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The Net Effect of Functional Traits on Fitness

Daniel C. Laughlin,’*® Jennifer R. Gremer,? Peter B. Adler,®> Rachel M. Mitchell,* and Margaret M. Moore®

Generalizing the effect of traits on performance across species may be achievable
if traits explain variation in population fithess. However, testing relationships
between traits and vital rates to infer effects on fithess can be misleading.
Demographic trade-offs can generate variation in vital rates that yield equal
population growth rates, thereby obscuring the net effect of traits on fitness.
To address this problem, we describe a diversity of approaches to quantify intrinsic
growth rates of plant populations, including experiments beyond range boundaries,
density-dependent population models built from long-term demographic data,
theoretical models, and methods that leverage widely available monitoring data.
Linking plant traits directly to intrinsic growth rates is a fundamental step toward
rigorous predictions of population dynamics and community assembly.

Demographic Trade-offs and Population Fitness

The alluring prospect that functional traits (see Glossary) can explain variation in species perfor-
mance has invigorated comparative functional ecology, yet identifying the traits that determine
fitness remains an important empirical challenge [1-6]. Inspired by classic evolutionary theory
that linked morphology to performance and fitness [7], ecologists have recently intensified their
search for relationships between functional traits and vital rates, but have avoided the more
challenging links to fitness [8-15]. Analyzing components of fitness in isolation is an important
step, but testing relationships between traits and vital rates to infer effects on fitness can be
misleading without considering demographic trade-offs [16-18].

We focus our discussion at the population level and define population fitness (A) as the
growth rate of a population [19,20]. This differs from the evolutionary focus on individual-
level fitness [7,21-24], but is analogous since we aim to compare growth rates across popula-
tions as one would compare growth rates across genotypes or phenotypes in evolutionary
biology. The comparison of traits and fitness across species, not within species, is explicitly
directed at ecological rather than evolutionary scales and processes. It has been argued that
population growth rates are not the ideal performance currency to test trait-based theory,
partly because they are difficult to measure [25]. However, we focus on population growth
rates for three reasons: (i) we aim to understand the process of environmental filtering in
community assembly where it is populations that persist or go extinct in a given environment
[26,27]; (ii) recent theory suggests that traits have stronger impacts at the population level
because individual lifetime reproductive success is governed by random variation, that is,
‘luck’ [28]; and (iii) measuring lifetime reproductive success of individuals is difficult or impossible
for most long-lived species.

Functional ecologists can advance community ecology by embracing population demography
[2,4,29]. However, failure to account for trade-offs among vital rates has left a significant gap in
our understanding of the adaptive value of functional traits (Figure 1). Filling this knowledge gap
is a fundamental step toward understanding the fundamental niche of species, and forecasting
species and community responses to a rapidly changing world [1,30,31]. Our discussion draws
primarily from examples of plant demography, but the core principles apply more broadly given
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Relationships between traits and vital rates can be misleading
proxies for estimating the effect of traits onfitness

(A) There are well-known
demographic trade-offs
among vital rates across and
within species (represented
as different symbols).

Growth

Reproduction

Survival

(C) Individual growth rates
can be poor proxies for
fitness because, for example,
the growth—survival trade-off
can generate variation in
growth rates that yield equal
fitness. In other words, vital
rates can offset each other's
effect on fitness.
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(B) The relative importance of
Growth, Survival, and
Reproduction to fitness (1)
differs among species and within
species across environments.
Thus, individual vital rates alone
cannot predict fitness.

< Reproduction

(D) Knowledge gap: Linking
traits to individual vital rates
ignores demographic trade-
offs. A trait may positively
affect growth and negatively
affect survival, thereby
obscuring the net effect on

fitness.
Therefore,

the net effect of
traits on fitness
should be
assessed directly.
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Glossary

Community assembly: process by
which species arrive, establish, persist,
increase, or decrease in abundance over
time, and go extinct within and across
environmental gradients.
Components of fitness: measures of
individual performance including survival,
growth, and reproduction; also referred to
as vital rates. The integration of fitness
components yields an estimate of total
fitness and integration of vital rates yields
an estimate of population growth rate.
Demographic trade-offs: negative
correlations between two or more vital
rates.

Dynamic adaptive landscape:
ecological framework that quantifies
how the effects of traits on population
fitness within and across species
changes across environmental
gradients. This framework extends
evolutionary models of fitness
landscapes where fitness is a function of
traits in a fixed environment.
Evolutionarily stable strategies:
strategies in a given environment that
cannot be invaded by an alternative
strategies.

Fitness: growth rate of a population,
genotype, or phenotype. We focus on
population growth rate as a measure of
the fitness of a population.

Fitness landscape: conceptual or
mathematical representation of
individual or population-level fitness as a
function of one or more phenotypic traits
or genes.

Functional traits: morphological,
physiological, or phenological attributes
of species that impact fitness indirectly
through their effects on individual
survival, growth, and reproduction.
Fundamental niche: the
environmental conditions and availability
of resources where a species can
maintain a viable population. In the
presence of competitors, the species is
further restricted to its realized niche.
Individual growth rate: rate of
expansion or contraction in size of an
individual organism over time.

Intrinsic growth rate: population
growth rate at low density, in the
absence of either intraspecific density-
dependent effects or interspecific
competition.

Invasion growth rates: population
growth rate of the focal species at low
density when growing with competing
species that are at their stochastic
equilibrium abundances.


Image of Figure 1

that birth, growth, and death are affected by phenotypic variation and environmental contexts
across the Tree of Life. In this review, we (j) illustrate how individual vital rates can be misleading
proxies for fitness, (i) describe a diversity of approaches to quantify intrinsic growth rates as a
measure of population fitness, and (i) explain how to empirically identify the functional traits and
environmental conditions that drive variation in population fitness.

Vital Rates Can Be Misleading Proxies for Fitness

Individual vital rates can be misleading proxies for fitness without considering demographic
trade-offs. For example, species with fast individual growth rates may exhibit low rates of
survival. If the growth—survival trade-off can generate covariation in individual growth rates
and survival rates that yield equal fitness, all else being equal (e.g., equal reproduction
rates), then individual growth rates tell us little about fitness [32,33] (Figure 1). Similarly, populations
with high survival and low reproduction could have the same fithess as populations with low
survival and high reproduction [17,34]. Consequently, if a trait is negatively related to survival,
then it may be positively related to individual growth or reproduction [21,35-37]. For example,
wood density negatively affects individual growth rates but positively affects survival rates because
faster tree diameter growth can be achieved by constructing low density wood, but this comes with
a higher risk of damage and death from multiple causes [11,15,38]. Consequently, the net effect of
traits on fithess is obscured when one vital rate is analyzed in isolation [21]. This knowledge gap can
only be resolved by quantifying the net effect of traits on fitness (Figure 1).

Fitness is challenging to measure. Annual plant communities have long been used as model
systems for studying fitness in relation to traits because lifetime fithess and multiple generations
are relatively easy to observe in annual plants. Physiological differences among annual species
determine their fitness in response to interannual climatic variation [39-42], but concrete evidence
that functional traits predict fithess differences among long-lived species is still lacking [24,31]. Itis
far more challenging to quantify fitness for long-lived species, but the effort is justified given that
they are the dominant life form on the planet.

There are several challenges posed by long-lived species. Fitness in long-lived species is driven
by rates of individual growth, survival, and reproduction throughout the entire life cycle. These
vital rates do not have equal effects on fitness and the relative importance of each may vary
across environmental conditions [43-45]. Long-lived species may rely on rare recruitment events
[46] and capturing these events can be challenging. However, fitness is often more sensitive to
variation in survival and growth than in fecundity in many long-lived species [47-49]. Individuals
of long-lived species may experience strong variation in conditions over their lifetime, whereas
annual species deal with environmental variation across generations. Trait effects on vital rates
may also change with size [50] or ontogeny [2,11,51,52]. Vital rate sensitivities quantify the
contribution of each vital rate to population growth rate [16,53] and can indicate the components
of fitness on which natural selection can act (or has acted) the strongest [49,54]. Some studies
have focused on linking traits to the most important vital rate. For example, relating traits to
survival rates for long-lived perennial plants [12] may be close to estimating effects on fitness
because survival is the most important vital rate for perennials [8,17]. But the hard truth of the
matter is that we do not know unless fitness is measured directly (Figure 1).

Figure 1. Relationships Between Traits and Vital Rates Can Be Misleading Proxies for Estimating the Effect of
Traits on Fitness Without Considering Demographic Trade-offs [11,16,17,21,32,43]. Different colored symbols
represent species that exemplify different life histories: red triangles typify species such as annual plants that rely on high
reproduction rates, blue circles typify species such as short-lived perennials that rely on rapid individual growth rates, and
purple squares typify long-lived perennials that rely on high survival rates.

Cell

REVIEWS

Population fitness (A): finite rate of
increase of the population. This can be
directly quantified for a single time step
as Ni.1/N;, where ‘N’ is number of
individuals and ‘t’ is time. It can also be
estimated using population models as
the average or asymptotic population
growth rate by computing the dominant
eigenvalue of the transition matrix. In this
paper, we emphasize the importance of
quantifying intrinsic growth rates to
standardize the measure of fitness at low
densities to control for the confounding
effects of competition.

Sensitivities: partial derivatives that
quantify how vital rates affect population
growth rate. Sensitivities can be
relativized, which are called elasticities,
to reflect proportional effects on fitness.
Vital rates: rates of birth, death, and
growth of individuals, also called
demographic rates and components of
fitness.
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A further well-known complication is that any effect of traits on fitness will depend on the environ-
mental context because variation in traits is underpinned by ecological trade-offs [21,23,29,55,56].
As a result, relationships between traits and fithess change along environmental gradients
[13,14,22,39,41,57,58]. Ignoring variation in trait-fitness relationships across environments has
hindered progress toward using traits to make general predictions about how species respond
to environmental change.

Quantify Intrinsic Growth Rates

Theory predicts that species are sorted along environmental gradients because species only occur
in sites (i) to which they can disperse, (i) where their traits are adapted to the local conditions, and
(i) where they maintain competitive advantage in multispecies communities [26]. We are focused
on the second step in this review, and so our emphasis is on the difficult task of quantifying the
fundamental niche. Many statistical approaches test if traits predict species occurrences and
abundances in a given environment [59-61], but analyses of observational abundance data cannot
control for the confounding effects of competition [27,40,42].

The ideal metric of population response to the environment alone is estimated when the focal
species is growing by itself at low density, which we define as the intrinsic growth rate, because
itis least affected by either intraspecific negative density dependence or interspecific competition.
Modern coexistence theory emphasizes a similar but distinct quantity, the invasion growth rate
[62-65], which is the population growth rate when competing species are at their equilibrium
abundances. Invasion growth rates will ultimately be needed to integrate species interactions
into predictions of community dynamics, but invasion growth rates are less practical to meet
our objectives because they are computed using either (i) empirical multispecies models that
are difficult to parameterize, or (i) experiments that run long enough for establishment of a
resident community at equilibrium abundances, which could take many generations. Here we
focus on the intrinsic growth rate as a key first step to identify the net effect of traits on fitness.

We have identified several approaches to quantify population fitness that span a trade-off of
empirical rigor and logistical ease (Figure 2). Confronting trait-based theory with empirical
demographic data will yield the most transformative results. But, as pragmatists, we describe
a variety of approaches that vary in the difficulty of data collection and the precision of empirically
estimating intrinsic growth rates to galvanize progress in this field.

First, intrinsic growth rates can be observed experimentally (Figure 2A). Multiple species can be
introduced to multiple vacant sites across an environmental gradient. Demographic monitoring
of these long-lived species over time can precisely estimate intrinsic growth rates because com-
petition is experimentally controlled. Population models do not need extra parameters to account
for density dependence; it is intrinsic to the data. Models of perennial plants will still require
adequate annual transitions across the range of stages, which could be alleviated by planting a
range of ages and stages (e.g., seeds, seedlings, vegetative plants, flowering plants) from the
beginning of the experiment to start multiple cohorts simultaneously. Planting species beyond
their range boundaries provides especially robust assessments of the effects of traits on popula-
tion fitness across environmental gradients [5,66,67] because it tests whether a species can
recruit, grow, and survive outside its current range of environmental conditions. Importantly,
syntheses of transplant studies beyond the range concluded that integrative measures of fitness
were superior to individual vital rates at detecting reductions in performance beyond species
ranges [67]. Forestry, in particular, has a long tradition of common garden experiments where
multiple provenances of tree species are planted to evaluate genetic and environmental effects
on species performance [68,69]. Such common gardens are perhaps the gold standard
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[40,42,70,71], yet they are often prohibitively expensive in both time and money. We recommend
that funding agencies develop international collaborative opportunities to fund the difficult work of
establishing common gardens beyond range boundaries.

Second, intrinsic growth rates can be estimated using population models parameterized from
observational data on individuals over time (Figure 2B). Most published population models report
asymptotic population growth rates, which ignore density-dependence [53,72]. However,
density-dependent models of vital rates that incorporate the effects of population size can be
used to calculate intrinsic growth rates [53,73,74]. Integral projection models (IPMs) can be espe-
cially powerful in this context because they harness the strength of regression analysis to build
models of vital rates as functions of organism size and any other covariate, including the density
of neighbors [75]. This method requires that adequate variation in neighborhood density is
observed. Once vital rate regression models are parameterized, intrinsic growth rates can be
estimated by setting neighborhood density in the vital rate regressions to a fixed low value. This
technique statistically controls for the effects of competition [12,15], but it assumes that neighbor
density is a good proxy for resource competition [76]. Moreover, observational datasets often
lack measurements of population declines outside their natural range of environmental conditions
precisely because the species cannot live in those conditions. Experiments are required to identify
the environments in which populations decline. Demographic models of plants and animals have
been synthesized for widespread use [77], but we encourage new demographic datasets to be
measured across multiple species across environmental gradients.

Third, theoretical demographic models explore the consequences of ecophysiological and
demographic theory on trait optimization (Figure 2C). Game-theoretic models of fitness
landscapes implicitly account for density dependence to identify functional trait combinations
< Four approaches to estimate population fitness
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Empirically rigorous but difficult

|
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Figure 2. Four Approaches to Estimate Population Fitness Span a Trade-off of Empirical Rigor and Logistical Ease, and Each Approach Exhibits
Different Strengths and Weaknesses. (A) llustration of experimental common gardens where each species is planted and monitored in its home range and in two
additional sites beyond its range. This is the best way to observe population declines in ill-suited environments. (B) Integral Projection Models can incorporate density
dependence by using population size as a covariate in the vital rate regression models. (C) Fitness landscape resulting from an individual-based model of forest
dynamics where multiple combinations of height and leaf mass per area can stably coexist. Warm colors in this fithess landscape represent evolutionarily stable
strategies [79] (reproduced with permission). (D) Hypothetical time series of population-level data (e.g., counts, cover, or biomass) can be used to account for density de-
pendence by regressing log(Covery, 1/Cover;) on log(Covery), which can be used to estimate population growth rate at low density (see blue dotted arrow). (E) Multiple spe-
cies distribution models can be used simultaneously to analyze how trait-by-environment interactions affect occurrence or abundance at global scales. This method does
not analyze fitness, but it can be used to generate hypotheses about which traits are most important at global scales.
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that are evolutionarily stable strategies in a given environment. Game theory offers a rather
different approach since the relationships between traits and vital rates are embedded in the
model. Individual-based demographic models of competition for resources have been used to
predict the coexistence of dominant functional strategies in forests [78,79], and demographic
models are also being integrated into global-scale dynamic vegetation models to improve trait-
based predictions of ecosystem states and fluxes of carbon dioxide [80,81]. These computationally
rigorous approaches are located toward the middle of our trade-off of empirical rigor and logistical
ease because they are neither empirical nor easy. Theoretical demographic models do not empir-
ically estimate intrinsic growth rates of real species in real environments, but they generate testable
hypotheses and demonstrate the relevance of demography in forest assembly and global scale
vegetation dynamics.

Fourth, intrinsic growth rates can be estimated using widely available monitoring data (Figure 2D).
Rather than integrating vital rates across individuals, one can compute the annual growth rate of a
population by dividing population size in 1 year by size in the previous year (i.e., A = Ni,1/Ny. When
studying organisms where individual genets are rarely counted, as is often the case when moni-
toring plant or coral reef communities, then cover or biomass of the population could be
substituted for population counts (i.e., A = Cover,1/Cover). Quantifying the ratio of cover in
successive years to estimate A has been applied to model dynamics of multiple coexisting spe-
cies [82], and this population-level data can be used to estimate density dependence and project
population growth rates at low densities [83]. Negative relationships that are fit to empirical mea-
surements of log(Cover;.1/Covery) and density [i.e., log(Cover,)] are indicative of negative density
dependence [48]. Intrinsic growth rate can be computed as the exponentiated value of log(A)
when total density is low (Figure 2C). We urge caution when using this method for three reasons.
First, this approach does not account for age or size structure, which are important drivers of
population dynamics. Second, comparisons of population growth rates across species using
changes in total cover may be affected by the fact that species vary in maximum size. Third,
statistical artifacts can affect the estimates of density dependence given that Cover, is in the denom-
inator of A, and so it is important to account for census error when using this approach [76,84].

The fifth method is distinct from the others because it ignores the dynamics of populations and
examines the occurrence or abundance of species across environmental gradients (Figure 2E).
Occurrence is not fitness. Indeed, the link between intrinsic growth rate and probability of occurrence
is not even strictly positive [85,86]. Populations may be present at a site but they may be experiencing
negative population growth rates, and absences of a population from a site could be driven by
dispersal limitation or competition rather than abiotic environmental filtering [27]. However, we
include the analysis of occurrence and abundance data here because we stand to gain tremen-
dous insight by analyzing large datasets of thousands of species spanning global environmen-
tal gradients. In contrast, fithess data will be limited to local and landscape scales for the
foreseeable future. Ecologists have been modeling species occurrence data for decades, but
model-based frameworks can provide strong tests to determine if trait-environment interac-
tions explain species occurrences beyond what the environment explains by itself [60,87].
Moreover, this approach can generate hypotheses that can be empirically tested in common
gardens and can potentially identify the most important traits to use in models of fitness. One
drawback is that this approach cannot account for density dependence. New techniques
that estimate metrics of colonization and survival from repeated measurements of occupancy
along transects hold promise for leveraging long-term monitoring data to estimate demo-
graphic rates [88-90]. Modeling species occurrences will without a doubt continue to be a
widely used method, but we especially encourage their application to large spatial scales
that surpass those that are currently possible for demographic models.
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Identify the Traits That Drive Intrinsic Growth Rates

The next step is to model fitness as a function of trait-by-environment interactions
[12,55,91]. This tests the dynamic adaptive landscape model to determine how the
effects of traits on population fitness across species depends on the environment [92].
The question is not whether population fithess among species varies along environmental
gradients; this has been known for centuries (Figure 3A). The question is whether traits
explain variation in population fitness (or occurrence) among species through an interaction
with the environment (Figure 3B). One can compare the empirical support for a model where
population fitness of multiple species is a function of the environment only, versus a second
model that adds traits and a trait-by-environment interaction. The strongest ecological
trade-offs will be seen when two conditions are met: the trait-by-environment interaction is
both statistically supported and the effect of the environment on fitness changes sign along
the range of the trait [12,60,87]. Computing the first partial derivative of fithess with respect
to the environment isolates the fitness response to an environmental condition as a function
of traits (Figure 3C). This model can then be used to test predictions experimentally by using
new species outside the training dataset, which is a necessary and powerful way to test the
generality of traits.

Identify the functional traits that drive population fithess

(A) Theory predicts that species (B) Model fitness (1) landscapes (C) Use the model to predict how
are sorted along environmental across multiple populations of population fitness would respond to
gradients based on the adaptive coexisting species as a function of a change in environment using their
value of their functional traits. To an interaction between their traits functional traits. A strong test would
test this, measure fitness using and the environment. predict this for a new species
methods in Figure 2 across outside the original training dataset.
environmental gradients.

positive

Fitness

negative

new species

Fitness response to the environment

Environment Functional trait

Trends in Ecology & Evolution

Figure 3. Identifying the Functional Traits That Drive Environmental Effects on Population Fitness Will Advance Community Ecology. (A) In this example of
five hypothetical species, the red species is adapted to the high end of the environmental gradient. But why? (B) The trait-by-environment interaction across multiple
species illustrates that the red species is adapted to the high end of the gradient because it has a low trait value. The grid of points on the horizontal surface of the 3D
figure illustrates that each species has a different trait value and that each species was measured across the full range of environmental conditions. This rigorous
sampling of species across the environmental gradient can only be perfectly accomplished in common garden experiments because species can be planted beyond
their natural range. The unimodal fitness response is shown here to reflect the classic fitness function, but linear models are often used in practice given their greater
simplicity for model estimation [12,91]. (C) The first partial derivative of fitness with respect to the environment illustrates how species with different trait values respond
to the environment differently. Note that because the trait-by-environment fitness function is unimodal in panel B, the fitness response will depend on both the trait and
the environment [12], but the general relationship would still be negative overall in this example. The horizontal error bars reflect that species exhibit random trait
variation among populations. To test whether traits can generalize to other species, this model can predict the fitness response for a ‘new species’ (represented by the
diamond) that was not included in the original model. For example, if this new species had a high trait value, the model would predict a negative response to the
environmental gradient, implying that, unlike the red species, it would exhibit high fitness at the low end of the environmental gradient.
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This model often assumes that observed traits in a given environment reflect (i) adaptation to local
conditions and (i) the existence of an optimum trait value. Ideally, intraspecific trait variation is
measured to account for local adaptation rather than using only an average trait value
[6,29,58]. However, it is important to be aware that many processes can influence the observed
phenotype, perhaps even resulting in a maladapted phenotype. Rapidly changing environments
could cause lags in the ability of a phenotype to adapt, leading to negative consequences for
some fitness components. In these cases, the adaptive value of a trait can be over overestimated
when focusing on single fitness components [6]. Moreover, multiple trait optimums may exist in
environments where multiple functional strategies maintain species coexistence or where the
trait distribution is multimodal [93]. Comparing models that include interactions with more than
one trait to determine whether the effects of a trait on fitness in a given environment depends
on other traits is a promising line of enquiry [14,55,92].

We have focused on the three core vital rates (individual growth, survival, and reproduction) as
fundamental fitness components, though many other vital rates in the life cycle influence these
components. For example, dispersal and germination rates influence reproduction, and dispersal
limitation is a key constraint in community assembly. Traits such as seed mass and height are pre-
dictors of seed production and dispersal distance [94], which have been suggested to influence
population persistence and species ranges by constraining geographic distributions but extend-
ing elevational limits [67,95]. Greater understanding of the importance of immigration will improve
our estimates of intrinsic growth rates and the links between traits and fitness, particularly across
spatial environmental gradients (see Outstanding Questions).

Discovering how traits affect different vital rates and how these combine to drive fithess is a grand
challenge in community ecology that bridges the fields of ecophysiology and evolutionary biology
[7,23,24]. We anticipate that ecophysiological traits, such as embolism vulnerability, leaf turgor
loss point, or chlorophyll-a florescence, will exhibit the strongest mechanistic links to vital rates
given their direct link to resource use [96-98]. Determining the physiological mechanisms that
drive demographic trade-offs is an important outstanding question. We can decompose popula-
tion fitness into contributions from underlying traits by calculating vital rate elasticities as functions
of lower level parameters [99], which would allow us to quantify the extent to which demographic
trade-offs obscure the indirect effect of traits on intrinsic growth rate [7]. This synthesis would
lead to substantially new understanding of how functional traits affect survival, growth, and repro-
duction at the scale of individuals, and how these coalesce and propagate into net effects on
population fitness [11,20].

More work is needed to discover the physiological mechanisms that drive demographic trade-
offs among species. For example, seed mass is positively related to seedling establishment
but negatively related to seed production [11]. Specific leaf area is related to the ‘fast-slow’
continuum of life history strategies, where short-lived species construct cheap leaves and exhibit
fast rates of photosynthesis [100]. Two independent demographic trade-offs among tropical
forest trees were recently identified: the ‘growth—survival’ and ‘stature-recruitment’ trade-offs.
The growth—survival trade-off was related to variation in wood density and leaf economics traits,
whereas the stature-recruitment trade-off was related to height, seed mass, and leaf area [37].
Not only do traits explain demographic trade-offs, these demographic trade-offs can predict
tropical forest dynamics [101].

We have emphasized the importance of quantifying intrinsic growth rates in the absence of
competition, which is a necessary step for defining the species pool that can tolerate a given

environment and for quantifying the fundamental niche of species. There is also an urgent need
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to develop frameworks for predicting interaction networks among species using functional traits
(see Outstanding Questions). Traits can explain niche and fitness differences among interacting
annual plant species [40,42], but understanding how traits relate to invasion growth rates
among long-lived species to quantify the realized niche of species is a research frontier [62-64].
Developing mathematical links between traits and interaction coefficients to predict coexistence
dynamics for communities across environmental gradients will complement the research program
proposed here.

Concluding Remarks

Predicting fates of populations and communities using traits has often been called the ‘holy grail’ of
ecology [1,102], yet we often lack clear evidence that functional traits live up to the hype [24]. To
advance this important research agenda, we encourage studies that link traits directly to intrinsic
growth rates to test the generality of traits for predicting species performance. The complexity of
population dynamics may have hindered an earlier integration of population demography into
trait-based community ecology, but the time is right to bridge the divide. Demographic data are
increasingly available [77,103] and alternative methods for measuring population dynamics can
leverage widely available monitoring data [82,83]. Pursuing answers to these outstanding ques-
tions will advance our conceptual understanding of how the contours of fitness landscapes across
multiple species shift along environmental gradients [92]. In closing, we hearken back to an analo-
gous call for evolutionary biologists to become demographers [104]; we hope this review provokes
more functional community ecologists to become demographers to test the faculty of functional
traits.
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Outstanding Questions

What are the net effects of functional
traits on intrinsic growth rates of
populations and how do they depend
on the environment?

How do functional traits determine
other vital rates that influence fitness
components, such as dispersal rate
or germination rate? How do rates
of immigration across space affect
estimates of intrinsic growth rates?

What are the physiological mechanisms
that underly demographic trade-offs
among species? In other words, why
do traits affect survival, growth, and re-
production in opposite directions, and
how do these effects coalesce and
propagate into the net effect on fitness?

Can traits predict interaction networks
among species across environmental
gradients?
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