
UC Irvine
ICS Technical Reports

Title
High-level library mapping for memories

Permalink
https://escholarship.org/uc/item/94g570n9

Authors
Jha, Pradip K.
Dutt, Nikil D.

Publication Date
1995-09-06
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/94g570n9
https://escholarship.org
http://www.cdlib.org/


High-Level Library Mapping for
Memories

Pradip K. Jha and Nikil D. Dutt

Technical Report #95-37
Date : September 6, 1995

Dept. of Information and Computer Science
University of California at Irvine

Irvine, CA 92717-3425
Phone: (714) 824-8059

Fax; (714) 824-4056
Email: pradip@ics.uci.edu

SLMJ

Notice; Ttils Material
may be protected
by Copyright Law
(Title 17 U.S.C.)





Abstract

We present High-Level Library Mapping, a technique that synthesizes a source memory
module from a library of target memory modules. In this report, we define the problem of high-
level library mapping for memories, identify and solve the three subproblems associated with
this task and finally combine these solutions into a suite of two memory mapping algorithms.
Experimental results on a number of memory-intensive designs demonstrate that our memory
mapping approach generates a wide variety of cost-effective designs, often counter-intuitive
ones, based on a user-given cost function, the target library and the mapping algorithm used.



Contents

1 Introduction

2 Previous work

3 Problem definition

3.1 Memory specification

3.1.1 Cost function

3.2 Memory mapping 10

3.3 Port mapping 12

3.3.1 Port constraints 12

3.3.2 Port assignment 13

3.3.3 An example 15

3.4 Bit-width mapping 16

3.4.1 An ILP formulation for bit-width mapping 16

3.4.2 An algorithm for bit-width mapping 17

3.4.3 An example 19

3.5 Word mapping 21

3.5.1 An ILP formulation for word mapping 22

3.5.2 An algorithm for word mapping 25

3.5.3 An example 27

3.6 The cost function

4 Overall approach

4.1 Assumptions

4.2 Linear algorithm . .

4.2.1 An example .

4.3 Exhaustive algorithm

4.3.1 An example .

5 Experiments and results



5.1 Summary of experiments

6 Conclusion

7 Acknowledgements



List of Figures

Classification of memory mapping works

Sample high-level library mapping for memories: (a) source and target mod
ules (b) mapping result

Three degrees of freedom in memory mapping problem

4 Port map example (a) source and target memory components (b) port map
between source s and target t

5 An example for bit-width mapping (a) source and target memory components
(b) target memory module set (c) enumeration of memory compositions (d)
list of best compositions for different bit-widths (e) data input-output con
nection between the source and the target modules

6 Memory realization with unrestricted word-count

Word mapping example (a) source and target memory modules (b) interme
diate results from word mapping algorithm (c) final design 28

8 Cost of a memory design

9 Two types of memory composition (a) regular composition (b) irregular com
position 33

10 A memory mapping example with linear algorithm (a) source and target mod
ules (b) design with word mapping followed by bit-width mapping (c) design
with bit mapping followed by word mapping 37

11 Complete design for the memory mapping example 38

12 Bit-width relaxed regular composition 39

13 A memory mapping example with exhaustive algorithm (a) source and target
modules (b) optimal bit-width configuration for each word-count (c) memory
configuration for the resultant design 41

14 Memory mapping result I 44

15 Memory mapping result II 45

16 Memory mapping result III 46

17 Memory mapping result IV 47

18 Memory mapping result V 48

19 Memory mapping result VI 49

20 Memory mapping result VII 50



1 Introduction

Digital systems at the RT level are often decomposed into datapaths, controllers and mem

ories. With the increasing importance of high-speed data intensive applications in the fields

of speech, image and video processing that require significant amount of storage capability,

the memory subsystem becomes an important focus of design. For such applications, the

area cost of memory components could be as high as 80% of the complete design. Hence,

there is a need for efficient implementations of memory elements in these designs.

In the domain of high-level synthesis (HLS)[GDWL92], the output typically consists of

an RT-level netlist of generic components, including logical memory modules. These memory

modules can implement both the array variables in the input description, as well as a set of

clustered scalar variables to make a cost-effective design. These memory modules are logical

in the sense that there may not be a memory in the library that satisfies their size as well

as port requirements. We need a memory synthesis scheme to realize these logical memory

modules with real memory modules from a library.

A memory mapping scheme is also required to support design resue. Design reuse, in this

context, refers to the process of reusing (or migrating) a design across different technology

libraries. The existing design may use a memory module with a specific size and port

configurations from an old library; such memories may not be available in the new library

and therefore have to be synthesized with modules from the new library.

In this work, we present a memory synthesis scheme that implements a source memory

module with one or more memory modules from a target library. High-level library mapping



(HLLM) for memory, our approach to memory mapping, is based on higher levels of abstrac

tion for memories: given the high-level specification of the source and the library modules in

terms of word-count, bit-width and the port configurations, the high level library mapping

for memories implements the source memory module using target memory modules in an

efficient manner so as to optimize a user-given cost function. This approach is applicable to

the synthesis of the on-chip as well as the off-chip memory modules.

This report is organized as follows. Section 2 describes related work. Section 3 defines

high-level library mapping for memories and decomposes it into three subproblems. Sec

tion 4 describes two memory mapping algorithms that implement a source memory module

with a set of target memory modules. Section 5 describes sample memory mapping results

to demonstrate the efficacy of our approach. The report concludes with a summary and

discussion of future work.

2 Previous work

Research in the use of memories for design automation systems at RT and HLS domain

has recently gained importance. These works could be broadly classified into two groups.

The first group of work concentrates on translating the storage requirements in the input

behavior onto logical memories. The second group of work maps these logical memories onto

physical memories from a library. Our work fits in the second group.

There has been a fair amount of work in mapping the storage requirements of a design's

behavior into logical memories. Most of the earlier works have focussed on grouping the scalar



variables to be implemented with multi-port memories. [KiLi93] presents a brief summary

of these works. Some recent efforts emphasize on mapping arrayed variables directly onto

memory modules. [RaGC93][MaLa94] present algorithms to bind the storage requirements

onto memories for general domain problems. The MeSA algorithm [RaGC93] presents a

scheme to map the arrayed variables in the input behavior into logical memory modules.

The output of the MeSA algorithm is a set of logical memory modules (in terms of size

and port configurations) that would be required to implement the arrayed variables that

have been clustered based on cost and performance considerations. The TODOS system

[MaLa94], on the other hand, tries to incorporate real memories from the library directly

into the scheduling and binding phase of synthesis.

Another group of research papers focus on synthesizing the storage requirements for high-

throughput applications specific to the domain of speech, image, video and DSP. These appli

cations are often specified using a non-procedural language using data streams that facilitates

a designer to make full use of parallelism in the design. The PHIDEO system [LMVW93]

presents a memory allocation scheme for hierarchical data streams targeted towards fixed-

rate video applications. They allocate background memories for storing the signals that are

stored between the clock cycle of production and consumption. [BaCM93][BaCM94] present

another memory allocation scheme for real-time multi-dimensional signal processing appli

cations. They partition the multi-dimensional signals into non-overlapping basic sets using

a polyhedral data-flow analysis and then pack these basic sets into logical memories using

an iterative improvement scheme based on a Branch and Bound algorithm. Our work com

plements these efforts by providing an efficient scheme to map the logical memory modules



generated by these systems into physical memory modules from a target library.

There are relatively fewer works in the domain of logical memory realization with real

physical memories. [KiLi93] packs a set of logical memories (result of scalar variable clus

tering) into a set of memory modules from a library. They model this process as a two

dimensional bin-packing problem where the number of ports and number of registers in the

modules constitute the two dimensions. [BaGa95] applies a sequence of simple memory ex

pansion steps to build a memory organization that satisfies thelogical memory requirements.

These steps include bit-width expansion (when the required bit-width is larger than the bit-

width of the library memory modules), word-count expansion (when therequired word-count

is larger than the word-count of the library memory modules), interleaving (to increase the

access rate) and port multiplexing (to increase the number ofports or to decrease the access

delay)T Another work by Schmit and Thomas [ScTh95] first groups arrayed variables using

a set of basic moves such as horizontal concatenation (that increases the bit-width), ver

tical concatenation (that increases the word-count), array widening (consecutive words are

placed in a single wider word) and array narrowing (a word is split and placed into consec

utive words) then binds (maps) each of these grouped variables onto one or more instances

of the same physical memory module. They use simulated annealing to select a set of basic

moves (array clustering steps, array binding, etc.) that lead to an efficient memory design.

[KaRo94] packs a set of logical memories into a fixed set of physical memories to be used in

a Field Programmable System. Each logical memory is first broken into smaller pieces that

Aset of nwords can be accessed serially from aport and be stored in nbuffer registers and subsequently
be read out in parallel, virtually increasing the number of ports at the cost of increasing the access delay.
Conversely, nports can be grouped together to provide n words which can be accessed serially at the rate
of n-times the memory access rate, virtually decreasing the memory access delay by utilizing multiple ports.



can fit into a physical memory. Next they use a Branch and Bound algorithm to map these

logical memory pieces onto physical memory modules.

[KiligS]

[BaGa95]

[ScTh95]

[KaRo95]

Ours

Logical memory Physical memory Memory parameters

Number Type Number Type Words Bits Ports

Multiple Multiple Multiple Multiple Yes No Yes

Single Single Multiple Single Yes Yes Yes

Multiple Multiple Multiple Single Yes Yes ?

Multiple Multiple Single Yes Yes ?

Single Single Multiple Yes Yes Yes

Figure 1: Classification of memory mapping works

Most of these works perform the task of memory mapping as a backend to their be

havioral synthesis system. [KiLi93] emphasizes on grouping the scalar variables into logic

memory modules and then packs these logic memory modules into physical memory mod

ules. [BaGa95] performs the task of memory selection, and synthesizes the logical memory

if the required memory is not available in the library. [ScTh95] incorporates the memory

mapping scheme directly into their behavioral synthesis system. However, in this work we

focus on the task of post-synthesis memory mapping. The work of [KaRo94] falls in this

domain; they concentrate mainly on mapping logical modules onto physical modules.

Memory mapping works can also be classified on the basis of the number and the type

of logical and physical memory modules considered simultaneously. Figure 1 illustrates

this feature for the above mentioned memory mapping works. [KiLi93] performs the most



general mapping in terms of mapping multiple logical memory modules of different types onto

multiple physical memories of different types. [ScTh95][KaRo94] realize multiple logical

modules with multiple physical memories of the same type. We and [BaGa95] focus on

realizing a single logical memory at a time. However, in contrast to [BaGa95], we pack

different types of physical memory modules to realize a logical module.

With respect to realizing a single logical memory, these works have limited scope in the

sense that either they do not consider all the degrees of freedom associated with memories

(word-count, bit-width and port) or their mapping scheme is tuned for a specific memory

module set. The last three columns in Figure 1 (labelled Bits, Words and Ports) com

pares the comprehensiveness of these works with respect to the three memory parameters^.

Specifically, [KiLi93] does not consider bit-width expansion, [BaGa95][ScTh95] consider only

simple realizations of a source memory module that does not use multiple memory types;

[KaRo94]'s system is tuned to a fixed set of physical modules (4 instances of 32Kx8 SRAM).

Our approach is comprehensive; it considers all degrees of freedom associated with memory

modules (word-count, bit-width and port) and can pack multiple memory types together

to realize a required memory module. Furthermore, our approach is not tuned to any spe

cific system or the source or the target memory module set, and can therefore be used as a

backend to most existing behavioral memory synthesis approaches.

^In Figure 1the "Yes" and "No" entries specify that the corresponding work considers or ignores aspecific
memory parameter, whereas a "?" entry in the Ports column specifies that the work does not clearly state
how they handle port mismatches between the logical and physical memory modules.



3 Problem definition

We define high-level library mapping for memories (or simply memory mapping) as the task

of realizing a source memory module with a set of target memory modules from a library.

The memories can be on-chip macros or off-chip components. If the size (number of words or

bit-width) of a target memory module is greater than the required size, the source memory

module can be realized with a single target memory module; otherwise the source memory is

realized with a set of target memory modules. Figure 2 shows a memory mapping example

where a 768-word, 72-bit memory (the source) is implemented using two instances of a 512-

word, 36-bit and two instances of a 256-word, 36-bit target modules from a library. Besides

the target memory modules, the mapping also requires address decode logic that translates

the source module address into the target module addresses, as well as the multiplexers to

steer the data output from the target modules. The goal of the mapping process is to achieve

a feasible target implementation that satisfies a user-given cost function.

In this section, we first describe the parameters used to specify a memory. Next we

define and present algorithmic formulations to the three memory-mapping subproblems,

namely port mapping, word-count mapping and bit-width mapping. The section ends with

a brief description of the cost functions used in our approach.

3.1 Memory specification

A library memory module is typically specified by the following parameters : type (SRAM,

DRAM, EPROM, etc.), clocking mechanism (asynchronous or synchronous), size (number



Source

s

768

72

1 RW,1R

Adin Bdin

Adout

512x36
A

Bdoiit

Awr Bwr Ao« Bo«

Bdout

Awr Bwr Ao* Bo*

lOaddr(O)

II

512 256

36 36

2R,2W 2R,2W

Oacidr(0)

Bdin Adin

Adout

512x36
A

Bdout

Awr Bwr Aoo Boo

Bdout

Awr Bwr Aoo Bo



of words and bit-width for each word), number and type of ports, protocol timing diagram,

etc. At higher level of abstraction, a memory module m can be characterized by its size

(number of words and bit-width for each word) and the amount of data access parallelism

(number of ports). We enumerate the following list of parameters required to characterize a

memory component m. For each parameter, we define a function that returns the value of

the parameter for a memory module.

Ports : Data is accessed in and out of memory through ports. Based on the direction of

transfer of data, ports are categorized into three types:

Read ports support data transfer in only one direction, from the memory. Let R{m)

be the number of read ports for m.

Write ports support data transfer only to the memory. Let W{m) be the number of

write ports for m.

Read-write ports support data transfer in both the directions, i.e., in and out of the

memory component. Let RW{m) be the number of read-write ports for m.

Word-count : The storage capacity of a memory is characterized by specifying its number

of words. Let N{m) be the number of words for m.

Bit-width : specifies the width of each word in the memory. Let B{m) be the bit-width

for each word in the memory m.



3.1.1 Cost function

We define three cost measures for a memory module. These cost measures are used to guide

the mapping algorithms.

Area measure: represents the area used by a memory module; this can be represented by

the silicon area, the transistor-count, the gate-count or the actual area occupied on a

PCB by the off-chip memories. Let A{m) be the area measure for m.

Price measure: represents the price of a memory component. Let P{m) be the price

measure for a memory.

Delay measure: The timing diagram for a memory component is described by a set of

access times, set-up times, hold times as well as cycle times. In this work, we use the

worst case access time (read or write) to characterize the timing behavior for a memory

component and denote it by D{m).

3.2 Memory mapping

The memory mapping problem is defined in terms of a source memory module s, a set of

target memory modules T from a library and a user-given cost function C. The source and

target modules are characterized by specifying the three parameters, namely the ports, the

word-count and the bit-width. The aim ofmemory mapping is then to implement the source

s with one or more target modules from the set T in such a way that the realized design

performs well with respect to the user-given cost function C.



Word-count /'

Figure 3: Three degrees of freedom in memory mapping problem

The memory mapping problem addresses the mismatches in the source and target mod

ules with respect to the three memory parameters namely the ports, the bit-width and the

word-count. Figure 3 shows these three degrees of freedom for a typical set of memory

modules from standard databook libraries The length of an axis in this figure represents

the relative variance in the values for the corresponding parameter. We observe maximum

variance in the word-count of memory modules. For instance, a memory component could

have its word-count vary from 4-word register-files to 16 Megaword memories. Bit-width has

relatively lower variance, usually in the range of 1 to 128. The number of ports in a memory

component are usually very small, ranging from 1 (single port ROMs) to 6 (Multiport RAMs

from [Casc92]).

Note that these three parameters are orthogonal to each other, i.e., variation of one

parameter is independent of another within a library of memory modules. However, the

cost measure for a memory module typically is a function of all these three parameters.

Thus, we need to consider all these parameters together in selecting a set of target memory

^See [DuJh93] for a survey of RT-level libraries



modules to find a good implementation. In our mapping formulation, we first consider each

of these parameters separately; the rest of this section describes formulations for the port

mapping, bit-width mapping and word mapping problems. In Section 4, we combine these

formulations to achieve a global solution to the complete memory mapping problem.

For the rest of the report, s refers to the source memory component, T to the target

memory set and U to a specific target memory component. We use the terms memory

component and memory module interchangeably. Furthermore, the word-count and the bit-

width for a memory layout in a figure are shown in the vertical and horizontal directions

respectively.

3.3 Port mapping

The port mapping formulation first specifies the necessary and sufficient conditions that

target modules need to satisfy in order to meet the data access requirements of the source

memory. We then present a simple scheme to associate a source memory port with a distinct

target memory port.

3.3.1 Port constraints

Each of the target memory modules should have enough data access parallelism in terms of

number ofports required to support the data bandwidth for the source memory component.

Asource read port can berealized either by a target read ora target read-write port; likewise

a source write port can be realized by a target write or a read-write port. A source read-



write port can be realized using a target read-write port or a target read and a target write

port. The following three equations establish the necessary and sufficient conditions that a

target memory module t needs to satisfy to meet the port requirements for a source memory

module s\

i?(5) + < R{t)^RW{t)

W{s) + RW{s) < W{t) + RW{t)

R(s) + W{s) + RW{s) > R{t) + W{t) + RW{t)

The read constraint in Equation 1 ensures that t has enough ports to read out the data;

the write constraint in Equation 2 ensures that t has enough ports to write in the data. The

read-write constraint shown in Equation (3) ensures that each port of t can get assigned to

only one port of s. These three constraints together are called port constraints. Note that at

this point we can not improve the data access parallelism by interleaving memory modules,

since we do not know that data access patterns; we can use only those memory modules that

' meet the above port constraints.

3.3.2 Port assignment

Once we have selected a target memory module that can satisfy the access rate requirements

of 5, we need to assign each port ofa source memory component to a distinct port of a target

memory component. Algorithm 3.1 describes a simple scheme to perform a one-to-one port

assignment. The algorithm first tries to perform a simple one-to-one mapping in terms of

mapping a source read port to a target read port, a source write port to a target write port



and a source read-write port to a target read-write port. Each of the remaining read and

write ports is realized by a single read-write port. Similarly, each of the remaining source

read-write ports is realized as a read port together with a write port of t. Note that the port

constraints ensure that t has a sufficient number of ports to perform this assignment.

Algorithm 3.1 : Port assignment
INPUT: Source memory module (s), Target memory module (t).
OUTPUT: Assignment of ports of s to the ports of t
1. if {R{s) < R{t)) then

1.1 assign R{s) read ports of s to R{s) read ports of t;
2. else

2.1 assign R{t) read ports of s to R{t) read ports of t;
2.2 assign R{s) —R(t) read ports of s to R{s) —R{t) read-write ports of t;

3. if (lU(s) < W{t)) then
3.1 assign lU(s) write ports of s to VE(s) write ports of <;

4. else

4.1 assign W{t) write ports of s to W{t) write ports of f;
4.2 assign W{s) - W{t) write ports of s to VP(s) - W{t) unused read-write ports of f;

5. if {RW{s) < RW{t)) then
5.1 assign RW{s) read-write ports of s to RW{s) unused read-write ports of f;

6. else

6.1 assign RW{t) read-write ports of s to RW{t) unused read-write ports of t;
6.2 assign RW{s) —RW{t) read-write ports of s to RW{s) —RW{t)

unused read ports of t and - RW{t) unused write ports of t;

Besides specifying the port constraints and port assignment, port mapping also involves

name mapping and control mapping. Name mapping refers to the task of connecting the

data inputs of the source memory component to the data inputs of the target memory

component. Control mapping refers to matching the enable lines of s to the enable lines of

t. We assume that these tasks are performed by the user. We focus on the high-level task

of port constraints specification and port assignment.



Source

Figure4: Port map example(a) source and target memory components (b) port map between
source s and target t.

3.3.3 An example

Figure 4 illustrates an example for port mapping. Figure 4(a) lists the port configurations

for a source component s and three target components tl, t2 and tS. The source component

s is a IR-IRW register file used in the AM2901 microprocessor slice [Am2901]. The target

memory modules are instantiated from the Cascade [Casc92] module generator.

We observe that module tl can not be used to implement s, since it violates the read

constraint (Equation 1) as well as the read-write constraint (Equation 3). Also, t2 fails to

satisfy the write constraint. t3, on the other hand, fulfills all the port constraints. Figure

4(b) shows the result of port assignment between s and t3 generated by Algorithm 3.1. The

read port (R) of s has been assigned to the first read port (Rl) of f3, whereas the read-write

port (RW) is realized with a read (R2) and a write (Wl) port of t3.



3.4 Bit-width mapping

Bit-width mapping refers to the task of achieving the bit-width requirement of the source

memory component s using a set (one or more) of target memory modules from a library. In

order to find a good realization, we often have to compose a set of target memory modules

to meet the bit-width requirements of s. For example, the memory realization in Figure

2 composes two memory module each with bit-width=36 to implement a source memory

module of bit-width=72.

Next we formulate the bit-width mapping problem in terms of the bit-width of the
source

(5(s)) and the target memory modules. Based on the characteristic distribution

of bit-widths, we then present an enumeration scheme to select an optimal set of target

memory modules (for a user-given cost measure), whose composition satisfies the bit-width

requirement of s.

3.4.1 An ILP formulation for bit-width mapping

We present a simple integer linear programming formulation for an area-based bit-width

mapping problem. Given a source memory module s and a set T = {^1,^2, of target

memory modules from a library, we have to find the number (x.) for each of the target

memory module t,- that minimizes the following expression:

j=i



and satisfies the following linear constraint:

£ XiB{ti) > B{s)

Recall that the functions A and B refer to the area measure and bit-width respectively

for a memory module. The above bit-width mapping problem is NP-complete, since another

NP-complete problem, namely the subset-sum problem [CoLR90] can be reduced to the

bit-width mapping problem.

Finding an optimal solution to an unrestricted NP-complete problem is a computationally

expensive process. However, the bit-width mapping problem domain for practical applica

tions are restricted to a smaller range of bit-widths (the bit-width of a memory module

typically lies between 4 and 128). Thus, we can apply an exhaustive search (enumeration)

scheme to find the optimal solution.

3.4.2 An algorithm for bit-width mapping

Algorithm 3.2 describes an enumeration scheme for all possible compositions of each bit-

width in a systematic fashion. The input to the algorithm is the source memory module

s, the target memory module set T and the cost measure C (area, delay or price). The

algorithm returns an optimal set of target memory modules (with respect to the given cost

measure C) that performs the bit-width mapping for the source s.

In this algorithm the arrayed variable best.sol keeps track of the best composition of

target memory modules for each bit-width. The set Ts stores one or more instances of each

target memory module. For each target memory module t,-, we include instances, since



a good mapping would require at most these many instances of t,-. Finally, h enumerates

all possible bit-widths that can be composed using the first i memorymodules from Ts.

Algorithm 3.2 : Bit-width mapping
INPUT: Source memory module, 5; Target memory module set, T;

Cost measure, C.
OUTPUT: Bit-width mapping of s.
1 for i = 1 to B(s) do

1.1 best.sol[i] = (j>\
2 end for;
3 Ts = (j)]
4 for each ti G T do

4.1 best-Sol[B{ti)] = ti]
4.2 For j = 1 to rS do

4.2.1 Ts = Ts + ti',
4.2 end for;

5 end for;
6 Lq = (j)]
7 for i = 1 to ITs| do

7.1 Li = Expand-list(T,_i, Ts,);
8 end for;
9 return 6esLso/[B(s)];

The algorithm first initializes array variable bestsol, Ts and Lq (Step 1-5). It then

successively enumerates all possible bit-widths that can be composed using a subset of Ts

(Steps 6-8). The algorithm finally returns the best composition for the bit-width of s stored

at 6esLso/[B(s)]. The function Expand-list builds a new list of bit-width compositions using

pre-existing compositions along with a new target memory module: Algorithm 3.3 describes

the steps involved to perform this task. The function Expand-list composes each element of

L with a new target memory module and if the resulting composition is not a suboptimal

one, the function stores the compositions in the new list and updates the global best solution

array best.sol. The above algorithm uses the user-given cost function C to determine the

quality of the bit-width mapping compositions.



Algorithm 3.3 : Expand-list(L,<)
INPUT: Sorted list of bit-width mappings, L; Target memory module, t;
OUTPUT: Sorted list of bit-width mappings composed of members of L and t.
1 Lnew — T,
2 for i = 1 to \L\ do

2.1 new-map = Compose(T,-, t);
2.2 if B{new.map) < B(s) or new-tnap does not have a tj

such that B{new-Tnap - tj) > B(s) then
2.2.1 insert new-map to Lnew]
2.2.2 Update-best-sol(netr_map);

2.3 end if;
3 end for;
4 return Lnew]

3.4.3 An example

Figure 5 walks through the bit-width mapping algorithm (Algorithm 3.2) on an example.

The source memorymodule in this example is a part ofan industrial examplefrom [KaRo94].

The target modules are instantiated from the Toshiba gate array library [Tosh90]. The source

and target memory modules are shown in Figure 5(a). The bit-width of the source module

is 24. There are three target memory modules, namely tl, t2 and t3 with bit-widths equal

to 4, 8 and 16 respectively. Note that [Tosh90] contains a wide variety of memory modules;

we selected a smaller set to illustrate the essence of the algorithm. We use the area measure

represented by the gate-count as the optimizing cost function.

Figure 5(b) lists memory module instances that are used in the enumeration steps (Steps

6-9) of the Algorithm 3.2 for this example. Note that there are 6 instances of tl, 3 instances

of t2 and 2 instances of t3 in Ts. Figure 5(c) shows sample lists of bit-width compositions

generated by the example. The first list LI contains a single composition for 4-bits. List L6



Bit-width

Word-count

Gate-count

Source Target

s 11 12 13

24 4 8 16

64 64 64 64

3172 4182 6636

S = {t1, t1, t1, t1, t1. t1, t2, t2,12,13,13}

LI ={(11)}

L2 ={(11), (11,11)}

L3 ={(11), (11,11), (11,11,11)}

L6 = {(11), (11,11), (11,11,11) (11,11,11,11,11,11)}

L7 = {(11). (11,11), (12), (11,11,11), (12,11) (12,11.11.11.11)}

L9 = {(11), (11,11), (12). (11,11,11), (12,11) (12,12), (12,12,12)}

L11 = {(11), (11,11), (12), (11,11,11), (11,11,11,11,11,11), (12,12,12), (13,12), (13,13)}

Bit-width Composition | Gate count

4 {t1} 3172

8 {12} 4182

12 {11,12} 7354

16 {t3} 6636

20 {t3,11} 9808

24 {t3,t2} 10818

10 13

16 8

OO

Figure 5: An example for bit-width mapping (a) source and target memory components
(b) target memory module set (c) enumeration of memory compositions (d) list of best
compositions for different bit-widths (e) data input-output connection between the source
and the target modules



has 6 elements each with a different number of instances of tl. L7 uses a single instance of

t2 with multiple instances of tl. The last list Lll contains 20 compositions including the

one that uses two instances of tS. The best mappings for each bit-width are shown in Figure

5(d). The optimal mapping for the source component is given by the mapping (tS, t2) with

a gate-count of 10818. Figure 5(e) shows the connection between data inputs and outputs

of s, t2 and t3.

We conclude this example with two comments. In this example the bit-width of the

optimal solution is exactly equal to the bit-width of the source component (24). This may

not be true in general. Secondly, for this example the cost function per bit decreases with

increasing bit-width. For such cases, the optimal mapping can be achieved with a linear

time algorithm. However, in general the cost function may not necessarily follow the above

behavior; our algorithm provides an optimal solution for the unrestricted bit-width mapping

problem. The algorithm considers mappings with bit-widths equalor greater than the source

bit-width and is independent of the cost distribution for the target modules.

3.5 Word mapping

Word mapping, in the context of memory mapping, refers to the task of accomplishing the

word-count requirement of the source memory component s using a set (one or more) of

target memory modules from a library. As in bit-width mapping, we often have to compose

a set of target memory modules to meet the word-count requirement of the source memory

module. Refering back to Figure 2, the design composes two memory modules with 512

and 256 words to realize the source memory module with 768 words. Recall that the word-



count of the resultant design has to be greater than or equal to the word-count of s. The

word mapping problem is very similar to the bit-width mapping problem discussed in the

last section. As before, we first present an ILP formulation for a simplified word mapping

problem. Next, based on the problem domain characteristic we present an efficient algorithm

to perform the task of word mapping.

3.5.1 An ILP formulation for word mapping

The ILP formulation for a simplified area based word mapping problem is similar to the

ILP formulation for bit-width mapping. Given a source memory module s and a set T =

of target memory modules from a library, we have to find the number(a:i) of

each of the target memory module f,- that minimizes the following expression:

^XiA{ti)

and satisfies the following linear constraint:

J2xiN{ti)>N{s)
i=l

Recall that function A for a memory module refers to the number of words in the module.

The above ILP formulation is a simplified version of the actual word mapping problem in

the sense that Equation 6 does not capture the complete cost of the resultant design. It

does not account for the cost of the multiplexers required to select the data output from the

various modules used in the design. Refering to Figure 2, the design requires two 2-input

72-bit multiplexers (one for each output). Furthermore, Equation 6 does not include the



cost of the address decoding logic. In the worst case, the address decoding logic may require

adders incurring a significant increase in the total cost of the design.

The word mapping problem as defined (similar to the bit-width mapping problem) is an

NP-complete problem. However, unlike bit-width mapping, the domain of word mapping is

quite large, since the number of words in a memory module varies in a wide range. Thus, a

simple enumerative scheme would lead to a time inefficient solution. However, the number

of words in a memory module is typically a power-of-two. A memory with word-count equal

to a power-of-two provides a regular structure and leads to an efficient design. Based on this

assumption, we present an efficient linear time algorithm to perform word mapping. Note

that a few generator based libraries ([VTI91][Tosh90][Casc92]) do provide memory modules

with a number of words not equal to the power-of-two. We can approximate these memory

word-counts to the largest power-of-two less than given memory word-count. We are making

the above assumption only for the target memory modules; the source memory word-count

is unrestricted.

The power-of-two assumption not only makes it possible to devise an efficient algorithm

for word mapping, but also obviates the need for adders in the address decoding. If we use

memory modules with unrestricted word-counts, we will require complex adder logic to map

the address space of the source to the address space of the target memory modules. Figure

6 shows an example. The source memory module (word-count = 64) is realized with three

target memory modules tl, t2 and t3 of size 28, 20 and 16 words respectively. The base

addresses for tl, t2 and tSare 0, 28 and 48 respectively. Figure 6 shows an implementation

using two subtractors. Figure 2, onthe other hand, illustrates that the address mapping logic



Size = 64

'-P •"

Size = 20

Size = 16

Figure 6: Memory realization with unrestricted word-count

for target memory modules with word-count equal to powers-of-two could be implemented

with a couple of gates. Note that [ScTh95] presents a clever scheme for address mapping

that obviates the use of adder logic. However, the scheme requires that the word-counts of

the source and the target modules satisfy specific conditions; otherwise the source and the

target module word-count need to be approximated by next higher word-count satisfying the

conditions. This can result in wasted address space of as large as 33%[ScTh95].



3.5.2 An algorithm for word mapping

Algorithm 3.4 : Word mapping
INPUT: Source memory module, s; Target memory module set, T;

Cost measure, C.
OUTPUT: Word mapping of s.
1 for each t € T do

1.1 N(t) = 2", where u is the largest integer such that 2" < A(t);
2 end for;
3 sort T in decreasing word-count of its elements;
4 delete redundant elements from T;
5 best-map = (j);
6 partial-map =
7 word-left = N(s);
8 while word-left ^ 0 do

8.1 curr-mem = next memory from T;
8.2 curr-word = N{curr-mem)-,
8.3 curr-map = curr-mem-,
8.4 if C{partial-map+curr-map) < C{best-map) then

8.4.1 best-map = partiaLmap + curr-map;
8.5 end if;
8.6 if curr-mem is the last element in T or S{curr-map) == word-left then

8.6.1 word-left = 0;
8.7 else

8.7.1 partial-map = partiaLmap + I ^ordJeft i ^urr-mem;
•* r r r * Lcurr ^word-^ '

8.7.2 word-left = wordJeft - curr-mem;
8.8 end if;

9 end while;
10 return best-map;

Algorithm 3.4 describes a scheme to perform the task of word mapping efficiently. The

input to the algorithm consists of the source memory module s, the target memory module

set T and the user-given cost function C. The global variables best-map, partiaLmap, and

word-left in this algorithm keep record of the current best complete mapping, current partial

mapping and the number of words yet to be mapped respectively. The local variables in

the while loop at Statement 8, namely curr-mem, curr-Word and curr-map store the cur

rent target memory module, its word-count and the partial mapping achieved using this



curr.mem.

The algorithm begins with approximating the target memory word-count to the largest

power-of-two that is less than or equal to the memory word-count. After sorting these

memory modules in the decreasing order of their word-counts, the algorithm deletes the

redundant modules from T. Atarget memory module t,- is redundant if it could becomposed

using other modules in T with smaller cost. The major computation for the word mapping

is performed in the while loop at Statement 8 of the algorithm. The algorithm selects

curr.mem, the next largest memory module from T and generates two mappings:

• Acomplete mapping using the current partiaLmap and curr.mem (Statement 8.4). If

the cost of this complete mapping is smaller than the current hest.map, then best.map

is updated.

• A new partial mapping using partiaLmap and the maximum number of complete

curr.mem that can fit in wordJeft.

If currjmem is the last module in T or curr.map provides an exact fit for wordJeft, the loop

terminates by assigning zero to wordJeft. Otherwise, wordJeft is updated with the number

of words yet to be mapped. Finally, the algorithm returns the current best mapping stored

in best.map.

The run-time complexity of the algorithm is 0(m * log{m)), where m is the number of

elements in T. The sort procedure at statement 4 requires 0(m *log{m)) iterations. The

redundancy removal at Statement 4 can be performed in 0(m) time. Finally, thewhile loop

at Statement 8, in the worst case, iterates for m times. The computation in each iteration



can be performed in constant amount of time. Thus the complexity of the whole algorithm

is 0(m * log{m)). Note that the algorithm would require linear run-time for sorted T.

3.5.3 An example

Figure 7 shows an application of the word mapping algorithm on an example. The source

component in this example is a memory module from an industrial design [KaRo94]. The

target memory modules are from the Toshiba library [Tosh90]. The word-count, bit-width

and gate-count for each memory module are shown in Figure 7(a). We use an area measure

approximated by the gate-count as the cost function for the example. Furthermore, we

approximate the cost of the complete mapping with the sum ofgate-counts of the composing

target modules. Note that each target memory module in this example has a word-count

that is a power-of-two and that all these modules are irredundant. ^

Figure 7(b) shows intermediate results after each iteration of the while loop in the

Algorithm 7. In the first iteration we use tl and generate a complete mapping (tl, tl)

with cost 39816 and a partial mapping (tl) with cost 199008. The next iteration generates

another complete mapping (tl, t2) with a lower cost 30968. In the following iterations, we

successively use the remaining target memory modules. The process ends after the fifth

iteration when the remaining words to be mapped become zero. The optimal mapping is

given by (tl, t2) with cost 30968 (shown in bold). Note that the number of iterations for an

example is bounded by the number of the target memory modules. Figure 7(c) shows the

implementation corresponding to the mapping (tl, t2). Along with the two modules tl and

memory module is irredundant if it can't be synthesized using other memory modules with smaller



Parameters Source Target

s tl 12 13 14 15 16

Word-count 368 256 128 64 32 16 8

Bit-width 16 16 16 16 16 16 16

Gate count 19908 11060 6636 4434 2408 1300

Iteration
count

Curr mem

name word

Best_map

mapping cost

t1,t1

(11,12)

(11,12)

(11,12)

(11,12)

39816

30968

30968

30968

30968

Partial_map

mapping cost

(tl) 19908

(11) 19908

(11,13) 26544

(11,13,14) 30966

(11,13,14,15) 33374

19908

30966

Size left

sAdd(7-0) tIAdd t1 Datain

256x16 tIDataout
sDatain(15-0)

sAdd(8-0) sAdd(6-0)

4-16

tZDatain (2

l2Dalaout

CM

2 sDataout
H 16

Figure 7: Word mapping example (a) source and target memory modules (b) intermediate
results from word mapping algorithm (c) final design



t2, the implementation uses a 2-input 16-bit multiplexer and some small address decoding

logic (two inverters -|- an AND gate).

We conclude this section with the following observations. If all the target memory mod

ules have number of words equal to a power-of-two then:

• Our word mapping algorithm generates an optimal solution.

Our algorithm is very efficient {lineartime for target module set sorted by size).

Our scheme implements the address decoding logic with very little logic without using

the "adder" logic.

3.6 The cost function

The memory mapping algorithms are guided by the cost of the generated design. The

cost of the synthesized source memory module is given by the combined cost of the various

elements used in the design. We illustrate these elements through an example shown in

Figure 8, where the design consists of three components:

Address decode logic, shown in the white box, consists of the logic that translates the

address lines of the source memory module into the address and the enable lines of the

target memory modules. In our mapping approach, this logic is usually small, in the

order of a few gates.®

®Our word mapping algorithm implements theaddress decoder without using the"adder" logic. However,
for a general word mappingalgorithm(e.g., exhaustive algorithmdiscussed in Section 4.3), the address decode
logic can be of the order of the "adder" logic.



Datain

Datain

0}
•D
O
O

dataout

dataout

dataout

Taraet memorv modules

Dataout

dataout

Figure 8; Cost of a memory design

Target memory modules, shown in the lightly shaded box, consists of an array of target

memory modules. These modules together satisfy the word-count and the bit-width

requirements of the source memory module. The example in Figure 7 uses m*n mod-

Output mux, shown in the black box, multiplexes the output data from target memory

modules. The number of inputs and the bit-width of the multiplexer is given by the

number of target memory modules (m) used in the word mapping and the bit-width

of the source memory module respectively.



The cost of a memory design is given by the cumulative cost of the constituent elements:

C{s) = C(address) + C{target) + C(mux)

Here, C(address), C(target) and C(mux) refer to the cost of address decoding logic, the

target memory modules and the output mux respectively. We refine these terms to generate

a specific cost measure.

Area measure: The area measure for the address decode logic and the output mux is given

by the approximate area required by these two elements. The area measure for the

target memory modules is given by the sum of the area of all the target memory

modules used in the design:

m n

A(target) =
t=i j—i

Note that we have to use the same unit for the area measure (e.g., sq-micron or gate-

count) for the different elements of a memory design.

Delay measure: The worst case delay path for the synthesized memory goes through all

the three components in the design. The delay measure for the address decode logic

and the output mux is given by the worst case delay through these modules. The

delay measure for the target modules is given by the maximum access delay for all the

modules used in the design:

D(target) = j))

Note that the cost of a memory design would also include the port mapping and data

routing cost. For the sake of simplicity, we ignore these costs in our cost measure.



4 Overall approach

Now we present the overall approach to the memory mapping problem. The approach com

bines the various schemes presented in the last section to solve the comprehensive memory

mapping problem. Specifically, it uses the port mapping, the bit-width mapping and the

word mapping routines to build the complete memory mapping algorithm. Inthis section, we

first describe the basic assumptions underlying our approach. Next we present a suite of two

algorithms, namely Linear and Exhaustive to solve the complete memory mapping problem.

These two algorithms differ in the way they solve the word-mapping problem: the Linear

algorithm uses the run-time efficient linear algorithm presented in Section 3.5; the Exhaus

tive algorithm, on the other hand, finds the best mappings by trying out all combinations of

word mapping exhaustively. We demonstrate these algorithms with an example.

4.1 Assumptions

In this work, we make the following assumptions.

1. Each target memory module is of size equal to a power-of-two.

2. Only regularly structured memory composition is considered. In a regularly structured

memory composition all the target modules in a row have the same size and all the

modules in a column have the same bit-width (Figure 9).

3. The bit-width of the source memory module is small.

4. The port name mapping for the source and the target modules are performed by the



Bit-width Bit-width

Figure 9: Two types of memory composition (a) regular composition (b) irregular composi
tion

5. The cost of a memory design does not include the port mapping and the data routing

6. The timing diagrams of the source and the target modules are compatible.

7. Delay of a memory module is given by the worst case access time.

These assumptions can be classified into three categories:

• Assumptions that are induced by current day design methodologies (e.g., 2, 3). Our

algorithms are general; they perform well for the restricted problem space induced by



these assumptions.

• Assumptions that simplify the memory mapping problem with the assistance of a user

(e.g., 4).

• Assumptions that need to be addressed in order have a comprehensive solution to

general memory mapping problem (e.g., 2, 5, 6, 7).

Note that as a first step towards solving the complete memory mapping problem, these

assumptions are reasonable.

4.2 Linear algorithm

Algorithm 4.1 describes the steps in the Linear mapping algorithm. The inputs to the

system are the source memory module (s), the target memory module set (T) and the cost

function (C). The algorithm generates a mapping of s using modules from T. The target

memorymodulesets in this algorithm, namelyTp, Tsi.e and Tbu store the list of modules after

port constraint satisfaction, word mapping and bit-width mapping respectively. Variables

commouMt, common^word keep record of the list of common bits and word-counts for a

set of target memory modules. Variable Tcommon lists modules with common bit-widths or

word-counts; variables soLsize, soLbit and solstore complete solutions.



Algorithm 4.1 : Linear Memory mapping
INPUT: Source memory module, s] Target memory module set, T";

Cost measure, C.
OUTPUT: Mapping of s with T.
1 Tp —Port constraints(s, T);
2 T^ord = Word mapping(s, Tp, C);
3 commonJ)it = Common bit-widths for modules in

4 Tcommon = ^ Tp and B{ti) G common.bit}-
5 soLword = Bit mapping(s, Tcommon, C);
6 Tbit = Bit mapping(5, Tp, C);
7 common.word = Common sizes of modules in Tbu]
8 Tcommon = {ti\ti G Tp and S{ti) G commonjword}\
9 soLhit = Word mapping(s, Tcommon, C);
10 sol = Min_cost(soL7r;ord, soLbit);
11 sol = Port assignment(s, sol);
12 return sol;

The algorithm considers two solutions. In the first solution, it performs the word mapping

first followed by the bit-width mapping. In the second solution, it performs the bit-width

mapping followed by the word mapping. Finally, it chooses the best out of these two solu

tions. The algorithm starts by selecting the subset of modules from T that satisfies the port

constraints (Step 1) specified by Equations 1, 2 and 3. Then it performs word mapping (Step

2). The first solution is achieved by performing the bit-width mapping on the set ofmodules

returned from the last step that have common sets of bit-widths (steps 3-5). Similarly the

algorithm generates the second solution by performing the word mapping and the bit-width

mapping in the reverse order (Steps 6-9). The best solution is given by the design with the

minimum cost. The mapping is completed by performing the port assignment on the best

solution. The Algorithm 4.1 is log-linear with respect to the number of modules used for

word-count expansion and exponential with respect to the number of the modules used for

bit-width expansion.



4.2.1 An example

Figure 10 shows an example for memory mapping. The source memory module is a

part of a medical image reconstruction [BaCM94] algorithm. There are eight target memory

modules (tl-t8) from the Toshiba [Tosh90] library. Figure 10(a) shows the word-count, the

bit-width, the ports and the gate-count for these memory modules. The source module and

each of the target modules have single read-write ports. The cost function for this example

is an area measure approximated by the equivalent gate-count.

Figures 10(b) and 10(c) trace the two paths through the memory mapping algorithm.

Figure 10(b) shows the intermediate results for the path that perform word mapping followed

by bit-width mapping. All the target modules in this example satisfy the port constraints,

as shown by the variable Tp in this figure. The result of the word mapping on Tp is a two

module (tl, tS) solution. The common set of bit-widths for the modules with word-count

equal to the word-count of tl or tS is {8,4}. Thus, the following modules {tl, t2, t4, t5, tl,

t8} participate in the bit-width mapping. The final solution with this path is given by the

composition of (tl, t2, t4, t5) and the layout is shown in the bottom portion of the Figure

10(b). The cost of this design is 30445 gates.

Figure 10(c) walks through the other path that performs the two tasks in the reverse

order: bit-width mapping followed by word mapping. The memory design generated by the

bit-width mapping algorithm uses a single module tS, since it has an exact match to the

bit-width (12) of the source module. There are only two modules, namely {tS, t6} with

bit-width equal to 12. The word mapping on this set results in a design with three instances

of tS. The layout of the resultant design is shown at the bottom of Figure 10(c). The cost



Size

Bit-width

Ports

Gate count

1 RW 1 RW 1 RW 1 RW 1 RW 1 RW 1RW 1RW

11562 7564 8680 6642 4636 5166 4182 3172

Tp = {t1,t2,13,14,15,16,17,18} Tp = (11,12,13,14,15,16,17,18}

Tword = (11,13) Tbit = (13)

Common_bi1 = {8,4} Common_bi1 = {12}

Tcommon = {11,12,14,15,17,18} Tcommon = {13,16}

soLword = (11,12,14,15) soLbit = (13,13,13)

Gate-count = 2+30404+39 = 30445
Gate-count = 2+26040+42 = 26084

t1
(256x8)

t4
(128x8)

t2
(256x4)

t5
(128x4)

t3

(128x12)

13
(128x12)

13
(128x12)

Figure 10: A memory mapping example with linear algorithm (a) source and target modules
(b) design with word mapping followed by bit-width mapping (c) design with bit mapping
followed by word mapping



sAdd(6-0) t3Add

sDatain(ll-O)
12 sAdd(8)

sAdd(6-0) t3Add

sAdd(8-0)
sAdd(6-0) t3Add

-h 12

t3Datain

t3
(128x12)

t3Datain

13
(128x12)

t3Datain

13
(128x12)

t3Dataout

t30ataout

t3Dataout

S

(384x12)

xc\i

^ sDataout(12-0)
2. 12

Figure 11: Complete design for the memory mapping example

of this design is 26084 gates. Thus, the second design is preferred. The complete structure

for this design that includes the address decode logic as well as the output mux is shown in

Figure 11. The port assignment task is straight forward in this example, since there is a one

to one match between the ports of the source and the target memorymodules.

4.3 Exhaustive algorithm

Next we present an exhaustive algorithm that performs the task of word mapping by ex

haustively searching all possible combinations. In this algorithm, we relax the first two as

sumptions mentioned in Section 4.1. The target memory modules can have an unrestricted



word-count. Also, we relax the regularity constraint in the bit-width dimension, i.e., all the

memory modules in each column (of the resultant memory composition) need not have the

same bit-width. A example of bit-width relaxed regular composition is shown in Figure 12.

Bit-width

Figure 12: Bit-width relaxed regular composition

Algorithm 4.2 lists the steps in the exhaustive algorithm. As before, the inputs to the

algorithm are the source memory module (s), the target memory module set (T) and the

cost function (C). The target module sets in this algorithm, namely Tp, Tbu and T-ujord

store the list of modules after port constraint satisfaction, after running bit-width mapping

for each word-count and before running the final exhaustive word-mapping algorithm. The

temporary variable stores all modules with a given word-count. The variable sol records

the final solution.



Algorithm 4.2 : Exhaustive Memory mapping
INPUT: Source memory module, s; Target memory module set, T;

Cost measure, C.
OUTPUT: Mapping of s with T.
1 Tp = Port constraints(s, T);
2 Tluord —
3 For each word-count wc in Tp do

3.1

3.2 Tbit = Bit mapping(s, T^^-, C);
3.3 Create a t with {W{t) = wc) & (C(t) = C{Tbit));
3.4 T^ord — "t" t;

4 end for;
5 sol = Exhaustive word mapping(s, T^ord, C);
6 sol = Port assignment(s, sol);
7 return sol;

The algorithm starts by selecting the subset of modules from T that satisfies the port

constraints (Step 1). In the For loop of Steps 3-4, the algorithm generates the best bit-width

mapping for each word-count wc and creates a new memory module with the word-count

equal to wc and cost equal to the cost of the resultant bit-width mapping. Finally, it performs

an exhaustive word mapping on the set of modules created from the last step. The exhaustive

word mapping algorithm is similar to the exhaustive bit-width mapping algorithm presented

in Section 3.4.2. The result of word mapping provides the the final solution. The mapping is

completed by performing the port assignment on the result of the word mapping. Algorithm

4.2 is exponential with respect to the number of modules used for bit-width expansion as

well as with respect to the number of modules used for word expansion.



Parameters

Size

Bit-width

Ports

Gate count

Source

Bit-mappmg

t1 t2 t3

Target

t4 t5 t6 t7 ts

256 256 128 128 128 64 64 64

8 4 12 8 4 12 8 4

1 RW 1 RW 1 RW 1 RW 1 RW 1 RW 1RW 1RW

11562 7564 8680 6642 4636 5166 4182 3172

19126

t3
(128x12)

t3
(128x12)

t3
(128x12)



4.3.1 An example

Let us reconsider the memory mapping example discussed in section 4.2.1. Figure 13(a)

shows the source and target memory modules. We now apply the exhaustive algorithm on

this example. Figure 13(b) shows the result ofbit-width mapping for each word-count. Note

that in this example, there are three distinct word-counts: 256, 128 and 64. The source bit-

width (12) is synthesized with (tl, t2) for the word-count 256, with (t3) for the word-count

128 and with (t6) for the word-count 64. The table in Figure 13(b) shows the cost of each

of these bit-width mappings. Next the algorithm performs an exhaustive word mapping on

these bit-width mapping results. The resultant memory configuration is shown in Figure

13(c). The final design is same as the one generated by the linear algorithm and is shown in

Figure 11.

5 Experiments and results

In this section, we first describe the results of applying our memory mapping algorithm on

several examples from the literature, and then summarize these results.

Our experiments use source memory modules derived from various memory-intensive de

signs reported in the literature as well as from industrial designs. Specifically, we report

mapping results for six examples in Figures 14 through 19; Figures 14 and 15 show mapping

result for an additional example. The memory module in the first example is from the Differ

ential Heat Release computation algorithm modelling the heat release within a combustion

engine[RaGC93]. The second memory module is from a Neural Network Chip design reported



in [KaRo94]. The third module is from a Progressive Conversion algorithm [Lipp91]. The

memory modules in the fourth and the seventh examples (in Figures 14 and 15) are taken

from the Medical Image Reconstruction and the Singular Value Decomposition algorithms

respectively reported in [BaCM94]. The source modules in the fifth and the sixth examples

are extracted from industrial designs for an MPEG implementation reported in [ThGa95].

These examples cover wide variety of memory modules both in terms of the source of the

design as well as the size of the modules, specifically with respect to the word-count and

bit-width variation.

Each of the tables in Figures 14 through 20 describe the memory mapping results gen

erated by our mapping algorithms on a set of the source memory modules. The first three

columns in these tables describe the source memory module. For each source module, we

list the name of the design from which the memory module was extracted, the source of

the design and the size of the memory module. Columns 4 through 6 describe the map

ping result. The fourth column (labeled Design) lists the arrayed configuration of the target

memory modules synthesized by our memory mapping algorithm; the fifth column displays

the design metric {Area, Delay or Price) and the sixth column presents the run-time (in sec

onds) for our algorithm on a SUN Sparc Station 5. We have an additional column (column

7) in the tables corresponding to the designs produced by the exhaustive algorithm shown

in Figures 15, 17 and 19. This column reports the percentage improvement in the metrics

of the designs produced by the exhaustive algorithm over the metrics of the corresponding

designs produced by the linear algorithm. In each table we also report the name of the target

library, the cost function and the algorithm used to generate the designs.



Library: Toshiba gatearray Costfn; Area

Example Mapping result

Name Size Design Area
(2-iwid)

Differential Heat
Release

(Ramacfran.EDAC 94)
469x16

256x8,256x8
256x8, 256x8 46331

NeuralNetwoitr Ctiip
(Rose, ICCAD94) 160x8

128x8
32x8 9035

Interface Scan
(Philips, CICC 91) 360x16

256x8, 256x8
128x8,128x8 36491

Medical Image
Reconstmction

(Balasa,ICCAD 94)
384x12

256x6, 256x6
128x6,128x6 30319

MPEGI
(Thordarson, TR95-8) 54x18 64x6,64x6,64x6 11017

MPEG II
(Tfxtrdarson, TR95-8) 128x17 128x5,128x6,128x6 16383

Singular Value
Decomposition 1

(Balasa, ICCAD 94)
1365x16

256x8,256x8

256x8,'256x8
64x8,64x8
16x8,16x8
8x8, 8x8

128436

Algo; Llt«ar

Figure 14: Memory mapping result I

Figures 14 and 15 show the mapping results for area-efficient designs generated by the

linear and exhaustive algorithms respectively. These designs have been synthesized using the

memory modules taken from the Toshiba gate array library[Tosh90]. This library contains

single port RAMs with word-count varying in the range of 8 to 256 and bit-width in the

range of 4 to 8. We report the area of the mapped designs in terms of equivalent 2-input

nand-gates.

From the mapping results in Figures 14 and 15, we observe that the designs produced

by the exhaustive algorithm are usually different and smaller (except for Example 6) in area

as compared to the designs produced by the linear algorithm. The area of designs produced



Library: Toshibagate array

Example

Name

Ditferential Heat
Release

(Ramachan.EDAC 94)

- Neural Networl* Chip o
(Rose, ICCAD 94)

Interlace Scan
(Philips,CICC91)

MedicalImage
Reconstruction 384x12

(Balasa, ICCAO 94)

C MPEG I
® frhordarson,TR 95-8) 5^x18

. MPEG II
° (Thordarson,TR95-8)

SingularValue
DecompositionI 1365x16

(Balasa, ICCAD 94)

Costfn: Area Algo: Exhaustive

Mapping result

Design Area
(2-nand)

Run-time

(MC)

Improvement over
Linear (Fig 14)

224x8, 224x8
256x8,256x8 43699 2.8 5.7%

160x8 7631 1,4 15.5%

112x8,112x8
256x8,256x8 34979 1.9 4.1%

160x6,160x6
224x6,224x6 29391 1.7 3.1%

56x7,56x7,56x4 9325 1.7 15.3%

128x5,128x6,128x6 16383 1.5 0,0%

224x8,224x8
224x8,224x8
224x8,224x8
224x8,224x8
224x8,224x8
256x8,256x8

125635 35717.6 2.2%

Figure 15: Memory mapping result II

by the exhaustive algorithm are less than the area of the corresponding designs produced

by the linear algorithm by upto 15.5%. Even though the target library contains modules

with word-count not equal to a power-of-two, the linear algorithm exclusively uses modules

with word-count equal to a power-of-two. Recall that the linear algorithm approximates the

word-count of a memory module that has a word-count not equal of a power-of-two with

the next lower power-of-two. However, with this approximation these modules become cost

inefficient; hence the algorithm tends to select ones with word-count equal to a power-of-two.

The exhaustive algorithm has been able to produce better designs mainly because it allows

the selection of modules with word-count not equal to a power-of-two. From the last columns



Library: Xilinx4000rams

Example

Costfn: Area Algo: Linear

Mapping result

Name Size Design Area
(Cfc)

Run-time

(••c)

Drfferential Heat
Release

(Ramactian,EDAC 94)
469x16

128x8,128x8
128x8,128x8
128x8,128x8
64x8, 64x8
32x8, 32x8

333 1.8

Neural Networtc CItip
(Rose, ICCAD94) 160x8

128x8
32x8 55 0.9

Interlace Scan
(Ptiillps,CICC 91) 360x16

128x8,128x8
128x8,128x8
64x8, 64x8
32x8, 32x8
16x8, 16x8

257 0.9

Medical Image
Reconstruction

(Balasa, ICCAD 94)
384x12

128x4,128x8
128x4,128x8
128x4,128x8

206 0.9

MPEGI
(Thordarson,TR 95-8) 54x18

32x4, 32x8, 32x8
32x4, 32x8, 32x8 50 0.8

MPEG II
(Ttiordarson, TR95-8) 128x17 128x4,128x8,128x8 107 0.8

Figure 16: Memory mapping result III

in these two figures, we observe that most of these mappings have been generated only in a

few seconds.

Figures 16 through 19 describe the mapping results using the RAM macro modules of

the Xilinx 4000 series FFGA[Xili93]. This library contains a set ofsingle port RAM modules

with the word-count equal to 16, 32, 64, or 128 and the bit-width equal to 2, 4or 8. Figures

16 and 17 report the area efficient designs generated by the linear and exhaustive algorithms

respectively. We report area in terms of approximate number of CLBs (Configurable Logic

Blocks [Xili93]) for the resultant design. Figures 18 and 19 report the delay efficient designs

generated by the linear and exhaustive algorithms respectively. The delay for these designs

represents the worst case access delay in nanoseconds.



Example Mapping result

B

1
Name Size Design Area

(cfc)
Run-time

(MC)

Differential Heat
Release

(Ramachan,EDAC 94)
469x16

32x8, 32x8
32x8, 32x8

32x8, 32x8

328 24.0
1.5%

2
Neural Network Chip

(Rose, tCCAD94) 160x8

32x8
32x8
32x8
32x8
32x8

53 1.2 3.6%

3
Interlace Scan
(Philips, ciccdl) 360x16

16x8,16x8
32x8, 32x8
64x8, 64x8

128x8, 128x8
128x8, 128x8

257 2.8
0.0%

1
Medical Image
Reconstruction

(Balasa, ICGAD 94)
384x12

32x4, 32x8
32x4, 32x8
64x4, 64x8

128x4, 128x8
128x4,128x8

202 2.9 1.9%

5
MPEGl

(Thordarson, TR 95-8) 54x18
32x4. 32x8, 32x8
32x4, 32x8, 32x8 50 0.8 0.0%

6
MPEG 11

(Thordarson, TR 95-8) 128x17

32x4, 32x8, 32x8
32x4, 32x8, 32x8
32x4, 32x8. 32x8
32x4, 32x8, 32x8

99 0.8

8.1%

Figure 17: Memory mapping result IV

From these results, we observe that a wide varietyof designs are generated as we vary the

cost function and the algorithm. As before, designs produced by the exhaustive algorithm are

often different from the corresponding designs produced by the linear algorithm. However,

the design metrics from the exhaustive algorithm show significantly smaller improvement

(with respect to the metrics from linear algorithm) using Xilinx library as compared to

using the Toshiba gate array library. For example, the area-efficient designs produced by

the exhaustive algorithm are at most 8.1% smaller than the corresponding designs from the

linear algorithm (Figure 17). In the domain of the delay-efficient designs, the exhaustive

algorithm generates designs with the same cost as generated by the linearalgorithm (Figure

19). This is because all the RAM modules in the Xilinx library have word-count equal to

a power-of-two; the linear algorithm can make effective use of each of these modules. Once

47



Library: Xilinx 4000 rams Cost fn: Delay

Example Mapping result

Name Size Design Delay
(!»•)

Differential Heat
Release

(Ramachan.EDAC 94)
469x16

32x4, 32x4, 32x4, 32x4

32x4,' 32x4, 32x4.32x4
16x4, 16x4, 16x4, 16x4
16x4,16x4,16x4, 16x4

31.90

Neural Network Chip
(Rose. ICCAD94) 160x8

32x8
32x8
32x8
32x8
32x8

28.60

interlace Scan
(Philips, clcc91) 360x16

32x4, 32x4, 32x4, 32x4

32x4,' 32x4, 32x4,32x4
16x4,16x4,16x4, 16x4

31.90

Medical Image
Reconstruction

(Balasa. ICCAD94)
384x12

32x8, 32x8
32x8, 32x8

32x8, 32x8

31.90

MPEGI
(Thordarson, TR 95--8) 54x18

32x4,32x8, 32x8
32x4,32x8, 32x8 21.00

MPEG II
(Thordarson. TR 95-8) 128x17

32x8, 32x8, 32x8
32x8,32x8, 32x8
32x8,32x8, 32x8
32x8, 32x8, 32x8

23.50

Aigo: Linear

Figure 18: Memory mapping result V

again these mappings are produced very quickly, often in less than a second.

Figure 20 lists the price efficient mapping results using the off-chip ROMs provided by

Texas Instruments [Ti94]. The library contains the following 6 modules : 32Kx8, 64Kx8,

128Kx8, 64Kxl6, 256Kx8 and 512Kx8. We report the dollar cost required to synthesize

these designs. Once again the source memory modules in this experiment are extracted from

the designs reported in the literature as well as from the industrial designs. The first two

modules in the experiment are from the Singular Value Decomposition algorithm reported

in [BaCM94]; the third module is from an Image Processing algorithm reported in [Lim90];

the last example is from the MPEG design reported in [ThGa95]. Note that these modules

are relatively larger in size, since these are to be realized by larger off-chip modules. The



Name Size Design Delay
(M)

Differential Heat
Release

(Ramachan.EDAC 94)
469x16

32x8, 32x8
32x8,23x8

32x8. 32x8

31.90

Neural Networi( Chip
(Rose. ICGA094) 160x8

32x8
32x8
32x8
32x8
32x8

28.60

Interlace Scan
(Philips. cicc91) 360x16

32x8, 32x8
32x8, 32x8

32x8.32x8

31.90

Medical Image
Reconstruction

(Baiasa, ICCAD 94)
384x12

32x8, 32x8
32x8. 32x8

32x8.32x8

31.90

MPEGI
(Thordarson, TR 95-8) 54x18

32x4. 32x8.32x8
32x4, 32x8.32x8

21.00

MPEG II
(Thordarson. TR 95-8) 128x17

32x8. 32x8, 32x8
32x8.32x8, 32x8
32x8, 32x8, 32x8
32x8, 32x8,32x8

23.50

Figure 19: Memory mapping result VI

mapping results in Figure 20 demonstrate that our mapping approach is applicable to off-chip

modules as well. Our algorithms can synthesize large off-chip modules in seconds.

5.1 Summary of experiments

From the results in Figures 14 to 20, we observe that our approach to memory mapping

is quite comprehensive. Our approach can synthesize source memory modules of varying

complexity. These memories are of varying word-count and bit-width. The size of the source

memory modules in our examples vary in the range of 972 bits(54xl8) to lOMbits (lMxl6).

These memory modules come from designs ofvarying complexity including image processing

applications and an industrial design of MPEG algorithm.



Example Mapping result

Name Size Design Price
(«

Run-time
(MC)

Singular Value
Oecomposltlon II

(Balasa, ICCAD 94)
146590x16 256kx8,256kx8 16.36 1.1

Singular Value
Decomposition III

(Balasa, ICCAD 94)
103550x16 128kx8,128kx8 10.90 1.6

ImageProcessing
(Urn,Prentice Hall90) 1Mx16 512kx8,512kx8

512kx8, 51210(8 65.44 0.9

MPEG III
(ThortJarson.TR 95-8) 512kx32 512kx8,512kx8,512l<x8,512l(x8 65.44 1.5

Figure 20: Memory mapping result VII

In our experiments we have covered three target libraries. These libraries include on-chip

modules (Toshiba gate array [ToshOO] and Xilinx 4000 RAM modules [Xili93]) as well as off-

chip stand alone memory modules (Texas Instruments ROMs [Ti94]). Each library contains

a varying number of memory modules. The memory modules in these libraries are also of

varying sizes. Starting from smaller modules of size 8x4 size in the Toshiba gate array, the

modules of TI ROMs are as big as 512Kx8.

Our approach allows the user to select the optimizing cost function. We currently sup

port three cost functions, namely Area, Delay and Price. We also provide a choice of two

algorithms: linear and exhaustive. Depending on the design requirements, a user can select

any combination of algorithm and cost function. Hence, our memory mapping approach is

quitegeneral in the sense that it supports a wide variety ofuser selectable design parameters

such as the source component, the target library, the mapping algorithm and theoptimizing

cost function.



From the tables in Figures 14 to 19, we observe that our approach generates a wide

variety of memory designs. These designs include regular structures, where a memory array

is built using a single memory module type (Example 1 in Figure 17) as well as irregular

structures, where a memory array is built using a set of different memory module types

(Example 1 in Figure 15). We also note that even for the same memory module, we get

different designs as we vary the cost function and the algorithm. For instance, consider the

first example (DiflFerential Heat Release computation) in Figures 14 to 19. Out of the six

mapping results, we have five different designs for the same source memory module. In other

words, a different memory configuration is generated for different optimizing cost function.

Also, quite often the resultant designs are counter-intuitive. For instance, consider Ex

ample 6 in Figure 14. The source memory module is taken from an MPEG design and

is of size 128x17. This has been synthesized with a row of the following modules: 128x5,

128x6 and 128x6. We would expect a design that uses modules with bit-widths that are

powers-of-two such as 128x8, 128x8, 128x4; however the area of this design is larger than

the counter-intuitive design generated by our algorithm. This illustrates the utility of our

approach in generating a wide variety of designs, often counter-intuitive ones, based on the

cost function and the algorithms.

If we analyze the run-time (the sixth column in these tables), we observe that we have

been able to generate these designs very quickly, in the order of a few seconds®. The run-time

is independent of the cost function used for optimizing the design. As far as the quality of the

designs is considered, it depends on two factors: the target library and the algorithm. The

®The only exception is Example 7 in Figure 15, where the mapping result is generated in 35717.6 seconds.



the designs generated by the exhaustive algorithm are often better than those generated by

the /mear algorithm using a library that has modules with unrestricted word-count. However,

this comes at the cost of an exponential increase in run-time for larger designs. For instance,

the Example 7in Figure 15 requires approximately 10 hours to generate the result using the

exhaustive algorithm. The corresponding figure for the linear algorithm is just 2.5 seconds.

On the other hand, if the target library contains only memory modules with word-count

equal to a power-of-two, the linear algorithm generates designs that are very close to (<

8%) the designs produced by the exhaustive algorithm. Thus, if the design space is small,

particularly with respect to word-count expansion, or if the target library is unrestricted, a

user should use the exhaustive algorithm, since it usually generates better designs without

paying too much penalty in the run-time. For designs that involve large search spaces in

word-count expansion, the linear algorithm generates run-time efficient designs.

We conclude this section with a comment. Our High Level Library Mapping approach for

memories is well-suited for synthesizing a source module with target modules coming from

standard libraries with macros or pre-built memory modules. It clearly is not suited for

memory generators that can generate a memory module given its size (in a limited domain)

on demand.

6 Conclusion

We presented a memory mapping scheme that implements a source memory module with a

set oftarget memory modules from a library. The approach has applications in two domains:



synthesizing the logical memories generated by high-level synthesis and synthesizing a source

memory from one library using modules from another library (e.g., retargetting memory

designs). Our approach facilitates design reuse for memory subsystems. High-level library

mapping for memories could be used to synthesize on-chip as well as the off-chip memory

modules.

We have identified and formulated three subproblems associated with the memory map

ping problem (port mapping, bit-width mapping and word mapping) and composed these

formulations into a complete memory mapping approach. We presented two implemen

tations of the memory mapping approach: a run-time efficient linear algorithm and a cost

efficient exhaustive algorithm. These algorithms could be used for generating area-optimized,

delay-optimized or price-optimized designs.

Our experimental results run on several industrial and literature-based examples demon

strate that our mapping approach can generate a wide variety of cost-effective memory

designs, often conter-intuitive ones, based on the user-given cost function, target library

and the mapping algorithm used. The exhaustive algorithm can sometimes generate better

designs (than the linear algorithm) for an exponential increase in run-time. Hence the ex

haustive algorithm is suitable for examples with smaller search space. Our linear heuristic

generates efficient designs in a matter of seconds, often with the same cost as generated by the

exhaustive algorithm for restricted (yet realistic) libraries. This is a useful aid for designers,

since the search space for these mapping problems are large and very labor intensive.

Future work would involve developing similar high-level library mapping techniques for

other sequential datapath components such as counters and shift-registers, in an effort to-



wards a comprehensive mapping scheme for a complete netlist ofRT level components.

7 Acknowledgements

This research was supported by SRC contract #94-DJ-146. We are grateful for their support.

We also thank Prof. Lueker for discussions on the bin-packing problem.

References

[Am2901] "Am2901c: Four-bit Bipolar Microprocessor Slice," Advanced Micro Devices, Sun
nyvale, California, 1993.

[BaCM93] F. Balasa, F. Catthoor and H. De Man, "Exact Evaluation of Memory Size for
Multi-dimensional Signal Processing Systems," Intl. Conf. on Computer Aided De
sign, 1993.

[BaCM94] F. Balasa, F. Catthoor and H. De Man, "Data-driven Memory Allocation for
Multi-dimensional Signal Processing Systems," Intl Conf. on Computer Aided De
sign, pp31-34, 1994.

[BaGa95] S. Bakshi and D. Gajski, "A Memory Selection Algorithm for High-Performance
Pipelines," Technical Report 95-03, University of California, Irvine January 1995.

[Casc92] "Cascade Design Automation Databook," Cascade Design Automation, Bellevue,
WA, 1992.

[CoLR90] T. Cormen, C. Leiserson and R. Rivest, "Introduction to Algorithms," The MIT
Press, Cambridge, Massachusetts 1990.

[DuJh93] N. Dutt and P. Jha, "RT Component Sets for High-Level Design Applications,"
Proc. of 1st Asia Pacific Conf. on HDL Standards and Applications, December
1993.

[GDWL92] D. Gajski, N. Dutt, A. Wu and S. Lin, "High-Level Synthesis: Introduction to
Chip and System Design," Kluwer Academic Publishers 1992.

[KaRo94] D. Karchmer and J. Rose, "Definition and Solution of the Memory Packing Prob
lem for Field-Programmable Systems," Intl. Conf. on Computer Aided Design,
pp20-26, 1994.



[KiLi93] T. Kim and C. Liu, "Utilization of Multiport Memories in Data Path Synthesis,"
The 30th Design Automation Conference, 1993.

[Lim90] J. Lim, "Two-Dimensional Signal Image Processing," Prentice HallSignal Process
ing Series, 1990.

[Lipp91] P. Lippens et. al, "Memory Synthesis for High-Speed DSP Applications," Proceed
ings of the IEEE Custom Integrated Circuits Conference, 1991.

[LMVW93] P. Lippens, J. Meerbergen, W. Verhaegh and A. Werf, "Allocation of Multiport
Memories for Hierarchical Data Streams," Intl. Conf. on Computer Aided Design,
November 1993.

[MaLa94] P. Marwedel and B. Landwehr, "Exploitation of Component Information in a
RAM-based Architectural Synthesis System," Novel Approaches in Logic and Ar
chitecture Synthesis, G. Saucier, Editor, Chapman and Hall.

[RaGC93] L. Ramachandran, D. Gajski and V. Chaiyakul, "An Algorithm for Array Variable
Clustering," The European Design Automation Conference, February 1994.

[ScTh95] H. Schmit and D. Thomas, "Array Mapping in Behavioral Synthesis," Proc. of the
Eighth International Symposium on System Synthesis, 1995.

[ThGa95] A. Thordarson and D. Gajski, "Manual Synthesis ofthe MPEG Algorithm," Tech
nical Report 95-8, University of California at Irvine, March 1995.

[Ti94] "Semiconductor Group Distribution, USA and Canada Suggested Resale Pricing
Guide," Texas Instruments, 1994.

[Tosh90] "Toshiba ASIC Gate Array Library," Toshiba Corporation, Tokyo, Japan, 1990.

[Xili93] "Development System Libraries Guide," Xilinx ®, San Jose, CA 1993.

[VTI91] "VDP300 CMOS Datapath Library," VLSI Technology, Inc., San Jose, California,
November 1991.




