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Abstract: Spectral imaging is a powerful technique used to simultaneously study multiple 
fluorophore labels with overlapping emissions. Here, we present a computational spectral 
imaging method, which uses sample spatial fluorescence information as a reconstruction 
constraint. Our method addresses both the under-sampling issue of compressive spectral 
imaging and the low throughput issue of scanning spectral imaging. With simulated and 
experimental data, we have demonstrated the reconstruction precision of our method in two 
and three-color imaging. We have experimentally validated this method for differentiating 
cellular structures labeled with two red-colored fluorescent proteins, tdTomato and mCherry, 
which have highly overlapping emission spectra. Our method has the advantage of totally free 
wavelength choice and can also be combined with conventional filter-based sequential multi-
color imaging to further improve multiplexing capability. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
In fluorescence microscopy, it is desirable to selectively label sample structures with 
differently colored fluorophores to study interactions [1]. Commonly, multiple colors (namely 
channels) are either imaged sequentially by using different filter sets or simultaneously by 
splitting signals onto different regions of the camera or onto several cameras. Both 
approaches rely on filters and are thus ultimately limited by the spectral overlap of 
fluorophores, which makes it difficult in practice to distinguish more than four colors within 
the visible spectrum without having substantial crosstalk among channels. Sequential imaging 
of more than four targets is particularly challenging for live samples. 

As an alternative, spectral imaging is a powerful tool to simultaneously study multiple 
labels in biological samples at the subcellular, cellular and tissue level [1–3]. Traditionally, in 
spectral imaging, a three-dimensional (3D) data cube (2D spatial, 1D spectral) is generated 
via spatial or wavelength scanning (hereafter called scanning spectral imaging), where a 
diffraction grating or prism is used to acquire the full spectrum at each spatial point of the 
image [4]. With the spectral information, spectral imaging approaches are capable of 
unambiguously identifying fluorophores with overlapping spectra and permitting high levels 
of signal multiplexing [5]. However, a major drawback of scanning spectral imaging is the 
relatively long acquisition time. To solve this problem, snapshot spectral imaging methods 
that based on tomographic multiplexing [6,7] or compressive hyperspectral imaging [8–10] 
have been developed. In the latter case, the entire data cube are either coded and captured in a 
single 2D camera integration with different wavelength signal dispersed to different spatial 
locations [8,9], or coded by a series of Hadamard patterns to generate single pixel signals 
[10]. The whole data cube are then reconstructed using compressed sensing theory. 
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Unfortunately, these methods are difficult to apply in fluorescence microscopy that uses high 
numerical aperture objectives to achieve diffraction-limited resolution [4]. Only multicolor 
fluorescent beads images have been demonstrated [9,10]. 

In this paper, we demonstrate a computational spectral imaging method, which aims to 
address both the under-sampling issue of compressive spectral imaging and the long 
acquisition issue of scanning spectral imaging. To do so, we employ two strategies: (1) using 
a dual-view imaging system to generate both an undispersed spatial image capturing the 
superposition of multiple labels and a spectral image where signals are dispersed by a wedge 
prism to different spatial locations according to wavelength (Figs. 1(a) and 1(b)); (2) using 
Digital Micromirror Device (DMD) [8,9] to generate multiple randomly coded illumination 
patterns on the sample. In our approach, the undispersed spatial image acts as a spatial 
constraint in data reconstruction to guarantee correct reconstruction and enhance accuracy. 
This strategy is similar to what was used in compressive hyperspectral imaging [11] and 
compressed ultrafast photography [12,13]. With both simulation and experimental data, we 
demonstrate that for two-color imaging, single snapshot imaging using strategy (1) alone 
ensures a high reconstruction accuracy in resolving labels with emission peaks separated by 
~20 nm. Using simulation, we also show that for three-color imaging, the use of five 
randomly coded snapshots is sufficient for an accurate reconstruction. 

2. Methods 
2.1 Space-constrained computational spectral imaging 

We describe our sample as a three-dimensional non-negative matrix, xm = {x(i, j, k); i, j = 
1,…, N, k = 1, …, K}. x(i, j, k) represents the fluorescence signal from the kth type of probes at 
spatial pixel localization (i, j), N is the number of pixels along one spatial dimension (for 
simplicity, we assumed the filed-of-view to be square), and K is the number of probes used to 
label the sample. The subscript m indicates the matrix representation of the variables. 

To achieve multi-color imaging of the sample, we simultaneously measured its spatial and 
spectral information. Specifically, we employed a dual-view detection scheme (Fig. 1(a)), 
which is similar to that used in spectral-resolved super-resolution localization microscopy and 
spectral single molecule tracking [14–17]. In the detection path, the emitted fluorescence was 
split by a 50:50 beam splitter cube (BS013, Thorlabs). The reflected fluorescence was 
directed to the camera by a mirror (Path 1, referred to as the spatial path) to generate a spatial 
image yspatial_m. The transmitted fluorescence passed through a dispersive wedge prism 
(SM1W189, Thorlabs), which would shift blue to red emissions from left to right along the 
lateral direction, and two pairs of mirrors (Path 2, referred to as spectral path) to produce a 
spectral image yspectral_m. With spectral calibration results (Section 2.2), we sought to 
reconstruct xm through solving an optimization problem in which yspatial_m acted as a spatial 
constraint in restoring the spectral information contained in yspectral_m (Fig. 1(b)). 

Here, we first describe the forward imaging formation model of our system. In the spatial 
path, yspatial_m is the superposition integral of all probe signals at each spatial location, which is 
expressed as yspatial_m = Σk = 1 to K x(i, j, k). 

The formation of yspatial_m can be described by matrix multiplication: 

 [ ]1 2, , , ,spatial spatial KI I I= = y A x x  (1) 

where yspatial and x are one dimensional vector forms of yspatial_m and xm, respectively, and I is 
an identical matrix with a size of N × N. On the other hand, in the spectral path, because we 
model the third dimension of xm as the choice of probes instead of wavelength, the formation 
of yspectral_m can be described as a convolution problem, in which the emission spectrum of 
each probe and the dispersion by the prism determine the corresponding convolution kernel 
function. Assuming h(k) is the dispersed convolution kernel function for the kth channel 
(obtained through spectral calibration), then yspectral_m is the summation of convolved signals: 
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yspectral_m = Σk = 1 to K h(k) * x(k). This convolution can also be expressed in matrix 
multiplication: 

 _ .spectral m spectral=y A x  (2) 

Each column of the measurement matrix, coli(Aspectral), i = 1, …, N × N × M, corresponds to 
the convolved image assuming a single probe is placed at the ith position of x. 

Combining Eq. (1) and Eq. (2), we have: 

 ,=y Ax  (3) 

with y = [ yspatial_m; yspectral_m] and A = [Aspatial; Aspectral]. 
To reconstruct x under the forward imaging model (Fig. 1(b)), two scenarios need to be 

considered. First, when the sample contains only two probes, Eq. (3) is a determined 
equation. Estimating x is a deconvolution problem. However, because of the ill-conditioned 
nature of the deconvolution problem, general inverse matrix method cannot be used. 
Therefore, we need to solve the inversion problem with a regularization term to stabilize the 
solution: 

 ( ){ }1
2 2

arg min ,xβΨ− +y Ax  (4) 

while x is a is also subject to the non-negativity constraint. In our implementation, we 
adopted the two-step iterative shrinkage/thresholding (TwIST) [18] algorithm, and chose ψ(x) 
in the form of summation of 2D total variation (TV) of each channel: 

 ( ) ( ) ( )
2

1

,
K

i j
k

x x k x kΨ
=

= Δ + Δ        (5) 

Δi and Δj are the horizontal and vertical first-order local difference operators. In Eq. (4), the 
first term, ||y – Ax||2, is the fidelity term which encourages the actual measurement y to closely 
match the estimated measurement Ax. The second term, βψ(x), is the regularization term, 
which encourages x to be piecewise constant (i.e., utilizing a sparse prior in the gradient 
domain, which is generally valid for cellular fluorescent images [19,20]). The regularization 
parameter, β, is adjusted empirically to lead to results that are consistent with the physical 
reality. In both our simulation and experiments, we found a β value between 1 and 5 gave 
good reconstruction results. 

In a second scenario, when the sample is multi-color labeled (number of probes K > 2) 
and only one snapshot is taken, the number of variables in x becomes larger than the number 
of measurements. In this case, solving Eq. (3) becomes a compressive sensing problem [21]. 
Due to the overall similarity of emission spectrum of fluorescence proteins, the measurement 
matrix A would generally lack the incoherence required for successful compressive sensing 
reconstruction. This problem can be solved by acquiring multiple snapshots of the sample 
using random illumination patterns generated by a DMD. Under this strategy, the forward 
imaging model becomes: 

 ,=y ADx  (6) 

in which D is a binary matrix describing the random illumination pattern. y becomes the 
cascade of multiple measurements, and A is also a cascade of the original measurement 
matrix with certain columns setting to zero according to the corresponding illumination 
pattern. This strategy guarantees a successful reconstruction in two ways: (1) the incoherence 
of the measurement matrix A increases because of the randomized illumination; (2) with more 
measurements, Eq. (3) could become an over-determined problem. Thus, x can be obtained 
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by optimizing the same function of Eq. (4) with AD being the new measurement matrix. We 
will illustrate the setup in Section 3.3. 

 

Fig. 1. Space-constrained computational spectral imaging detection system. (a) Schematic of 
the setup. The emitting light from the sample is split evenly by a beam splitter to generate an 
undispersed spatial image (Path 1) and a dispersed spectral image (Path 2) respectively on the 
left and right parts of the same camera. L, lens. (b) Illustration of overall space-constrained 
computational spectral imaging approach using green and red fluorescent beads. (c) Registered 
spatial (blue) and spectral (red) images of fluorescent beads at different wavelength. Scale bar: 
1 µm. (d) Measured lateral spatial shift and its corresponding polynomial fitting. The 
measurement is averaged from 5 independent experiments, with a negligible standard 
deviation. 

2.2 Spectral calibration 

Calibration between the spectral and spatial paths was performed using fluorescent beads in 
different colors (yellow-green, orange, red, and dark red, F10720, Life Technologies). Each 
kind of beads was deposited onto a coverslip at a low density. Upon imaging, individual 
beads appeared as well-resolved, diffraction-limited spots (Fig. 1(b)). Narrow bandpass filters 
(FB500-10, FB550-10, FB600-10, FB700-10, Thorlabs) were placed between the beam 
splitter and the wedge prism to determine the spectral positions of the corresponding 
wavelength in the spectral image relative to the image position in the spatial image. Then, the 
paired images were registered (described in 2.3 below, Fig. 1(b)) to estimate the lateral spatial 
shift of different wavelengths using cross-correlation. The measured lateral shift curve was 
further fitted with a second-order polynomial function to generate the prism dispersion 
function (Fig. 1(c)). This calibration only needed to be performed once for all experiments 
performed on the setup. 

In order to generate the measurement matrix A, we need to measure the convolution 
kernel functions in A, which is determined by the probe emission spectrum, spectral 
transmission of the optical system (especially the dichroic mirror and the emission filter) and 
the prism dispersion function. For this purpose, we directly calibrated the convolution kernel 
functions using samples labeled with probes in a single color. In this single-color imaging 
scenario, image formation still can be described as the format of Eq. (3): yc = Ac xprobe_c, in 
which yc is the vectorized form of spectral measurement from single-color labeled sample, 
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xprobe_c is the one-dimensional convolution kernel function, Ac is a matrix with each of its 
column representing the corresponding lateral shifted spatial measurement. Because the size 
of xprobe_c is much smaller than yc, the overdetermined problem can be solved by the 
generalized inverse matrix method xprobe_c = (Ac

TAc)
−1 Ac

T yc. 

2.3 Dual-view image registration 

Image registration was performed before calibration and reconstruction to avoid dual-view 
mismatch and the effect of potential optical aberrations. We used control point-based image 
registration method. First, yellow-green fluorescent beads were imaged at 500 nm. Well-
separated spots, which acted as control-points, were localized [22]. Then the localized beads 
positions were manually checked to identify four pairs of matched spots from the four corners 
of the spatial and spectral images. The positions of the four pairs of spots were used to 
calculate the initial registration parameters from the spectral channel to the spatial channel. 
After applying the initial transformation, the program automatically identified all matched 
spots and determined a third-order polynomial coordinate transform function between the two 
images with a least-square fitting to the coordinates of these matched spots. The polynomial 
function was: xt = A0 + A1x + A2y + A3x

2 + A4xy + A5y
2 + A6x

3 + A7xy2 + A8x
2y + A9y

3; yt = B0 + 
B1y + B2x + B3y

2 + B4xy + B5x
2 + B6y

3 + B7x
2y + B8xy2 + B9x

3, where xt and yt were the 
transformed spectral coordinates, x and y were the initial spectral coordinates, and An and Bn 
were coefficients obtained by least-square fitting. The described procedure was repeated on 
five independently measured data sets to generate an averaged registration function. Finally, 
backward registration [23] from spatial channel to spectral channel was performed to 
eliminate registration artifacts. 

2.4 Simulation 

Simulated data sets were used to quantitatively evaluate the performance of the image 
reconstruction method. The data sets were generated by the following steps using 
experimental wide-field fluorescent images acquired with high signal-to-noise ratio (SNR), 
which we referred to as ground truth images: (1) ground truth images were normalized to the 
mean photon counts per pixel and then rescaled up by the desired signal level (average photon 
counts per pixel); (2) a homogenous background was added to the rescaled images according 
to desired signal-to-background ratio (SBR); (3) for each ground truth image, we assumed 
that it was generated by a specific fluorophore with known emission spectrum (downloaded 
from Fluorescence SpectraViewer (ThermoFisher)) masked by the dichroic mirror and 
emission filter transmission window (500 to 550 nm for green-yellow fluorophores and 575 to 
625 nm for orange-red fluorophores); (4) the emission spectra and prism dispersion function 
were used to generate the convolution kernel function for each probe, and then these kernel 
functions were incorporated to build the measurement matrix A; (5) the spatial and spectral 
images were generated according to Eqs. (1) and (2); (6) Poisson noise and sCMOS readout 
noise map [24] were added to both images to generate the synthesized image data sets. 

2.5 Sample preparation and imaging 

BSC-1 cells (African green monkey kidney cells, from UCSF Cell Culture Facility) were 
maintained in Dulbecco’s modified Eagle medium (DMEM) with high glucose (UCSF Cell 
Culture Facility), supplemented with 10% (vol/vol) FBS and 100 µg/ml 
penicillin/streptomycin (UCSF Cell Culture Facility). All cells were grown at 37°C and 5% 
CO2 in a humidified incubator. The plasmids encoding mCherry-Vimentin-C-18 and 
tdTomato-Clathrin-15 (the last number indicating the number of amino acid residues of the 
linker between the fluorescent protein and the target protein) were purchased from the 
Michael Davidson Fluorescent Protein Collection at the UCSF Nikon Imaging Center. We 
transfected BSC-1 cells grown in an 8-well glass bottom chamber (Thermo Fisher Scientific) 
using FuGene HD (Promega). For better cell attachment, the 8-well chambers was coated 
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with fibronectin solution (Sigma-Aldrich, F0895-1MG) for 45 min before seeding cells. Cells 
were seeded at the density of 2000 ~4000 per well one day before transfection. Plasmid 
encoding clathrin and vimentin were mixed at a ratio of 1:4, and a total amount of 200 ng 
DNA was added to each well. Forty-eight hours after transfection, cells were fixed with 4% 
paraformaldehyde for 15 mins, followed by three times of PBS washes. 

In order to minimize the background fluorescence, our spectral detection setup was built 
around a wide-field inverted fluorescence microscope (Nikon Ti-U) with an oil immersion 
objectives (Olympus 100x 1.4 NA UPlanSApo). Excitation light beams (488 nm and 561 nm, 
Coherent OBIS) were combined, expanded, and then passed through a home-built total 
internal reflection fluorescence (TIRF) illuminator before entering the microscope. The 
incident angle of the excitation light was adjusted to be just smaller than the critical angle. 
Fluorescence was filtered using a quad-band dichroic mirror (z405/488/561/640rpc, Chroma) 
before exiting the microscope body. An emission filter (ET525/50m or ET600/50m Chroma) 
was inserted in the detection path to block the excitation light. A pair of lenses (Fig. 1(a), L1: 
f = 150 mm, L2: f = 100 mm) relayed the intermediate image plane to the camera, with the 
optical elements for spatial-spectral dual-view imaging placed in between. Images were 
recorded by a sCMOS camera (ORCA Flash 4.0 sCMOS, Hamamatsu). The final pixel size at 
the image plane was 85 nm. During imaging, the camera frame rate was set to be 5 Hz. 

3. Results 
3.1 Evaluation using simulated two-color data 

We first quantified the performance of the reconstruction algorithm by analyzing a simulated 
data set (see Section 2.4) (Fig. 2). Experimentally acquired images of microtubule (Fig. 2(a)) 
and mitochondria outer membrane protein Tom20 (Fig. 2(b)) were assumed to be labeled by 
EGFP and EYFP. Conventionally, EGFP and EYFP cannot be easily distinguished using 
filters, because their emission peaks are separated by only 20 nm (Fig. 2(c)). Here we used 
this probe pair to demonstrate the reconstruction accuracy and spectral resolution of our 
computational method. For this purpose, simulated images (Figs. 2(d)-2(e)) with various 
signal levels and SBR were generated. We set the average signal level to be between 100 and 
1500 photons per pixel and SBR to be between 1 and 5, which is typical for wide-field 
fluorescence microscopy of biological samples. Under this condition and with sensitive 
sCMOS or EMCCD cameras, Poisson shot noise instead of camera readout noise is the most 
significant noise source. Therefore, the average signal-to-noise ratios (SNR) of the simulated 
data set is approximately the square root of average photon counts per pixel. We purposely 
chose relatively low signal levels to examine the effect of such noise on the reconstruction 
algorithm. 

We compared the reconstructed results (Figs. 2(f)-2(g)) with the ground truth images 
(Figs. 2(a)-2(b)) and quantified the accuracy by the root mean squared error (RMSE) between 
them. In order to measure RMSE independent of the absolute signal level, we used the 
relative RMSE, which was calculated after the ground truth and reconstructed images are 
normalized to the maxima. The resulted relative RMSE was smaller than 0.1 even when 
signal level in extremely low (Fig. 2(h)). For signal level higher than 500, our method steadily 
presented a RMSE of ~0.04. Besides, our method had robust performance (0.03 ~0.05 relative 
RMSE) under a wide range of background signal level. We also simulated orange-red 
fluorescent protein pair tdTomato and mCherry (Fig. 2(j)). The results (Fig. 2(k)-2(l)) still 
achieved high precision reconstruction for red fluorescent proteins. The dependence of 
tdTomato-mCherry reconstruction RMSE on signal level and SBR followed the same trend as 
that of EGFR and EYGP, with the difference that tdTomato-mCherry reconstruction was 
slightly more sensitive to noise and background signal. This difference could be explained by 
the fact that even though the emission peak separation between tdTomato and mCherry is 
comparable to that between EGFP and EYFP (Fig. 2(c)), the emission spectrum of tdTomato 
and mCherry are much wider than those of EGFP and EYFP (Fig. 2(c) and 2(j)). With these 
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performances, we conclude that our method can accurately separate probes with emission 
peaks separated by ~20 nm. We note that the main contributor to this performance is the 
space-constraint from the spatial image. Without space-constraint, the algorithm failed to 
correctly assign signals between channels. 

 

Fig. 2. Simulated results of two-color imaging using space-constrained computational spectral 
imaging. (a, b) “Ground truth” microtubule and mitochondria images. Image size: 128 × 128 
pixels. (c) The normalized emission spectrum of EGFP and EYFP, showing the ~20 nm 
emission peak separation and the filter passing band. (d, e) Simulated spatial (d) and spectral 
(e) images by assuming that microtubule and mitochondria are label by EGFP and EYFP 
respectively. (f,g) Representative reconstructed results from (d) and (e) showing clean signal 
separation. Average signal level and background were 1000 and 300. (h) The dependence of 
EGFP-EYFP reconstruction root mean square error (RMSE) of our method on average signal 
level when there is no background. (i) The dependence of EGFP-EYFP reconstruction RMSE 
on SBR. The signal level was 1000. (j) The normalized emission spectrum of tdTomato and 
mCherry and the filter passing band. (k,l) The dependence of tdTomato-mCheery 
reconstruction RMSE on signal level and SBR. 

3.2 Analysis of two-color experimental data 

We then validated our method in analyzing real experimental images. Here we demonstrated 
two-color imaging by tdTomato-clathrin and mCherry-vimentin. This sample was chosen for 
two reasons. First, because the ground truth was unknown, two distinct structures were 
chosen to facilitate visual evaluation of reconstruction performance. As shown in Figs. 3(a) 
and 3(b), in the acquired spatial and spectral snapshot of the sample, the bright dots 
corresponded to clathrin pits and the network structure was vimentin. By comparing the 
reconstruct results with the structural prior knowledge, we could better estimate the 
performance of our method in analyzing real experimental data. Second, tdTomato and 
mCherry were used because their emission peaks are separated by just 20 nm (Fig. 3(c)). 

Using dual-view registration function (obtained as described in section 2.4) and dispersed 
convolution kernel functions (Fig. 3(d)) calibrated from single-color labeled sample, we 
successfully reconstructed clathrin (Fig. 3(e)) and vimentin structure (Fig. 3(f)) with low 
cross talk. Vimentin network was well resolved despite that their intensity varied a lot in the 
image. Most of the clathrin pits were also well resolved except the cross-talk at upper left 
corner and center of the image where vimentin signal was strong. The image resolution was 
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not sacrificed during reconstruction, as supported by the fact that the peak widths of intensity 
profiles in both reconstructed channels were similar to those from the same structures in the 
non-dispersed spatial image (Fig. 3(g)). 

 

Fig. 3. Experimental results of snapshot two-color imaging using space-constrained 
computational spectral imaging. Images shown here are BSC-1 cells expressing mCherry-
Vimentin-C-18 and tdTomato-Clathrin-15. (a, b) Experimental images from spatial and 
spectral image paths. Scale bar: 1 µm. (c) Emission spectrum of mCherry and tdTomato, the 
orange shaded area shows the region of detection filter used in our system. (d) Calibrated 
emission from single-color imaging experiments. (e, f) Reconstructed images for tdTomato-
clathrin (e) and mCherry-vimentin (f) respectively. (g) The intensity profile along the yellow 
line in (a,d,e), showing the algorithm successfully separates clathrin and vimentin structures. 

3.3 Evaluation using simulated three-color data 

As mentioned in section 2.1, when the sample is multi-color labeled, multiple snapshots 
generated by DMD random illumination can be used to avoid under-sampling of the 3D data. 
We illustrated the proposed setup diagram (Fig. 4(a)), in which a DMD was placed in the 
excitation path at the conjugate plane of the sample plane. Although placing DMD in the 
detection path can serve the same purpose, it would result in significant loss of emitted 
photons. As a proof-of-principle test, we used simulations to demonstrate the effectiveness of 
our computational spectral imaging method in three-color imaging. Based on the simulation 
of Section 3.1, we added another clathrin-tagRFP channel. Random illumination patterns 
were simulated by generating random binary patterns of the same size with the ground truth 
images (Fig. 4(b)). These patterns were then multiplied to ground truth and measurement 
matrix before generating simulated spatial and spectral images (Fig. 4(a)). Figure 4(c) 
displays clean separation of all three channels, with the cross-talk slightly higher than two-
color imaging. The reconstruction performance depended on the number of snapshots. We 
found that for three-color imaging, relative RMSE decreased from ~0.1 to ~0.04 with the 
increasing of the number of snapshots from 1 to 10 (Fig. 4(d), equivalent to an oversampling 
ratio from 0.7 to 7). This result means that more measurements ensure higher reconstruction 
accuracy. However, more measurements also lowers the temporal resolution of computational 
spectral imaging and makes this method less advantageous compared to scanning spectral 
imaging. For three-color imaging, a snapshot number of five is a good tradeoff between 
reconstruction accuracy and imaging speed (Fig. 4(d)). 
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Fig. 4. Multi-color computational spectral imaging scheme. (a) Illustration of excitation 
scheme, in which a DMD is placed at the conjugate plane of the sample to generate random 
illumination. Representative simulated spatial (left) and spectral (right) images after adding a 
random illumination pattern to the ground truth were shown. (b) “Ground truth” microtubule, 
mitochondria and clathrin images. Image size: 64 x 64 pixels. (c) Representative reconstructed 
images of the three color channels. Average signal level and background was set to 1000 and 
300 respectively. The number of illumination patterns is 5. (d) Dependence of reconstruction 
RMSE on the number of snapshots and oversampling ratio (calculated by dividing measured 
number of pixels and reconstructed number of pixels). 

4. Conclusion
We present a computational spectral imaging method for wide-field multi-color fluorescence 
imaging. The method is based on simultaneous spatial and spectral data acquisition, in which 
the spatial information acts as a constraint in the image reconstruction to achieve superior 
accuracy. With both simulation and experimental data, we have shown that our method has 
high reconstruction accuracy in separating probes with emission peak separation of 20 nm for 
two-color imaging. As a proof-of-principle, we have also shown with simulation that our 
method is capable of multi-color imaging given multiple snapshots taken. Our method 
provides free wavelength choice for multi-color imaging that is not limited by fluorescence 
band-pass filter choices, for example, when using notch filters to block excitation lasers and 
hence providing wide-open passing bands. It can also be easily combined with conventional 
filter-based sequential multi-color imaging to further expand the probe choices of fluorescent 
imaging, because multiple fluorophores within the filter windows can be distinguished. 

The same method can also be combined with other imaging modalities besides TIRF, for 
example spinning disk confocal and light sheet microscopy [25]. We note that the main 
limitation of our method is that the application is confined to imaging distinct structures. 
Relatively homogeneous distributed protein over the FOV, for example diffuse membrane 
protein, would result in homogeneous spectral image, additional spatial coding such as using 
DMD-generated excitation patterns would then be required to extract the color information. 
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