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Stabilization of the 81-channel coherent beam
combination using machine learning

DAN WANG,* QIANG DU, TONG ZHOU, DERUN LI, AND RUSSELL
WILCOX

Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
*dwang2@lbl.gov

Abstract: We develop a rapidly converging algorithm for stabilizing a large channel-count
diffractive optical coherent beam combination. An 81-beam combiner is controlled by a
novel, machine-learning based, iterative method to correct the optical phases, operating on an
experimentally calibrated numerical model. A neural-network is trained to detect phase errors
based on interference pattern recognition of uncombined beams adjacent to the combined one.
Due to the non-uniqueness of solutions in the full space of possible phases, the network is
trained within a limited phase perturbation/error range. This also reduces the number of samples
needed for training. Simulations have proven that the network can converge in one step for small
phase perturbations. When the trained neural-network is applied to a realistic case of 360 degree
full range, an iterative scheme exploits random walking at the beginning, with the accuracy of
prediction on phase feedback direction, to allow the neural-network to step into the training range
for fast convergence. This neural-network-based iterative method of phase detection works tens
of times faster than the commonly used stochastic parallel gradient descent approach (SPGD)
using a single-detector and random dither when both are tested with random phase perturbations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent beam combination is a way to derive high energy and power from lasers which are
limited in output, by adding outputs together [1,2]. We are using this approach to produce high
energy pulses from fiber lasers, with a goal of combining about 100 lasers with 10 mJ each to
produce Joule-level, ultrafast pulses [3,4]. We choose to combine on a diffractive optical element
(DOE) to reduce the number of optics each beam must go through, with two elements per beam
needed to combine ultrafast pulses while minimizing dispersion [5–7].

An essential task in beam combination is to actively control the input beam phases, which are
subject to mechanical and thermal perturbations, maintaining the correct phasing to maximize
combination efficiency. There are several methods of determining phase errors to facilitate
feedback. One uses a secondary interferometer to read the phases directly by interfering a
reference beam with each input beam, but this device must also be stable, and adds to the number
of optics [8,9]. Another approach, most commonly used, is to measure only the combined beam
power and dither the input phases using a genetic algorithm; stochastic parallel gradient descent
(SPGD) [10,11]. This works for CW and high repetition rate pulsed combination, but the number
of steps (feedback cycles) it takes to converge is approximately ten times the number of combined
beams [12]. If there is one sample point per pulse, and one step or fewer per sample point, this
process becomes too slow for combination of pulses with kHz repetition rates and hundreds of
beams, which is our situation. SPGD is hampered by gaining information from only one detector,
giving no indication of which beam or which direction to adjust, and it also introduces noise by
its dithering and searching process [13].

After the DOE, an array of uncombined beams adjacent to the combined one emerges. These
are always present at low intensity, even when combining is optimal. For a one-dimensional,
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N-way combiner, since each of N input beams is split by the combiner at the same time it adds
the N beams together, there will be N sets of N uncombined beams each, all having one common
point which is the combined center beam. Thus, there are 2N − 1 diffracted beams. For a
two-dimensional combiner with N × M beams, the dimensions are orthogonal, and the total is
(2N − 1) × (2M − 1). This can be seen as a spatial convolution process [6,13]. Since the diffracted
beams overlap and interfere at many points (more than the number of input beams), the resulting
interference pattern can potentially indicate relative phases of the input beams. It is possible to
measure this interference pattern with a camera and use this information to derive phase errors,
but since only intensities are measured, phase information is lost and must be retrieved somehow.
This is a classic problem when analyzing interference patterns, usually solved by an iterative
process which converges after much computation, which tends to be slow [14]. While phase
retrieval applied to analysis of static patterns (e.g. X-ray crystallography) is adequate, a dynamic
feedback system requires quick determination of phase errors, so a more efficient solution must
be sought.

If the interference pattern can be interpreted to yield phase information, we would expect that
a pattern recognition machine which can learn the mapping from pattern to phase could yield the
phase errors directly. It can be trained by presenting it with patterns theoretically derived from a
set of randomly chosen phases, as a “labeled” training data set, and tested by another known data
set, to build the map between diffraction pattern intensity and phase error.

This can be realized using a neural network (NN), with input and output layers, and internal
layers which connect them using variable strength connections that change during training
[15–17]. In this paper, we seek to validate this method by making it work on a simulation
before applying it to an actual combiner, showing it can at least work in an ideal situation before
introducing other types of error.

An important question arises: are the patterns uniquely mapped onto input phases or not?
Certainly, if we consider the case of two beam interference, there will be two cycles of intensity
variation per one 360 degree cycle of phase rotation. This means the inferred phase is ambiguous,
with no unique solution. Even if a phase-shifted interference pattern is also generated, and
there can be in-phase and quadrature-phase signals, which-way information is generated without
resolving the 180 degree phase ambiguity. Nevertheless, we have observed a small, 8-beam DOE
combiner which allows derivation of input beam phases directly from interference spot intensities
[13], so we may hope this can be done for larger beam counts.

In fact, testing a two-dimensional, 9 × 9 = 81 beam DOE combiner [18,19], we observe
several, nearly identical interference patterns resulting from very different beam phases. Thus,
the solutions to the problem of phase retrieval are not unique for this particular example. If the
phase errors are small enough to be inside one “fringe” (less than 180 degree range) there is no
ambiguity, training the NN is possible, and it works to identify the phase errors directly, allowing
for error correction in one step. Outside this limited range, the NN is confused and cannot be
trained.

This implies two different approaches may be needed; the usual case is correction of small
perturbations and this can be performed by the NN, while full recovery from a random state
is infrequent and could be slower. However, we have found that the NN trained in a limited
range works over the full range of errors anyway, because there is a better than even chance that
it will go in the right direction, and this probability improves the closer it gets to the training
range. Once it has random-walked downhill, so to speak, it falls into the unambiguous region
and quickly and robustly locks to the optimum point. Even with this initial random walk, the NN
is tens of times faster than SPGD using a single-detector and random dither, which we show in
side-by-side simulations.

In the sections below, these topics are explained in detail.
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2. Model of diffractive combining and basis of pattern recognition with the NN
algorithm

This section shows the physical model of spatial convolution with the DOE, and discusses the
principle of interference pattern recognition with a NN algorithm which learns the mapping
from pattern to phase, thus yielding the phase errors directly. We found a phase ambiguity in
our problem in the 360 degree range, which requires training of the NN within a limited phase
perturbation range and with a reduced number of samples.

2.1. 81-way 2D diffractive combining using a 9 × 9 DOE

The physical process of 2D diffractive combining can be represented as a discrete 2D convolution
shows below [6,13,20]:

s(i, j) =
∞∑︂

k=−∞

∞∑︂
l=−∞

b(i, j)d(i − k, j − l)

= b(i, j) ∗ ∗d(i, j)
(1)

where b(i, j) is the input beam function, d(i, j) is the intrinsic DOE transmittance function, and
s(i, j) is the far field amplitude of the diffracted beam, all being complex. i, j, k, l are integers,
where (i, j) is the horizontal and vertical coordinate of both the input beam array, and the far field
diffracted beam array from the incident direction, with zero-order beam located at (0,0).

As shown in Fig. 1, for an input of 9× 9 beams, with i, j ∈ [− 4,−3, . . . , 0, . . . , 3, 4], the output
will be 17 × 17, because each input beam produces 9 × 9 outputs, always overlapped at the center
beam. In general, as 2D convolution suggests, for N × N inputs and N × N shaped d(i, j), there
will be (2N − 1) × (2N − 1) outputs.

Fig. 1. (a) How two beams in the 9 × 9 input array contribute to the 17 × 17 output array,
while overlapping at the center. (b) Measured amplitude and phase function of a 9 × 9 DOE
used in the modeling. Amplitude function is amplitude transmission efficiency, and phase
function unit is degree. i and j are indices on x and y axes.
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Once we have the intrinsic DOE function d(i, j), we can predict interference patterns given
any arbitrary input base on Eq. (1). In order to perform actual measurements on a 9 × 9
diffractive combiner without incurring the cost and complexity of building a phase-controlled
beam array using discrete optics, we opted to generate a beam array using a spatial light modulator
[18,19]. This provides for control of all parameters of each beam, enabling measurements of the
actual DOE phase function and tests of combining and control. The measured intrinsic DOE
function d(i, j) including the amplitude function and the phase function in our model were found
experimentally and are shown in Fig. 1(b), with x-axis and y-axis grids representing the integers
i and j.

In this work, we define one power unit as the power of one diffracted spot after the DOE, when
one beam is incident. This will be 1/81 of the incident beam power. When the 81 beams are
optimally combined, the output power in the central beam will be 81 times the power of one input
beam, and 812 times the power of our defined power unit. The increase in central beam power as
beams are added is quadratic, as the side spots diminish in power at the same time the central one
is augmented [19].

Optimal combining requires the input beam phase condition as: ∠b(i, j) = −∠d(−i,−j), where
∠ stands for the phase function. This means that the ideal input laser beam phase array, which
provides for optimal combining, has to match the DOE intrinsic phase function [6,13]. When
input laser phase b(i, j) is other than ideal, there will be excess loss, i.e., combining efficiency
drops with phase errors.

Our stabilization goal for phase control requires to achieve <1% efficiency loss. The function
of coherent combining efficiency loss versus piston phase error is [21]:

1 − η = σ2
φ (2)

where η is the combining efficiency normalized to the maximum achievable efficiency of the DOE,
and σφ is the uncorrelated RMS laser phase error from each channel, in radians. Equation (2)
indicates that our stabilization goal is to control σφ<6 degrees in order to achieve η>99%.

2.2. Mapping from interference pattern to phase with the NN algorithm

It is necessary that the control system recover optimal beam phasing from a random input, and
maintain that in the presence of slow and fast phase perturbations. We would like to deconvolve
the factors in Eq. (1), so that we can find the errors in ∠b(i, j), given the known phase function
∠d(i, j) and the measured amplitude s(i, j).

Due to the lack of optical phase information from far field detectors such as a camera or
photodiode arrays, the mapping between the 17 × 17 far field interference pattern |s|2 and the
9 × 9 input beam phases ∠d cannot be solved directly. A typical iterative phase retrieval method
would be too slow for active feedback, and sensitive to measurement errors [14]. This kind of
deterministic mapping problem has been shown to be solvable by machine learning algorithms
[15,22,23]. Here, we apply machine learning to derive phases from far field interference patterns,
to quickly find phase errors to correct.

For the interference pattern recognition, the artificial neural network is used to find the mapping
function between the interference patterns and the laser phase errors, which is achieved by
training the network with interference patterns with known phase perturbation. Once the mapping
function is identified, the neural network can recognize a pattern and find the corresponding
phase errors for any given pattern within one step.

The architecture of the NN we choose (as shown in Fig. 2) has an input layer with 285 neurons
(17 × 17 − 4, with 4 unchanging corner spots removed), which represent the interference pattern,
and two inner hidden layers with 400 and 200 neurons respectively.We choose these numbers
experimentally to adequately represent the data while avoiding unnecessary complexity, but we
have not optimized them. The output layer comprises the predicted 81 beam phases. A neuron is
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connected to many inputs, which generates an output signal when the inputs exceed a certain
threshold. The neuron is mathematically a summation of all the input signals multiplied by a
weight matrix which describe the mapping function. The weight matrix determines the sensitivity
of the neuron to each input. The training of the network is the adjustment of the sensitivity of
the neuron to each of its inputs. As the network is trained, the weights for each neuron in the
network are adjusted to change the output of the neural network to match it with the true output
(the known phase perturbation) [16].

We also tested NN architecture with an input layer of 284 neurons, dropping the center
combined beam because of camera saturation. When the feedback is operating near optimal,
we would use the full dynamic range of the camera to capture only the side beam pattern. We
found that the pattern recognition performance using such incomplete information is the same
as for 285 input neurons. For the inner layers, there are no fixed rules or formulas on how the
architecture is selected [24], since it depends on the complexity of the problem. We follow
common practice and insert two inner layers, tuning the number of neurons to reach the required
training error while maintaining a reasonable number of training samples.

Fig. 2. Structure of the neural network, with interference patterns (17 × 17) as input and the
corresponding 81-beam phases array (9 × 9) as the output.

2.3. Ambiguity of solutions: the impact on phase prediction

In a simple interference of two beams, for example, one beam working phase is fixed at 90 degree,
and the other beam phase θ is varied, the output intensity will be S = |1 + cos(θ − 90)|2. To
obtain a mapping function of amplitude to phase, θ = arccos(±

√
S − 1) + 90, θ is a monotonic

function of S only if θ is in the range of -90 to 90 degree. And solutions are ambiguous in the full
phase range of 360 degree.

Figure 3 shows what happens when training the NN to predict the input phase offset based on
observed intensity for the above two beam example. Multiple solutions appear beyond θ = ±90
degree. Figure 3(a) indicates that the NN works well if we train it in a limited range which
guarantees a monotonic output, i.e., the predicted value agrees with the real phase values for any
test data, which follows the curve with slope of k = 1 (red dashed curve). Figure 3(b) shows that
the NN becomes confused when trained in the full phase range. The predicted phase data looks
like a bow-tie with the center at θ = ±90 degree where non-unique solutions appear. Because the
curve of intensity S is symmetric about the tie-center point of 90 ± 45 degree, the prediction
points fill all the areas in between the curve with slope k = 1 (red dashed curve) and the curves
with slope k = −1 (blue dashed lines).
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Fig. 3. The consequences of non-uniqueness. Predicted phase versus real phase when
trained in a limit range of [−90, 90) degree (a) and (b) in the full range of 360 degree.

Non-unique solutions also exist in the more complex 81-beam combination problem. We used
our model of the combiner and entered random input phases to produce corresponding 17 × 17
output intensity patterns. We then scanned the input beam phase space to find a similar output
intensity pattern, comparing them in amplitude while also comparing the input phases.

Three example cases are shown in Fig. 4, with the left column showing three randomly chosen
output interference patterns. The second column shows similar patterns found by scanning and
searching. The third column shows small intensity differences between the random given pattern
and the searched pattern. However, the last column shows the input phase difference between the
given and searched examples, revealing that they are not at all similar. (Note that the upper limits
of the color bars for the intensity patterns are only up to 100 in the plots for high contrast images.
This is in order to see the patterns clearly, while the output power in the central beam can reach
up to 812 times the power of our defined power unit).

Figure 4 indicates that quite different input beam phases correspond to almost indistinguishable
interference patterns, so that the difference between patterns can be within practical measurement
error. Although this is not a strict mathematical proof of non-uniqueness, it is apparent that
there is no clear one-to-one mapping from interference pattern to phase over the full range of
phases,which was also found to be true in Ref. [23]. Because of this, the NN cannot be trained
on the 81-beam combiner over the full range. Indeed, when we have attempted to do so, the NN
prediction error never converges to a low value.

2.4. Numerical results of the NN when trained in a limited phase perturbation range

During optimization of the network, the measure of success is the root mean square error (RMSE),
defined as

RMSE =

⌜⎷
1
n

n∑︂
i=1

(Yi − Oi)2 (3)

where Oi is output from the NN and Yi is the real/target value. As discussed in Section 2.1,
RMSE is required to be within σφ and less than 6 degrees in order to maintain combining
efficiency above 99% [19]. During training, we divide our dataset into two subsets. The first is
the learning dataset, also called “training samples”, i.e., a subset to train a model. The second is
the test dataset, which is a subset that the NN hasn’t seen before in order to test the predictive
performance of the trained model. While the RMSE of a network for a learning dataset gradually
decreases with number of samples, predictive performance of the network on test dataset has
parabolic dependence for large number of samples. This is because a network with a sufficient
number of neurons in the hidden layer can exactly implement an arbitrary training set, and it can
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Fig. 4. Similar 17 × 17 interference patterns with slight intensity differences (left two
columns, with difference in third column) correspond to very different 9× 9 beam phases, as
shown in the right most column, in degrees.

learn both the desired information and noise that will lower the predictive ability of the network
[25].

We trained the network with phase perturbations over a range of ±40 degree, with 0.5 million
simulated example samples, and found that it can predict phase within RMSE of 4.6 degree for
test dataset as shown in the yellow curve of Fig. 5. The RMSE for the learning dataset is smaller
than the RMSE for the test dataset, indicating that the NN structure is complicated enough to
learn the relation between the input and output, while the prediction capability is mainly limited
by the number of samples.

Fig. 5. (a): the root mean square error (RMSE) of the NN for learning samples and test
samples. (b): performance of the trained NN on the test dataset.

We randomly generated 500 random test samples, with the NN-predicted phase versus the
real phase shown for 3 of the input beams (out of 81) in Fig. 5(b). Different colors represent the
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different beams, all centered at the optimal phase for highest combining efficiency, for input errors
over a range of ±40 degree. All the dots line on a straight line, with a variance corresponding to
an RMSE value of 4.6 degree. This is based on the same test dataset as in Fig. 5.

Table 1 shows the number of examples used for different ranges of input phase errors. We found
that for all cases the RMSE for the test dataset decreases as the number of samples increases,
reaching a minimum at very large numbers of samples. We increased the number of training
samples in the larger training ranges of ±80 degree and ±90 degree in order to reduce the test
RMSE for these cases. Still, the RMSE increases for larger phase error ranges. When trained
over a range larger than 180 degrees, the NN prediction accuracy actually worsens with training,
as it is now confused by non-unique solutions.

Table 1. Number of samples used in training the neural
network with different phase perturbation ranges, and smallest

RMSE.

input phase error range samples used RMSE for test dataset

[degree] to train the NN [degree]

±20 50, 000 2.1

±40 50, 000 3.9

±60 50, 000 7.8

±80 100, 000 14.1

±90 200, 000 19.8

Note that we are using the NN model of training range of ±40 degree for all the subsequent
NN applications if not specified.

3. NN application to feedback control

In this section we validate the NN algorithm as part of a feedback control loop as a phase detector.
As discussed above, the NN trained in the limited phase range implies there could be two different
approaches to feedback: the usual case of correction of small perturbations within training range
in one step, and full recovery from a random state, which is infrequent and slower. A different
algorithm could be used for the second case. However, we show that the NN trained in a limited
range works over the full range of errors, removing the need for a second approach.

3.1. One-step feedback for small phase perturbations

Figure 6 shows how the algorithm based on a neural-network and iteration is accomplished in
the feedback loop, with one whole cycle around the loop counting as one feedback step. With
an interference pattern fed into the NN, it then recognizes the phase error and applies a phase
correction in order to go toward the ideal phase. The laser beams’ phase is then updated, and a
new interference pattern is generated, and so on. Once the phase matrix is close to the optimal
point, i.e.,within the RMSE of 6 degrees, the phase correction from the NN recognition algorithm
is always less than the RMS phase error, i.e., always keeping the optimal/stable state within a
given tolerance during the iterative process.

For fast phase perturbations within the training range, the stabilisation feedback loop only
takes one step to recover, as shown in Fig. 7. Arbitrary phase perturbation within the training
range of ±40 degree is introduced, leading to a non-optimally combined pattern and relatively
poor combining efficiency less than 95%. The interference pattern is taken by the NN as input
for predicting the phase perturbation for correction, and the correction is able to recover to >99%
of optimal combining efficiency and then always remain stable.
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Fig. 6. Iterative feedback loop based on the neural-network.

Fig. 7. One step feedback when phase perturbation is in the training range. 100 random
cases are shown.

3.2. Application in the full range with an iterative process

We now apply the feedback loop in Fig. 6 with the NN model trained in ±40 degree range
to the full phase perturbation range of [−180, 180] degree, which can perform well due to an
iterative process where successive correction steps move the phase error toward the goal. The
controller random-walks the system into locking range in a few steps, before reaching near-optimal
combining state in a single step, then maintains the efficiency loss to be <1% thereafter. The
probability that a random walk will land inside the training range, and the dependence of the
prediction accuracy on the initial state will be discussed in Section 4.1.

As shown in Fig. 8, it takes multiple steps for an arbitrary phase perturbation in the 360 degree
range to reach the optimal point. Statistically, 99.5% of 50,000 random testing cases are able to
converge (i.e. reach 99% of theoretical η) within 100 steps, with the majority of them less than
40 steps.

Figure 9 shows the NN phase prediction error, i.e., Oi,j − Yi,j, where Oi,j and Yi,j are the output
from the NN and the real value respectively. Snapshots of the error are taken at a series of
iterative steps for a random case which has a relatively large phase error at the first step. The
error reduces rapidly with successive steps. Final prediction error is within the prediction RMS
error of 5 degree for all the beams.
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Fig. 8. Normalized combining efficiency versus number of correction steps, when phase
perturbation is in the 360 degree range. 100 random cases and the average (red solid line)
are shown.

Fig. 9. NN prediction error for the input beam phase (9 × 9) array at different iterative steps
for a typical random case.

4. Why limited range training is adequate for full range operation

This section discusses why the NN algorithm works in the full phase perturbation range, by
looking at the accuracy of the NN prediction model outside the training range, and how the initial
random walk improves the probability of getting phases closer to the training range. We also
compare the NN algorithm with the traditional SPGD algorithm, showing that the NN is tens of
times faster than SPGD using a single-detector and random dither with side-by-side simulations.

4.1. Reason of convergence of the NN-based feedback loop

Here we use statistics to indicate the reasons why the iterative method based on NN prediction
can bring arbitrary phase errors in the 360 degree range back to optimal states. We first introduce
the concept of accuracy ratio, which is defined as the percentage of NN predictions that move
toward the goal. Accuracy ratio also corresponds to the possibility for one beam to go back to the
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optimal phase. When calculating the accuracy ratio based on many cases, if the phase distance to
the working phase of one beam is closer compared to the original value for a given run, we take
the accuracy flag as true for this beam for this run, otherwise the flag as false. We then count the
overall accuracy ratio over multiple runs. For a completely random guess the accuracy ratio is
50%.

accuracy ratio =
∑︁
(case of beam phase getting closer to optimal)

total cases
(4)

The accuracy of the NN prediction model over the full error range for one prediction step is
shown in Fig. 10. The model is trained in the phase perturbation range with absolute value of 40
degrees, thus there is 100% accuracy within the training range.

Fig. 10. Accuracy of the NN prediction model in and outside the training range with 1
feedback step.

The accuracy ratio is still slightly higher than 50% when the phase perturbation is in the full
range of [−180, 180] degree which means that first guesses will likely be in the right direction.
Any movement toward the goal improves this probability, making this a random walk downhill,
until the training range is reached, and the goal is hit in one step.

The iterative process acts as a search, automatically. The probability of beams to move closer
to the optimal phase keeps rising as the iterative process proceeds as shown in Fig. 11. We
found that the curve of accuracy ratio versus the number of feedback steps (blue curve with
green areas as the deviation) is following a logistic function-like curve (red curve). This function
has been used to model population growth, and is a common S-shaped curve (sigmoid curve)
with equation y = L

1+exp−k(x−x0)
, where x0 is the x value of the sigmoid’s midpoint; L, the curve’s

maximum value; and k, the logistic growth rate or steepness of the curve [26–29]. The random
walk downhill model, with accuracy ratio increasing when the prediction is closer to the training
range, helps produce exponential growth initially. The RMSE from the NN model limits the final
accuracy ratio values, leading to the saturation value of L = 93 in Fig. 11, and around the optimal
phase the predictions have larger deviations. Still, the overall RMSE is still within 6 degrees,
thus combining efficiency can reach 99% as shown in Fig. 8.

Figure 12 shows the convergence curves of one beam’s phase in the iterative process. During
1000 runs with random initial state in the full phase range, most of the cases converge after tens
of steps. The saw-tooth behavior seen in the figure is due to phase wrapping, which is not just an
artefact of the way the data is presented, but a phenomenon that helps the system find the training
range and lock in to a robustly optimal state. We have specially picked 3 random cases in Fig. 12
to show different convergence paths. The magenta curve always keeps the right direction and
converges within 10 steps. The red curve had a wrong direction at the beginning and bounces
around for about 10 steps but finally converges, because as the process is applied iteratively, so
that the new, wrong state is the basis of a new prediction, the resulting random walk quickly finds
the training range. For most cases it is not possible to go far in the wrong direction, as phase is
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Fig. 11. Accuracy improvement with iterative process for cases with random initial beam
phase in the full range.

cyclic. If the system goes too far in the wrong direction, it becomes the right direction again, as
the red curve illustrates. We also have some cases like the green one shown in the figure that
doesn’t converge after 50 steps, although this is a rare case, and will almost certainly converge
before 100 steps.

Fig. 12. 1000 cases of a random beam phase converged in the iterative process. Most of
the cases converge after tens of steps. Three specially picked random cases show different
convergence paths.

4.2. Fast convergence compared with SPGD

The neural-network-based iterative method turns out to be a fast-converging method for feedback.
For comparison, we ran both the NN algorithm and a widely used Stochastic Parallel Gradient
Descent [10] control algorithm on the same simulator. The efficiency versus feedback steps of
both methods are shown in Fig. 13, with thirty random runs from random initial states. The
majority of the NN based curves converge in about 40 steps (red curves), and can reach to a final
efficiency of 99%. The phase dither range and correction gain for the SPGD algorithm (blue
curves) are optimized for rapid convergence and high combining efficiency. We find that the
number of steps required for SPGD to reach the optimal state is ∼ 800, consistent with other
published results for SPGD-stabilized beam combination [12], roughly a factor of 10 times
number of channels to combine. If combining 81 beams with 1kHz repetition rate, it would take
nearly a second to recover from large perturbations, making full suppression of even thermal phase
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errors impossible. Here we only compare with the basic SPGD algorithm. Another approach
improves the SPGD algorithm by dithering with an orthogonal basis set, which improves the
convergence speed but only by a factor of 2 or 3 [30]. The NN-based pattern recognition phase
detection scheme is faster because it starts with more information.

Fig. 13. Comparison of normalized combining efficiency versus number of correction steps
using NN algorithm (red curves for 30 random cases) and SPGD (blue curves for 30 random
cases).

Also, the SPGD has a lower final efficiency because the SPGD detector only measures the
center combined power, where the information for feedback is very limited. This is a cosine
function of each beam phase, so that the gradient goes to zero at optimum efficiency. There is
also loss of efficiency due to effective averaging near the optimal state: when near optimal, the
N-channel combining process reduces the phase detection sensitivity σN from uncorrelated RMS
error of single channel σφ as: σN = σφ/

√
N [21]. Thus the SPGD phase detection sensitivity

is inversely proportional to the square root of the number of beams, and the correction gain
diminishes due to averaging, which also prevents strong feedback near the optimal state and
results in lower final efficiency.

In contrast, our scheme detects all the side beams, many of which have non-zero power gradients
at the optimum efficiency point. Thus, our scheme can sense phase with equal sensitivity at any
phase state, allowing higher combining efficiency near optimal. The NN pattern recognition
scheme is a linear phase detector without dithering.

For the NN based feedback, the convergence speed and the final normalized efficiency is
strongly dependent on the NN model’s training range. As shown in Fig. 14, we applied several
NN models trained in different phase perturbation ranges listed in Table 1. The NN model was
trained in [−20, 20] degree (blue curve), [−40, 40] degree (orange curve), [−60, 60] degree (green
curve), [−80, 80] degree (red curve). The figure also shows the trajectory of a combined NN
model, which uses the 80 degree model when the combining efficiency is less than 80%, then
changes to a 40 degree model when the combining efficiency is 80% to 90%, and then finally to
a 20 degree model (purple curve). When the training range is larger, the convergence speed is
faster while the final efficiency is lower due to a larger RMSE, as also shown in Table 1. Large
RMSE introduces noticeable oscillations in the efficiency curve when the phase is corrected in
each loop iteration, as shown by the red curve for NN trained in [-80, 80] degree range and with
RMSE 14.1 degrees. For other NN models with RMSE within 6 degrees, the oscillation is within
1% efficiency, thus keeping stable within the required tolerance during the iterative process.
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Fig. 14. Normalized combining efficiency versus number of correction steps using neural
network based feedback with different NN models, within 100 steps.

4.3. Discussion of stability and bandwidth of the NN based iterative method

Any measurement noise will cause NN prediction uncertainty which would reduce the achievable
combining efficiency and convergence speed. We have added realistic camera noise in the testing
data set, to compare the performance between NN and SPGD performance as shown in Fig. 13.
With the beam power unit as defined in section 2.1, we added random noise of 0.1 RMS to the
diffraction pattern, corresponding to 10% of each beam’s contribution. It also corresponds to the
camera noise observed on the side beams, when the center combined beam is saturated. Our
study suggests that the RMS noise level should be less than 30% of the power unit in order to
keep the feedback loop stable.

In general, the more accurate the error prediction is, the more robust the feedback will be, as
shown in Fig. 14. There are other practical issues that can cause feedback instability [31,32].
In this paper we focus more on beam phase error detection than control loop stability and
optimization, thus a simple proportional-only controller is used for feedback simulation. The
gain setting for such a controller is tuned to optimize both NN based feedback and SPGD based
feedback. The result may serve as a reference for further development of advanced controllers
such as linear quadratic estimation (Kalman Filter) control with a greater tolerance for noise [33].

We have also studied the increase in computational resources with increasing numbers of
channels to combine. For the 81-beam case, training requires about 500k data samples, but if
only combining the center 9 beams, as little as 500 samples are enough. The inference latency
for both cases is identical.

Our feedback control needs to suppress acoustic perturbations within a bandwidth of ∼ 100 Hz,
when the sampling rate (or repetition rate) is in the kHz range. It is feasible to push the inference
latency down to <2 milliseconds using a hard-real-time edge computer such as an FPGA [34],
compared with ∼ 10 milliseconds latency using a CPU.

5. Conclusion

In summary, we have demonstrated a novel neural-network-based iterative method for stabilizing
81-way 2D diffractive laser combination. The neural-network is trained as a phase detector based
on pattern recognition of interference patterns emerging from a DOE. Training is in a limited
phase perturbation range, and for phase perturbations within the training range it can feedback
correct to the optimal state in one step. The neural-network can also be applied to a realistic
case of 360 degree full range. Applying iterative feedback, it benefits from downhill random
walking at the beginning, speeding up toward convergence rapidly once it steps into the training
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range. The neural-network-based iterative method converges tens of times faster than the SPGD
with a single-detector and an algorithm with random dither, which requires hundreds of steps to
converge. This method is applicable to high power CW as well as ultrafast pulse combination,
compensating for thermal and mechanical perturbations. For our purposes, these results enable
kHz, ultrafast pulsed laser beam combination with an arbitrarily large number of beams, for
scaling to high energy.
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