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 8 
ABSTRACT 9 
 10 
Many physics-based and surrogate models used in structural health monitoring (SHM) are affected 11 
by different sources of uncertainty such as model approximations and simplified assumptions. 12 
Optimal SHM and prognostics are only possible with uncertainty quantification that leads to an 13 
informed course of action. In this paper, a Bayesian Neural Network (BNN) using variational 14 
inference is applied to learn a damage feature from a high-fidelity finite element model. BNNs can 15 
learn from small and noisy datasets and are more robust to overfitting than Artificial Neural 16 
Networks (ANNs), which make it very suitable for applications such as SHM. Also, uncertainty 17 
estimates obtained from a trained BNN model are used to build a cost-informed decision-making 18 
process. To demonstrate the applicability of BNNs, an example of this approach applied to miter 19 
gates is presented. In this example, a degradation model based on real inspection data is used to 20 
simulate the damage evolution. 21 
 22 
 23 
KEYWORDS: Miter gates, artificial neural networks, surrogate model, finite element, inverse 24 
model 25 
 26 
1. INTRODUCTION 27 

 28 
An ANN is a machine learning algorithm widely used in many areas in science and engineering. 29 
They are attractive alternatives to physics-based modeling, particularly for complex structures with 30 
unknown failure modes or highly variable operational and environmental inputs 1.  Most of the 31 
applications in civil engineering are in pattern recognition problems. The first journal article on 32 
neural network application in civil/structural engineering was published by Adeli and Yeh 2, which 33 
was an ANN algorithm trained to inform if a particular engineering design was acceptable or not. 34 
Hajela and Berke 3 applied ANN algorithms for structural optimization. Theocaris and 35 
Panagiotopoulos 4 used ANN algorithms to learn the parameter identification problem in fracture 36 
mechanics. For SHM applications, Wu et al. 5 and Feng and Bahng 6 trained an ANN algorithm to 37 
detect structural damage in the form of reduction in member stiffness on a multistory shear 38 
building and reinforced concrete bridge columns respectively. Other researchers used changes in 39 
modally-derived features such as mode shapes, eigenvectors and Ritz vectors, from numerical and 40 
experimental samples, to train an ANN to diagnose damage 7,8.  41 
 42 
Various other SHM algorithms for civil engineering infrastructure, such as bridges 9–11 and 43 
buildings 12–14, have been implemented based on ANN architectures. Waszczyszyn and Ziemianski 44 
15 and Adeli 16 reviewed several more application in civil engineering including the use of neural 45 
networks in analysis and design of structures, system identification, structural control, finite 46 



element (FE) mesh generation and other disciplines in civil engineering. Some researchers have 47 
used ANNs as surrogate models, using validated FE models to generate data to train the network 48 
10,11,17,18. Many of these researchers have used ANNs as emulators of computationally expensive 49 
high-fidelity finite element model runs.  50 
 51 
In general, ANN algorithms are trained using optimization techniques such as gradient descent 19. 52 
Therefore, ANN models are generally used to build point prediction models. Recently, Bayesian 53 
prediction models have started to be more attractive for damage assessment, especially in civil 54 
engineering because the limited amount of data available to build a reliable deterministic point 55 
prediction model. Many researchers use Gaussian Process (GP) regression to build Bayesian 56 
prediction models for civil engineering structures 20.  However, GP models are computationally 57 
challenging for high-dimensional spaces or otherwise “large” data sets. Due to the scalability 58 
limitations in GP models 21–23, BNN 24–26 models have started to be more practical model when 59 
dealing with high-dimensional space. In the case of SHM, this space depends on the number of 60 
spatially-distributed sensors and their collection (monitoring) frequency. BNNs are preferred over 61 
deterministic mathematical models such as neural networks because they account for uncertainty 62 
in their parameters (i.e., weights and biases) and propagate this into their predictions. Such 63 
uncertainty management is critical to support decision-making, which is the necessary outcome of 64 
an SHM process 27. BNNs are more robust against overfitting because a posterior distribution of 65 
the parameters is considered instead of using deterministic parameters that minimize the empirical 66 
risk during training. Also, BNN may be trained using limited and noisy data, while ANNs typically 67 
tend to require more and lower-noise training data for equivalent performance. 68 
 69 
In this paper, a BNN is trained with a FE model due to such highly-limited data availability. 70 
Therefore, this probabilistic prediction models also serve as a surrogate model of a validated high-71 
fidelity FE model, which sometimes are unable to be used efficiently to make fast predictions. 72 
Specifically, the BNN model is trained to assess the condition of quoin blocks in miter gates, which 73 
are essential civil structures for navigation system in rivers. In this work, a degradation model 74 
based on real inspection data of miter gates is used to simulate the damage evolution. Additionally, 75 
a cost function is introduced to improve prioritization of maintenance events of components of 76 
miter gates. The added value of using SHM in miter gates is evaluated in term of maintenance cost 77 
savings. The ultimate goal of the authors is to set up a SHM workflow that allows further 78 
optimization in term of cost savings, and this paper presents one realization of this goal within a 79 
civil structural monitoring application. 80 
 81 
2. BAYESIAN NEURAL NETWORK 82 
 83 
2.1. ARTIFICIAL NEURAL NETWORK 84 

 85 
Two of the main problems in machine learning are classification (for discrete classes) and 86 
regression (for continuous processes). An ANN is a powerful supervised learning algorithm that 87 
can be used to solve classification and non-linear regression problems. In the context of an SHM 88 
problem, an ANN can be trained to learn the relationship between sensor values or features derived 89 
from sensor values and damage classes or parameters. Figure 1 shows the ANN architecture used 90 
in this paper and the non-linear functions (i.e. sigmoid and softplus) that are used to learn the 91 
relationship between sensor information and structural damage targets. 92 



 93 
 94 
 95 
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Figure 1: ANN architecture and definitions 96 
 97 
Generally, gradient descent algorithms are used to train neural networks. These algorithms 98 
objective is to find the ANN parameters (i.e. weights and biases) that minimize an error or loss 99 
function that depends on the ANN outputs (y) and the true (training) output values. The training 100 
error is known in the machine learning community as the empirical risk. Commonly, regularization 101 
is used to avoid overfitting, i.e., substantially degrading network performance when it is presented 102 
any data set other than the training set. Another way to train an ANN to be robust against 103 
overfitting is to use a Bayesian approach to find the parameters of the network. The uncertainty in 104 
these weights and biases can be propagated into network predictions, which is useful in the context 105 
SHM problems that involves (cost-informed) decisions. 106 
 107 
2.2. BAYESIAN NEURAL NETWORK 108 
 109 
BNNs are essentially neural networks with a prior distribution on their network parameters 28. The 110 
joint posterior distribution  of the network parameters—including the covariance 111 

matrix, , of the assumed zero mean error—after observing a set of training data  112 

may be expressed as  113 
  114 

 ,  (1) 115 
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where  and  represents the weights and biases of the BNN, respectively. Also, and  are 117 

defined as  and  respectively.  118 

 119 
The conditional distribution,  is equivalent to  due to conditional 120 
independence.  The marginal probability density function, , can be obtained by 121 

integrating , which it is generally mathematically 122 

intractable. Furthermore, the likelihood function  can be expressed as 123 
 124 

 .  (2) 125 

 126 
In this paper, the following measurement model/equation is assumed 127 
 128 

 , (3) 129 

 130 
which is equivalent the following 131 
 132 

   (4) 133 

 134 
where  is the covariance of the measurement error between observation  and model prediction 135 

 with weights , biases , and input .  represent a normal distribution 136 

parametrized by its mean and variance, and . 137 

   138 
For the prior , it is assumed that ,  and  are statistically independent. The joint 139 
prior can be expressed as follows: 140 
 141 

  (5) 142 
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where ,  and  are the priors used in this 144 

paper.  145 
 146 
The posterior predictive distribution of  for a set of observed points is then 147 

 148 

  (6) 149 

where the joint posterior distribution, , is estimated after observing a set of 150 

training data  The covariance matrix ( ) of the assumed zero mean error is also 151 

treated as an unknown parameter during training, and its uncertainty is also accounted in the BNN 152 
predictions. 153 
 154 
2.3. VARIATIONAL INFERENCE 155 

 156 
In order to obtain a trained BNN for predictions, the key part is to calculate the posterior 157 
distribution of the parameters after observing the (training) data. The posterior distribution of the 158 
parameters is typically mathematically intractable due to the normalization term (see Eq. (1)), 159 
which is a high-dimensional integral. The two most popular approximation methods to obtain the 160 
posterior distribution are Markov chain Monte Carlo (MCMC) and variational inference (VI). For 161 
BNNs, there many parameters to be inferred making this a high-dimensional problem. MCMC is 162 
proven to approximate very well to the true posterior. MCMC algorithms involve sampling-based 163 
methods, and it is very challenging to sample a high-dimensional posterior 29. The Gibbs sampler 164 
is one MCMC algorithm that can work on high-dimensional space; however, it still can be 165 
computationally expensive 30. Therefore, VI is a more practical approach in this case, which is 166 
becoming popular in BNN designs 31. In this paper, VI is employed to infer the high-dimensional 167 
space of the parameters of the BNN that serves as a mathematical model of a nonlinear mapping 168 
between inputs and targets.  169 
 170 
2.3.1. VARIATIONAL INFERENCE FOR A BAYESIAN NEURAL NETWORK 171 

 172 
The idea of VI is to postulate a family of distributions, , and to find the closest member,  173 

, from the family of distributions that approximates to the posterior distribution, 174 
, using Kullback–Leibler (KL) divergence to maximize the evidence lower bound 175 

(ELBO). For simplification purposes the parameter, , would represent the parameters , , and 176 
 as follows 177 

 178 
   (7) 179 

 180 
where the KL divergence between the variational distribution  and posterior distribution 181 

is given by 182 
 183 
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   (8) 184 

  185 
The  term is constant because the normalization term  is a constant. 186 

Next, the ELBO is defined as 187 
 188 
 . (9) 189 

 190 
Substituting Eq. (9) into Eq. (7) yields 191 
 192 
 .  (10) 193 
 194 
Now, the closest member, , from the family of distributions that approximates to the 195 
posterior distribution can be found by maximizing the ELBO: 196 
 197 
   (11)  198 

 199 
So now, the inference of the posterior distribution can be seen as an optimization problem. For 200 
comparison purposes with loss functions used for training an ANN model, the following loss 201 
function, , is defined: 202 
 203 

   (12) 204 

 205 
Substituting Eq (2) into Eq (12), the following relation is obtained 206 
 207 

  . (13) 208 
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Now, the simplified relation is obtained after substituting Eq (4) into Eq (13) 210 
 211 

  . (14) 212 

 213 
If the following covariance matrix is assumed 214 
 215 

   (15) 216 

 217 
and it is assumed that the ’s are statistically independent between observations , then the loss 218 
function can be expressed as 219 
 220 

 .  (16) 221 

 222 
The first term in Eq. (16) is known as the average likelihood, which can be minimized when the 223 
model prediction  explains the observed data . This term is also minimized when 224 
the variational distribution  is optimally selected.  The second term is the KL divergence 225 
between the variational distribution  and the prior , which minimizes the loss 226 
when the variational distribution is close to the prior. Therefore, this loss function balances the 227 

variational distribution  with the likelihood  and the prior 228 

. For further details on how to compute these terms given different types of variational 229 
distributions and how to derive their respective gradients of the loss function can be found  230 
here 32,33. There are several gradient based methods to calculate the optimal  that 231 
minimize this loss function (or maximize the ELBO). A stochastic gradient descent strategy has 232 
been used for this application using the Edward 34 probabilistic framework, which is based on 233 
Tensorflow 35, a widely used programming language for deep learning neural networks. This 234 
gradient descent method consists in calculating a noisy gradient from Monte Carlo samples of the 235 
ELBO distribution. 236 
 237 
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3. DAMAGE DETECTION USING A BNN SURROGATE MODEL 240 
 241 

In structural health monitoring (SHM), damage classification (or regression) is generally an 242 
inverse problem, e.g., damage (input) causes change in an observable (output). Therefore, a 243 
Bayesian approach using a finite element model (or a surrogate model) is generally used to infer 244 
the inverse problem. In this paper, a BNN surrogate model is used to directly learn the inverse 245 
problem, where the output data (e.g., strain measurements) and input data (i.e. the damage, to be 246 
defined below) of a validated FE model become the input data and output data, respectively, for 247 
the BNN surrogate model. Figure 2 illustrates the data used to validate the FE model, the data 248 
generated to train the BNN model, and introduces the need for a degradation model (i.e. damage 249 
evolution) to allow cost-informed decisions, which is explain in section 4. 250 
 251 

 252 
Figure 2: Decision flow based on BNN model for damage detection 253 

 254 



3.1. HIGH FIDELITY FINITE ELEMENT MODEL OF MITER GATES 255 
 256 
It is imperative in the cargo ship navigation to avoid unexpected closures, which can cause 257 
considerable economical loss to the marine cargo and associated industries. In the United States, 258 
the U.S. Army Corps of Engineers (USACE) owns and operates 236 locks at 191 sites 36. 259 
According to a report published by USACE in 2017, more than half of these assets are older than 260 
their economic design life of 50 years and need a prudent structural health monitoring solution to 261 
ensure their safe and reliable operation 37. SHM of miter gates of navigation locks, as shown in 262 
Figure 3, are a good case study on which to demonstrate feasibility of using BNNs as a damage 263 
detection solution for a real-world problem. 264 
 265 
 266 

 267 
Figure 3: Navigation in Miter Gates 268 

 269 
Some lock operators and experienced engineers from USACE 37 have stated that the condition of 270 
the quoin and gaps between the lock wall and the quoin block is one of the primary concerns within 271 
the inspection, maintenance, and repair cycle. A “gap” is somewhat generically referred to as the 272 
loss of bearing contact between the quoin attached to the gate and the lock wall. Such a gap in the 273 
quoin block changes the load path in the miter gate, leading often to higher stresses at some places 274 
in the lock gate (e.g., the pintle), which in turn can lead to operational and/or structural failure. 275 
Some miter gates owned by USACE are currently instrumented with strain gauges for in-situ data 276 
acquisition 38. The fundamental inference is made that changes in the gap contact state will lead to 277 
observable changes in the measured gate strain field. 278 
 279 
FE models could be used to map the strain gauges data to a specific gap condition (usually 280 
quantified by size) in an inverse analysis. However, these models are computationally expensive 281 
to run, and sometimes they are not feasible for real-time health monitoring or for monitoring 282 
fluctuating environmental effects. Consequently, a surrogate model with fast predictions of the 283 
target damage (e.g., the gap) can be employed. Figure 4 shows the ABAQUS FE model for the 284 
Greenup miter gate located in the Ohio River in Kentucky, USA. The FE model has been 285 
previously validated 39 with the available strain gage readings from the Greenup miter gate. The 286 
Greenup gate is a brand-new gate where a negligible gap was assumed for validation purposes. All 287 
the element in the gate are 3D linear shells elements to reduce the computational cost of such a 288 
large model. 289 
 290 



 291 
Figure 4: Gap modeling (Left: No gap, Right: Schematic gap) 292 

 293 
A contact-type constraint is used between the lock wall (denoted in yellow) and the gate (denoted 294 
in gray), making this a nonlinear problem. To impose the contact constraint the Lagrange 295 
multiplier method was employed. The strain gauge locations are far from the contact area, mostly 296 
due to physical constraints in the miter gate, but this far-field location also mitigates errors due to 297 
the method employed to enforce the contact constraint. The opposite side of the lock wall uses 298 
fixed boundary conditions, and symmetry boundary conditions are used at the right end (i.e., miter) 299 
of the gate to simulate the right leaf.  300 
 301 

 302 
Figure 5: Hydrostatic loading on miter gates 303 

 304 



Figure 5 shows the upstream and downstream hydrostatic loading that the miter gate experiences. 305 
Also, the environmental temperature, which will add thermal strain effects, is defined as the values 306 
recorded by thermometers located at the actual Greenup gate. 307 
 308 
3.2. BNN ARCHITECTURE AND RESULTS 309 

 310 
The architecture used in this paper contains 2 layers with 50 neurons in its hidden layer and biases 311 
at each hidden neuron. A parametric studied using a 2-layer network was carried using an ANN 312 
model with different numbers of neurons in its hidden layer. It was found that using 50 neurons 313 
yielded a higher testing accuracy than the other architectures used. Ten different (10, 20, …., 90 314 
and 100 neurons) architectures were considered to arrive to this architecture, which each 315 
architecture took from 2 to 5 minutes for training and testing using a single CPU processor. 316 
Regularization was considered to penalize architectures with more parameters (i.e. neurons). A 2-317 
layer architecture (i.e., 1 hidden layer) was selected because it can learn any continuous 318 
mathematical function 40. Further studies could be carried using a deeper neural network 319 
architecture, but the simplest universal approximator was considered most desirable. 320 
 321 

 322 
Figure 6: BNN model to map strain field to gap length 323 

 324 
The hidden layers use activation functions (e.g. sigmoid) to make the BNN learn any nonlinearity 325 
between the strain values and the gap length. For the output layer, the softplus activation function 326 
was employed to impose physical constraints (e.g., the gap length cannot be negative) in the BNN. 327 
As expressed mathematically earlier, a BNN is a neural network with a prior in its weight and 328 
biases as shown in Figure 6. 329 
 330 
 331 
 332 
 333 
 334 



3.2.1. TRAINING DATA AND TESTING RESULTS 335 
 336 
The gap length is assumed to be a random number between zero and 180 in. 39 under random 337 
loading scenarios defined by two normal distributions for upstream (ℎ!") and downstream (ℎ#$%&) 338 
hydrostatic pressure as shown in Table 1. For training and testing data, 3000 data points were 339 
obtained using the ABAQUS FE model of the Greenup gate by varying the value of each random 340 
variable for training (2000 for training) and testing purposes. This data took one week using a 4-341 
cpu desktop to be generated. Thermal effects are also considering. The temperature (𝑇'!() & 𝑇!%) 342 
are defined as a normal distributions with mean at a temperature, T, which is defined as a random 343 
number based on the lowest (𝑇*+&) and highest (𝑇*,-) temperature values recorded by 344 
thermometers (underwater and surface) in an actual miter gate at different times of the year.  345 
Figure 7 shows how these distributions are propagated to 46 strain values, whose location are based 346 
on what is installed in the Greenup gate. Note that the parameters presented in Table 1 are the input 347 
variables to the FE model, whose output is the strain, as would be detected by an installed SHM 348 
system. 349 

 350 
Table 1: Random variables used to generate training/testing data 351 

Parameter Distribution Unit 
Gap length 𝐺𝑎𝑝~𝑈𝑛𝑖𝑓𝑜𝑟𝑚	(0, 	180)  Inches 
ℎ#$%& ℎ#$%&~𝛮𝑜𝑟𝑚𝑎𝑙(𝜇 = 168, 	𝜎 = 20)  Inches 
ℎ!" ℎ!"~𝛮𝑜𝑟𝑚𝑎𝑙(𝜇 = 552, 	𝜎 = 10)  Inches 
𝑇 𝑇~𝑈𝑛𝑖𝑓𝑜𝑟𝑚	(𝑇*+& = 29.4, 𝑇*,- = 47.4)  Celsius 

𝑇'!() 𝑇'!()~𝛮𝑜𝑟𝑚𝑎𝑙	(𝑇, 	𝜎'!() = 10.3)  Celsius 
𝑇!% 𝑇!%~𝛮𝑜𝑟𝑚𝑎𝑙(𝑇, 𝜎!% = 5.37)  Celsius 

 352 



 353 
Figure 7: Training and testing data generation 354 

The posterior predictive distribution is calculated using Eq. (6), and 2000 samples from this 355 
distribution at each testing data point are shown in Figure 8. It takes around 20 minutes to train 356 
this BNN model. 357 
 358 

 359 
Figure 8: Posterior Distribution of gap length using 1000+ testing samples  360 

 361 



The median value of the posterior distribution, as shown in Figure 9, may be used to calculate the 362 
mean square error (MSE) to compare the predicted gap length with the true gap length testing 363 
value as shown in Table 2, in order to evaluate a set of point predictions.  364 
 365 

 366 
Figure 9: Median values of prediction of gap length 367 

The median is a more useful metric to summarize central tendencies in cases where the 368 
distributions may potentially be highly skewed or asymmetric. Moreover, the median is more 369 
robust than the mean to outliers that can bias the central tendency. 370 
 371 

Table 2: Testing accuracy 372 
BNN Accuracy RMSE (in.) 

Median 8.34 
Mean 8.39 

 373 
One other advantage of using a BNN over an ANN is that the gap length using a given set of strain 374 
measurements, , may be expressed as a distribution rather than a single point estimate. 375 

Therefore, the probability of exceeding certain critical gap length may be calculated to facilitate 376 
the decision-making process for preventive maintenance actions.  Figure 10 shows a representative 377 
prediction distribution at 4 different testing points, which qualitatively appear somewhat Gaussian 378 
for each of these cases. Note that in some other applications, the posterior predictive distribution, 379 
obtained from VI, can be multi-modal, which makes order statistics (important for decision-380 
making) less interpretable. 381 
 382 

ix



 383 
Figure 10: Posterior distribution of gap length using 4 different test samples 384 

 385 
In general, a BNN surrogate that is trained by data generated by computer simulation may not be 386 
able to capture the behavior of the real structure due to modelling error. To ensure that a trained 387 
BNN is reliable for SHM, the modelling error between the FE model and the real world should 388 
be accounted for and modeled. In this paper, modeling error was introduced to the computer 389 
simulations by varying the hydrostatic and temperature load and treating these loads as unknown 390 
quantities. Alternatively, two surrogate models could be used: one to learn the function that 391 
defines the FE simulations, and one to learn the modeling error between the FE simulation and 392 
the real world. As new data arrive from continuous monitoring, both surrogate models should be 393 
updated regularly. Particularly, the surrogate that fits the modelling error as modelling error 394 
extrapolation may be not be very accurate if it not updated regularly. 395 
 396 
4. VALUE OF IMPLEMENTING SHM USING BNN SURROGATE MODEL 397 
 398 
Recently, theoretical and applied approaches to quantify the value of deploying a structural health 399 
monitoring have been studied by researchers such as Konakli and Faber 41 and Thons 42. These and 400 
related studies are among the first to tie decisions that SHM informs to decision costs; this is the 401 
critical step that connects SHM to the business case for investing in and deploying an SHM system. 402 
Within the context of using the uncertainty-quantified BNN SHM “system” developed in the first 403 
part of this paper, the BNN outputs will be matched with functions representing the consequence 404 
costs of (good and bad) decisions. This framework will be used to compare the relative merits of 405 
the BNN SHM approach to current engineering inspection data to arrive at conclusions regarding 406 
the relative “value” of such an approach. 407 
 408 
4.1. OPTIMAL DECISIONS USING INSPECTION DATA ONLY 409 
 410 



In the specific use case presented in this paper, the USACE Asset Management team oversees the 411 
Operational Condition Assessment (OCA) process to assess structural component deficiencies by 412 
giving a category rating based on a condition and performance criteria. These ratings are performed 413 
by an inspector, who base the evaluation on engineering knowledge and information of preexisting 414 
inspections Figure 11 summarizes the OCA criteria currently used by USACE. 415 
 416 

 417 
Figure 11: Current OCA rating criteria 43 418 

 419 
4.1.1. TRANSITION PROBABILITY DERIVATION 420 



 421 
A transition matrix is defined as a square matrix with nonnegative values that represents how some 422 
process “transitions” from one state to the next. Based on an OCA database, the number of times 423 
that a component transitioned from one rating category (by engineering inspection expert 424 
judgment) to another in a given year was determined to generate a “condition” transition matrix. 425 
Thus, in this application, each value in the transition matrix represents a probability, and the sum 426 
of each row equals unity. Only the upper triangle components were considered to simulate 427 
component deterioration; the lower triangle would represent improvements or repairs, and for the 428 
purposes of this analysis, they were ignored. This “condition” transition matrix was found by 429 
normalizing the counts in each row as shown in Figure 12. 430 
 431 



 432 
Figure 12: Deriving 1-step (1 year) transition matrix for quoin block components 433 

 434 
Transition matrices, known also as stochastic matrices, have been broadly used in different fields 435 
such as probability theory, control, economics, and meteorology 44–46.  436 
 437 
4.1.2. FAILURE RATE OF COMPONENT AND COST FUNCTION 438 
 439 
A degradation model built from the transition matrix is used to generate a failure cumulative mass 440 
function, which can approximate the unreliability function, as described in detail in 47. Figure 13 441 



shows the unreliability function of the quoin block component with the component age in years as 442 
the random variable. 443 
 444 

 445 
Figure 13: Unreliability function of quoin block component 446 

 447 
Eq. (17) shows a cost function proposed by 48 to find the cost per unit of time (CPUT) of 448 
performing preventive maintenance at a time t in years. 449 

 450 

  , (17) 451 

 452 
where  is the unreliability function,  is the preventive action cost, and  is the unplanned 453 
action cost. The unreliability function presented in Figure 13 was used with Eq. (17) to find the 454 
CPUT for different values of t as shown in Figure 14. This plot suggests that the optimal time to 455 
perform preventive maintenance is every 48 years when only considering the deterioration of quoin 456 
blocks and the data available from OCA inspections and the cost ratio is equal to 5. In other words, 457 
the “model” of the engineering inspection via the OCA database proposes a cost-minimized 458 
optimal inspection time of 48 years. The corresponding cost ratio (i.e. / ) values depend on 459 

the structure and site. The values  can be defined as 460 
 461 

 , (18) 462 

 463 
where  is the downtime (in days) that takes to perform normal maintenance. The maintenance 464 

cost associated is definitely lower when this is planned ahead. The value of  is correspondingly 465 

 466 
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 468 
where  is the downtime (in days) required to replace the component that failed, measured from 469 

the time of failure. For miter gates,  essentially due to two reasons: 1) availability to start 470 

maintenance in a short period of time after failure occurrence and 2) maintenance takes longer 471 
when a component fails because it can affect other components or systems. The maintenance cost 472 
associated is definitely higher when maintenance needs to start as soon as possible. Therefore, the 473 
unplanned cost is higher than the preventive action cost (i.e. / >>1). 474 

 475 

 476 
Figure 14: Cost per unit of time as a function of component age 477 

 478 
 479 
4.2. OPTIMAL DECISIONS USING BNN SURROGATE MODEL AND VALUE OF SHM 480 

APPLICATION 481 
 482 
Earlier, a cost function was defined, and the optimal maintenance time that corresponded to the 483 
minimum CPUT was calculated using the information provided by a model of the visual inspection 484 
process over time, presented in section 4.1 and reviewed in more detail in 47. Now, the BNN SHM 485 
approach will be used instead to build the unreliability function in order to compare the relative 486 
“value” of using the BNN SHM approach to the visual inspection approach for monitoring. To do 487 
that, the results shown in Figure 8 can be used to calculate the probability of exceedance of a 488 
certain gap length threshold as shown in Figure 15. This figure shows empirical cumulative mass 489 
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functions for five different failure thresholds (i.e., gap lengths that correspond to criticality). Next, 490 
a mapping between the true gap length value and the component age can be used to find the 491 
corresponding unreliability functions. Eq. (11) can be applied to find the corresponding gap length 492 
value that minimizes the cost function as shown in Figure 16. Finally, the mapping from the true 493 
gap length value to the component age is used to find the optimal maintenance time as shown in 494 
Table 3. For these realizations, different cost ratios (i.e., values of  and ) and different failure 495 
threshold were used. It is important to note that specific results obviously depend on the choice of 496 
these values, but that the methodology shown in this section is independent of the actual values of 497 
the cost ratios and the failure threshold. After comparing different values of maintenance costs for 498 
miter gates at a specific site, the authors suggest that the corresponding cost ratio (i.e. / ) is 499 
close to 5 based on communications with USACE personnel 49. 500 
 501 

 502 
Figure 15: Empirical (Failure) cumulative mass function with  = 1 and =5 503 

 504 
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 505 
Figure 16: Cost per unit of time as a function of true testing gap length with  = 1 and =5 506 

 507 
Table 3: Optimal maintenance time using BNN model with  = 1 and =5 508 

Critical gap 
length (in.) 

Optimal time 
(years) 

 Cost reduction 
(%) 

130+ 54 11.1 
135+ 61 21.3 
140+ 62 22.6 
145+ 65 26.2 
150+ 74 35.1 

 509 
Different miter gate sites may have different values for the cost ratio (i.e. / ); Figure 17 510 
shows the variation in CPUT when a different value of cost ratio is used. For the realizations in 511 
this figure, the critical gap length threshold is assumed to be equal to 140 in. This figure shows 512 
less sensitivity to the cost ratio than Figure 14. The main reason why it is so is because there is 513 
less uncertainty when using the BNN SHM model. Of course, in an absolute judgment sense, it is 514 
important to note that the BNN model assumes that the training data generated from the FEM 515 
model is ground truth. As with any such model, its representative predictive value is only as good 516 
as its validation with regard to the real structure that it is modeling. In this case, the FEM was 517 
previously validated to the Greenup miter gate in the undamaged condition, as mentioned earlier, 518 
but the modeling of the damage itself couldn’t be validated on actual data from the gate in a known 519 
damaged condition, so modeling bias error in the damage state could creep into the process, as was 520 
discussed in section 3. That doesn’t change or otherwise invalidate the demonstration of the 521 
proposed approach or its utility, but rather it provides caution on interpreting the specific results 522 
for this case beyond demonstration of the overall approach. 523 

PC UC

PC UC

UC PC



 524 

 525 
Figure 17: Cost per unit of time as a function of true testing gap length 526 

 527 
5. CONCLUSIONS AND DISCUSSION 528 
 529 
The added value of using SHM in miter gates is evaluated in term of maintenance cost savings. A 530 
cost function is presented to improve prioritization of maintenance events of components of miter 531 
gates by evaluating the performance of a trained BNN model. This model is trained to assess the 532 
condition of quoin blocks in miter gates with a FE model due to such highly-limited data 533 
availability. In this work, a degradation model based on real inspection data of miter gates is used 534 
to simulate the damage evolution. A SHM workflow is set up to allows further optimization in 535 
term of cost savings within a civil structural monitoring application. As presented in this paper, 536 
continuous monitoring via this BNN SHM “system” can lead to more economical decisions 537 
regarding maintenance policies than only using the data from visual inspection (e.g. OCA ratings). 538 
From the results shown in the previous sections, there is an 11.1% to 35.1% of maintenance cost 539 
reduction when the OCA ratings are used with a surrogate model based on a physical based model. 540 
 541 
It is important to know that the degradation modes presented in this paper was built from real 542 
inspection data. However, this data can still be bias to human error or insufficient information due 543 
to the difficulty to assess OCA ratings when a component is underwater, and it is not visibly 544 
available. Other degradation models can be considered when a larger historical data set is available. 545 
This paper only focuses on the degradation of a single component. Further analysis can be carried 546 
out by considering more critical components (e.g. cracks in pintle, corrosion in the gate, etc.). Also, 547 
there are sources of uncertainty that need to be further analyzed that will lead to changes in the 548 
optimal maintenance time, such as measurement uncertainties or model uncertainties from both 549 
the BNN and FE model; the latter of these could be quantified via a sensitivity analysis of all the 550 
parameters in the FE and BNN models. Another potentially fruitful avenue for improvement is 551 



consideration of how many strain sensors are used and where they are placed. Different such sensor 552 
designs could lead to different SHM assessment statistical performance, which in turn affects 553 
decision costs, and the sensor design itself directly influences procurement, installation, and sensor 554 
maintenance costs. Both of these could compete in a cost-minimized formulation. 555 
 556 
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