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ABSTRACT OF THE DISSERTATION 

 

The Relation Between Reasoning and the Structure of Knowledge When Solving 
Mechanical Problems 

 
by 
 

Z Reisz 
 
 

Doctor of Philosophy, Graduate Program in Psychology 
University of California, Riverside, August 2015 

Dr. Mary Gauvain, Chairperson 
 

An important outcome of formal education is the acquisition of knowledge that will 

facilitate domain specific problem-solving skill. Theories of human intelligence identify 

general reasoning as a cognitive ability that is strongly associated with solving novel 

problems where learning about the problem is necessary. This dissertation investigates 

individual differences, such as general reasoning, that may influence how an individual 

structures knowledge within a domain, such as bicycle gears, and subsequent problem-

solving skill. Special focus is given to identifying the structural characteristics of the 

acquired bicycle gear knowledge and relating these characteristics to general reasoning 

and skill at solving bicycle gear problems. College participants (N = 174, 111 female) 

completed a general reasoning test, reported the bicycle parts they knew, and their 

mechanical self-efficacy was assessed before they watched a training video on bicycle 

gear adjustment. After training, the extent of their procedural knowledge was tested, the 

structure of their knowledge was elicited, and then their skill at fixing bicycle gear 

problems was tested. Professional bicycle mechanics (N = 3) were recruited to provide a 
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criterion for evaluating the structural characteristics of bicycle gear knowledge. The 

results from regression analysis indicated that bicycle gear problem-solving skill had a 

stronger relation with how knowledge was structured, as compared to the extent of 

procedural knowledge, general reasoning, mechanical self-efficacy, or problem-solving 

effort. Regression analysis of knowledge structure indicated that general reasoning was 

associated with acquiring an expert-like knowledge structure, as was learning effort and 

pre-training bicycle part knowledge, but not mechanical self-efficacy. These results 

support the view that general reasoning is associated with problem solving because it 

facilitates the acquisition of knowledge that is structured similarly to experienced 

professionals. If it is the structure of knowledge that facilitates or hinders problem-

solving, as suggested by this study’s results, mechanical training may be enhanced by an 

explicit focus on structuring knowledge to replicate that of experts. A focus on using 

educational materials that impart the desired knowledge structure may significantly 

reduce the need of general reasoning in achieving mechanical expertise.  
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The Relation Between Reasoning and the Structure of Knowledge When Solving 

Mechanical Problems  

 

 How does the process of solving novel problems, such as those seen on IQ tests, 

differ from solving problems where previous experience and training is relevant, such as 

fixing a bicycle’s gears? Many of the problems on IQ tests are purposefully designed to 

be independent of previous experience and knowledge. For example, Raven’s Advanced 

Progressive Matrices (APM; Raven, 2000) presents a sequence of images that follow a 

pattern and the respondent is asked to identify from a set of related images the image that 

would continue the pattern. Neither the images nor the problem structure are assumed to 

reflect prior experiences of the respondent. In contrast, the types of problems that arise in 

everyday life are usually related with previous experience and knowledge. For example, 

why is the water faucet dripping, or why does the bicycle chain keep skipping between 

sprockets? These two everyday, mechanical problems are fundamentally different from 

the more striped-down types of problems found on IQ tests such as the APM. Solving 

everyday mechanical problems is often highly dependent on referencing experiential 

knowledge, whereas APM problems are more independent from any particular 

experience even though they may have embedded cultural meaning. In this study, the 

relation between individuals’ knowledge, particularly the organization of knowledge in a 

specific domain, and their skill at solving related problems is examined. The aim is to 

discover how the knowledge base and the organization of that knowledge contribute to 
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skill at solving mechanical problems, the types of problems that many tradespeople and 

professionals confront in their work. As background, literature pertaining to human 

cognitive abilities and problem solving is reviewed. It is emphasized that the current 

understanding of intelligence and human cognitive abilities is insufficient to explain 

problem solving, especially in the type of problems confronted in everyday life. It is 

argued that individual differences in knowledge are central to understanding problem 

solving, and the supporting literature is reviewed. 

Human Intelligence, Explaining Problem Solving Independent of Knowledge 

 For over a century psychologists have been interested in understanding the various 

cognitive processes that underlie problem solving. Although every problem is unique in 

its own way, much of the research has focused on identifying the cognitive processes that 

are common to the successful resolution of problems in general (Newell & Simon, 1972). 

An underlying assumption in this research is that the successful resolution of one 

problem shares a commonality with the resolution of other problems. For many 

psychologists, this generalized ability to solve problems is a central characteristic of 

intelligence (Gottfredson, 1997; Wasserman, 2012). Those who are intelligent will be 

able to solve a broad array of problems, while those who are less intelligent will be more 

limited in the problems they can solve. However, the research supporting this idea 

focuses on problems stripped of relevance to specific experience or knowledge, except in 

a few cases were general cultural knowledge is being tested by the problems. This 

research emphasizes how intelligence and the related cognitive abilities support novel 

problem solving, but it provides minimal understanding of how intelligence is involved in 
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solving problems where previous experience and knowledge is relevant.  

 Over the last century, a great deal of effort has gone into identifying and assessing 

human intelligence, as seen in the work of researchers such as Binet, Wechsler, 

Spearman, Thurstone, Cattell, Horn, and Carroll (Wasserman, 2012). The extensive 

research into identifying the general cognitive abilities that underlie performance and 

problem solving on IQ tests has recently reached a general consensus about the nature of 

these abilities (Carroll, 1993; Horn & Blankson, 2005; Schneider & McGrew, 2012). 

These general cognitive abilities are undeniably important to solving problems. However, 

this approach to examining problem solving lacks consideration of the role that specific 

experiences and related knowledge have in problem solving. Domain-specific knowledge 

has aptly been described as the “dark matter” of adult intelligence because it is precisely 

this domain specific knowledge that is most likely to explain the type of problem-solving 

skill that most adults demonstrate (Ackerman, 2000). 

 In the following sections we review one prominent theory of human cognitive 

abilities as it relates to differences in problem solving, and then turn our attention to 

review the research that has examined the relation between knowledge and solving 

related problems. This background is used as a framework for understanding the roles of 

general cognitive abilities and domain-specific knowledge in how everyday, experience, 

and knowledge-related problems are solved. By integrating an understanding of general 

cognitive abilities with an understanding of domain-specific knowledge, we hope to 

extend the explanation of problem-solving behavior to problems other than those seen on 

IQ tests. 
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 Because domain-specific knowledge can be expansive, we take the position that the 

better organized this knowledge is, the better someone will be at solving problems in that 

domain. This claim suggests that examination of the organization of knowledge content is 

important for advancing understanding of how knowledge is involved in problem solving. 

In addition to reviewing three broad types of knowledge, we review a method for 

assessing how an individual has organized and structured their knowledge within a 

domain. We will also review several findings using this method that support the claim 

about the importance of the structural organization of knowledge for solving the everyday 

types of problems that adults often confront. This background literature provides the 

foundation for examining how the organization of knowledge contributes to problem 

solving.  

 General cognitive abilities and problem solving. Cattell (1943) introduced the 

theory of fluid and crystallized intelligence asserting that, “Adult mental capacity is of 

two kinds, the chief characteristics of which may be best connoted by the use of the terms 

‘fluid’ and ‘crystallized’” (Cattell, 1943, p.178).  Fluid intelligence was conceptualized as 

the general ability to discriminate and perceive relations; it predicts performance on novel 

problem solving tasks such as the Raven’s APM. Crystallized intelligence was 

conceptualized as “… discriminatory habits long established in a particular field, 

originally through the operation of fluid ability, but no longer requiring insightful 

perception for their successful operation” (Cattell, 1943, p. 178). This quote highlights 

two important aspects of crystallized intelligence that are central to the purpose and 

design of this study. First, crystallized intelligence is the discriminatory habits of a 
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particular field. We propose that discriminatory habits are the established principles of a 

field and are expressed in the way an individual organizes the information from a 

problem in that field. Second, crystallized intelligence is acquired through the operation 

or investment of fluid intelligence. For the current study, the focus is on understanding 

the relation between general reasoning, one’s organization of problem information, and 

skill at solving the problem. 

 Horn extended Cattell’s theory of intelligence and developed the extended Fluid 

and Crystallized theory of cognitive abilities (Horn & Blankson, 2005). This theory 

builds from Cattell’s work to identify the general cognitive abilities that constitute adult 

mental capacity, more commonly referred to as intelligence. The extended fluid and 

crystallized theory broadens the view of intelligence to include eight general cognitive 

abilities that are grouped into three classifications. Horn did not argue that these are the 

definitive eight general cognitive abilities, but that they are the general abilities with 

enough evidence to be formalized. These general cognitive abilities differ between 

individuals, display different developmental trends, and predict the types of intelligence 

test problems an individual can solve.  

 Support for the extended fluid and crystallized theory is based on structural 

evidence from factor analyses and from developmental research. The structural evidence 

is derived from research looking for common factor patterns among tests designed to 

assess human intelligence. It is argued that these kinds of test items are grouped by the 

cognitive abilities they tap. When a set of test problems are highly correlated, 

performance on one item predicts performance on the others, the correlation is argued to 
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result from a commonality in the cognitive ability being utilized when solving the 

problems. When a full IQ test is examined in this manner it is argued to provide evidence 

of the structural organization of human cognitive abilities. One exemplar of this type of 

research is Carroll’s survey and analysis of over 460 cognitive ability test data sets 

(Carroll, 1993). The developmental research supporting the extended Gf/Gc theory is 

derived from observing trends in cognitive abilities across time using cross-sectional or 

repeated measures study designs. The convergence of these two methods of research 

provides the evidence for the general cognitive abilities and the three classifications of 

these abilities described in the extended fluid and crystalized theory of cognitive abilities.  

 The extended fluid and crystalized theory identifies eight broad cognitive abilities 

that are organized into three clusters: vulnerable, expertise, and sensory-perceptual 

abilities. Vulnerable abilities are the abilities that are most similar to Spearman’s theory 

of intelligence and Cattell’s concept of fluid intelligence. Expertise abilities are those 

abilities that are most similar to Cattell’s concept of crystallized intelligence. The sensory 

and perception abilities are those abilities that have clear ties to the sensory modalities, 

such as visualization and auditory comprehension. The cognitive abilities within each 

cluster exhibit similar developmental trends (Horn & Blankson, 2005), and are 

theoretically important in solving different types of problems. For instance, the 

vulnerable abilities should be most extensively utilized when the problem is novel, while 

the expertise abilities should be utilized more in the type of everyday problem solving 

that relies on previous experience and is the focus of this study. We further develop the 

role of these abilities in problem solving in the next section.  
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 We do not extend the discussion about the relation of general cognitive abilities and 

problem solving to the class of sensory and perceptual abilities. The focus of this study is 

to gain a better understanding of how vulnerable abilities, specifically general reasoning, 

interact with the acquisition and organization of knowledge and problem solving. 

Differences in the sensory and perception abilities are clearly connected with the ability 

to utilize the type of information provided by that modality. Yet, it is unclear how 

sensory and perception abilities are involved in the acquisition and application of 

knowledge in problem solving. A complete understanding of problem solving will 

include this class of abilities, but is the topic for future research. 

 Vulnerable abilities. Vulnerable abilities are the cognitive abilities that demonstrate 

a relatively early peak in adulthood followed by a steady decline; this vulnerability to 

earlier decline is the source of this cluster’s name. These are the abilities that are 

reminiscent of Spearman’s conception of intelligence as the capacity for apprehension 

and the eduction of relations and correlates (Horn & Blankson, 2005). The vulnerable 

cluster of abilities includes the broad cognitive abilities of fluid or general reasoning (Gf), 

short-term apprehension and retrieval (SAR), and processing speed (Gs). These abilities 

are most pronounced in solving novel problems that require the apprehension of the 

problem and an identification of the relations between the elements of the problem; 

problems where acquiring knowledge beyond the current base is necessary.  

 Raven’s APM is an example of problems designed to assess vulnerable abilities. 

The problem content and design are likely to be entirely novel, and the experience from 

one APM problem to the next provides only limited aid for the next solution. The 
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examinee must recognize the pattern of relations between the images to solve the 

problem and previous knowledge is presumed to be of little use in doing so. This process 

requires holding the elements in memory, thus employing SAR, and recognizing the 

relations between the images, thus employing Gf. The test is timed, so Gs factors into 

overall performance as well.  

 The vulnerable abilities are considered necessary for solving problems where 

previous knowledge is not applicable; direct or immediate, as opposed to prior, 

experience with the problem is the only way to gain an understanding of the problem and 

solve it. In most applied and real world problems, knowledge from previous experience is 

relevant (e.g., Cornelius & Caspi, 1987; Diehl, Willis, & Schaie 1995), and may 

substantially reduce the need to use vulnerable abilities in problem solving. The need for 

vulnerable abilities in problem solving may be further reduced by access to problem 

related training materials, such as technical manuals, or more experienced individuals. 

Both the more experienced person and a technical manual provide other avenues to 

acquire the knowledge needed to solve particular problems. Access to such problem 

relevant information may substantially change the process of solving a problem, shifting 

the emphasis from vulnerable abilities to expertise abilities and training.  

 Problems that are common or important within a culture tend to have instructional 

supports developed to convey the knowledge of experts. For example, a novice cyclist 

with no mechanical experience is having problems with his or her gears. Several options 

are available for solving this problem. The cyclist may implement a trial and error 

process relying on their Gf and SAR cognitive abilities to develop an understanding and 
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solution to the problem. Or, the cyclist may seek out instructional material designed to 

convey the relevant knowledge of professional bicycle mechanics. For instance, a bicycle 

manual or information available on the Internet can be particularly powerful tools for 

learning how to solve a variety of problems. Such resources may provide a step-by-step 

guide and, in the case of the Internet, a video demonstration of how to adjust the gears on 

a bicycle and solve the gear problem. The use of cultural tools, such as instructional 

manuals and videos, to learn about problems and how to solve them may substantially 

reduce the importance of the vulnerable abilities in solving many problems.   

 To further illustrate the change in problem solving that is introduced when 

individuals are provided problem related instruction, consider the effect of training 

Raven’s APM test takers. For example, if the examinee was given the following 

information: Each pattern of images is governed by a rule of change or a combination of 

several rules of change; the easiest problems will use only one rule of change, but harder 

problems will compound multiple rules of change; to solve APM problems you need to 

identify the rule(s) of change being used; and the solution to APM problems is even 

further aided if the rules of change are defined (e.g., if the pattern is governed by the rule 

of momentum then the pattern is one of either adding or subtracting parts). When 

examinees are not provided this information, Gf and SAR are necessary to solving a 

problem, and if the test is timed, Gs is important as well. However, when given 

information about how to solve the problem and its underlying principles, the process of 

solving these problems is fundamentally changed. The vulnerable abilities may no longer 

be needed to solve the problem because there is less need to learn from the problem and 
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organize this experiential information into problem knowledge. Thus, instruction may 

serve to reduce or remove the need to rely on vulnerable abilities during problem solving.  

 Expertise abilities. The expertise cluster of cognitive abilities is composed of those 

abilities that are much more closely tied to the knowledge acquired from experience. 

Expert cognitive abilities are the extension of Cattell’s crystallized factor of intelligence 

(Horn & Blankson, 2005). The cluster is populated by acculturation knowledge (Gc), 

fluency of retrieval from long-term storage (TSR), and quantitative knowledge (Gq). The 

Gc cognitive ability is assessed with tests of general culture knowledge. In one Gc test, 

picture completion, a common object is displayed with a part missing, such as a car with 

no wheels. The examinee is asked to identify the missing element, testing their 

understanding of this general cultural artifact. The TSR cognitive ability is assessed with 

tests that require retrieving information. For example, an examinee may be asked to recall 

something that was learned an hour earlier, to provide as many synonyms as he or she 

can, or to rewrite a sentence using different words without changing the meaning of the 

sentence. The Gq cognitive ability is assessed with tests of mathematical abilities. For 

example, an examinee may be tested on the accuracy and speed she or he can perform 

arithmetic operations, or to identify the information needed to solve various mathematical 

problems.  

 The expertise cognitive abilities represent an understanding of the role of 

knowledge in human mental capacity and problem solving. These abilities are organized 

by their content, Gc and Gq, or the ability to reference stored knowledge, TSR. Focusing 

solely on the content of knowledge per se is inadequate for understanding problem 
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solving however. For example, a narrower ability within Gc is mechanical knowledge. 

Mechanical knowledge is an assessment of the ability to identify mechanical tools, 

equipment, and general principles for solving mechanical problems (Horn & Blankson, 

2005). We argue that assessment of the content of mechanical knowledge provides an 

insufficient explanation of expertise and does not account for the flexibility professional 

mechanics demonstrate in the problems they can solve; knowledge is more than its 

content. The way that knowledge is organized is another characteristic that may be 

important in understanding expertise and skill at solving problems.  

Characterizing Knowledge in Relation to Problem Solving 

 Knowledge can be characterized by its nature as either declarative, procedural, or 

structural (Jonassen, Beissner, & Yacci, 1993), and these differences may determine the 

utility of knowledge in problem solving. One characteristic difference between these 

three types of knowledge is in their organization. Declarative knowledge characterizes a 

type of knowledge that is not organized in any particular manner, but rather is a 

knowledge of largely independent facts. Procedural knowledge is characterized by its 

sequential organization and is usually directed at achieving one specific outcome, such as 

the steps an individual should follow to fix a specific bicycle gear problem. Knowledge 

that is characterized as structural has the potential to be utilized in the broadest array of 

related problems. This type of knowledge is not organized into a rigid sequence directed 

at one outcome, but rather is organized by the relations that are maintained between the 

concepts in that domain. For instance, having an understanding of how all the parts of a 

bicycle are functionally related in the transfer of pedal motion to wheel motion has the 
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potential to explain much of expert mechanic problem-solving skill in this domain.  

Declarative knowledge describes knowledge that is primarily factual and 

descriptive, and is limited in its connections to other information (Jonassen et al., 1993). 

Declarative knowledge of a bicycle’s drive train would include the names of the parts, a 

variety of facts about those parts such as pricing, specifications, options, and weight, but 

minimal to no information about how the parts are interrelated in a bicycle’s mechanical 

system. This type of knowledge is important in solving the types of problems confronted 

by purchasing and supply clerks. For example, consider the problem of finding a 

replacement 8-speed rear derailleur. To solve this problem, the clerk needs to know the 

specifications of that part, if multiple brands fit the specifications, if the part is in the 

store’s stock, if it is not in the store’s stock what suppliers carry the part, and if there are 

any additional options that need consideration when ordering the part. Solving this 

problem does not rely on understanding how the part fits into the overall drive system, 

the solution rests in knowing a number of declarative facts.  

 Procedural knowledge is characterized by its sequential nature and typically 

describes the step-by-step process for resolving a specific problem (Jonassen et al., 

1993). This type of knowledge is useful for solving well-defined problems. Instructional 

manuals are predominantly an effort to document and transmit procedural knowledge. 

The common problems seen by bicycle mechanics can be solved with an almost 

exclusive use of procedural knowledge. For example, the problem of the derailleur 

throwing the chain off the smallest sprocket can be solved with a four step procedure: 

shift to the smallest sprocket, tighten the high limit screw 1/8th turn, check to see if the 



 

 13 

adjustment fixed the problem, and, if not, continue to tighten in 1/8th turns until the 

problem is fixed. However, bicycles may present a wide variety of problems and learning 

the procedure to fix each one may not be feasible even after extensive practice. Learning 

procedural knowledge is often the focus of technical job training because it is considered 

an, or perhaps the most, efficient way to solve common problems. However, the utility of 

procedural knowledge is limited by its specificity to a single problem, and the complexity 

of the procedures required by some problems.  

Structural knowledge refers to the way that knowledge content is organized and 

structured by its interrelations (Jonassen et al., 1993). Whereas declarative knowledge is 

factual and procedural knowledge is a rigid set sequential relations, structural knowledge 

is an understanding of how knowledge content is interrelated and used to perform a 

particular function. In the drive system of a bicycle, structural knowledge is the 

understanding of how the derailleur is related to the chain, the sprockets, the crank set, 

the wheel, and all of the other components that work together to transfer pedal motion 

into wheel motion and allow the selection of different gears. Figure 1 provides an 

illustration of three bicycle gear knowledge structures. It is a more holistic view of the 

problem that recognizes the important parts of the problem and how those parts are 

related to each other. The structure of knowledge has the potential to provide the most 

information about a knowledge set’s utility in problem solving. A mechanic who 

understands how the drive system on the bicycle functions, and how that functioning is 

dependent on the numerous interrelations between parts, is more than likely well 

equipped to troubleshoot any problems within the system – in other words, an expert. 
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This assertion, however, is an empirical question, one that is central to this dissertation.  

The Structure of Knowledge, Experience, and Problem Solving 

 The idea that it is the characteristics of how knowledge is structured that 

determine its utility in performance and problem solving has been supported in several 

lines of research. One such line of research began as part of an evaluation of pilot training 

programs in the U.S. Air Force (Schvaneveldt et al., 1985). It was observed that 

instructor and student pilots differ in the way they structure their knowledge about flight 

related concepts for combat situations. For instance, the student pilots had more complex 

structures that had on average 47% more links between concepts than the instructors’ 

structure. It was also discovered that over the course of training as experience and skill 

increased, student-instructor differences in the structure of their knowledge decreased. 

Experience appears to define, constrain, and streamline how one organizes knowledge. 

Extensive experience in a domain may result in the development of efficiently structured 

knowledge that, in turn, improves performance (Schvaneveldt et al., 1985).  

As this line of research continued different content areas were explored, such as 

troubleshooting electronics, but the main push was to identify the structural 

characteristics of knowledge that may determine its utility in performance and problem 

solving. Current evidence suggests that structural density, coherence, and similarity to an 

expert’s knowledge structure may determine the utility of an individual’s knowledge 

content in any one domain. The bulk of this evidence is derived from studies that assess 

knowledge structures before and after a training period, assess performance in the trained 

domain, and evaluate the structures of students’ knowledge in comparison to that of 
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instructors or other experts.  

One of the first studies to test a method of comparing two knowledge structures 

occurred in the setting of a psychology statistics course (Goldsmith, Johnson, & Acton, 

1991). At the beginning and near the end of the course, students’ knowledge structure of 

30 important statistics concepts (e.g., variable, replication, significance) was elicited and 

compared to their overall class performance. It was found that structural similarity to the 

instructor’s knowledge structure was predictive of final course grade. Furthermore, when 

between-student differences in structural similarity were examined at the end of the 

course, students in the high performer group structured their knowledge more similarly to 

each other than students in the group of low performers. This suggests that experience 

and training may restructure knowledge as one acquires a better understanding of the 

concept relations that are maintained by the environment and problem structure. 

Experience may drive an individual’s knowledge structure to converge with the structure 

of more experienced individuals. A number of studies have replicated the relation 

between similarity to an expert’s knowledge structure and domain performance, as well 

as higher structural similarity between higher performers than lower performers (e.g., 

Acton, Johnson, & Goldsmith, 1994; Cooke & Schvaneveldt, 1988; Davis, Curtis, & 

Tschetter, 2003; Gillan, Breedin, & Cooke, 1992; Schvaneveldt, Tucker, Castillo, & 

Bennett, 2002). 

The structure of knowledge may determine its utility. There is growing 

evidence that the utility of one’s knowledge may be determined by the way that the 

knowledge is structured. In a variety of different content domains it is seen that the closer 
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one structures his or her knowledge to experts’ knowledge, the better his or her 

performance in that domain. This positive relation between performance and having an 

expert-like structure to one’s knowledge has been observed in a computer-programming 

course and a financial accounting class (Acton et al., 1994; Davis et al., 2003). Similarity 

to an expert’s knowledge structure predicted the ability to define essential concepts from 

an introductory psychology course after taking the course (Gonzalvo, Cafias, & Bajo, 

1994). Other studies found that similarity to an expert’s knowledge structure was 

associated with performance in a video game (Day, Arthur, & Gettman, 2001), therapist 

performance as rated by clients (Kivlighan, 2008), and skill at troubleshooting airplane 

electrical malfunctions (Rowe, Cooke, Hall, & Halgren, 1996). Similarity to an expert’s 

knowledge structure appears to capture characteristics of knowledge that facilitate 

performance and problem solving above and beyond what a listing of knowledge content 

in the domain would yield.  

Two additional properties of the structuring of knowledge are common to experts, 

uncommon to novices, and are related to performance and problem solving. These 

properties are the density and coherence of the knowledge structure (Schvaneveldt et al., 

1985). Density refers to the complexity of the structure and coherence refers to the 

consistency of the inter-concept relations in the structure of knowledge. Both of these 

concepts are defined in more detail in the next section. Research on troubleshooting the 

cause of failures of automated spacecraft life-support systems indicates that the density 

and coherence of the knowledge structure are related to troubleshooting skill (Burkolter, 

Meyer, Kluge, & Sauer, 2010). High density is negatively related to performance, 
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indicating that making numerous connections between concepts reduces the usability of 

knowledge, hindering problem solving. In contrast, increases in coherence have a positive 

association with accurately diagnosing the cause of failures. The coherence of a 

knowledge structure has been shown to increase with experience, training, and expertise 

(Schvaneveldt et al., 1985, 2002). High achievers in a chemistry course showed, on 

average, more coherent knowledge structures than low achievers (Wilson, 1994). 

Because density and coherence are two properties of the structure of knowledge that 

relate to performance, they may be important to understanding the role of knowledge and 

its structure in problem solving.  

Eliciting and assessing knowledge structures: Pathfinder Networks. The idea 

that knowledge is structured or organized and that this may be an important aspect of 

learning is not a new idea (see Johassen, et al., 1993 for a review on this topic). In this 

study we use the technique for structural elicitation developed by Schvaneveldt (1990) 

called Pathfinder Networks. We favor the Pathfinder method for eliciting knowledge 

structures because it works to identify the structure at the concept relation level. 

Pathfinder identifies the structure of knowledge by differentiating concepts that are 

directly related, edges, compared to concepts that are indirectly related through a shared 

relation with another concept, paths.  

The Pathfinder analysis provides a more detailed assessment of the structure of 

knowledge than, for example, multidimensional scaling (Schvaneveldt, et al., 1985). 

Multidimensional scaling (MDS) works to describe the latent structure that organizes the 

spatial relations and structure of a knowledge set (see Carroll & Arabie, 1998, for further 
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review). MDS estimates the number of dimensions required to represent the spatial 

relations of a knowledge set. This provides the general ways concepts are related and 

unrelated to each other, but not the specific connections between concepts. For example, 

an MDS analysis of a bicycle mechanic’s bicycle knowledge structure may show 

groupings for concepts related to turning, to forward motion, and to gears. Whereas, a 

Pathfinder analysis could show that the mechanic structures their bicycle knowledge by 

the functional relations between the bicycle parts; the handlebar is related to the tire by its 

relation to the stem, to the steer tube, to the fork, to the wheel axel, to the hub, to the 

spokes, to the rim, to the tube, and finally the tire. This sort of analysis provides more 

information about the structure of bicycle knowledge than recognizing that some bicycle 

parts are organized by a “turning” dimension.  

Pathfinder analysis provides a graphical representation, a PF-Net, of the specific 

relations between concepts that structure an individual’s knowledge in a particular 

content domain. PF-Nets are link-weighted representations of the structure of one’s 

knowledge in a domain. The links, or edges, between concepts are “weighted” by the 

similarity or relatedness between those concepts; each link carries a numerical weight 

that corresponds to the proximity of these concepts in an individual’s memory 

(Schvaneveldt et al., 1985). Figure 1 shows three examples of the graphical output from 

PF-Net analyses for knowledge of a bicycle’s gears. 

A PF-Net can be displayed as either a 2D or 3D spatial graph composed of nodes, 

edges, and paths (Figure 1). In the following explanation of Pathfinder analysis it is 

important to distinguish between each of these characteristics of a PF-Net. The graph 
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nodes are the key concepts within a specific domain. In Figure 1 there are nine nodes that 

correspond to the different parts of a bicycle’s gear system (e.g., derailleur, chain, cable). 

An edge is the term used to describe a direct link between two concepts. Each edge has a 

numerical value or weight that represents the strength of the relation, the larger the 

number the stronger the relation. The formula used for deriving the edge weights is 

discussed in a following section. For example, Participant A in Figure 1 has four edges 

connecting the derailleur node to barrel adjuster, to cable, to pulley, and to chain each of 

an equal weight, 2. In comparison the cable node has four edges and three of these edges 

carry a greater weight, 3, to indicate the stronger inter-node relation. When two nodes are 

not connected with an edge then they are connected with a path. For example, Participant 

A’s structure in Figure 1 shows that the shift lever is related to the derailleur not directly 

by an edge, but by a path that travels through the cable node; this is a largely accurate 

illustration of the causal path that transfers movement in the shift lever to movement in 

the derailleur.  

 The first step in eliciting a knowledge structure, whether using a MDS or 

Pathfinder analysis, is to identify the key concepts that best represent the content of that 

domain. In our example in Figure 1 the key concepts are the nine bicycle parts that 

compose the gear system. Once the concepts have been identified it is possible to see how 

an individual has organized and structured these concepts in memory. To elicit an 

individual’s knowledge structure, the individual rates the relatedness of each unique pair 

of concepts. This provides the raw relatedness ratings that are the input for the Pathfinder 

analysis.  
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A practical limitation in these analyses is the choice of how many concepts should 

be used to represent a domain’s content. In a typical Pathfinder analysis a participant is 

presented with a list of 10 to 30 concepts and asked to provide similarity or relatedness 

ratings for all unique concept pairs. There are n (n - 1)/2 pairwise ratings for n concepts, 

so, for example, eliciting the structure of a knowledge set defined by 10 concepts requires 

45 similarity ratings, 15 concepts requires 190 ratings, and 30 concepts requires 435 

ratings. Doing 435 ratings can take longer than an hour and makes fatigue a concern for 

eliciting an accurate representation of an individual’s knowledge structure.  

Pathfinder analysis uses the similarity ratings to determine the edge weights, and 

to construct the link-weighted graphic representation of the knowledge structure (Figure 

1). Pathfinder first creates a base graph that has all nodes connected to all other nodes by 

an edge. That is, it is the graphical representation of the unaltered similarity ratings made 

by the individual. The Pathfinder algorithm, stated below, then removes edges when a 

path is a better representation of the inter-node relation. The aim of the analysis is to 

determine what and how many edges the individual uses to structure his or her 

knowledge.  

 The Pathfinder algorithm determines if a path is a better representation of the 

inter-node relation by comparing all-possible path lengths to the edge length. If a path 

length is shorter than the edge length, the edge is dropped and the path is maintained as 

the better representation of the inter-node relation. The length of a path is a function of 

the individual’s ratings, and two parameters defined by the researcher, r and q 

(Schvaneveldt, 1990). These two metrics determine the maximum number of edges in a 
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path, q, and the function for determining the length of the edges when being summed as a 

path, r. The q-metric can range from 2 to n-1, where n is the number of nodes in the 

graph. Setting the q-metric to n-1 allows for a greater variety of paths to be considered in 

comparison to the edge, increasing the algorithm’s ability to represent relations with 

paths and to remove edges. The r refers to Minkowski’s r-metric and can be set from 1 to 

infinity. If the rating data is ordinal, as is most often the case, the r-metric must be set to 

infinity.  

The Pathfinder algorithm uses the following equation to compute path lengths, 

where the edge lengths (i.e. the inter-concept similarity ratings) are w1, w2, …, wk: 

 

When r is set to 1, unaltered edge lengths are used to determine the path’s length. For 

example, consider a schema composed of concepts A, B, and C with the following edge 

lengths: the AC edge has a length of 4, the AB edge has a length of 1, and the BC edge 

has a length of 2. In this example the AC edge will be removed in the final graph because 

its length is greater than the ABC path, a length of 3. The relationship between concept A 

and concept C is more succinctly represented by their connection through concept B. As r 

increases from 1, the length of each edge and the subsequent path is reduced; when r is 

set to infinity, path lengths are maximally reduced. Setting the r parameter to infinity and 

the q parameter to n-1 produces a graph with the fewest possible edges given the 

individual’s similarity ratings (see Schvaneveldt, 1990, for an in depth discussion of the 

Pathfinder algorithm and these parameters). In practice the q parameter is almost always 
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set to n -1 and the r parameter to infinity. 

 The advantage in eliciting and assessing the structure of knowledge with a link-

weighted representation, such as a PF-Net, is the detail it provides about the structuring 

of knowledge. Pathfinder provides the structure of knowledge as it is organized by the 

specific links that an individual makes between concepts and the strength of these links. 

This level of detail is essential for the purposes of this study because it allows three 

characteristics of a knowledge structure to be quantified and used in further analyses, 

such as regression modeling of problem-solving behavior. These three characteristics of a 

knowledge structure, density, coherence, and similarity to an expert’s structure, were 

mentioned above as they relate to performance. Now we turn to a more technical 

description of these characteristics and their derivation.    

Knowledge structure, its density, coherence, and expert similarity. This study 

was driven by a desire to gain a better understanding of adult mental capacity by 

examining experience-related problem solving (i.e., the type of everyday problems where 

knowledge is pertinent). One important step is, therefore, a thorough examination and 

assessment of problem-related knowledge. Pathfinder analysis provides three 

characteristics of a knowledge structure that may be important to the utility of knowledge 

for problem solving: Similarity of the structure between two graphs (typically the 

similarity between student and expert graphs), the density of the structure, and the 

coherence of the structure.  

Similarity (C). The structural similarity of two graphs is computed by comparing 

each concept’s neighborhood to its neighborhood in the other structure (Goldsmith & 
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Davenport, 1990). A complete description of the theory and computation of the structural 

similarity between knowledge structures can be found in Goldsmith and Davenport 

(1990, p. 83-87) and more succinctly in Goldsmith and colleges (1991, p. 96). A 

neighborhood is defined as the set of nodes that share an edge with a node. A node 

neighborhood identifies the concepts that are most strongly connected with the node or 

concept. Comparing node neighborhoods provides an assessment of how similarly two 

people have organized their domain knowledge. The first step in the C analysis is to 

compute a correlation that will quantify the similarity of the node neighborhoods in the 

two graphs.  

To illustrate this step consider Figure 1. In the graph for Participant A the 

sprocket cluster node has a small neighborhood consisting of only one other node, chain. 

In comparison, the Professional Mechanics’ neighborhood for the sprocket cluster node 

includes the nodes chain and derailleur. Therefore, the two neighborhoods will have a 

high, but not perfect correlation that quantifies their similarity. However, Participant B’s 

neighborhood for the sprocket cluster node is very dissimilar to the other graphs in Figure 

1. Participant B’s sprocket cluster neighborhood includes the shift lever, barrel adjuster, 

limit screw, and the pulleys nodes. Participant B’s sprocket cluster node neighborhood is, 

therefore, quite different form the Professional Mechanics’ neighborhood for that node.  

Once node neighborhood comparisons are done for each node, the average of 

these correlations is then used to quantify the similarity of the two graphs. This 

measurement of knowledge structure similarity, referred to as C, ranges from 0 to 1, 

where 0 means there is no commonality between the graphs and 1 indicates identical 
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graphs. In Figure 1, Participant A’s graph is more similar, C = .62, to the Professional 

Mechanics graph than Participant B’s graph, C  = .14. The similarity between a student’s 

and an expert’s knowledge structure quantifies the extent to which the student has 

acquired a structure to knowledge that mirrors the expert’s structure. If the structuring of 

knowledge is important in determining its utility, C may be one of the best assessments of 

learning and potential to solve related problems.  

Density. The density of structural knowledge refers to the number of edges in a 

network, which is argued to capture the complexity of the knowledge structure in terms 

of the number of interrelations among the nodes. A knowledge structure’s density is 

assessed as the number of edges divided by the total number of possible edges in the 

knowledge set, n-1, where n is the number of nodes in the graph. In this sense the 

simplest graph has each node connected to no more than two other nodes, while the most 

complex or dense graph relates every node with every other node. The specific 

importance of structural complexity is somewhat unclear. Increasing structural 

complexity has been negatively related to problem solving performance, and may 

indicate some basic misunderstanding of the concept interrelations. However, having too 

simplistic a structure may also indicate a misunderstanding of the interrelations within a 

domain. Despite this ambiguity, density provides information about the structure of 

knowledge without the need of an expert referent knowledge structure. 

Coherence. Coherence assesses the consistency of ratings between concepts 

(Appendix A provides a programming script for computing coherence in R). It captures 

how consistent an individual is in their use of inter-concept relations for structuring his or 
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her knowledge. Concepts that are rated as highly similar should have a similar pattern of 

relations within the knowledge structure. To the extent that similar concepts have similar 

patterns of relations within the network, the coherence value will increase up to a 

maximum of 1. Coherence scores less than .20 indicate severe inconsistencies in the 

cognitive network and are most often found when the task is not taken seriously or there 

is little to no understanding of how the concepts relate to each other (Schvaneveldt et al., 

2002). Higher coherence characterizes expert knowledge structures, reflecting a complete 

and clear understanding of how the concepts relate to each other. 

Neither density nor coherence captures as much structural information as 

similarity or C. However, the former assessments do provide information about the 

structure of knowledge without the need of an expert comparison. To date, there is little 

research examining the relation between these knowledge structure characteristics, 

learning, and problem solving. This study includes these assessments of a knowledge 

structure to further explore their relation to learning and problem solving.  

Summary of General Cognitive Abilities and Knowledge in Problem Solving 

 The extended Gf/Gc theory of human cognitive abilities is a theory that identifies 

cognitive abilities that are involved in solving the types of problems seen in IQ tests. The 

model identifies three classes of abilities, vulnerable, expertise, and sensory-perception 

cognitive abilities, which aid in finding the solutions to problems. This review has 

focused on describing how vulnerable and expertise abilities are employed to solve 

different types of problems. An emphasis in this review is the disparity in our 

understanding of expertise compared to vulnerable abilities.  
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Vulnerable abilities, Gf, SAR, and Gs, are rather well defined and studied, and it 

seems clear how these abilities are employed in solving at least certain types of problems, 

specifically novel problems. When the problem is novel and previous experience and 

knowledge is not relevant, vulnerable abilities may serve to organize environmental 

information into knowledge of the problem. It is, however, this knowledge component of 

problem solving that is less well understood. Knowledge content is important for solving 

problems and, consequently, a variety of content tests, such as mechanical, have been 

developed to predict and explain problem solving in these particular domains. While 

content knowledge is surely important, we argue that it is how this content is organized 

and structured that determines the utility of knowledge to solve particular problems. The 

purpose of this review is to describe how the contribution of expertise abilities in problem 

solving goes beyond knowledge content and needs to include how this knowledge is 

structured.  

Learning from a particular experience and developing skill at solving related 

problems is a complex process that is likely to tap personal characteristics beyond general 

reasoning and knowledge. Two characteristics that we feel are particularly relevant to 

predicting differences in learning and problem-solving skill are effort and mechanical 

self-efficacy. Mechanical self-efficacy describes an individual’s belief in his or her ability 

to act meaningfully and effectively with physical principles and mechanical systems and 

has been shown to have a moderate positive association with performance on the Bennett 

Mechanical Comprehension Test (Grand, 2008). The learning and problem-solving tasks 

that were used in this study were mechanical in nature, and one’s mechanical self-
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efficacy may be an important predictor of these outcomes. Learning and problem solving 

rarely occur without an individual exerting some effort to learn from an experience (e.g., 

Salomon, 1984; Chase, Chin, Oppezzo, & Schwartz, 2009) or to engage in problem 

solving (e.g., Darabi, Nelson, & Palanki). Therefore, it is important to include 

assessments of differences in learning effort and problem-solving effort when researching 

predictors of differences in learning and problem-solving skill. 

The purpose of this study was to build a better understanding of how adults solve 

experience and knowledge related problems, and subsequently to add to the 

understanding of adult intelligence. An important indicator of one’s intelligence is skill at 

solving the variety of problems that arise while performing his or her personal and 

professional responsibilities. The current theories of adult intelligence do not generalize 

to this type of everyday problem solving because of their focus on the more fluid aspects 

of intelligence. We argue that the way knowledge is organized is an important 

determinant in who can and cannot solve a problem. If this is the case, a next step in 

understanding adult intelligence is to explore the relation between general cognitive 

abilities and the acquisition and application of knowledge, particularly its structure. In 

this study we test five primary hypotheses that, if supported, provide evidence that 

general reasoning is associated with problem solving because it facilitates the acquisition 

of an expert-like knowledge structure that facilitates the identification of problem causes 

and solutions.  

• Hypothesis 1 (H1; learning). The acquisition of procedural knowledge is a function 

of learning effort, prior knowledge, general reasoning, and mechanical self-efficacy. 
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• Hypothesis 2 (H2; learning). The structure of knowledge is a function of prior 

knowledge, general reasoning, learning effort, and mechanical self-efficacy. 

• Hypothesis 3 (H3; problem solving). Skill at identifying the causes of gear problems 

is a function of the knowledge structure, procedural knowledge, general reasoning, 

mechanical self-efficacy, and problem solving effort.  

• Hypothesis 4 (H4; problem solving). Skill at describing procedures to fix gear 

problems is a function of procedural knowledge, the structure of knowledge, general 

reasoning, mechanical self-efficacy, and problem solving effort. 

• Hypothesis 5 (H5; problem solving). Overall knowledge is a stronger predictor of 

problem-solving skill than general reasoning. 

In H1 and H2 we seek a better understanding of the individual differences that are related 

to the differences in knowledge acquired from a training experience. In H3 and H4 we 

seek to explore the relation of general reasoning to solving experience related problems 

when differences in knowledge are accounted for. In H5 we hope to expel any doubts that 

knowledge is an important factor in determining skill at solving problems. As long as 

problem-solving skill is an indicator of intelligence, then support of these hypotheses is 

evidence that the structure of knowledge is an important aspect of intelligence. 

Method 

Participants 

 Participants (N = 174, 111 female) were recruited from the Psychology 

Department’s subject pool at a large public university located in Southern California. 

Participants responded to an advertisement on the Department’s subject pool website and 
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received course credit for their participation. The sample was predominantly college 

freshmen and sophomores, with a mean age of 19 years old (SD = 1.6 years). Participants 

represented a range of disciplinary majors (20% Biology, 20% Business, 17% 

Psychology, 10% Sociology, 33% other). The sample was ethnically diverse, with 41% 

Asian, 34% Hispanic, 8% Filipino, 7% Other or Mixed, 5% European American, 3% 

African American, and 3% Middle Eastern, which reflects the diversity of the region.  

 Professional bicycle mechanics (N = 3) were recruited to develop an expert 

knowledge criterion. A bicycle shop in Southern California was solicited for volunteers 

to participate in this study. Interested mechanics were given a short description of the 

study, and told that their responses would be used as a criterion for assessing bicycle 

knowledge. Their participation was voluntary and there was no monetary incentive to 

participate in this study. Mechanic participation was limited to questions about their 

professional mechanic experience and the elicitation of their bicycle gear structural 

knowledge. All mechanics were male, their age ranged from 24 to 31 years old, and 

professional bicycle mechanic experience ranged from 1 to 5 years. 

Measures 

 The measures and video used in this study are described below. All measures are 

available in the appendices, and the URL address to the training video is available upon 

request.  

 English language proficiency. Fluency with English was assessed as the self-

reported proportion of the participant’s life that English was the primary form of 

communication and by responses to two self-report Likert questions (1 = Very difficult to 
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4 = Very easy): “How difficult do you find it to understand spoken English?,” and “How 

difficult do you find it to write answers in English?” 

 General reasoning. The 16-item version of the International Cognitive Ability 

Resource (ICAR-16; Condon & Revelle, 2014; Appendix B) was used to assess general 

reasoning. The ICAR-16 has four types of reasoning problems: four matrix-reasoning 

items, four quantitative reasoning items, four verbal reasoning items, and four three-

dimensional rotation problems. The items were presented in increasing difficulty, and 

participants were allowed 30 minutes to finish. All participants completed the ICAR-16 

within 25 minutes. The proportion of correct responses was used as an indicator of 

general reasoning.  

 Prior bicycle knowledge. The extent of participants’ understanding of a bicycle 

was assessed with an open-ended measure asking for the names of bicycle parts, such as 

the brakes and handlebars (Appendix C). Participants were instructed to write out as 

many bicycle parts as they could. The total number of parts correctly listed was summed 

and used as an indicator of bicycle knowledge. Components that can be added to a 

bicycle but are not essential to a working bicycle (e.g., bells, baskets, reflectors, etc.) 

were not counted toward the prior knowledge score.  

 Mechanical self-efficacy. Mechanical self-efficacy was assessed using an 8-item 

self-report measure (Grand, 2008; Appendix D). Participants are asked to indicate their 

confidence on a 5-point scale (1 = Not at all confident, 5 = Completely confident) at 

completing 8 mechanical tasks. For example, “Figure out how a mechanical item works 

(e.g., a flashlight, simple engine, etc.) by observing how its internal components operate 
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(gears, belts, switches, etc.).” This scale demonstrated high reliability (α = .85). The 

average scale score was used as an indicator of mechanical self-efficacy.  

 Learning to set up the gears of a bicycle (the training task). Participants 

completed a self-guided training session in which they read the following instructions and 

individually watched a 12-minute video.  

“We are interested in how different ways of presenting mechanical information 

influences learning and performance. You have been randomly assigned to one of 

three learning conditions: Written directions, video directions, or in-person directions. 

Throughout the learning process please do your best to fully engage and master the 

material. This is a challenging but achievable part of bicycle maintenance. When the 

training period has finished you may have the opportunity to use your newly learned 

skill in another part of this study. Additionally, you will be learning how to fix one of 

the most common problems on geared bicycles.”  

Although participants were told they would be randomly assigned to one of three learning 

conditions, all participants were assigned to the same video condition and watched the 

same training video. The 12-minute training video was created specifically for use in this 

study. Figure 2 shows the major parts of the video and their duration. In the video, a 

mechanic demonstrates common bicycle gear problems and a procedure for setting up 

and adjusting the gears. The video was accompanied with an audio commentary defining 

the various parts, explaining the common problems, and describing the steps the 

mechanic carries out while setting up the gears. The video begins with an overview of 

what a geared bicycle is, how the gears are operated, and shows examples of 4 common 



 

 32 

problems with a bicycle’s gears. The mechanic then identifies and explains the function 

of the different parts involved with changing gears: shift levers, cables, cable housing, 

cable stops, barrel adjuster, derailleur, high and low limit screws, the chain, derailleur 

pulley, the sprocket cluster, and crankset. Figure 3 provides screenshots of the video to 

illustrate how the gear parts were identified during the video. After identifying the 

primary components, the mechanic carries out a common procedure for setting up the 

gears. Specifically, the mechanic (1) detaches the cable from the derailleur at the cable-

fixing bolt, (2) sets the high limit screw, (3) sets the low limit screw, (4) reattaches the 

cable to the derailleur at the cable-fixing bolt, (5) adjusts the cable tension, and (6) 

checks for smooth shifting across the sprocket cluster. The visual orientation to this 

procedure, in the way of an outline, is also illustrated in Figure 3. As the mechanic 

completed each of the six steps the outline slide in Figure 3 was displayed with the 

upcoming step highlighted. The video concludes with a short review of the bicycle gear 

parts and how they are integrated into the drive system of a bicycle.  

 Procedural knowledge. Knowledge of the procedural sequence used by the 

mechanic in the video to set up the gears was assessed in two ways. The first assessment 

was composed of 8 multiple-choice items that asked what was done before or after a 

particular step (Appendix E). The proportion of correct responses was used as an 

indicator of procedural knowledge. In the second assessment, participants were presented 

with a randomized list of the eight procedural steps and asked to order the steps as they 

should be carried out (Appendix F). The rank order of each step was compared to the 

correct order and 1 point was subtracted for each position away from the correct position. 
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A score of zero indicates that all steps were placed in the correct order. A score of -1 

indicates that 1 step was out of order by one position. The two assessments of procedural 

knowledge were z-scored and their average was used as the indicator of procedural 

knowledge.  

 The structure of knowledge. Participants’ understanding of the interrelations of 

the bicycle’s gear parts and how this information was structured as knowledge was 

assessed with two measures. In the first measure, definition knowledge, participants 

defined each of the nine bicycle gear parts covered in the training video by the parts’ 

functional relations. In the second measure, relatedness ratings, participants rated the 

relatedness of each bicycle gear part to each of the 8 other parts (Appendix G and H 

respectively). PF-Net analysis was then used with the participant’s ratings to derive the 

structure of their knowledge and assess its characteristics. Both of these measures assess 

the way in which an individual has structured their knowledge. In defining the parts by 

their functional interrelation the individual is describing the interrelations between parts 

that are argued to structure this knowledge. It is in essence a written description of what 

parts the participant believes to be directly related and how these relations allow for a 

gear change. The relatedness ratings then provide a means of quantifying different 

aspects of this structure (e.g., similarity to an expert knowledge structure). Definition 

knowledge and similarity to an expert knowledge structure, C, were standardized and 

averaged to provide an indication of the participants’ organization of bicycle gear 

knowledge relative to that of expert bicycle mechanics.  
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 Definition knowledge. Participants were asked to define each of the nine essential 

components in the rear drive train of a bicycle: Derailleur, shift lever, cable, barrel 

adjuster, cable-fixing bolt, limit screw, pulleys, chain, and sprocket cluster. The 

instructions directed participants to “describe what each component is, and what its 

function is in allowing a cyclist to change gears.” The name of each component and 

space to type a definition was provided. All nine components were presented 

simultaneously and in a random order. Participants were required to spend no less than 6 

minutes reporting their answers. The definitions were scored by two raters on a 4-point 

scale and the average of their judgments was used. The 4-point scale was as follows: 1 = 

Incorrect, no understanding of the component indicated; 2 = Incorrect, but indicates 

some idea of what/where the component; 3 = Correct, has a functional description, but 

incomplete or has inaccuracies; 4 = Correct, accurate descriptions of the components 

functionality. Inter-rater reliability between the two judges of definition accuracy 

demonstrated high consistency, r = .96. The average score of the nine definitions was 

used as an indicator of the participant’s understanding of the components’ functional 

interrelations. 

 Relatedness ratings (RR). Participants were asked to rate the relatedness of each 

gear part to all other parts covered in the training video on a 5-point scale (1 = unrelated, 

2 = moderately related, 3 = largely related, 4 = extremely related, 5 = synonym). For 

example, how related is the derailleur to the chain, to the sprocket cluster, to the cable, 

and so on until they have rated the relatedness of the derailleur to all of the other parts. 

Then participants rated the relatedness of the chain to the sprocket cluster, to the cable, 
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and the remaining parts. All 36 unique pairwise ratings were randomized and presented 

simultaneously.  

These RR were scored using PF-Net Analysis (Schvaneveldt, 1990), with 

participants’ RR compared to the aggregated RR by the three professional bicycle 

mechanics. Pathfinder scores evaluated the participants’ data by its similarity to RR of 

experts, the coherence of the ratings, and the density of the knowledge structure. The 

similarity measure assesses the similarity between two sets of RR and ranges from 0, no 

similarity, to 1, identical (see Goldsmith & Davenport, 1990, for further discussion). 

Participants with high similarity values are considered to have a better organization of 

their knowledge than participants with low similarity values (Goldsmith et al., 1991). The 

coherence measure assesses the extent to which a set of ratings is consistent. In this 

sense, consistency is defined as the extent that the similarity between concepts is related 

to the similarity between their patterns of relations with the other concepts. For example, 

high coherence occurs when two extremely similar concepts also have very similar 

relations with the other concepts in the knowledge network. Coherences scores are a type 

of correlation and can range from -1 to 1, with 1 representing perfect consistency (see 

Schvaneveldt, 1990, for computational details). The complexity of a knowledge structure 

is assessed as its density. A knowledge structure’s density is the proportion of edges 

present compared to the total number of possible edges. Experts tend to have less 

complexity in the structure of their knowledge, which suggests that knowledge structures 

that are very complex may be more difficult to use and hinder performance. 
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 Solving bicycle gear problems. Skill at solving common problems with a 

bicycle’s gears was assessed with open-ended short answer questions (Appendix I). Each 

question stated a problem and asked the participant what the cause of the problem was 

and what should be done to correct the problem, cause identification and procedural 

solution respectively. Responses are structured to assess understanding of the underlying 

cause of the problem, Part A, separate from understanding of the procedure to fix the 

problem, Part B. Participants were required to spend at least 2 minutes per problem 

before they could work on the next problem.  

Two judges rated both parts of the responses on a 4-point scale, and their average 

rating was used for the score of each question (1 = Incorrect, answer demonstrates no 

understanding of the problem; 2 = Incorrect, but some understanding of the problem is 

demonstrated; 3 = Correct, but misses some details of a complete solution; 4 = Correct, 

answer demonstrates complete understanding of the problem). The participants’ average 

score for Part A were used as an indicator of skill at identifying the cause of problems, 

and the participants’ average score for Part B were used as an indicator of skill at fixing 

gear problems. Overall bicycle gear problem solving skill was assessed as the average of 

the scores on Part A and Part B. The ratings demonstrated acceptable consistency 

between the judges (ICCcause = .82 [.80, .84], ICCsolution = .69 [.66, .71], ICCoverall = .76 

[.75, .78]). 

 Effort. Participants reported their effort put into the study on two Likert scale 

questions (1 = The least effort possible, 5 = The most effort possible). Participants were 
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asked how much effort they put into learning, and how much effort they put into solving 

the problems.  

Design and Procedure 

 The relations between general reasoning, the structure of domain specific 

knowledge, and domain specific problem solving were observed in a between-subjects 

design. Figure 4 illustrates the following procedure that was used for data collection. 

College undergraduates participated individually for approximately two hours, during 

which they completed questionnaires and watched a training video on desktop computers 

in a Psychology Department computer laboratory. Participants were seated at one of 13 

computers and were given a written consent form. After providing informed consent 

participants began the study by responding to the questionnaires presented on the 

computer monitor. The questionnaires were presented in the following order: 

Demographic Information, ICAR-16, Bicycle Component Knowledge, Mechanical Self-

Efficacy, and Training Instructions. After the training instructions participants put on 

headphones and watched the training video on their computer screen. A researcher 

monitored the participants to insure that the video was watched from beginning to end in 

full-screen mode without pausing, fast forwarding, or replaying the video.  

Knowledge of the training task was then assessed with four questionnaires. First, 

participants free recalled the definitions of the key bicycle gear parts covered in the 

video. Second, multiple-choice questions about the procedure presented in the video were 

answered. Third, a randomized list of the key procedural steps was placed in the correct 

procedural order. Fourth, participants rated the pairwise relatedness of the nine bicycle 
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gear parts covered in the video. The final part of the study asked participants to provide 

written solutions to nine common bicycle gear problems and to report their effort as a 

participant in the study. The study concluded with a debriefing statement, the 

participant’s questions were answered, and they were thanked for their participation.  

Results 

 This study was designed to predict differences in knowledge after a short training 

period and skill at solving problems related to the training material. Subsequently, three 

sets of variables were assessed: pre-existing individual differences that were expected to 

relate to learning and performance in this domain (i.e., general reasoning, prior 

knowledge, mechanical self-efficacy, English proficiency), knowledge variables that 

assess learning after the training period (i.e., procedural knowledge, the structure of 

knowledge), and variables that assess skill at solving bicycle gear problems (i.e., 

identifying the causes of the problems, describing procedures to fix the problems). The 

following sections will provide descriptive results of the pre-existing characteristic 

variables, the knowledge variables, and the problem-solving variables, before moving to 

the analyses of the primary hypotheses of this study.  

 To test for any gender differences that may have arisen due to the mechanical 

nature of the learning experience and problem solving, we compared the means for men 

and women on a number of the study variables. We computed independent sample two 

tailed t-tests for gender differences in general reasoning, prior bicycle knowledge, 

mechanical self-efficacy, procedural knowledge multiple-choice, procedural knowledge 

rank order, structural knowledge definitions, structural knowledge similarity, overall 
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bicycle gear knowledge, problem cause identification, problem procedural solution, and 

overall problem-solving skill. Only the assessments of knowledge structure acquired 

from the training video had significant mean differences. There was a marginally 

significant difference between men, M = .38, and women, M = .34, on their similarity to 

the expert knowledge structure, t (164) = 1.94, p = .06, Cohen’s d = -0.31. There was a 

significant difference between men, M = 2.73, and women, M = 2.50, on their definition 

knowledge, t (172) = 2.10, p = .04, Cohen’s d = -0.33. These gender differences are 

small, observed in only two of the study variables, and the relation of gender to 

mechanical learning and problem solving was not the focus of this study. Therefore, the 

data was not analyzed separately for men and women and further gender differences were 

not examined.  

Descriptive Analyses  

 Assessments of pre-existing individual differences. To determine what 

individual differences are related to learning from training and later applying the learned 

knowledge to solve problems, four pre-existing individual differences were assessed: 

general reasoning, prior bicycle knowledge, mechanical self-efficacy, and English 

proficiency. The descriptive statistics for each of these variables are presented in Table 1, 

and the correlation matrix for these variables is presented in Table 2.  

The assessment of general reasoning was normally distributed around a mean of 

41% correct (SD = 20%). The scores ranged from 0 to 87, indicating that the assessment 

of general reasoning was appropriate for assessing the range of reasoning skills in this 

sample. The assessment of prior bicycle knowledge indicated that most participants were 
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relatively unfamiliar with the parts that compose a bicycle. The median number of parts 

reported was 6 (SD = 2.51), and the distribution was kurtotic with positive skew (skew = 

1.4, kurtosis = 4.5). Most participants, 60%, reported the median number of bicycle parts 

or fewer. The assessment of mechanical self-efficacy was normally distributed around a 

mean of 2.72 (SD = 0.61), with scores ranging from 1 to 4.5, representing most of the 1 to 

5 Likert scale range. This indicates that the average participant was slightly less than 

confident in his or her general mechanical skill, and no participants were “completely 

confident” in their general mechanical skill.  

The University from which the sample was collected encourages international 

exchange programs and has a number of students for whom English is a second language. 

Because both learning and performance in this study required English proficiency, 

language was an important consideration. The majority of the sample reported that 

English has been the primary form of communication during their life (median = 94% of 

life, SD = 24%, range = 5% to 100%, skew = -1.47, kurtosis = 1.24). The assessment of 

English proficiency had positive skewness around a median of 1 (SD = 0.64, range = 1 to 

3.5, skew = 1.2, kurtosis = 0.84), indicating that most of the sample found writing and 

understanding English very easy. An aggregate variable of these four measures showed 

no significant relations to either the learning outcomes or the problem-solving outcomes. 

The estimated correlation coefficients ranged from -.07 to .03, p-values > .10.  

 Assessments of knowledge acquired from training. After watching the training 

video, learning was assessed as knowledge of the procedure for adjusting a bicycle’s 

gears and knowledge of the interrelations among the parts that compose a bicycle’s gears. 
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Participants completed two assessments of procedural knowledge and two assessments of 

their knowledge structure that were combined to create the respective composite 

variables used in the analyses. The descriptive statistics for each of these variables are 

presented in Table 1, and the correlation matrix of these variables is presented in Table 2.   

 Participants’ scores on the procedural knowledge multiple-choice assessment 

were normally distributed around a mean of 47% (SD = 23%, range = 0% to 100%). 

Most participants were able to answer 4 of the 8 questions correctly, and there was good 

overall variance. The responses to the procedural knowledge rank order assessment were 

normally distributed around a mean of 14 rank order positions off from perfect ranking 

(SD = 4.86, range = -2 to -28). These two assessments of procedural knowledge had a 

strong positive correlation, r (171) =  .42 [.29, .54], p < .0001. Higher scores on the 

multiple-choice assessment were related to better performance on the rank ordering 

assessment. The content overlap combined with a strong correlation between these two 

variables provided the justification for creating a procedural knowledge composite 

variable.  

 The sample’s definition knowledge was normally distributed around a mean of 

2.6 (SD = 0.70, range = 1.06 to 4). Most participants were somewhat accurate in their 

functional definitions of the bicycle gear parts, while some showed no understanding of 

the parts and others had a very accurate understanding of the parts’ functions.  

 Participants’ similarity to the relatedness ratings of expert mechanics was 

normally distributed around a mean of .35 (SD = .13, range = .09 to .69). Eight 

participants’ relatedness ratings were not used because there was no variation in the 
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ratings (i.e., all fours or all ones). No participant had a perfect match with the experts’ 

ratings, but the mean indicates that most participants had acquired an organization to their 

bicycle gear knowledge that was moderately similar to the experts’ structure. The 

similarity and definitions knowledge measures had a very strong positive relation, r (164) 

= .63 [.52, .71], p < .0001). The strong relation between these variables and their 

emphasis on knowledge of the functional inter-concept relations provided the justification 

for their aggregation into a composite variable. The procedural knowledge composite and 

the structure of knowledge composite had a strong positive relation, r (164) = .58 [.47, 

.67], p < .0001. Participants who learned the procedure for adjusting bicycle gears tended 

to also have organized their knowledge similar to the professional bicycle mechanics. 

 The assessment of RR coherence provided evidence that on average a 12-minute 

training video was not enough training to organize knowledge into a structure that would 

allow one to make consistent RR. The sample’s distribution of coherence scores was 

normally distributed around a mean of .17 (SD = 0.34, range  = -.62 to .82). The range of 

coherence scores, with many below zero, was a concern for the use of this measure in 

further analyses. Schvaneveldt and colleges (2002) suggested that coherence scores 

below .20 indicated poor learning engagement, misunderstanding of the RR task, or 

misunderstanding of the RR content. In this sample, 47% of participants had coherence 

scores below .20, and 29% had scores below zero. Coherence scores exhibited a similar 

pattern of correlations with the study variables as the other assessments of knowledge 

structure, similarity and definitions knowledge. For example, coherence had a moderate 

positive relation with overall problem-solving skill, r (164) = .30 [.16, .43], p < .0001. 
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Coherence also had a significant positive relation with general reasoning, r (164) = .18 

[.03, .32], p = 02. Table 3 presents the correlations of coherence with the other study 

variables. The presence of a significant number of coherence scores below zero raises 

concerns about the appropriateness of this measure as an assessment of the structure of 

knowledge in this sample. The training task in this study may have been insufficient for 

participants to develop the aspects of knowledge that are assessed by coherence. 

Coherence scores are not included in the test of our hypotheses, despite initial plans to the 

contrary.  

 The PF-Net analysis of the structural characteristics of knowledge provides an 

assessment of the complexity of a knowledge structure as its density (i.e., the proportion 

of edges in the structure to total possible edges). The analysis of this structural 

characteristic of knowledge was purely exploratory and is included to improve the 

understanding of this structural characteristic of knowledge. In this sample the 

assessment of the density of the knowledge structures had a positive skew around a mean 

of .44 (SD = .13, range = .22 to .94, skew = 0.83, kurtosis = 0.52). The average 

participant’s knowledge structure had 16 of the 36 possible edges (i.e., direct links 

between gear parts), compared to the average mechanic who had 15 edges (M = .41, SD = 

.07), and the aggregated knowledge structure of the mechanics with 11 edges, density = 

.24. The minimal difference between the complexity of the average mechanic and the 

average participant makes it unclear if density is a useful metric for assessing learning. 

However, having a more complex knowledge structure was associated with poorer 

overall problem solving skill, r (164) = -.25 [-.39, -.10], p-value < .01. Density was also 
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moderately related to general reasoning skill, r (164) = -.27 [-.40, -.12], p-value < .001. 

This suggests that skill at reasoning may facilitate the acquisition of less complex 

knowledge structures. Table 3 presents the correlations of density with the other study 

variables.  

 Assessments of skill at solving bicycle gear problems. Participants were tested 

on their skill at identifying the causes of gear problems and their skill at coming up with 

procedures to fix the problems. The descriptive statistics for each of these variables are 

presented in Table 1, and the correlation matrix for these variables is presented in Table 

2. 

 Skill at identifying the causes of the problems was distributed around a mean of 

1.75 with positive skewness (SD = 0.57, range  = 1 to 3.39, skew = 0.62, kurtosis = -

0.37). After training, the average participant was able to loosely describe the problems’ 

causes, but the explanations tended to contain some inaccuracies or vagueness about 

these causes. More participants were unable to describe the causes than were able to 

provide accurate identifications of the causes, as indicated by the positive skew of the 

distribution. However, 31% of the sample had an average cause identification score 

above two and was able to identify the causes of most of the problems.  

 The distribution of skill at describing procedural solutions for the gear problems 

had a positive skew around a mean of 1.7 (SD = 0.5, range = 1 to 3.44, skew = 0.77, 

kurtosis = 0.31). The average participant did not describe feasible solutions to the 

problems, but did indicate some understanding of the problems and how to solve them. 

Compared to problem cause, only 21% of the sample averaged a problem solution score 
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above two, indicating that they had described feasible solutions to most or all of the 

problems. Participants’ skill at identifying the causes of problems was strongly correlated 

with skill at describing procedural solutions to the problems, r (172) = .84 [.78, .88], p < 

.0001. A participant that was able to describe the causes was more likely to also be able 

to describe solutions to the gear problems.  

 The distribution of overall problem-solving skill, the aggregate of skill at 

identifying causes and developing solutions, had positive skew around a mean of 1.72 

(SD  = 0.51, range = 1 to 3.39, skew = 0.66, kurtosis = -0.03). Thus, after watching a 12-

minute training video, the average participant was relatively unskilled at solving 

problems with bicycle gears, but did demonstrate some understanding of how to fix gear 

problems. Despite the difficulty of the learning and problem-solving tasks, 28% of the 

sample had an average overall problem-solving score above two and was able to describe 

how to fix some of the gear problems.  

 Effort at learning and solving the gear problems. Participants’ self-reports of 

their effort to learn were normally distributed around a mean of 3.39 (SD = 0.90, range = 

1 to 5, skew = -0.31, kurtosis = 0.29). The average participant reported putting some 

effort into learning from the video, and more participants reported putting a lot of effort 

into learning than very little effort. Similarly, self-reported effort into solving the 

problems was normally distributed around a mean of 3.27 (SD = 0.86, range = 1 to 5, 

skew = -0.12, kurtosis = 0.25). The average participant reported putting some effort into 

solving the gear problems, and more participants reported putting a lot of effort into 

solving the problems than very little effort. Learning effort and problem solving effort 
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had a strong positive correlation, r (170) = .64 [.55, .72], p < .0001. A participant who put 

a lot of effort into learning was likely to put a lot of effort into solving the problems. The 

non-perfect relation and the substantive difference of these variables indicated that each 

was providing unique information and that further analyses could benefit from their use 

as independent variables rather than as an aggregated variable. 

What Predicts Mechanical Learning and Problem-Solving? 

 This study was designed to assess individual characteristics that were likely to be 

related to the acquisition of knowledge, and then to assess the importance of these 

characteristics and the acquired knowledge in solving related problems. Following are the 

primary study hypotheses, also presented at the end of the introduction chapter, organized 

by the outcome and its position in the study’s procedure. In each hypothesis the relative 

strength of each predictor is hypothesized to follow the order in which each variable is 

presented in the hypothesis. 

• Hypothesis 1 (H1; learning). The acquisition of procedural knowledge is a function 

of learning effort, prior knowledge, general reasoning, and mechanical self-efficacy. 

• Hypothesis 2 (H2; learning). The structure of knowledge is a function of prior 

knowledge, general reasoning, learning effort, and mechanical self-efficacy. 

• Hypothesis 3 (H3; problem solving). Skill at identifying the causes of gear problems 

is a function of the knowledge structure, procedural knowledge, general reasoning, 

mechanical self-efficacy, and problem solving effort.  
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• Hypothesis 4 (H4; problem solving). Skill at describing procedures to fix gear 

problems is a function of procedural knowledge, the structure of knowledge, general 

reasoning, mechanical self-efficacy, and problem solving effort. 

• Hypothesis 5 (H5; problem solving). Overall knowledge is a stronger predictor of 

problem-solving skill than general reasoning. 

The above hypotheses were tested using linear multiple regression analyses. To ease 

interpretation, all of the variables were standardized before analysis and the estimated 

standardized regression coefficients are reported. To understand the relative strength of 

each predictor compared to the other predictors in the model, all predictors were entered 

into the regression models simultaneously. This served the purpose of allowing each 

predictor to account for only the outcome variance that was unique to its relation with the 

outcome, rather than accounting for outcome variance that overlaps with other predictors. 

Additionally, because the standardized regression coefficients are reported, the relative 

strength of the predictors within each model can be assessed. The variance inflation 

factors (VIF) of each regression model were checked to assess concerns of 

multicolinearity. In all of the reported regression models VIF values were below two, 

indicating that multicolinearity was not a concern in the interpretation of these regression 

results.  

What predicts learning and the acquisition of knowledge? Participants’ learning 

after training was assessed in two ways, in terms of the procedural knowledge they had of 

fixing bicycle gears and the structure of their knowledge, which reflects their 

understanding of the functional relations between the parts that compose a bicycle’s 
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gears. These variables were examined independently, as described in H1 and H2, and as 

an aggregate variable used to index overall learning, H5.  

H1 stated that learning effort, prior knowledge, general reasoning, and mechanical 

self-efficacy would predict the extent of procedural knowledge acquired after training, 

when controlling for the effects of the other variables in the regression model. H1 was 

supported for all predictors except mechanical self-efficacy, which reached only marginal 

significance (see Table 4). Learning effort did have the strongest relation to procedural 

knowledge, indicating that personal effort is an important aspect of the learning process. 

Prior knowledge and general reasoning were also significantly related to procedural 

knowledge. Prior knowledge of bicycle parts had a slightly stronger relation with 

procedural knowledge than did general reasoning, but both were important in predicting 

the extent of procedural knowledge that a participant acquired from the training video. 

This regression model accounted for 33% of the variance in procedural knowledge 

scores. The remaining two thirds of unexplained variance suggest that learning 

mechanical procedures is a function of more than effort, reasoning, and prior knowledge.  

H2 stated that prior knowledge, general reasoning, learning effort, and mechanical 

self-efficacy would predict the structure of acquired knowledge, when controlling for the 

effects of the other variables in the regression model. H2 was supported for all predictors 

except mechanical self-efficacy, p-value = .31 (see Table 4). The strongest predictor of 

the structure of knowledge was the prior knowledge that participants had of bicycle parts, 

that is the number of bicycle parts they could name before watching the training video. 

Learning effort and general reasoning had almost identical relations to the structure of 
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acquired knowledge. This result is in contrast to their relations with procedural 

knowledge in H1 where learning effort was a notably stronger predictor of learning. This 

regression model accounted for 37% of the variation in how knowledge of bicycle gears 

was structured. The presence of a substantial amount of unexplained outcome variances 

indicates that the structuring of knowledge is a function of more than prior knowledge, 

general reasoning, and learning effort.  

In the interest of understanding the acquisition of overall bicycle gear knowledge, the 

aggregate of procedural and knowledge structure was regressed on general reasoning, 

prior knowledge, learning effort, and mechanical self-efficacy (see Table 4). The results 

of this analysis concur with the results of H1 and H2. Prior knowledge and learning effort 

had nearly identical relations to overall gear knowledge. General reasoning was a 

significant predictor of overall knowledge, but its relation was weaker than that of prior 

knowledge and learning effort. These results provide evidence that effort and prior 

knowledge may be more important than general reasoning in acquiring knowledge about 

a bicycle’s gears. This regression model accounted for 43% of the variation in overall 

gear knowledge scores. 

What predicts who can solve bicycle gear problems after training? After 

participants watched the training video on fixing bicycle gear problems their skill at 

identifying the cause of gear problems and describing a procedure to fix those problems 

was assessed. Our interest was in determining what predicts an individual’s skill at 

solving bicycle gear problems, specifically in comparing the role of knowledge to general 

reasoning in problem solving skill. In the following tests of H3, H4, and H5 we also 
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include mechanical self-efficacy and effort put into solving problems in the regression 

models. Self-efficacy describes one’s feelings of competency to perform, so it was 

expected that mechanical self-efficacy would predict an individual’s skill at solving 

mechanical problems. Furthermore, solving problems is expected to require effort, so it 

was expected that self-reported problem-solving effort would be associated with the 

assessments of mechanical problem-solving skill. 

H3 stated that skill at identifying the causes of gear problems would be predicted by 

the structure of knowledge, procedural knowledge, general reasoning, mechanical self-

efficacy, and problem-solving effort. This hypothesis was in part supported (see Table 5). 

The structure of knowledge and procedural knowledge did have significant positive 

associations with skill at identifying the cause of the problem. The structure of 

knowledge had the strongest relation with this skill; the estimated standardized regression 

coefficient was double that of procedural knowledge. It was expected that extent of 

procedural knowledge and the structure of knowledge would be stronger predictors of 

skill at identifying problem causes than general reasoning, but general reasoning was 

expected to have a significant, if smaller, relation to this skill. General reasoning was not 

a significant predictor of skill at identifying the cause of gear problems. This provides 

evidence that knowledge structure is more important in figuring out why gears are 

malfunctioning than general reasoning. Also, counter to the prediction, neither 

mechanical self-efficacy nor problem-solving effort was a significant predictor of 

problem cause identification skill. This result suggests that knowledge structure has a 

stronger role in the process of identifying the cause of gear problems than general 
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reasoning, mechanical self-efficacy, or problem-solving effort. This regression model 

accounted for 51% of the observed variation in problem cause identification scores, 49% 

of which is accounted for by procedural knowledge and knowledge structure. A follow up 

Hierarchal regression analysis tested for a significant improvement in explained outcome 

variance when general reasoning, mechanical self-efficacy, and problem-solving effort 

were added to a model containing knowledge structure and procedural knowledge. There 

was not a significant improvement in explained outcome variance, F (3, 159) = 2.04, p  = 

.11, which indicates that general reasoning, mechanical self-efficacy, and problem-

solving effort did not help explain differences in problem cause identification.     

General reasoning was a significant predictor of the structure of knowledge acquired, 

H2, but not of skill at identifying the cause of the gear problems, H3. The comparison of 

these results indicated that the structure of knowledge might mediate the relation between 

general reasoning and problem cause identification. Using Hierarchal regression we 

tested and supported a hypothesis that the relation between general reasoning and 

problem cause identification is mediated by knowledge structure. In step one we 

regressed problem cause identification on general reasoning; predicted problem cause 

score (R2 = .14, df = 163) = general reasoning (β = .37, p < .0001) + error. In step two we 

added knowledge structure to the regression model; predicted problem cause score (R2 = 

.45, df = 162) = general reasoning (β = .14, p = .03) + knowledge structure (β = .61, p < 

.0001) + error. The decrease in the magnitude and significance of the estimated 

coefficient for general reasoning when knowledge structure was included in the model is 

evidence for partial mediation, F (1, 162) = 93.15, p < .0001. This result supports the 
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assertion that general reasoning is related to problem cause identification skill because of 

its relation the structure of knowledge. 

H4 states that skill at describing procedures to fix gear problems would be predicted 

by procedural knowledge, the structure of knowledge, general reasoning, mechanical 

self-efficacy, and problem-solving effort. This hypothesis was supported in part (see 

Table 5). The structure of knowledge and procedural knowledge were significantly 

related to skill at describing procedural solutions to gear problems. Counter to our 

prediction, procedural knowledge was not a stronger predictor of skill at describing 

procedural solutions than how knowledge was structured. As predicted, general reasoning 

was a significant but weaker predictor; the estimated standardized regression coefficient 

was half the size of the coefficient for procedural knowledge. Similar to the H3 results, 

neither mechanical self-efficacy nor problem-solving effort was a significant predictor of 

skill at describing procedural solutions for gear problems. This regression model 

accounted for 52% of the variation in procedural solution scores.  

In the interest of examining overall skill at solving gear problems the aggregate of 

problem cause identification scores and the procedural solution scores was regressed on 

procedural knowledge, the structure of knowledge, general reasoning, mechanical self-

efficacy, and problem-solving effort. Reflecting the results of H3 and H4, how 

knowledge was structured was the strongest predictor of overall gear problem-solving 

skill. This result provides evidence that knowledge of the interrelations between the parts 

of a mechanical system is critical to problem solving in that system (e.g., a bicycle’s gear 

system). Procedural knowledge was the second strongest predictor of overall bicycle gear 
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problem-solving skill. Reflecting the results of H4, general reasoning was a significant, 

but much weaker predictor; the standardized regression coefficient was again half the size 

of the coefficient for procedural knowledge. Similar to results of the tests of H3 and H4, 

neither mechanical self-efficacy nor problem-solving effort was a significant predictor of 

overall gear problem-solving skill. This regression model accounted for 55% of the 

observe variation in gear problem-solving scores.  

H5 states that overall bicycle gear knowledge, the aggregate of knowledge structure 

and procedural knowledge, is a better predictor of gear problem-solving skill than general 

reasoning. This hypothesis was supported in an analysis that regressed bicycle gear 

problem-solving scores on overall gear knowledge and general reasoning; predicted 

problem-solving score (R2 = .52, df = 163) = knowledge (β = .63, p < .0001) + reasoning 

(β = .17, p < .01) + error. The results from this regression model provide very strong 

evidence that overall knowledge about a specific mechanical system (e.g., a bicycle) is 

critical in mechanical problem solving. 

Summary of Findings 

 This study strived to improve understanding of the relation between general 

reasoning, knowledge acquisition, knowledge organization, and problem solving. The 

research specifically focused on identifying and characterizing individual differences that 

predict success in acquiring knowledge and solving mechanical problems. Hypotheses 

about knowledge acquisition were based on the theoretical assertion that an individual’s 

knowledge is a function of the effort put forth in learning, the prior knowledge the 

individual has to build from, and the individual’s skill at reasoning. Characteristics of the 
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learning situation, such as presence of a teacher, instructional material, peer collaborator, 

may also be important, and these were held constant in this study so as to focus on the 

other elements. All the participants learned from the same video at the same pace. 

Individual differences among the other variables were observed, but not manipulated or 

constrained. The results, examined in tests of H1 and H2, support the theoretical assertion 

that the extent of knowledge acquisition after training is a function of effort put forth, 

prior knowledge that supports learning, and an individual’s skill at general reasoning. 

While general reasoning was a significant predictor of acquired knowledge, the evidence 

suggests that effort and prior knowledge are better predictors of who will succeed in the 

process of acquiring knowledge.  

 The second aim of this study was to gain a better understanding of the individual 

differences involved in the process of solving mechanical problems. Tests of H3, H4, and 

H5 were based on the theoretical assertion that problem-specific knowledge, rather than 

general reasoning, facilitates or restricts an individual’s skill in solving a specific 

problem. We argue that general reasoning is used in problem solving to acquire problem-

specific knowledge, but it is the content and organization of this knowledge that 

determines problem-solving skill. The results from the tests of H3, H4, and H5 support 

this theoretical assertion. In the test of H3, reasoning was a not a significant predictor of 

problem solving when two measures of specific knowledge, the structure of knowledge 

and procedural knowledge, were taken into account. In the test of H4, reasoning was the 

weakest of the significant predictors, its estimated coefficient half the size of the 

coefficients estimated for the structure of knowledge or procedural knowledge. In the test 
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of H5, the estimated standardized regression coefficient for overall bicycle gear 

knowledge was more than 3 times that of general reasoning.  

Discussion 

 Seventy-two years ago Cattell (1943) first put forward the proposition that an 

adult’s capacity to solve problems is part the fluid capacity for the eduction of relations 

and part the crystallized discriminatory habits an individual establishes from experience 

in a particular field. Today we work to continue this research and further the 

understanding of crystallized intelligence by incorporating findings from expertise-

knowledge research, specifically the findings relating to the structure of expert 

knowledge. We found that participants with higher general reasoning were more likely to 

structure their knowledge of bike gears similarly to professional mechanics after a short 

training video. We found support for Cattell’s proposition that while crystallized 

intelligence was the result of investing fluid intelligence, once in place fluid aspects were 

no longer necessary for the successful use of crystallized intelligence (Cattell, 1943). The 

relation between general reasoning, a fluid aspect, and bicycle gear problem solving skill 

became much weaker when overall bicycle gear knowledge, a crystallized aspect, was 

included as a predictor of problem-solving skill. These results and the results of the more 

detailed examinations to be discussed next, demonstrate the need to engage in a dialog 

between those who research general cognitive abilities and those who research 

knowledge and expertise.  

 The design of this study was based on the assertion that to examine the relation 

between knowledge and experience related problem solving, such as malfunctioning 
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bicycle gears, it is necessary to examine the individual differences that predict acquiring 

knowledge about the problem, and the differences in knowledge that relate to problem-

solving skill in that domain. Proceeding from the work of Cattell (1943, 1963) and others 

(e.g., Carroll, 1993; Horn & Blankson, 2005; Schneider & McGrew, 2012; Schweizer & 

Koch, 2002), we expected that differences in general reasoning would predict how an 

individual structured his or her knowledge of bicycle gears after a training video, and that 

it would be the way the knowledge was structured that would explain differences in 

problem-solving skill more than general reasoning. Five hypotheses were tested that, if 

supported, would provide evidence in favor of this view of the development of problem-

solving skill. The following sections discuss each hypothesis in turn and how the results 

from testing these hypotheses further our understanding of domain specific problem-

solving skill and may lead to a better understanding of intelligence.  

Acquiring knowledge from an experience. H1 stated that the acquisition of 

procedural knowledge in a specific area of bicycle mechanics would be predicted by 

individual differences in Leaning effort, prior knowledge, general reasoning, and 

mechanical self-efficacy. H2 stated that individual differences in prior knowledge, 

general reasoning, learning effort, and mechanical self-efficacy would predict how 

closely an individual would structure knowledge in relation to the structure of 

professional bicycle mechanics.  

The results supported H1 and the proposition that differences in the extent of 

procedural knowledge acquired from a training experience are related to effort, prior 

knowledge, and general reasoning. Learning effort was the best predictor of how much of 
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the bicycle gear adjustment procedure was learned from the training video. Learning 

effort provides an index of how willing an individual was to invest his or her resources to 

learn about bicycles and the bicycle gear system. Because procedural knowledge is a set 

of sequentially fixed relations rather than the more complex set of relations that structure 

knowledge, we expected effort to be more important for predicting differences in 

procedural knowledge than general reasoning. This position was supported; memorizing 

a set of sequential steps to solve a problem seem to relied more on the extent to which a 

person was motivated to engage in the learning process in an effortful manner. General 

reasoning and prior knowledge of bicycle parts were nearly equivalent in their utility for 

predicting the extent of procedural knowledge an individual would acquire from the 

training video. While learning effort was the best predictor of learning this procedure, 

general reasoning and prior knowledge were also important individual differences for 

predicting the extent and understanding of the procedure for fixing bicycle gears. This 

result highlights the possibility that prior related knowledge may provide a framework or 

structure that aids in acquiring further domain knowledge, while general reasoning 

facilitates learning the relation from one step to another in the procedure. Taken together, 

these results provide good support for H1, that is, individual differences in learning a 

procedure can be predicted from effort put into learning, differences in general reasoning, 

and prior knowledge in the problem domain.  

The results supported the assertion made in H2 that structuring knowledge from a 

training experience to be similar to an expert structure is a function of prior knowledge, 

general reasoning, and learning effort. The similarity between an individual’s knowledge 
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structure and an expert’s was best predicted by the individual’s prior knowledge. 

Structural similarity was predicted, to a lesser extent, by learning effort and general 

reasoning. Learning effort and general reasoning were nearly equivalent in their utility 

for predicting the similarity of an individual’s knowledge structure after the training 

video. These results suggest that the prior related knowledge provides a benefit when an 

individual is learning about the relations between a number of different parts and using 

this information to organizing his or her knowledge of a mechanical system (e.g., bicycle 

gears). Also, as predicted, general reasoning had a stronger relation with acquiring an 

expert-like structure than it did with the extent of acquired procedural knowledge. This 

difference in the predictive utility of general reasoning for the structure of knowledge 

compared to procedural knowledge supports the idea that general reasoning is more 

involved in learning when it requires understanding a set of relations that are more 

complex than a fixed sequence of steps. This type of complex relational understanding is 

represented in the way the experts structure their knowledge, and is likely to be an 

important aspect of their problem-solving skill. These results provide good support for 

H2 and the proposition that structuring experiential information into an expert-like 

knowledge structure utilizes an individual’s prior knowledge, his or her general 

reasoning, and the amount of effort he or she is will to exert into learning from a training 

experience.  

Our interest in this study was to build a better understanding of how two types of 

knowledge are acquired from a training experience, procedural knowledge and expert-

like knowledge structure. By combining these two types of knowledge and performing an 
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analysis similar to that of H1 and H2 we provide results that speak to knowledge 

acquisition more generally. The best predictors of how much knowledge an individual 

acquired from the training video were learning effort and prior knowledge. General 

reasoning was a weaker though still highly significant predictor of overall bike gear 

knowledge after the training experience. Mirroring the results from the test of H1 and H2, 

these results provide evidence that general reasoning is important in explaining 

differences in learning, but that there is more to learning than this general cognitive 

ability. It is perhaps more important to understand an individual’s motivation to learn and 

the knowledge base he or she is starting from when predicting the knowledge he or she 

will acquire from a learning experience.  

Future directions in knowledge acquisition research. The first two hypotheses, 

H1 and H2, were supported, but the predictors included in these analyses did not account 

for all of the variation that was observed in procedural knowledge and similarity to an 

expert knowledge structure. This unexplained variation indicates a need to consider other 

individual differences that are involved in learning from a training experience. In 

particular, we propose that a more complete explanation of the differences in procedural 

knowledge and knowledge structure may come from including assessments of other 

general cognitive abilities and more focused assessments of the knowledge base an 

individual had before the training experience.  

In this study we assessed a single general cognitive ability, general reasoning. In 

the extended theory of fluid and crystalized intelligence (Horn & Blankson, 2005) 

general reasoning has the clearest link to skill at learning the relations that structure 
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knowledge. The results of H2 indicate that general reasoning was associated with 

learning the inter-concept relations that structured knowledge more similarly to experts. 

We argue that general reasoning is helping individuals recognize the relations that are 

maintained by the parts of the problem. For example, movement in the shift lever affects 

the derailleur through the cable and this set of relations does not change, that is, it is 

maintained. Working memory may influence the number of relations that an individual 

can comprehend at any given time. Increases in working memory may allow an 

individual to compare and contrast more relations, which could in turn provide a better 

conceptualization of the overall system of inter-relations and recognition of the pattern of 

causal relations that determine the systems functionality. The sensory nature of the 

relations within a system may also tap different sensory and perceptual abilities. For 

example, in this study participants were asked to learn about a mechanical system, the 

gears on a bicycle. The training material in this study had a substantial amount of visual 

spatial information because of the importance of this type of information for 

understanding the gear system. It is, therefore, likely that individual differences in visual 

and spatial abilities may predict the amount of relational information that an individual 

can acquire from this type of training experience. In future work it will be important to 

include assessments of other general cognitive abilities, such as working memory and 

visual spatial perception, to understand if and to what extent these individual differences 

predict what an individual learns from a training experience.  

Prior knowledge was the best predictor of acquiring an expert-like knowledge 

structure after the training video. However, the number of bicycle parts that an individual 
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can remember and name only indicates their familiarity with a bicycle. We propose that 

two additional characteristics of participants’ knowledge base before training may help to 

explain why previous experience is such a good predictor of who will have an expert-like 

knowledge structure after training. In explaining the relation between prior knowledge 

and post-training knowledge structure we asserted that the prior knowledge is indicative 

of having a structure for this type of knowledge already in place. However, this is a 

conjecture and in need of empirical support. Second, our assessment of prior knowledge 

left a fundamental question unaddressed. Why does familiarity with a topic, such as 

bicycles, help an individual structure their knowledge of the problem? We believe that 

experience and familiarity with bicycles may be providing individuals with a better 

understanding of the physical and mechanical principles that govern the gear system and 

other mechanical systems. An understanding of these principles may facilitate learning 

and organizing the relations between the gear parts, and it may be this sort of 

understanding of general principles that experts use when troubleshooting a mechanical 

system. In future research it will be important to develop a better understanding of how 

the knowledge base, specifically the understanding of related general principles, is 

involved in learning and structuring information about a novel but related problem.  

Solving problems related to recent experience. In the test of hypotheses H3 and 

H4 we worked to build a better understanding of the characteristics of knowledge that are 

important in predicting who can and cannot solve a specific set of problems related to a 

recent experience. In H3 we examine the individual differences that predicted skill at 

identifying the causes of gear problems. In H4 we examine the individual differences that 
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predict skill at describing procedural solutions to the gear problems. In each of these 

hypotheses about these two aspects of problem-solving skill we used the same set of 

individual differences as predictors: similarity to the expert knowledge structure, extent 

of procedural knowledge, general reasoning, mechanical self-efficacy, and effort put into 

solving the problems. In H3 we predicted that having an expert-like knowledge structure 

would be the best predictor of an individual’s skill at identifying the causes of the gear 

problems. Whereas in H4 we predicted that the extent of an individual’s procedural 

knowledge would be the best predictor of skill at describing procedural solutions. In our 

fifth and final hypothesis, H5, we hoped to test and quantify the relative utility of general 

reasoning compared to overall bicycle gear knowledge for predicting an individual’s gear 

problem-solving skill.  

  The results from the test of H3 supported the view that having an expert-like 

knowledge structure is the best predictor of problem cause identification skill. General 

reasoning had a weak non-significant relation, p-value = .12, with this aspect of problem-

solving skill. It is important to note the difference between the relation of general 

reasoning in the results from H2 where general reasoning did predict an expert-like 

structure to an individual’s knowledge, and H3 where general reasoning did not predict 

this aspect of problem-solving skill. The relation between general reasoning and skill at 

identifying the causes of gear problems is at least partially mediated by the relation of 

general reasoning to the structure of knowledge. The results from H2 an H3 are strikingly 

similar to Cattell’s position that fluid intelligence is utilized in acquiring crystallized 
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intelligence, but once the crystallized skill is acquired fluid intelligence is not necessary 

for the successful application of crystallized intelligence (Cattell, 1943).  

 The results from the test of H4 did not support the perspective that procedural 

knowledge was the best predictor of skill at describing procedural solutions to the gear 

problems. Recall that procedural knowledge is knowledge of the sequential step that if 

carried out will solve a problem, whereas knowledge structure pertains to the way in 

which the content of knowledge is organized. Knowledge structure and procedural 

knowledge were almost equally strong predictors of skill at explaining a procedure to 

solve the gear problems. Additionally, unlike the H3 results, general reasoning was a 

significant, if much weaker, predictor of skill at describing procedural solutions. It is 

unclear if our hypothesis was wrong and the structure of knowledge is an important 

predictor of procedural problem-solving skill even when an individual has mastered a 

procedural sequence to solve a problem, or if aspects of the study design affected the 

utility of procedural knowledge for describing procedural solutions to the gear problems. 

For example, the brevity of the training video may have made it difficult to fully master a 

somewhat lengthy and complex procedure. In such a situation it is possible, and perhaps 

likely, that an individual may use a combination of their general reasoning and 

knowledge structure to deduce procedural solutions. However, this explanation is 

speculation. A clearer understanding of the relation between procedural knowledge and 

skill at describing procedures to fix problems may be obtained in a study design that 

ensures mastery of the procedural knowledge. The results from the test of H4 does 

support the idea that the extent of an individual’s procedural knowledge is important for 
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predicting their skill at describing procedural solutions beyond knowing how they have 

structured their knowledge.  

In this set of hypothesis, H3 and H4, we were interested in determining the 

predictive utility of several individual differences for predicting performance on two 

aspects of bicycle gear problem-solving skill. However, skill at solving problems related 

to previous experience and knowledge may be better quantified as the composite of 

problem cause identification skill and procedural solution skill. Therefore, we performed 

a similar analysis as was used to test H3 and H4 with overall problem-solving skill as the 

outcome. The results of this analysis are similar to the results of H3 and H4. In particular 

an expert-like knowledge structure was the strongest predictor of overall problem-solving 

skill in this domain, and general reasoning was a much weaker predictor of this skill. 

Much as in our interpretation of the H3 results, we argue that the results from this 

analysis support Cattell’s view of the relation between fluid and crystallized intelligence. 

Fluid intelligence aids in acquiring crystallized intelligence, but once a crystallized skill 

is acquired fluid intelligence is not required for the successful application of crystallized 

intelligence. Both expert-like knowledge structure and procedural knowledge were strong 

predictors of overall problem-solving skill. While general reasoning did help predict an 

individual’s problem-solving skill, either type of knowledge was a better predictor an 

individual’s skill in solving bicycle gear problems.  

The results from the test of or last hypothesis, H5, provided evidence that domain 

specific knowledge, the aggregate of knowledge structure and procedural knowledge, is 

more important than general reasoning for predicting an individual’s bicycle gear 
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problem-solving skill after a training experience. The predictive power of overall bicycle 

gear knowledge was nearly four times stronger than that of general reasoning for 

predicting bicycle gear problem-solving skill. This result further emphasizes the need to 

include domain-specific knowledge, the content and structure of this knowledge, in our 

theories and study of adult mental capacity and intelligence. Skill at solving problems is 

an indicator of adult mental capacity, and the content and structure of knowledge is a 

strong predictor of an individual’s skill at solving problems that are related to a recent 

experience. We are hopeful that the results of this study will generalize to other 

mechanical domains and to knowledge and experience related problem-solving skill more 

generally.  

In summary, the results of the tests of H3, H4, and H5 accounted for a substantial 

percentage (over 50%) of variation in skill at identifying the causes of the mechanical 

problems used in this study, skill at describing procedural solutions to these problems, 

and overall skill at solving these problems. These results provide strong evidence that 

knowledge, and to a lesser degree general reasoning, are important factors in one’s skill 

at solving problems where knowledge from previous experiences is pertinent. However, 

the proportion of unexplained outcome variation is evidence that mechanical problem-

solving skill, and potentially problem-solving skill in other domains, is a function of 

more than knowledge and reasoning. We had expected mechanical self-efficacy and 

effort put into solving the problems to further explain differences in problem-solving 

skill. However, when the effects of knowledge and general reasoning were statistically 
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controlled, effort and mechanical self-efficacy were not significantly related to problem-

solving skill.  

Future directions in problem-solving research. Future research into the 

individual differences that predict problems-solving skill in a particular domain can build 

from our results by exploring the importance of other general cognitive abilities and the 

role of abstract principles in organizing and structuring experiential information into 

knowledge. General reasoning has the clearest theoretical link to relational learning, and 

this is the type of learning that is argued to structure an individual’s knowledge about a 

problem or specific set of problems. Working memory is another general cognitive 

ability, and it is unclear to what extent an individual’s working memory is utilized in 

problem solving when they are knowledgeable about the problem’s content. When a 

problem is characterized by an extensive or complex knowledge structure with numerous 

concepts and interrelations, working memory may determine the number of relations an 

individual can consider when troubleshooting the problem.  

The structure of knowledge is an important predictor of skill at solving problems 

related to that knowledge, but it is unclear what is being used to structure this knowledge. 

We suggest that it may be the individual’s understanding of the related abstract or general 

principles. Abstract principles, such as the transfer of mechanical energy, describe a 

general category of causal relations that may determine the way an individual needs to 

organize their knowledge of a particular problem. An expert has extensive practice with 

the general principles of their field, and it may be this understanding that allows them to 

organize the information from a problem into beneficially structured knowledge. 
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However, both the role of working memory in problem solving when knowledge 

structure is accounted for, and the role of general principles in structuring knowledge are 

empirical questions and topics for future research.  

A Better Understanding of Problem Solving and Subsequently Intelligence 

 One outcome of a successful education is to acquire knowledge that will facilitate 

domain specific problem solving, such as troubleshooting malfunctioning mechanics. 

While it is clear that knowledge is important in solving problems, it is somewhat unclear 

what characteristics of knowledge make it better or worse for problem solving and how 

different characteristics of knowledge are acquired. Cattell’s theory (1943, 1963) that 

intelligence is part fluid intelligence, roughly described as the capacity to learn, and part 

crystallized intelligence, roughly described as knowledge, is one theory that has been 

used to explain differences in problem-solving behavior. The extended fluid and 

crystallized theory of cognitive abilities (Horn & Blankson, 2005) provides insight into 

one avenue for acquiring knowledge, the investment of fluid abilities, as well as better 

understanding of the fluid-like general cognitive abilities that are employed in problem 

solving. This theory explains the utility of knowledge for problem solving primarily by 

general content, such as general cultural knowledge or general mechanical knowledge. 

This broader more general view of crystallized intelligence has left a somewhat nebulous 

understanding of the role of crystallized intelligence in problem solving behavior. A 

primary impetus of this study was to expand the understanding of the utility of the 

crystallized aspects of intelligence by considering the characteristics of a specific set of 

knowledge, bicycle gear knowledge, and how these characteristics relate to skill at 
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solving related problems. Furthermore, we hoped to gain a better understanding of the 

role of general reasoning, a fluid ability, in predicting the characteristics of an 

individual’s knowledge related to a recent training experience. To accomplish these aims 

we utilized the results and methods of research into expert knowledge. Much of the 

research in this area is devoted to understanding and characterizing differences in a 

specific set of knowledge, such as fighter pilot combat maneuvers (Schvaneveldt et al, 

2002) or the spacecraft life support systems (Burkolter, et al., 2010).    

 Knowledge can be categorized as declarative, procedural, or structural (Jonassen, 

et al., 1993). Each type of knowledge is characteristically different from the other types 

and is useful for solving different types of problems. In the introduction of this study an 

example is provided where the content was the same, bicycles gears, but depending on 

the type of knowledge, different problems could be solved. Declarative knowledge is 

characterized as discrete facts, such as Santa Fe is the capitol of New Mexico or bicycle 

chains come in three widths. Declarative knowledge of bicycle parts is essential for the 

supply clerk who needs to purchase a replacement part. Procedural knowledge is 

characterized by a rigid sequence of steps to obtain a particular outcome or solve a 

specific problem. Bicycle mechanics often use procedural knowledge when performing 

routine tune-ups to ensure that every tune-up checks for and fixes the same problems. 

Structural knowledge is characterized by an understanding of the inter-concept relations 

that are maintained within a system. For bicycle mechanics the structure of their 

knowledge characterizes their understanding of how the bicycle parts are functionally 

interrelated to transfer pedal motion to wheel motion, handlebar motion to front wheel 
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directional changes, shift lever motion to derailleur motion, and so on. In this study we 

set out to explore these differences in knowledge as they relate to problem solving, and to 

see if Cattell’s perspective on the interrelation between fluid and crystallized aspects of 

intelligence holds true for the relation of general reasoning to these characteristics of 

knowledge.  

 The results from this study demonstrate that, yes, differences in knowledge about 

a recent experience, and specifically the structure of that knowledge, were predicted by 

general reasoning, and the characteristics this knowledge was a better predictor of 

problem-solving skill than general reasoning. The theoretical premises set forward by 

Cattell about the relation between fluid and crystallized intelligence did hold true for the 

structural and procedural characteristics of knowledge related to this video training 

experience. In the results from the test of H1 and H2, general reasoning predicted both 

the extent of procedural knowledge acquired from a recent experience and the way that 

individuals’ structured their understanding of the concept interrelations that were 

represented in that experience. Much as is predicted by Cattell’s investment theory, the 

investment of general reasoning to learn from this video-training experience had a 

positive association with these procedural and structural characteristics of knowledge 

about the recent experience. Cattell’s second premise within this theory of intelligence 

was that once in place crystallized intelligence could be successfully used for problem 

solving independent of fluid intelligence. The results from our test of H3 and H4 

demonstrated that, yes, the structural and procedural characteristics of knowledge about a 

recent experience were predictive of related problem-solving skill independent of general 
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reasoning. The procedural and structural characteristics of the experience-related 

knowledge were much better predictors of one’s skill at both identifying the causes of 

gear problems and describing procedures to fix the problems than general reasoning. The 

importance and independence of problem specific knowledge in predicting problem-

solving skill was most pronounced for skill at identifying the causes of the gear problems. 

Having an expert-like knowledge structure was a strong predictor of an individual’s skill 

at identifying the causes of gear problems, while general reasoning was not significantly 

related to this skill. We believe that taken together the results from this study support the 

proposition that a better understanding of problem solving, and subsequently intelligence, 

can be obtained by joining the research traditions examining cognitive abilities with those 

of expertise-knowledge research.  

 The idea that intelligence is part fluid intelligence, roughly described as the 

capacity to learn, and part crystallized intelligence, roughly described as knowledge, 

marked an important change in understanding intelligence and subsequently problem 

solving behavior. In the 72 years since Cattell put forward this proposition we have 

moved from a rough understanding of fluid intelligence, to a more precise and well 

supported understanding of this aspect of intelligence. We can now identify a diverse set 

of general cognitive abilities (e.g., working memory, general reasoning, processing 

speed) that provides a more detailed understanding of the fluid aspects of intelligence and 

differences in the capacity to comprehend and manipulate experiential information. 

Similar advancements in the understanding of the crystallized aspect of intelligence have 

not been as pronounced in this research tradition. However, the expertise knowledge 
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research tradition has made large steps forward in understanding the nature and 

characteristics of knowledge as they relate to expertise and solving a spectrum of 

domains-specific problems. The understanding of the more crystallized aspects of 

intelligence no longer needs to remain at the nebulous general cultural or general 

mechanical knowledge level. The results from this study support the position that both 

procedural and structural aspects of knowledge advance our understanding of problem 

solving behavior and the crystallized aspects of intelligence.  

Limitations  

As with most studies this study has its limitations. We began this study to gain a 

better understanding of how people solve problems that are related to their previous 

experience and knowledge, such as solving bike gear problems after watching a training 

video. A central part of this study was to assess differences in how knowledge about this 

recent experience, learning to adjust bicycle gears, was structured and the relation of 

structural differences to skill at solving bicycle gear problems. Furthermore, we sought to 

gain a better understanding of how general reasoning is related to different characteristics 

of this experience-related knowledge and skill at solving bicycle gear problems. We 

argue that to understand problem-solving skill it is necessary to examine how knowledge 

is acquired from an experience, the structural and procedural characteristics of this 

knowledge, and how these characteristics of knowledge are related to solving related 

problems.  

To test our hypotheses about acquiring knowledge from an experience and later 

solving problems related to this experience we used an observational between-subjects 
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design. We assessed several individual differences among our participants, including 

general reasoning and knowledge of bicycle parts, and then asked participants to learn the 

procedure for adjusting bicycle gears by watching an instructional video. The extent of 

their knowledge of the gear adjustment procedure and how they structured their 

knowledge of the gear system’s parts was assessed after the video and before participants 

tried to solve several problems with a bicycle’s gears. This study design has several 

limitations that are important to consider when interpreting the results. In the following 

sections we will discuss several of the limitation in the learning experience, the 

assessments of experience-related knowledge, and the assessments of problem-solving 

skill as they relate to our results.  

The training experience was short, not interactive, and minimal reason was given 

for why an individual may want to master the training material. This learning experience 

may place limits on acquiring knowledge, restricting the extent that expert-like 

knowledge structures could be acquired. For instance, only 16 participants acquired a 

knowledge structure that was highly similar, C > .50, to the professional mechanics’ 

structure. It is unclear how this range restriction may limit our understanding of the 

higher end of structural similarity in relation to problem solving. However, this training 

experience allowed us to assess how individual differences in effort to learn from the 

experience were related to differences in the acquired knowledge. This training 

experiences is also the type of experience where an individual may rely more heavily on 

general cognitive abilities, such as general reasoning, to learn from an experience.  
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Limitations in the assessments of knowledge. Acquiring knowledge from an 

experience builds from the previous experiences and knowledge of an individual 

(Bodner, 1986; Piaget, 1972). It is, therefore, important to control for previous 

knowledge and experiences that may help in acquiring knowledge from a new 

experience. The control for previous knowledge in this study, the number of bicycle parts 

an individual could name, was an assessment of knowledge content and does not control 

for how this knowledge was structured. Neither did we assess the extent of differences in 

other mechanical experiences or knowledge that may have aided in organizing the new 

information about a bicycle’s gears. Experience with other mechanical systems, such as 

cars, may provide a better understanding of the general mechanical principles, such as 

transfer of energy, that underlie the relations between the parts of the bicycle gear system. 

Having a good understands of the general principles that govern the causal relations of a 

system may be beneficial for organizing experiential information into an expert-like 

knowledge structure. Assessing these other differences in an individual’s knowledge base 

before a learning experience may help to explain differences in the knowledge acquired 

from the experience. 

A key purpose of this study was to explore the relation between the way that 

knowledge is structured and skill at solving related problems. To assess the way that 

knowledge was structured, participants’ relatedness ratings of the nine gear system parts, 

36 ratings per participant, where analyzed with the PF-Net algorithm. Analyzing the 

relatedness ratings with the PF-Net algorithm provided three characteristics of the 

knowledge structure: how dense the structure was, the level of coherence in the structure, 
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and the similarity to the structure of experienced bicycle mechanics. Our primary interest 

was in the relation between structural similarity and problem solving. The measure of 

structural similarity performed much as we expected given the minimal training received 

by participants. The average participant had a structure to their knowledge that was 

moderately similar to the structure of the mechanics’ knowledge, and increases in 

similarity were associated with increases in problem-solving skill. However, the 

assessment of structural coherence did raise concerns that led us to exclude it from the 

test of our hypotheses.  

The assessment of structural coherence demonstrated an unexpectedly wide range 

that extended below zero. Coherence assesses the consistency of a knowledge structure 

on a correlation scale. High coherence, a score of 1, indicates the individual was 

consistent in the way he or she rated concepts that were strongly related. The coherence 

assessment is based on the assumption that if two concepts are very related they should 

have a similar pattern of relations to the other concepts. Almost half of the participants 

had coherence scores below .20, which could be explained by the relatively minimal 

training period. The real concern with this assessment of the knowledge structure was 

that about 20% of the participants had coherence scores below zero. For these 

participants, an increase in the strength of an inter-concept relation rating was associated 

with a decrease in the similarity of the concepts’ patterns of relations to other concepts. It 

is unclear if the number of participants with sub-zero coherence in their knowledge 

structure was due to the brevity of the training period, lack of effort when completing the 

relatedness ratings, or another aspect of the knowledge structure assessment procedure.  
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One potential improvement to the procedure for eliciting structural knowledge is 

the Target approach (Tossell, Schvaneveldt, & Branaghan, 2010). Rather than a list of 

pairwise ratings, the individual uses a graphical interface that allows them to move 

concepts closer or farther from a bull’s-eye concept depending on how related they 

believe the two to be. An individual organizes the concepts within the target’s concentric 

rings, and each ring represents a different degree of relatedness. A target is presented for 

each concept featuring it as the bull’s-eye concept. The relatedness ratings are collected 

for that concept then the next target is presented. This method has the advantage of 

allowing an individual to see how they have related all the concepts to the bull’s-eye 

concept. Tossell and colleges (2010) found that the Target method was preferred by 

experts and was a more efficient method for collecting pairwise ratings. There were also 

some indications that the Target method provided data of a higher quality and was a more 

engaging task. A graphical representation of an individual’s relatedness ratings like this 

may aid in eliciting a knowledge structure that is a more accurate representation of the 

individual’s true structure.  

Limitation in assessing problem-solving skill. It is our hope that the results 

from our test of H3, H4, and H5 will generalize to a wide scope of experience-related 

problems. However, differences in problem content, such as legal versus mechanical, 

may influence the characteristics of knowledge that are most important to problem-

solving skill in that domain. We predict individuals with an expert-like structure to their 

knowledge in any particular domain will also display a higher proficiency in solving 

problems within that domain. However, this study focused on a specific mechanical 
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domain, bicycle gears, and did not test the broader prediction that the way knowledge is 

structured predicts its utility in solving related problems, regardless of substantive 

domain differences. To gain a better understanding of the relation of knowledge to 

solving experience-related problems it is necessary to extend this study design to consider 

other substantive areas. It will also be necessary to build a better understanding of the 

type of information that experts use to organize experiential information as a knowledge 

structure and if this information differs depending on the substantive domain. 

The problems-solving skills assessed in this study were specific to the types of 

problems confronted by bicycle mechanics in the performance of their professional 

responsibilities. However, our participants simulated solving mechanical problems by 

describing what they thought the cause was and what steps should be carried out to fix 

the problem. These individuals did not actually participate in solving these problems on a 

bicycle. This makes the bicycle gear problems more abstract, and restricts the way an 

individual can learn about the problem. There was not a physical bike to examine, 

reference, or learn from. The increase in the abstract nature of the problems may change 

the way individuals used their general reasoning and knowledge when solving these 

problems. It is also, however, possible that the skill to solve these abstract types of 

problems is what underlies the flexibility that expert mechanics demonstrate in the 

problems they can solve.  

Conclusions 

The results from this study provide a better understanding of how problems are 

solved when they are related to prior experience and knowledge. When an individual is 
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solving a novel problem, such as those seen on IQ test, the knowledge acquired from 

previous experiences is most often of minimal aid in identifying the solutions. The IQ test 

problems are purposefully designed to assess differences in specific cognitive abilities. 

The research tradition that has worked to identify and describe human cognitive abilities 

has in large relied on IQ test problems for their evidence about the nature and role of 

cognitive abilities in problem solving. It has been argued that the primary piece missing 

from our understanding of adult intelligence, and subsequently problem solving, is 

knowledge (Ackerman, 2000; Horn & Blankson, 2005; Baltes, Dittmann-Kohll, & Dixon, 

1984). In this study we worked to expand the understanding of the role of knowledge in 

problem solving, and to introduce the perspective that the crystallized aspects of 

intelligence are at least in part determined by the structure of an individual’s knowledge 

in a domain. We provided evidence in support of this position by observing individuals as 

they acquire knowledge from an experience and then work to solve problems related to 

that experience.   

 Was general reasoning predictive of knowledge acquired from the training video, 

and did it have a stronger relation to knowledge structure than procedural knowledge? 

Yes, while general reasoning was not the strongest predictor in the results from the test of 

H1 and H2, it did predict of the extent of procedural knowledge acquired and the way 

individuals structured their knowledge of bicycle gears. Furthermore, general reasoning 

was estimated to have a stronger association with acquiring a knowledge structure similar 

to experienced mechanics than with the extent of procedural knowledge acquired. This 

supports the view that the utility of general reasoning in solving novel problems is in 
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organizing experiential information into knowledge that is structured like more 

experience individuals. That is to say, general reasoning describes an individual’s ability 

to organize experiential information into knowledge that is structured by the causal 

relations that are maintained in the problem and environment.  

  Was the structure of knowledge a better predictor of problem-solving skill than 

general reasoning? Yes, when the effects of knowledge structure and procedural 

knowledge were accounted for, general reasoning did not predict differences in skill at 

identifying the cause of the gear problems. In identifying the cause of the gear problems, 

the structure of an individual’s knowledge was a stronger predictor of identifying the 

correct cause than procedural knowledge. And the structure of knowledge was the 

strongest predictor of overall gear problem-solving skill. The results of our test of H3 and 

H4 provide evidence that the way knowledge is structured is an important characteristic 

of knowledge in determining its utility for solving related problems. What is learned from 

an experience is more than knowledge content. Knowledge content is organized, and the 

nature of this structure is important for understanding differences in an individual’s 

proficiency at solving the variety of experience-related problems that they confront while 

performing their personal and professional responsibilities.  

The theory of fluid and crystallized intelligence marked a turning point in the 

understanding of intelligence and problem solving. With this theory Cattell (1943) 

asserted that knowledge was an important and unique determinant in one’s capacity to 

resolve the problems they confront and to deal effectively with the environment. 

However, the vigor that has gone into exploring the fluid aspects of intelligence is less 
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pronounced in the exploration of the crystallized-expertise aspects of intelligence. “…Gc 

[the store of knowledge] and TSR [long-term storage and retrieval] measures tap only 

surface-like indictors of expertise abilities. They do not indicate the depth of knowledge, 

the ability to deal with many aspects of a problem, the reasoning, and the speed in 

considering possibilities that characterize high-level expertise performances. Gc and TSR 

do not measure the feats of reasoning and memory that characterize the most sublime 

expressions of adult intelligence” (Horn & Blankson, 2005, p. 93). To understand how 

people confront and resolve their daily problems, and to explain how people deal 

effectively with their environment we must integrate the two research traditions of 

intelligence and expertise. It is our hope that the results from this study can be used to 

further motivate engagement in a dialog that integrates expertise and intelligence.  
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Table 3 

Knowledge structure density and coherence correlations 

 KS, density KS, coherence 

Effort, learning -.17 .16 

Effort, solving  .16 

Effort aggregate -.18 .18 

Reasoning -.27** .18 

Prior knowledge -.18 .21* 

MSE  .25* 

Procedural, MC -.16 .24* 

Procedural, rank  .20* 

Procedural aggregate -.17 .27** 

KS, density 1.00 -.20 

KS, coherence -.20 1.00 

KS similarity -.18 .29** 

KS, definitions -.31** .36† 

ICR aggregate -.28** .36† 

Knowledge aggregate -.23* .33** 

Problem, cause -.23* .28** 

Problem, solution -.25* .29** 

Problem aggregate -.25* .30† 

Note. MSE = mechanical self-efficacy, KS = knowledge 
structure. Correlations with a p-value greater then .05 are 
not displayed. * = p-value < .01, ** = p-value < .001, † = 
p-value < .0001. The methods section details the specific 
composition of the aggregate variables. 
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Table 4 

Learning outcome regression results 

R2 (df) Outcome  β0 βR βC βLE βMSE 

.33 (167) Procedural knowledge 0 .20** .24** .32† .12 

.37 (160) Structure of knowledge 0 .25*** .34† .27† .08 

.43 (160) Knowledge aggregate 0 .24*** .33† .34† .12 

Note. β0 = intercept, βR = general reasoning, βC = prior component 
knowledge, βLE = learning effort, βMSE = mechanical self-efficacy. † = p-
value < .0001, *** = p-value < .001, ** = p-value < .01, * = p-value < .05. 
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Table 5 

Problem solving outcome regression results 

R2 (df) Outcome β0 ΒSK βPK βR βMSE βSE 

.51 (159) Identifying cause  0 .44† .22** .09 .09 .05 

.52 (159) Procedural solution  0 .36† .34† .18** -.03 .06 

.55 (159) Problem solve aggregate 0 .42† .29† .14* .03 .06 

Note. β0 = intercept, βSK = the structure of knowledge, βPK = procedural 
knowledge, βR = general reasoning, βMSE = mechanical self-efficacy, βSE = 
problem-solving effort. † = p-value < .0001, *** = p-value < .001, ** = p-value < 
.01, * = p-value < .05. 
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Bicycle gear overview and part identification (Video time point, 2:15)  

Closer view and identification of the gear parts  (Video time point, 3:25)

Figure 3. Training video screenshots. This figure illustrates the visual techniques 
that were used to highlight the parts of the bicycle’s gear system that are being 
described at that time. Also depicted is the screen which out lines the gear 
adjustment procedure.

Continued
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Closer view and identification of the derailleur parts  (Video time point, 3:40)

Introduction screen to the gear adjustment procedure  (Video time point, 5:30)

Figure 3 continued. Training video screenshots. This figure illustrates the visual 
techniques that were used to highlight the parts of the bicycle’s gear system that are 
being described at that time. Also depicted is the screen which out lines the gear 
adjustment procedure.

Continued
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Demographic Information

Informed Consent

General Reasoning Test

Knowledge of Bicycle Parts Test

Mechanical Self-Efficacy

Video Watching Instructions

12-Minute Training Video

Define Bicycle Gear Parts

Gear Adjustment Procedure Test, Multiple Choice

Gear Adjustment Procedure Test, Rank Order

Relatedness Ratings of Gear Parts

Bicycle Gear Problem-Solving Skill Test

Effort and English Proficiency

Debriefed and Thanked

Figure 4. Study procedure. This figure illustrates the sequential procedure used 
during data collection, starting at Informed Consent and ending at Debriefing.
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Appendix A 
R programming script for the computation of knowledge structural coherence 

 
Note. The following script provides the same measure of structural coherence as that 
provided by the Pathfinder Network Analysis software that is freely available at 
http://interlinkinc.net.  
 
To use the below script the data file needs to be organized in the following manner. Row 
1 column 1 contains “A” and row 1 column 2 contains “B”. The rest of row 1 holds the 
participant identification number(s). The first two columns of the data frame specify the 
pairwise relations. For example, row 2 column 1 should contain a “1” and row 2 column 
2 a “2”; this identifies row 2 as holding the proximity data for the first and second 
concept. There should be as many rows as there are unique pairwise relations between 
concepts, plus the header row with participation identification numbers. Columns 3 to n, 
where n is the number of participants, should contain the proximity rating data from the 
study participants.  
 
Setwd ("~/Desktop/") 
sk <- read.csv ("Proximity_ratings_data.csv") 
attach (sk) 
library (psych) 
 
makedf <- function (colnames,nrows=1)  

{ 
 tmp <- as.data.frame (matrix (NA,nrows,length (colnames))) 
 names (tmp) <- colnames 
 return (tmp) 
} 

 
position <- c (1: length (sk$A)   
sid <- names (sk [3:length (names(sk))]) 
 
results <- makedf (c ("NodeA", "NodeB", "Proximity", "Indirect.P", "Indirect.Pz"), 
length (position)) 

rownumber <- 1 
 
coh.res <- makedf (c ("SID", "Coherence", "Coherence.z")) 
coh.res.number <- 1 
 
for (y in sid) 
 { 
 for (x in position) 
  { 
   indirect.p <- cor (sk [(A==A[x] | B==A[x]) & (B!=B[x] & A!=B[x]), y], 
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    sk[(A==B[x] | B==B[x]) & (B!=A[x] & A!=A[x]), y]) 
   indirect.pz <- fisherz (indirect.p) 
   direct.p <- sk[x, y] 
   node.a <- A[x] 
   node.b <- B[x] 
   results [rownumber,] <- c (node.a, node.b, direct.p, indirect.p, indirect.pz) 
    rownumber <- rownumber + 1 
  } 
 coherence <- cor (results$Proximity, results$Indirect.P, use = "pairwise.complete.obs") 
 coherence.z <- cor (results$Proximity, results$Indirect.Pz, use = 
"pairwise.complete.obs") 

 subject <- y 
 coh.res[coh.res.number,] <- c (subject, round (coherence, 3), round (coherence.z, 3)) 
 coh.res.number <- coh.res.number + 1 
 results <- makedf (c ("NodeA", "NodeB", "Proximity", "Indirect.P", "Indirect.Pz"), 
length(position)) 

 } 
 
write.csv (coh.res, file = "Knowledge Structure Coherence.csv") 
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Appendix B 

International Cognitive Ability Resource (ICAR-16; Condon & Revelle, 2014) 

 

The ICAR-16 can be acquired at http://icar-project.com.  
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Appendix C 

Knowledge of Bicycle Parts 

Instructions: Please consider the composition or make-up of a bicycle. How many differ 

parts of a bicycle can you identify? 
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Appendix D 

Mechanical Self-Efficacy (Grand, 2008) 

The mechanical self-efficacy scale used in this study can be found in Grand (2008) 
Appendix C, p. 127.  
 

Grand, J. A. (2008). Changing gears: Modeling gender differences in performance on 
tests of mechanical comprehension (Master’s Thesis). Available from ProQuest 
Dissertations and Theses database. (UMI No. 1463014). 
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Appendix E 

Procedural Knowledge Multiple-Choice 

Instructions. Please select the answer for each question that you think is the most correct.  
 
1. The gears on Nate’s bike are in desperate need of adjustment. Nate is going to adjust 

his rear derailleur. What is the first thing he should do? 
a. Shift to the smallest rear sprocket. 
b. Adjust the low limit screw 
c. Detach the cable from the derailleur 
d. Adjust cable tension with the barrel adjuster 

 
2. Sarah just finished adjusting the cable tension so that he has quick and consistent 

shifts between sprockets 1, 2, and 3. What should she do next? 
a. Check the high limit screw adjustment 
b. Make minor cable tension adjustments across the sprocket cluster 
c. Adjust the low limit screw 
d. Check the cable for rust and corrosion 

 
3. Nate just attached the cable to the derailleur. What is the next step he should do? 

a. Check the shifting between sprockets 1, 2, and 3 
b. Check the high limit screw adjustment 
c. Shift into the largest sprocket 
d. Adjust the low limit screw to align the pulley with the largest sprocket 

 
4. Sarah just finished making minor cable tension adjustments across the entire sprocket 

cluster. What is the next step she should do? 
a. She is done 
b. Check the high and low limit screw adjustments 
c. Inspect derailleur pulley alignment 
d. Shift into the smallest sprocket 

 
5. Nate just detached the cable from the derailleur. What is the next step he should do? 

a. Shift into the smallest sprocket 
b. Adjust the low limit screw 
c. Check the shifting between sprockets 1, 2, and 3 
d. Make adjustments to the high limit screw 

 
6. Before detaching the cable from the derailleur what should Sarah do? 

a. Move the shift lever so that the chain is on the smallest sprocket 
b. Check the limit screws 
c. Make large adjustments in cable tension 
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d. Visually check pulley alignment with large and small sprocket 
 
7. What does Nate need to do immediately before he adjusts the low limit screw? 

a. Pull the cable to make sure the derailleur is fully extended 
b. Make cable tension adjustments for the 3 largest sprockets 
c. Detach the cable form the derailleur 
d. Check the chain for bent links 

 
8. Sarah is checking the shifting between sprockets 1, 2, and 3. What did she just finish 

doing? 
a. Attaching the cable to the derailleur 
b. Adjusting the low limit screw 
c. Checking the adjustment of the high limit screw 
d. Adjusting the shifting for the largest 3 sprockets 
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Appendix F 

Procedural Knowledge Rank Ordering 

Note. When this question was displayed on the computer screen the items were presented 
in a random order. 

Instructions. In what order should the following steps be performed to correctly set up a 
bicycle's rear derailleur?  
________ Shift into the smallest sprocket 
________ Detach the cable from the derailleur 
________ Adjust the high limit screw 
________ Attach the cable to the derailleur 
________ Check for smooth shifting across the entire sprocket cluster 
________ Check and adjust cable tension between sprockets 1, 2, and 3 
________ Adjust the low limit screw 
________ Check and adjust cable tension for the larger sprockets 
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Appendix G 

Definition Knowledge 

Note. Participants recorded their part descriptions on a computer. The screen displayed 
the name of the component to be described followed by a text box to type in.  

You have just finished a short tutorial about how to adjust the rear derailleur of a bicycle. 
We would like to know if you picked up on what some of the key components are in this 
system.  

In the following section please describe  

• what each component is and��� 
• what its role is in allowing a cyclist to change gears.  

Derailleur  

________________________________________________________________________ 

________________________________________________________________________ 

 

Shift lever 

________________________________________________________________________ 

________________________________________________________________________ 

 

Cable 

________________________________________________________________________ 

________________________________________________________________________ 

 

Barrel adjuster 

________________________________________________________________________ 

________________________________________________________________________ 
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Cable-fixing bolt 

________________________________________________________________________ 

________________________________________________________________________ 

 

Limit screw 

________________________________________________________________________ 

________________________________________________________________________ 

 

Pulleys 

________________________________________________________________________ 

________________________________________________________________________ 

 

Chain 

________________________________________________________________________ 

________________________________________________________________________ 

 

Sprocket cluster 

________________________________________________________________________ 

________________________________________________________________________ 
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Appendix H 

Relatedness Ratings  

Note. Participants completed 36 ratings. The ratings were between the 36 unique pairs in 
the follow set of bicycle gear components: Barrel adjuster, crankset, derailleur cable, 
derailleur, limit screw, chain, shift lever, sprocket cluster, and cable-fixing bolt. The 
contents of Appendix H illustrates the item set up, but does not contain all 36 unique 
pair-wise rating items. The 36 items were randomized before being presented on the 
participant’s computer screen.  
 
Instructions. Please indicate how related you think the following bicycle components are 
to each other in the functioning of the bicycles gears. 
 
Derailleur … Barrel adjuster 

 
 
Derailleur … Crankset 

 
 
Derailleur … Cable 

 
 
Derailleur … Cable-fixing bolt 

 
 
Derailleur … Limit screw 

 
 
  

1 
Unrelated 

2 
Moderately 
related 

3 
Largely 
related 

4 
Extremely 
related 

5 
Synonym 

1 
Unrelated 

2 
Moderately 
related 

3 
Largely 
related 

4 
Extremely 
related 

5 
Synonym 

1 
Unrelated 

2 
Moderately 
related 

3 
Largely 
related 

4 
Extremely 
related 

5 
Synonym 

1 
Unrelated 

2 
Moderately 
related 

3 
Largely 
related 

4 
Extremely 
related 

5 
Synonym 

1 
Unrelated 

2 
Moderately 
related 

3 
Largely 
related 

4 
Extremely 
related 

5 
Synonym 
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Appendix I 

Bicycle Gear Problem Solving 

Note. The items on this measure were presented on the computer screen in a random 
order. An open text box was provided after each part A and part B for participants to type 
their response. 

Instructions: In the following section common problems with the bicycle's derailleur and 
rear drive train are described. 

• Please consider the problem 
• Propose an explanation for the cause of the problem 
• Describe what should be done to fix the problem 

1. The chain jumps from sprocket to sprocket during riding. 
A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
2. When shifting into the largest rear sprocket (i.e. lowest and easiest gear) the chain 
comes off the sprocket cluster into the spokes. 

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
3. When shifting into the smallest rear sprocket (i.e. highest and hardest gear) the chain 
comes off of the sprocket cluster. 

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
4. The shift lever is in the extreme high position and the chain is on the smallest sprocket. 
When you move the shift lever one click the chain does not move from the smallest 
sprocket to a larger sprocket (i.e., the gears do not change). 

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
5. The shift lever is in the extreme low position and the chain is on the largest sprocket. 
When you move the shift lever one click the chain does not move to a smaller sprocket 
(i.e., the gears do not change). 

A. What is the most likely cause of the above problem? 
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B. What should be done to fix the above problem? 

 
6. Shifting from smaller sprockets to larger sprockets is slow, or the chain does not settle 
on the larger sprocket after the shift. 

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
7. Shifting from larger sprockets to smaller sprockets is slow, or the chain does not settle 
on the smaller sprocket after the shift. 

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
8. You can shift quickly and smoothly to all of the sprockets except for the largest 
sprocket. When you try to shift to the largest sprocket the chain will not move from the 
second largest sprocket to the largest sprocket.  

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
9. You can shift quickly and smoothly to all of the sprockets except for the smallest 
sprocket. When you try to shift to the smallest sprocket the chain will not move from the 
second smallest sprocket to the smallest sprocket.  

A. What is the most likely cause of the above problem? 
 
B. What should be done to fix the above problem? 

 
 

 




