challenge for studying the relationship between neu-
ral responses and human face perception is that human face
images are high dimensional and vary among each other in
complex ways. To parameterize the space of human face
images, we adapt a popular computer vision algorithm, the
Active Appearance Model (AAM) (Cootes, Edwards, & Tay-
lor, 2001; Valentine, 1991). AAM provides a vector space
representation of face images with several desirable proper-
ties. Firstly, this representation is sufficiently rich such that
each face image corresponds to a unique point in this space.

Secondly, AAM is capable of generating realistic face im-
ages, helping to visualize the features encoded by neurons or
group of neurons. Thirdly, recent neural data suggest that face
patch neurons encode facial features similar to those in AAM
(Chang & Tsao, 2017). Here, we train our own version of the
AAM model (Guan et al., 2018) using a publicly available
face dataset (Bainbridge, Isola, & Oliva, 2013). This dataset
also contains human ratings along 20 social trait dimensions,
which we model linearly by regressing the trait ratings against
AAM latent features. Similarly, we linearly model the classi-
fication of gender and age based on human judgments of these
qualities on the same face dataset (Bainbridge et al., 2013).

The neural data we analyze are single cell recordings from
the face patch areas of the macaque monkey, recorded while
the animals viewed 37 human face images (Freiwald & Tsao,
2010) (the original dataset contained 41 face images, in 4 of
which the person’s eyes are fully or partially closed – these
4 are excluded from our analyses). The face patch areas of
the monkey inferotemporal (IT) cortex have been shown to
contain neurons that are highly selective for faces (Freiwald
& Tsao, 2010). Although face images used in the monkey
experiment have not been rated by human subjects for social
traits, we can predict the ratings by projecting the face stimuli
to our AAM model, and then use the pre-trained regression
models to predict the social ratings (Guan et al., 2018).

In the following, we first define and compute each neuron’s
Linear Response Axis (LRA), the linear axis within AAM
that best captures the tuning selectivity of a neuron. We then
characterize the properties of the LRA’s both individually and
as a population. Finally, we compare the facial features en-
coded by the neuronal LRA’s versus those necessary for hu-
man social perception.

Results
Predicting Social Trait Perception
In order to predict human social perception of the faces seen
by the monkeys, we utilize a model we recently developed
based on the Active Appearance Model (AAM) (Guan et al.,
2018). The model obtains a latent vector space representation
of face images, consisting of combined principal components
of shape and texture features (see Methods). We then use lin-
ear regression to model how latent features of a face give rise
to trait ratings (20 social traits as in (Bainbridge et al., 2013),
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plus the demographic traits gender and age, see Methods).
We find that this approach predicts human social ratings on a
novel face better than other humans’ rating on the same face;
it also achieves comparable performance to the state-of-the-
art convolutional deep neural network, but has the advantage
of having better interpretability (Guan et al., 2018).

Figure 1: The face model is a vector space representation,
whose axes represent the facial features that vary among face
images, and the mean of the training dataset sample is cen-
tered at the origin (by design). We utilize the publicly avail-
able dataset (Bainbridge et al., 2013) (1) to train the AAM
face model (2), obtaining 60 facial features. Using the same
datasets, we model human social perception (3), and estimate
the facial information encoded by each neuron (4).

Here, we can predict the human social ratings of the faces
viewed by the monkeys by projecting these face images
into the pre-trained AAM model. We first obtain the land-
marks of the face stimuli using the free software Face++
(https://www.faceplusplus.com), then projecting them into
the pre-trained AAM model (Guan et al., 2018) (Figure 1).
Each face stimulus is a point in a 60-dimensional latent space.
Figure 2 shows an example face image viewed by monkeys.
We then obtain the predicted social perception of each face
stimulus using the pre-trained Linear Trait Axes or LTA’s (see
Methods). The LTA of a trait represents the linear combina-
tion of facial features that maximally modulates human per-
ception of this trait (a similar variation in facial feature along
any other axis will induce a smaller change in average human
perception). For example, the face in Figure 2A is predicted
to be slightly more than 1 standard deviation more attractive
than the average face (in the training data); Figure 2C shows
predicted social ratings a number of traits.

One question we want to answer is how much information
related to each social trait is encoded in the neural responses
of the monkey face patch neurons. To have sufficient statisti-
cal power to assess this, we first need to make sure that the 37
face images span a substantial portion of the predicted trait
ratings. This is indeed the case, as can be seen in Figure 3
for ”happy” and ”attractive.” Figure 3A.ii visualizes a pair of
face images seen by the monkeys that are predicted by the
model to be less (left) or more (right) happy, and another pair
(Figure 3B.ii) that is predicted to be less (left) or more (right)
attractive. They are consistent with visual intuition.

Figure 2: Face representation and social trait estimation. (A)
An example face image viewed by the monkeys. (B) 5 exam-
ples (out of 20) of predicted social trait ratings for the same
face.

Figure 3: Social trait rating prediction. The histograms (left)
of predicted social traits and two face stimuli (right) that are
predicted by the model to vary in (A) happiness and (B) at-
tractiveness. Distribution of predicted ”happy” rating (A.i)
for the 37 face stimuli (red) and training data (blue).

To quantify the information related to human social percep-
tion encoded by the macaque face patch neurons, we compute
the correlation coefficient between each neuron’s mean firing
rate for each face (see Methods) and the predicted trait rating
of each face. A neuron is deemed to significantly encode a
trait if its correlation coefficient has a p-value < 0.05. We
find that 19 out of 22 traits are encoded by a significant frac-
tion of the neural population (Figure 4).
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Figure 4: Proportion of neurons significantly encoding var-
ious social and demographic traits. A neuron is considered
to significantly encode a trait if its MFR has significant cor-
relation (p < 0.05, corrected for multiple comparison) with
predicted ratings of viewed faces for that trait. The red line
indicates the threshold for determining whether a significant
(non-zero) fraction of neurons encode a trait at the signif-
icance level of α = 0.05). This analysis only consists of
the 265 neurons whose responses we can statistically reliably
model (see subsection on Linear Response Axis)

Linear Response Axis

To quantify the featural selectivity of each face patch neuron,
we first define and compute the Linear Response Axis (LRA)
of each neuron (see Figure 5A), which is just the normal-
ized regression coefficient vector. Each LRA is obtained by
regressing each neuron’s mean firing rate (MFR) against the
first k = 13 latent features of each image in the AAM space. k
is chosen to be 13 in order to maximize the number of neurons
whose response we can reliably estimate (i.e. significant cor-
relation between model-predicted MFR and observed MFR
on held-out faces, see Methods). For k = 13, we find that
we can reliably estimate the LRA of 265 neurons – unless
otherwise noted, all subsequent LRA-based analyses are per-
formed using only these 265 neurons. The LRA specifies the
linear axis that maximally accounts for variations in the neu-
ral response. We find that the average neural response along
the LRA is not only monotonically increasing, as found in
(Chang & Tsao, 2017), but in fact highly linear in this data
set; and like in (Chang & Tsao, 2017), the neural response to
the principal axis is completely flat. This replicates the find-
ing in (Chang & Tsao, 2017) that monkey face patch neurons
encode single axes in the AAM latent feature space.

While Figure 3 quantifies the relationship between social
traits and individual neuron’s MFR, we are also interested in
characterizing the facial features encoded by the neural pop-
ulation as a whole. Naively, we might do so by applying prin-
cipal component analysis (PCA) to the LRA’s. However, the
LRA’s compose a special sort of data, namely unit-length vec-
tors that lie on a hypersphere. If the LRA’s lie in a completely
balanced manner (by balanced, we mean that for each LRA,
there is an ”opposite” LRA that points approximately in the
opposite direction, so that the two neurons encode the same

Figure 5: Schematic illustration of Linear response axis
(LRA). The blue dots represent MFR of a neuron for different
face images. The blue hyper-plane is the best linear fit of the
neuron’s response to those face stimuli. LRA gives the axis
in the face space that yields the largest linear gradient for this
neuron’s MFR.

AAM axis but have opposite preferences), then PCA would
pull out the main directions encoded by neural LRA’s; but
if they are highly imbalanced, then PCA would instead pull
out something like the tangent subspace and yield something
uninterpretable. We therefore add an opposite LRA to each
estimated LRA, to artificially balance the LRA’s, and then ap-
ply PCA. We find that PC 1 alone explain 48.2% of the total
variance among the LRA’s, and the first 9 PC’s explain 95%
of the variance among the LRA’s (Figure 6). Relative to the
other features, the first PC plays an outsized role in terms of
the features that the neurons linearly encode.

Figure 6: Incremental and cumulative proportion of variance
explained by the PCs of neural LRAs. The histogram indicate
the explained variance by each LRA PC and the plot for the
accumulated explained variance.
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Figure 7: Synthetic face images along the top three LRA
PC’s. Each row shows how the mean face changes when pos-
itive (right) and negative (left) values are added to the mean
face along each PC.

To get a sense for the primary featural axes that face patch
neurons encode, we generate synthetic faces along each of the
first three PC’s (Figure 7). The first row of Figure 7 shows
how the middle face changes as it gains more positive (right
face) or more negative (left face) value along the first LRA
PC; the next two rows show the same for LRA PC 2 and PC 3,
respectively. The faces undergo interesting holistic changes
along each of the first three PC’s, consisting of some age-
and gender-related changes but also other harder-to-verbalize
structural changes.

To gain a more quantitative understanding of what the ma-
jor features the face patch neurons encode as a population,
we compute the expected correlation between each LRA PC
and social trait (Figure 8), which is just the dot product be-
tween each LTA and LRA PC (they are both unit lengths).
We find that all three LRA PCs significantly correlate with
age. The expected correlation coefficient (dot product) be-
tween age LTA and each of LRA PC1, PC2, and PC3 ρ=.48,
ρ=-.32, ρ=.67, respectively. In addition, PC1 and PC3 are
correlated with attractiveness (PC1: ρ=.35, PC2: ρ=.75), and
PC2 correlated with responsible (ρ=.67). This shows that
while the neural population as a whole encode features that
are highly correlated with those important for human social
perception, the most important featural dimension (PC 1) has
a poor correlation with any of the human social traits that we
considered.

Figure 9 illustrates yet another way to visualize the rela-
tionship between neural LRA’s and human LTA’s. It shows a
scatterplot of all the neural LRA’s (red), the “pposite LRA’s”
(gray), and the social LTA’s (green) projected into the sub-
space spanned by the Attractive and Responsible LTA’s, the

Figure 8: Expected correlation (i.e. dot product) between neu-
ral LRA PC’s and social trait LTA’s. Each row indicate ex-
pected c.c. for the various traits for each PC (blue: social
trait, magenta: demographic trait). The bars indicate the ab-
solute value of the correlation coefficients while the sign of
the correlation is represented by + and - sign in front of the
name of traits on x-axis. The traits are ordered in descending
order of expected c.c., separately for social and demographic
trait.

two traits that neurons as a population linearly encoded the
most information about. We see that, first of all, that most of
the social LTA’s are fairly close to unit length within this sub-
space, indicating that most of them point in a direction very
close to this 2D subspace. The neural LRA’s show a range of
distances from the origin, with the majority lying close to the
origin, indicating they primarily point in a direction far away
from this 2D plane that is quite important for human social
perception. The neurons that do have LRA’s pointing close to
this subspace (distance close to 1 from the origin) are mostly
pointing in the direction of traits such as familiar, intelligent,
and normal – the traits that have the greatest number of sig-
nificant correlation with neurons (Figure 4).

Conversely, we can also visualize all the projected LTA’s
and LRA’s in the subspace spanned by LRA PC 1 and PC 2
(Figure 10). Here, we see that the neural LRA’s are highly im-
balanced, with most LRA having a positive projection along
PC 1. We also see that most human LTA’s point in a direc-
tion far away from PC 1, but have a fairly large component
pointing in the direction of PC 2 (the exception is Attractive,
which has the opposite pattern).

Similarly, we can also visualize all the projected LTA’s and
LRA’s in the subspace spanned by LRA PC 1 and PC 3 (Fig-
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Figure 9: Projection of LRA’s and LTA’s onto the plane
spanned by Attractive and Responsible LTA’s. Red dots are
projections of LRA’s (gray for “opposite” LRA’s). Green dots
are projections of LTAs’. The label next to each green dot in-
dicates the trait.

ure 10). It is apparent that Attractive and Age have fairly
large components pointing along PC 3, along with traits such
as memorable, interesting, and confident.

Subspace Comparison
While the previous analyses suggest that there is some over-
lap in the facial features that are encoded by monkey face
patch neurons, and those that matter for human social trait
perception, here we quantify their overlap in a different way.
We compute how well (model-predicted) human social per-
ception can be computed from the information present in the
monkey face patch neurons (via simple linear decoding), and
vice versa. As shown in Figure 12, the LTA-predicted ratings
of the 22 social traits can be almost perfectly recovered from
the LRA-predicted neural response (265 neurons) to face im-
ages (R2 very close to 1); conversely, we find that the LRA-
predicted response of all 265 neurons can be perfectly recov-
ered from the LTA-predicted social trait ratings (22 traits),
where R2 = 1 in every case. This result suggests that facial
featural information present in the macaque face patch areas
is largely the same as those necessary for human social per-
ception.

Methods
The Face Model: AAM
The Face model is an instantiation of the Active Appearance
Model (Cootes et al., 2001; Guan et al., 2018). Each face im-
age has shape and texture features. The shape features consist

Figure 10: Projection of LRA’s and LTA’s onto LRA PC1 and
LRA PC2. Similar formatting as Figure 9.

of the (x,y) coordinates of a set of landmarks that are consis-
tently defined across faces. The texture features are the pixel
values (grayscale) of each face image after warping it to have
the same landmark locations as the averaged face. To reduce
the dimensionality and remove correlation between shape and
texture features, we perform additional Principal Component
Analysis (PCA) on shape and texture features and retain the
first 60 PC’s, resulting in a 60-dimensional AAM feature
space. AAM features form the basis of the Face Model that
jointly describes the variations of shape and texture of the
faces.

Social Trait Perception: Linear Trait Axis (LTA)
The Linear Trait Axis (LTA) β̃ for each social trait is com-
puted as the normalized regression coefficients of ratings re-
gressed against AAM features:

y = β~x+ ε

where y is the standardized ratings for the trait,~x is the AAM
features, and β is the vector of regression coefficients. The
linear trait axis (LTA) is defined as

β̃ =
β

||β||

The LTA specifies a direction in the face space that would
(linearly) maximally alter the perception of the trait.

Predicted social perception A novel face images can be
projected into the trained face model, resulting in a 60-
dimensional representation ~x. The predicted rating of a face
image is then given by

ŷ = β~x
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Figure 11: Projection of LRA’s and LTA’s onto LRA PC 1
and LRA PC 3. Similar formatting as Figure 9.

Figure 12: Comparison between LRA subspace and social
LTA subspace. The bars (blue: social trait, magenta: demo-
graphic trait) represent the amount of variance in LTA ex-
plained by LRA, measured in terms of R2.

with ~x as the 60-dim representation in the face model, and β

the regression coefficients for the target trait.

Neuron Encoding - Linear Response Axis (LRA)
Similar to LTA, the Linear Trait Axis (LRA) α̃ for each neu-
ron is the normalized regression coefficients of neurons mean
fire rate (MFR) regressed against AAM features.

r = α~x+ ε

α̃ =
α

||α||
where r is the neurons MFR,~x is the AAM features, and α is
the vector of regression coefficients. α̃ is the axis in the Face
Model that drives maximal (linear) variation of the neurons
response. Consistent with existing literature (Chang & Tsao,
2017), we find that MFR (averaged across neurons) increases
monotonically along the LRA, and is flat along the principal
orthogonal axis (data not shown).

Cross-validation is implemented to evaluate the reliability
of LRA estimation. When estimating the LRA for a neuron,
its true response to one stimulus is held out as test data. Using
the LRA fitted on the remaining faces, we can compare the
model-predicted MFR with the actual MFR on the held-out
data point. For each neuron, the same process is repeated for
every face image (as the test data point). We then the corre-
lation coefficient between the true MFR and model-predicted
MFR across all held-out data. The neuron is retained for fur-
ther analysis if the correlation is significant (p < 0.05).

Subspace Comparison

For two vector spaces A and B, let {a1,a2, . . .an} be a set of
vectors in A. The explanatory strength of space B for vector
a1 is determined by the percentage of variance of data from
space A explained by the best linear combination of Bs basis
vectors:

R2 = 1− ∑i(zi− zapprox)
2

∑i(zi− z̄)2 ,

where zi is the data projection on vector a1, z̄ is the mean, and
zapprox is the projection to space B.

Discussion

Our results indicate that, while macaque face patch neurons
are primarily tuned to combinations of facial features that are
rather different from those most important for human social
trait perception, one can easily go back and forth using a sim-
ple linear operation (linear decoding scheme). There is no
particular reason to expect that monkey face patch neurons,
or monkeys themselves should particularly care about social
trait perception of human faces. However, our results sug-
gest that human social perception of faces may arise simply
as linear decoding of featural information in a neural repre-
sentational system that humans and monkeys share with each
other, and with our common primate ancestors.

Leveraging computational modeling, our work represents
a novel way to retroactively analyze social perceptual infor-
mation or other face-related cognitive or perceptual informa-
tion in monkey neural recording data, even if no social rat-
ings are collected for the face images that the monkeys actu-
ally saw. We can also easily extend this framework to other
kinds of animal neural data, or to human neural recording (or
neuroimaging) data, obtained while experimental participants
viewed face images. Technologically, this approach presents
a promising approach for extracting much more information
out of neural data about the neural basis of face processing,
than has been hitherto possible.
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