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Knowledge Spaces and Learning Spaces1

Jean-Paul Doignon2 Jean-Claude Falmagne3

Abstract

How to design automated procedures which (i) accurately assess the
knowledge of a student, and (ii) efficiently provide advices for further
study? To produce well-founded answers, Knowledge Space Theory relies
on a combinatorial viewpoint on the assessment of knowledge, and thus
departs from common, numerical evaluation. Its assessment procedures
fundamentally differ from other current ones (such as those of S.A.T. and
A.C.T.). They are adaptative (taking into account the possible correct-
ness of previous answers from the student) and they produce an outcome
which is far more informative than a crude numerical mark. This chap-
ter recapitulates the main concepts underlying Knowledge Space Theory
and its special case, Learning Space Theory. We begin by describing the
combinatorial core of the theory, in the form of two basic axioms and the
main ensuing results (most of which we give without proofs). In practi-
cal applications, learning spaces are huge combinatorial structures which
may be difficult to manage. We outline methods providing efficient and
comprehensive summaries of such large structures. We then describe the
probabilistic part of the theory, especially the Markovian type processes
which are instrumental in uncovering the knowledge states of individuals.
In the guise of the ALEKS system, which includes a teaching component,
these methods have been used by millions of students in schools and col-
leges, and by home schooled students. We summarize some of the results
of these applications.

MSC-class: 91E45

1 Origin and Motivation

Knowledge Space Theory (abbreviated as KST) originated with a paper by
Doignon and Falmagne (1985). This work was motivated by the shortcomings of
the psychometric approach to the assessment of competence. The psychometric
models are based on the notion that competence can be measured, which the
two authors thought was at least debatable. Moreover, a typical application of
a psychometric model in the form of a standardized test results in placing an
individual in one of a few dozen ordered categories, which is far too coarse a
classification to be useful. In the case of the S.A.T.4, for example, the result

1A different version is to appear in The New Handbook of Mathematical Psychology,
Cambridge University Press. The authors thank Laurent Fourny and Keno Merckx for their
careful reading of a preliminary draft.

2Université Libre de Bruxelles, Département de Mathématique c.p. 216, B-1050 Bruxelles,
Belgium. doignon@ulb.ac.be

3Department of Cognitive Sciences, University of California, Irvine, CA 92617, USA,
jcf@uci.edu

4A test for college admission and placement in the U.S. The acronym S.A.T used to mean
“Scholastic Aptitude Test”. A few years ago the meaning of S.A.T. was changed into “Scholas-
tic Assessment Test”. Today this acronym stands alone, without any associated meaning.
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of the test is a number between 200 and 800 with only multiples of 10 being
possible scores.

In the cited paper, Doignon and Falmagne proposed a fundamentally differ-
ent theory. The paper was followed by many others, written by them and other
researchers (see the Bibliographical Notes in Section 13).

The basic idea is that an assessment in a scholarly subject should uncover
the individual’s ‘knowledge state’, that is, the exact set of concepts mastered
by the individual. Here, ‘concept’ means a type of problem that the individual
has learned to master, such as, in Beginning Algebra:

solving a quadratic equation with integer coefficients;

or, in Basic Chemistry

balance a chemical equation using the smallest
whole number stoichiometric coefficients5.

In KST, a problem type is referred to as an ‘item’. Note that this usage differs
to that in psychometric, where an item is a particular problem, such as: Solve
the quadratic equation x2 − x − 12 = 0. In our case, the examples of an item
are called instances6.

The items or problem types form a possibly quite large set, which we call the
‘domain’ of the body of knowledge. A knowledge state is a subset of the domain,
but not any subset is a state: the knowledge states form a particular collection
of subsets, which is called the ‘knowledge structure’ or more specifically (when
certain requirements are satisfied) the ‘knowledge space’ or the ‘learning space’.
The collection of states captures the whole structure of the domain. As in
Beginning Algebra, which will be our lead example in this chapter, the domain
may contain as many as 650 items, and the learning space may contain many
millions states, in sharp contrast with the few dozen scoring categories of a
psychometric test. Despite this large number of possible knowledge states, an
efficient assessment is feasible in the course of 25–35 questions.

In Sections 2 to 8, we review the fundamental combinatorial concepts and
the main axiomatizations. We introduce the important special case of KST,
Learning Space Theory (LST). As the collection of all the feasible, realistic
knowledge states may be very large, it is essential to find efficient summaries.
We describe two such summaries in Sections 4 and 7. The theory discussed in
this chapter has been extensively applied in the schools and universities. The
success of the applications is due in large part to a feature of the knowledge
state produced by the assessment: the state is predictive of what a student is
ready to learn. The reason lies in a formal result, the ‘Fringe Theorem’ (see
Section 6). In some situations, it is important to focus on a part of a knowledge
structure. We call the relevant concept a ‘projection’ of a knowledge structure
on a subset of the items. This is the subject of Section 8.

5For example: Fe2O3(s) → Fe(s)+O2(g), which is not balanced. The correct response is:
2Fe2O3(s) → 4Fe(s) + 3O2(g).

6So, the instances of knowledge space theory are the items of psychometrics.
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A next section is devoted to the description of the Markovian type stochastic
assessment procedure (Section 10). It relies on the notion of a probabilistic
knowledge structure, introduced in Section 9. In Section 11, we give an outline
of our methods for building the fundamental structure of states for a particular
scholarly domain, such as Beginning Algebra, Pre-Calculus, or Statistics. Such
constructions are enormously demanding and time consuming. They rely not
only on dedicated mathematical algorithms, but also on huge bases of assessment
data. The most extensive applications of KST are in the form of the web based
system called ALEKS7, which includes a teaching component. Millions of students
have used the system, either at home, or in schools and universities. Section 12
reports some results of these applications.

This chapter summarizes key concepts and results from two books. One is
the monograph of Falmagne and Doignon (2011)8. The other book is the edited
volume of Falmagne et al. (2013), which contains recent data on the applications
of the theory and also some new theoretical results. A few additional results
appear here in Section 7 and 11.

2 Knowledge Structures and Learning Spaces

We formalize the cognitive structure of a scholarly subject as a collection K
of subsets of a basic set Q of items. In the case of Beginning Algebra, the
items forming Q are the types of problems a student must master to be fully
conversant in the subject. We suppose that the collection K contains at least
two subsets: the empty set, which is that of a student knowing nothing at all in
the subject, and the full set Q of problems. The next definition cast these basic
notions in set-theoretic terms. We illustrate the definition by a few examples.

Definition 1. A knowledge structure is a pair (Q,K) consisting of a nonempty
set Q and a collection K of subsets of Q; we assume ∅ ∈ K and Q ∈ K. The
set Q is called the domain of the knowledge structure (Q,K). The elements of
Q are the items, and the elements of K are the knowledge states, or just the
states. A knowledge structure (Q,K) is finite when its domain Q is a finite set.

For any item q in Q, we write Kq for {K ∈ K q ∈ K}, the subcollection
of K consisting of all the states containing q. A knowledge structure (Q,K) is
discriminative when for any two items q and r in the domain, we have Kq = Kr

only if q = r.

We often abbreviate (Q,K) into K (with no loss of information because
Q = ∪K).

7ALEKS is an acronym for “Assessment and LEarming in Knowledge Spaces”.
8This is a much expanded reedition of Doignon and Falmagne (1999).
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K(1)

∅

{a} {d}

{a, b} {a, d}

{a, b, c} {a, b, d}

Q K(2)

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, d} {a, b, c} {a, c, d}

Q

K(3)

∅

{a} {d}

{a, b} {c, d}

{a, b, c} {b, c, d}

Q K(4)

∅

{c} {d}

{c, d}

{a, b, c} {a, b, d}

Q K(5)

∅

{a} {c}

{a, b} {c, d}

{a, b, c} {a, c, d}

Q

Figure 1: The five examples of knowledge structures in Example 2.

Example 2. Here are five examples of knowledge structures all on the same
domain Q = {a, b, c, d}:

K(1) = {∅, {a}, {d}, {a, b}, {a, d}, {a, b, c}, {a, b, d}, Q},

K(2) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, d}, {a, b, c}, {a, c, d}, Q},

K(3) = {∅, {a}, {d}, {a, b}, {c, d}, {a, b, c}, {b, c, d}, Q},

K(4) = {∅, {c}, {d}, {c, d}, {a, b, c}, {a, b, d}, Q},

K(5) = {∅, {a}, {c}, {a, b}, {c, d}, {a, b, c}, {a, c, d}, Q}.

The five knowledge structures are finite, and all but K(4) are discriminative: we
have

K(4)
a = K

(4)
b = {{a, b, c}, {a, b, d}, Q} with a 6= b. (1)

In the graphs of these knowledge structures displayed in Figure 1, the ascend-
ing lines show the covering relation of the states; that is, we have an ascending
line from the point representing the state K to the one representing the state L

4



exactly when K is covered by L, that is when K ⊂ L and moreover there is no
state A in K such that K ⊂ A ⊂ L.

We call a representation of a knowledge structure as exemplified in Figure 1
a covering diagram of the structure. Note in passing two extreme cases of
knowledge structures on a given domain Q. One is (Q, 2Q), where 2Q denotes
the power set of Q, that is the collection of all the subsets of Q. The other one
is (Q, {∅, Q}), in which the knowledge structure contains only the two required
states ∅ and Q. These two examples are trivial and uninteresting because they
entail a complete lack of organization in the body of information covered by the
items in Q.

Two requirements on a knowledge structure make good pedagogical sense.
One is that there should be no gaps in the organization of the material: the stu-
dent should be able to master the items one by one. Also, there should be some
consistency in the items: an advanced student should have less trouble learn-
ing a new item than another, less competent student has. The two conditions
incorporated in the next definition formalize the two ideas.

Definition 3. A learning space (Q,K) is a knowledge structure which satisfies
the two following conditions:

[L1] Learning smoothness. For any two states K, L with K ⊂ L, there
exists a finite chain of states

K = K0 ⊂ K1 ⊂ · · · ⊂ Kp = L (2)

such that |Ki \Ki−1| = 1 for 1 ≤ i ≤ p (thus we have |L \K| = p).

In words: If the learner is in some state K included in some state L, then
the learner can reach state L by mastering items one by one.

[L2] Learning consistency. For any two states K, L with K ⊂ L, if q is an
item such that K ∪ {q} is a state, then L ∪ {q} is also a state.

In words: Knowing more does not prevent learning something new.

Notice that any learning space is finite. Indeed Condition [L1] applied to the
two states ∅ and Q yields a finite chain of states from ∅ to Q. In Example 2
(see also Figure 1), only the two structures K(1) and K(2) are learning spaces.
The knowledge structure K(3) satisfies Condition [L1] in Definition 3 but not
Condition [L2] (take K = ∅, L = {a} and q = d). As for K(4), it satisfies [L2]
but not [L1]. Finally, K(5) does not satisfy either condition. A simpler way to
check whether a covering diagram as in Figure 1 represents a learning space is
provided in the next section, just after Theorem 8.

We give one more example of a learning space, which is realistic in that its
ten items belong to the domain of the very large learning space of Beginning
Algebra used in the ALEKS system. A remarkable feature of a learning space is
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that any subset of the items of a learning space also defines a learning space
(see below Definition 31 and Theorem 33). Thus we have a learning space on
these ten items. This example will be used repeatedly later on, and in partic-
ular to illustrate the assessment mechanism, that is, the questioning algorithm
uncovering the knowledge state of a student.

Table 1: The items of the ten-item example of Figure 2.

a. Quotients of expressions involv-
ing exponents

b. Multiplying two binomials

c. Plotting a point in the coordi-
nate plane using a virtual pencil
on a Cartesian graph

d. Writing the equation of a line given
the slope and a point on the line

e. Solving a word problem using a
system of linear equations
(advanced problem)

f. Graphing a line given its equation

g. Multiplication of a decimal by a
whole number

h. Integer addition
(introductory problem)

i. Equivalent fractions: fill the

blank in the equation a
b

=
c
,

where a, b and c are whole num-
bers

j. Graphing integer functions

Example 4. Ten items in Beginning Algebra. Table 1 lists ten items.
Remember that items are types of problems, and not particular cases (which
are called instances). Here is an instance of item d: A line passes through the
point (x, y) = (−3, 2) and has a slope of 6. Write an equation for this line.
Figure 2 shows 34 knowledge states in Q = {a, b, . . . , j} which together form a
learning space.
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∅

{c} {i} {g}

{c, i} {g, i}{h, i} {g, h}{c, g}

{c, g, h}{c, h, i} {c, g, i} {g, h, i}

{c, g, h, i} {b, g, h, i} {a, g, h, i}

{b, c, g, h, i} {a, c, g, h, i} {c, g, h, i, j}{a, b, g, h, i}

{
c, f, g,

h, i, j

}{
b, c, g,

h, i, j

} {
a, c, g,

h, i, j

}{
a,b,c,

g,h,i

}

{
a, b, c, f,

g, h, i

} {
a, b, c, g,

h, i, j

} {
b, c, f, g,

h, i, j

} {
a, c, f, g,

h, i, j

}

{
a, b, c, f,

g, h, i, j

}{
b, c, d, f,

g, h, i, j

} {
a, c, d, f,

g, h, i, j

} {
a, b, c, d,

g, h, i, j

}

{a, b, c, d, f, g, h, i, j}

Q

Figure 2: The covering diagram of the ten-item learning space L of Example 4.
The meaning of the four bold lines joining the state {c, g, h, i, j} to four other
states is explained in Section 6.
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3 Knowledge Spaces and Wellgradedness

The name “learning space” specifically refers to Conditions [L1] and [L2] of
Definition 3. As mentioned earlier, the two conditions have an interesting,
pedagogical interpretation. Other characterizations of the same combinatorial
concept focus on some other key concepts, which we review in the present
section. The symmetric difference between two sets K and L is defined by
K △ L = (K \ L) ∪ (L \K).

Definition 5. A knowledge space K is a knowledge structure which is closed
under union, or ∪-closed, that is, ∪C ∈ K for any subcollection C of K. The
knowledge structure K is well-graded if for any two states K and L in K, there
exists a natural number h such that |K△L| = h and a finite sequence of states
K = K0, K1, . . . , Kh = L such that |Ki−1 △ Ki| = 1 for 1 ≤ i ≤ h. The
knowledge structure K is accessible or downgradable9 if for any nonempty state
K in K, there is some item q in K such that K \ q ∈ K. A downgradable, finite
knowledge space is called an antimatroid 10.

The closure under union is a critical property because it enables a (sometime
highly efficient) summary of a knowledge space by a minimal subcollection of
its states. The subcollection is called the ‘base’ of the knowledge space and
is one of the topics of our next section. Note that a well-graded knowledge
structure (Q,K) is necessarily accessible (given the state K, take L = ∅ in
Definition 5). However, an accessible knowledge structure is not necessarily
finite nor well-graded.

Example 6. Take as items all the natural numbers, thus the domain is N. As
states, take the empty set plus all the subsets of N whose complement is finite.
We denote by G the collection of states:

G = {∅} ∪ {K ∈ 2N |N \K| < +∞}. (3)

The resulting structure (N,G) is accessible. It is infinite, and not well-graded
(consider for instance the two states ∅ and N).

Theorem 7. For any knowledge structure (Q,K), the following three state-
ments are equivalent.

(i) (Q,K) is a learning space.

(ii) (Q,K) is an antimatroid.

(iii) (Q,K) is a well-graded knowledge space.

Cosyn and Uzun (2009) proved the equivalence of Conditions (i) and (ii) in
Theorem 7, while Korte et al. (1991) established still another characterization
of antimatroids (or learning spaces): Theorem 8 below is Lemma 1.2 of their
Chapter 3. We provide a combined proof of Theorems 7 and 8 below.

9See Doble et al. (2001) for the latter term.
10See Korte et al. (1991) for this use of the word. For other authors an antimatroid is closed

under intersection rather than under union (and “upgradable” rather than downgradable), see
for example Edelman and Jamison (1985).
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Theorem 8. A knowledge structure (Q,K) is a learning space if and only if its
collection K of states satisfies the following three conditions:

(a) Q is finite;

(b) K is downgradable, that is: any nonempty state K contains some item q
such that K \ {q} ∈ K;

(c) for any state K and any items q, r, if K ∪ {q}, K ∪ {r} ∈ K, then
K ∪ {q, r} ∈ K.

Theorem 8 makes it easy to check whether a (finite) covering diagram such
as that pictured in Figure 1 represents a learning space. Assume that the points
representing two states are at the same level (or height) if and only if they have
the same number of items; then it suffices to check that: (i) any ascending line
connects points at two successive levels; (ii) any point representing a nonempty
state is the end of at least one ascending line; (iii) if two ascending lines start
from the same point, then their endpoints are the origins of ascending lines
having the same endpoint.

Proofs of Theorems 7 and 8. For a given knowledge structure (Q,K), we show
that

(i) ⇒ (ii) ⇒ (iii) ⇒
(
(a), (b) and (c)

)
⇒ (i).

First notice that any of the three conditions (i), (ii), (iii) entails the finiteness
of Q, that is, Condition (a).

(i) ⇒ (ii). Let (Q,K) be a learning space as in Definition 3. We prove that
(Q,K) is an antimatroid as in Definition 5, in other words that (Q,K) is a
finite knowledge space which is moreover downgradable. Suppose that K, L are
states. We first apply Learning Smoothness to ∅ and L and derive a sequence
L0 = ∅, L1, . . . , Lℓ = L of states such that |Li \ Li−1| = 1 for 1 ≤ i ≤ ℓ. Then
applying Learning Consistency to the states ∅ and K and the item forming L1,
we derive K ∪ L1 ∈ K. Next, we apply Learning Consistency to the states L1

and K ∪ L1 and the item forming L2 \ L1 to derive K ∪ L2 ∈ K. The general
step, for i = 1, 2, . . . , ℓ, applies Learning Consistency to Li−1 and K ∪ Li−1

and the item forming Li \ Li−1 to derive K ∪ Li ∈ K. At the last step (i = ℓ),
we get K ∪ L ∈ K. On the other hand, downgradability of K at the state K is
just a particular case of Learning Smoothness at the states ∅ and K.

(ii) ⇒ (iii). If (Q,K) is an antimatroid, then K is closed under union by defini-
tion. To prove the wellgradedness of K (Definition 5), we take two states K and
L. By assumption, K∪L is also a state, and moreover by downgradability there
exist a sequence of states M0 = ∅, M1, . . . , Mh = K ∪ L with |Mi \Mi−1| = 1
for 1 ≤ i ≤ h. Then K ∪ M0, K ∪ M1, . . . , K ∪ Mh, after deletion of repeti-
tions, becomes an increasing sequence K0, K1, . . . , Kk from K to K ∪ L with
increments consisting of one item. We derive a similar sequence L0, L1, . . . , Lℓ

from L to K ∪ L. Finally, K0, K1, . . . , Kk = Lℓ, Lℓ−1, . . . , L0 is the required
sequence from K to L (indeed, k + ℓ = |K △ L|).

9



(iii) ⇒ ((a), (b) and (c)). Downgradability (b) is a direct consequence of well-
gradedness. To prove (c), we only need to noticeK∪{q, r} = (K∪{q})∪(K∪{r})
and apply the assumed closure under union.

((a), (b) and (c)) ⇒ (i). To prove Learning Smoothness, we consider two states
K and L such that K ⊂ L. By downgradability, there exist two sequences
K0 = ∅, K1, . . . , Kk = K and L0 = ∅, L1, . . . , Lℓ = L of states such
that |Ki \ Ki−1| = 1 for 1 ≤ i ≤ k and |Lj \ Lj−1| = 1 for 1 ≤ j ≤ ℓ. By
repeated applications of (c), we derive K1∪L1, K2∪L1, . . . , Kk ∪L1 ∈ K, next
K1 ∪ L2, K2 ∪ L2, . . . , Kk ∪ L2 ∈ K, etc., and finally K1 ∪ Ll−1, K2 ∪ Ll−1,
. . . , Kk ∪ Ll−1 ∈ K. Thus K ∪ L0 = K, K ∪ L1, . . . , K ∪ Ll−1, L are all in
K (remember Kk = K, Ll = L and K ⊂ L). After deletion of repetitions, we
obtain the desired sequence from K to L.

To prove Learning Consistency, we again consider two states K and L with
K ⊂ L together with an item q such that K ∪ {q} ∈ K. In the previous
paragraph, we proved the existence of a sequence M0 = K, M1, . . . , Mh = L
of states such that |Mi \Mi−1| = 1 for 1 ≤ i ≤ h. Applying (c) repeatedly, we
obtain M1 ∪ {q} ∈ K, M2 ∪ {q} ∈ K, . . . , Mh ∪ {q} ∈ K, the last one being
L ∪ {q} ∈ K as desired.

A simple case of a learning space arises when the collection of states is closed
under both union and intersection.

Definition 9. A quasi ordinal space is a knowledge space closed under intersec-
tion. A (partially) ordinal space is a quasi ordinal space which is discriminative.

In Example 2, only the structure K(1) is a quasi ordinal space, and it is
even an ordinal space. The reason for the terminology in Definition 9 lies in
Theorem 10 below, due to Birkhoff (1937). We recall that a quasi order on Q
is a reflexive and transitive relation on Q. A partial order on Q is a quasi order
on Q which is an antisymmetric relation (that is, for all q and r in Q, it holds
that qRr and rRq implies q = r).

Theorem 10 (Birkhoff, 1937). There exists a one-to-one correspondence be-
tween the collection of all quasi ordinal spaces K on a set Q and the collection
of all quasi orders Q on Q. One such correspondence is specified by the two
equivalences11

for all q, r in Q : qQr ⇐⇒ Kq ⊇ Kr; (4)

for all K ⊆ Q : K ∈ K ⇐⇒ (∀(q, r) ∈ Q : r ∈ K ⇒ q ∈ K). (5)

Its restriction to discriminative spaces links partially ordinal spaces to partial
orders.

Note in passing that the closure under intersection does not make good
pedagogical sense. A variant of Theorem 10 for knowledge spaces appears below
as Theorem 18; a variant for learning spaces follows from Theorem 19.

11We recall the formula Kq = {K ∈ K q ∈ K}.

10



4 The Base and the Atoms

In practice, learning spaces tend to be very large, counting millions of states. For
various purposes—for example, to store the structure in a computer’s memory—
such huge structures need to be summarized. One such summary is the ‘base’
of the structure, which we define below.

Definition 11. The span of a collection of sets F is the collection of sets F ′

containing exactly those sets that are unions of sets in F . We say then that F
spans F ′ and we write S(F) = F ′. So, S(F) is necessarily ∪-closed. A base
of a ∪-closed collection S of sets is a minimal subcollection B of S spanning
S—where “minimal” refers to inclusion, that is, if S(H) = S for some H ⊆ B,
then necessarily B ⊆ H.

Note that by a common convention, the empty set is the union of zero set in
B. Accordingly, the empty set never belongs to a base. It is easily shown that
the base of a knowledge space is unique when it exists. Also, any finite knowl-
edge space has a base (see Theorems 3.4.2 and 3.4.4 in Falmagne and Doignon,
2011). However, some ∪-closed collection of sets have no base; an example is
the collection of all the open subsets of the set of real numbers. Any learning
space has a base because it is finite and ∪-closed (cf. Theorem 7, (i) ⇔ (iii)).

For example, the base of the learning space K(2) displayed in Figure 1 is

{ {a}, {b}, {c}, {a, b, d}, {a, c, d} }. (6)

The economy is not great in this little example but may become spectacular in
the case of the very large structures encountered in practice.

Another reason for the importance of the base stems from a pedagogical
concept. The relevant question is: “Given some item q, which minimal state, or
states, must be mastered for q to be mastered?”. In more direct words: “what
are the minimal states containing a given item q?”. As one might guess, these
minimal sets coincide with the elements of the base.

Definition 12. Let K be a knowledge space. For any item q, an atom at q is a
minimal state of K containing q. A state K is called an atom if K is an atom
at q for some item q. A knowledge space is granular if for any item q and any
state K containing q, there is an atom at q which is included in K.

Clearly, any finite knowledge space is granular. On the other hand, a state
K is an atom in a knowledge space K if and only if any subcollection of states
F such that K = ∪F contains K (cf. Theorem 3.4.7 in Falmagne and Doignon,
2011). Note also that any granular knowledge space has a base (cf. Proposi-
tion 3.6.6 in Falmagne and Doignon, 2011).

Example 13. For the ten-item learning space pictured in Figure 2 (page 7),
there are two atoms at item f , namely

{c, f, g, h, i, j}, {a, b, c, f, g, h, i}. (7)

11



Table 2: The atoms at all the items of the ten-item learning space from Exam-
ple 4 (see Example 13).

Items Atoms

a {a, g, h, i}

b {b, g, h, i}

c {c}

d {b, c, d, f, g, h, i, j}, {a, c, d, f, g, h, i, j}, {a, b, c, d, g, h, i, j}

e Q

f {c, f, g, h, i, j}, {a, b, c, f, g, h, i}

g {g}

h {h, i}, {g, h}

i {i}

j {c, g, h, i, j}

You can check from the figure that these two sets are indeed minimal states
containing f and that they are the only ones with that property. Note that
there is just one atom at the item b, which is {b, g, h, i}, while there are three
atoms at d. Table 2 displays the full information on the atoms.

We conclude this section with the expected result (a proof is given in Falmagne and Doignon,
201112).

Theorem 14. Suppose that a knowledge space has a base. Then this base is
exactly the collection of all the atoms.

A simple algorithm, due to Dowling (1993) and grounded on the concept
of an atom, constructs the base of a finite knowledge space given the states.
In the same paper, she also describes a more elaborate algorithm for efficiently
building the span of a collection of subsets of a finite set. Both algorithms are
sketched in Falmagne and Doignon (2011, pages 49–50) (another algorithm for
the second task, in another context, is due to Ganter; see Ganter and Reuter,
1991). The concept of an atom is closely related to that of the ‘surmise system’,
which is the topic of our next section. We complete the present section with a
characterization of learning spaces through their atoms (Koppen, 1998).

12The reader should refer to that monograph for most of the proofs omitted in this chapter.

12



Theorem 15. For any finite knowledge structure (Q,K), the following three
statements are equivalent:

(i) (Q,K) is a learning space;

(i) for any atom A at item q, the set A \ {q} is a state;

(i) any atom is an atom at only one item.

5 Surmise Systems

In a finite knowledge space, a student masters an item q only when his state
includes some atom C at q. So, the collection of all the atoms at the various
items may provide a new way to specify a knowledge space. We illustrate this
idea by the following example of a knowledge space.

∅

{a}

{b, d}

{b, c, e} {a, b, d} {a, b, c}

{b, c, d, e} {a, b, c, e} {a, b, c, d}

Q

Figure 3: The covering diagram of the knowledge space in Example 16.

Example 16. Consider the knowledge space

H =
{
∅, {a}, {b, d}, {a, b, c}, {a, b, d}, {b, c, e},

{a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {a, b, c, d, e}
}

(8)

on the domain Q = {a, b, c, d, e}. Figure 3 provides its covering diagram, while
Table 3 lists its atoms. Table 3 links each of items a, d and e to a single atom of
H, and items b and c to three and two atoms, respectively. So, to master item
b, one must first master either item d, or items a and c, or items c and e.

Example 16 illustrates the following definition.

13



Table 3: Items and their atoms in the knowledge space of Equation (8) (see also
Figure 3).

Items Atoms

a {a}

b {b, d}, {a, b, c}, {b, c, e}

c {a, b, c}, {b, c, e}

d {b, d}

e {b, c, e}

Definition 17. Let Q be a nonempty set of items. A function σ : Q → 22
Q

mapping each item q in Q to a nonempty collection σ(q) of subsets of Q (so,
σ(q) 6= ∅) is called an attribution function on the set Q. For each q in Q,
any C in σ(q) is called a clause for q (in σ). A surmise function σ on Q is an
attribution function on Q which satisfies the three additional conditions, for all
q, q′ ∈ Q, and C,C′ ⊆ Q:

(i) if C ∈ σ(q), then q ∈ C;

(ii) if q′ ∈ C ∈ σ(q), then C′ ⊆ C for some C′ ∈ σ(q′);

(iii) if C,C′ ∈ σ(q) and C′ ⊆ C, then C = C′.

In such a case, the pair (Q, σ) is a surmise system. A surmise system (Q, σ) is
discriminative if σ is injective (that is: whenever σ(q) = σ(q′) for some q, q′ ∈ Q,
then q = q′). Then the surmise function σ is also called discriminative.

It is easily shown that any attribution function σ on a set Q defines a knowl-
edge space (Q,K) via the equivalence

K ∈ K ⇐⇒ ∀q ∈ K, ∃C ∈ σ(q) : C ⊆ K. (9)

In fact, we have the following extension of Birkhoff’s Theorem 10 (it is an exten-
sion in the sense that the one-to-one correspondence we obtain extends the corre-
spondence in Birkhoff’s Theorem). The result is due to Doignon and Falmagne
(1985), who derive it from an appropriate ‘Galois connection’.

Theorem 18. There exists a one-to-one correspondence between the collection
of all granular knowledge spaces K on a setQ and the collection of all the surmise
functions σ on Q. One such correspondence is specified by the equivalence, for
all q in Q and A in 2Q,

A is an atom at q in K ⇐⇒ A ∈ σ(q). (10)

This one-to-one correspondence links discriminative knowledge spaces to dis-
criminative surmise functions.

14



The correspondence between knowledge spaces and surmise functions is sug-
gestive of a practical method for building a knowledge space or even a learning
space, based on analyzing large sets of learning data. We describe such a method
in Section 11.

A characterization of learning spaces through their surmise functions derives
directly from Theorem 15.

Theorem 19. A finite knowledge space (Q,K) is a learning space if and only
if the corresponding surmise system (as in Theorem 18) has the property that
any clause is a clause for only one item.

In the case of finite, partially ordinal spaces, a highly efficient summary of
the space takes the form of the ‘Hasse diagram’ of the partial order. Attempts to
extend the notion of a Hasse diagram from partially ordered sets to surmise sys-
tems are reported in Doignon and Falmagne (1999) and Falmagne and Doignon
(2011).

6 The Fringe Theorem

The final result of a standardized test is a numerical score13. In the case of an
assessment in the framework of a learning space, the result is a knowledge state
which may contain hundreds of items. Fortunately, a meaningful summary of
that state can be given in the form of its ‘inner fringe’ and ‘outer fringe’.

In the ten-item Example 4, consider the state {c, g, h, i, j}, which is printed
in bold in the covering graph of Figure 2 (page 7). Figure 4 reproduces the
relevant part of the graph, in particular all the adjacent states. From the state
{c, g, h, i, j}, only three items are learnable14, which are a, b and f (we mark
them on their respective lines). On the other hand, the only way to reach state
{c, g, h, i, j} is to learn item j from the state {c, g, h, i} (which is the unique
state giving access to {c, g, h, i, j}). The two sets of items {j} and {a, b, f}
completely specify the state {c, g, h, i, j} among all the states in the structure15;
this is a remarkable property of learning spaces which we now formalize.

Definition 20. Let (Q,K) be a knowledge structure. The inner fringe of a
state K in K is the set of items

KI = {q ∈ K K \ {q} ∈ K}. (11)

The outer fringe of a state K is the set of items

KO = {q ∈ Q \K K ∪ {q} ∈ K}. (12)

13Or a couple of such scores, in the case of a multidimensional model.
14We mean directly learnable without requiring the mastery of any other item outside {c,

g, h, i, j}.
15In this particular case, the two-set summary is barely more concise than the original

state. However, in realistic learning spaces containing millions of states, the summary may be
considerably smaller than the state.
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{c, g, h, i}

{c, g, h, i, j}

{
c, f, g,

h, i, j

}{
b, c, g,

h, i, j

} {
a, c, g,

h, i, j

}

j

a
b

f

Figure 4: Part of Figure 2 showing the items in the inner fringe and outer fringe
of the state {c, g, h, i, j} (see Definition 20).

Note that the empty state ∅ always has an empty inner fringe, and that the
whole domain Q has an empty outer fringe.

Theorem 21. In a learning space, any state is specified by the pair formed of
its inner fringe and its outer fringe.

Theorem 21 has the following important consequence. In any learning space,
the knowledge state uncovered by an assessment can be reported as two sets of
items: those in its inner fringe and those in its outer fringe. The outer fringe
is especially important because, assuming that the learning space is a faithful
representation of the cognitive organization of the material, it tells us exactly
what the student is ready to learn. We will see in Section 12 that this informa-
tion is accurate in real-life: the probability that a student actually succeeds in
learning an item picked in the outer fringe of his or her state, estimated on the
basis of hundreds of thousand ALEKS assessments, is about .93 (see page 45).

7 Learning Words and Learning strings

In a learning space, a learner can reach any state by learning its items one at a
time—but not in any order. Let us look at an example.

Example 22. A learning space on the domain Q = {a, b, c, d} is described by
its covering diagram in Figure 5.

The state {a, b, d} can be reached by mastering the items in three possible
successions, which we also call ‘words’ (see Definition 23):

a b d,

b a d,

b d a.
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∅

{a} {b}

{a, b} {b, d}

{a, b, c} {a, b, d} {b, c, d}

Q

Figure 5: The covering diagram of the learning space in Example 22.

For the mastery of the whole domain Q, there are 6 ‘strings’ in all:

a b c d,

a b d c,

b a c d,

b a d c,

b d a c,

b d c a.

All of the words and strings in Example 22 share a self-explanatory property:
for any of their ‘prefixes’, the items appearing in the prefix form a knowledge
state. Let us define the new terminology.

Definition 23. Given some finite set Q, a word on Q is any injective mapping
f from {1, 2, . . . , k} to Q, for some k with 0 ≤ k ≤ |Q|; the case k = 0
produces the empty word. With f(i) = wi for 1 ≤ i ≤ k, we write the word
f as w = w1 w2 · · ·wk, and we call k the length of the word w. A prefix of w
is a word w1 w2 · · ·wi, where 0 ≤ i ≤ k (thus any word is a prefix of itself).
If an item q does not appear in w, the concatenation of w with q is the word
w q = w1 w2 · · · wk q. A string on Q is a word of length |Q|. Notice that our
words (and strings) do not involve repetitions (because of the required injectivity
of f), a reason for which some authors rather speak of “simple words” (as for
example Boyd and Faigle, 1990). Any word w = w1 w2 · · · wk determines the
set w̃ = {w1, w2, . . . , wk} (if all words are counted, k! of them determine the
same set of size k).

Let (Q,K) be a finite knowledge structure with |Q| = m. A learning word
(in (Q,K)) is a word w on Q such that for each of its prefixes v = w1 w2 · · · wi
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the subset ṽ = {w1, w2, . . . , wi} is a state in K; here 0 ≤ i ≤ k if k is the length
of w. A learning string is such a learning word with k = m.

Korte et al. (1991) use the expression “shelling sequence” for our “learning
word”, and the expression “basic word” for our “learning string”, while Eppstein
(2013a) uses “learning sequence” for “learning string”.

General knowledge spaces can be without any learning string (for instance,
it is the case when K = {∅, Q} as soon as |Q| ≥ 2). The axioms of learning
spaces are consistent with the existence of (many) learning strings and words.
In fact, learning spaces can be recognized from properties of the collection of
their learning strings (see next theorem) or the collection of their learning words
(see Theorem 26).

Theorem 24. Let Q be a finite set, with |Q| = m. A nonempty collection S
of strings on Q is the collection of all learning strings of some learning space on
Q if and only if S satisfies the three conditions below:

(i) any item appears in some string of S;

(ii) if u and v are two strings in S such that for some k in {1, 2, . . . , m− 1}
we have

{ u1, u2, . . . , uk−1 } = { v1, v2, . . . , vk−1 } and uk 6= vk, (13)

then
u1 u2 · · · uk−1 uk vk (14)

is a prefix of some string in S;

(iii) if u and v are two strings in S such that for some k in {0, 1, . . . , m− 1}
and some item q we have

{v1, v2, . . . , vk−1, vk, vk+1} \ {u1, u2, . . . , uk} = {q}, (15)

then u1 u2 · · · uk q is a prefix of some string in S.

Proof. (Necessity.) Assume (Q,L) is a learning space with |Q| = m, and de-
note by S the collection of its learning strings. By Learning Smoothness S is
nonempty and each item of Q appears in some string in S, so Condition (i) is
true. If the hypothesis of Condition (ii) holds, then {u1, u2, . . . , uk−1}, {u1, u2,
. . . , uk−1, uk} and {u1, u2, . . . , uk−1, vk} are all states of L. Hence by Learning
Consistency {u1, u2, . . . , uk−1, uk, vk} is also a state, which we denote by L.
On the other hand, by Learning Smoothness, there is a sequence Lk+1, Lk+2,
. . . , Lm of states with Lk+1 = L, Lm = Q, and |Li \ Li−1| = 1 for i = k + 2,
k+3, . . . , m. Taking wi as the item in Li \Li−1, we obtain the learning string
u1 u2 · · · uk−1 uk vk wk+2 wk+3 · · · wm. Thus Condition (ii) holds.

Now suppose the strings u and v fulfil the assumption in Condition (iii).
Thus {v1, v2, . . . , vk+1} is a state, that we call L. By Learning Smoothness,
there is a sequence Lk+1, Lk+2, . . . , Lm of states in L with Lk+1 = L, Lm = Q
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and |Li \ Li−1| = 1 for i = k + 2, k + 3, . . . , m. With {wi} = Li \ Li−1, we
obtain the learning string

u1 u2 · · · uk−1 uk q wk+2 wk+3 · · · wm.

Hence Condition (iii) holds.

(Sufficency.) Given a collection S of strings on Q satisfying (i)–(iii), we call L
the collection of all prefixes of strings in S. Then ∅ and Q are in L. Moreover,
L clearly satisfies downgradability, that is Condition (b) in Theorem 8. To
establish that L satisfies Condition (c), let K, K ∪ {q} and K ∪ {r} be in L.
There exist strings u and v such that {u1, u2, . . . , u|K|} = K and {v1, v2,
. . . , v|K|+1} = K ∪ {q}. Then by Condition (iii) u1 u2 · · · u|K| q is a prefix of
some string in S. A similar argument shows that u1 u2 · · · u|K| r is a string
prefix. Then by Condition (ii), u1 u2 · · · u|K| q r is also a prefix of some string.
So K ∪ {q, r} ∈ L. Hence, by Theorem 8, (Q,L) is a learning space. Moreover,
the learning strings of (Q,L) constitute exactly S (this derives again from the
definition of S together with Condition (iii)).

Here is an example showing that Conditions (ii) and (iii) in Theorem 24 are
independent.

Example 25. On the domain Q = {a, b, c, d}, the two strings

a b d c,

a c d b

form a collection which satisfies Condition (iii) in Theorem 24 but not Condi-
tion (ii) (take k = 2, u1 u2 = a b and v1 v2 = a c). Conversely, the two strings
on the same domain Q = {a, b, c, d}

a b c d,

b a d c

form a collection which satisfies Condition (ii) in Theorem 24 but not Condi-
tion (iii) (take k = 2, u1 u2 = b a and v1 v2 v3 = a b c).

The next result is Theorem 2.1 in Boyd and Faigle (1990) (compare with
Theorem 1.4 in Korte et al., 1991).

Theorem 26. Let Q be a finite domain. A collection W of words on Q is the
collection of all learning words of some learning space on Q if and only if W
satisfies the following three conditions:

(i) any item from Q appears in at least one word of W ;

(ii) any prefix of a word in W also belongs to W ;

(iii) if v and w are two words of W with ṽ 6⊆ w̃, then for some item q in ṽ \ w̃
the concatenation w q is a word again in W .
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Proof. (Necessity) Assume (Q,L) is a learning space, and denote by W the
collection of all its learning words. Then by downgradability of L and Q ∈ L,
the collection W contains some string, so Condition (i) is true. By the definition
of a learning word w, any prefix of w is also a learning word, so Condition (ii)
holds. Now take two words v and w as in Condition (iii). Then w̃ ∪ ṽ ∈ L
(by Theorem 7, L is ∪-closed). Because of Learning Smoothness, there is a
sequence L0 = w̃, L1, . . . , Lℓ = w̃ ∪ ṽ with |Li \ Li−1| = 1 for i = 1, 2, . . . , ℓ.
Let {q} = L1 \ L0. Then q ∈ ṽ \ w̃ and w q ∈ W .

(Sufficiency) Given a collection W of words as in the statement, set L =
{w̃ w ∈ W}. Then ∅ ∈ L. Repeatedly applying Conditions (i) and (iii), we
infer that there is a string in W , and so Q ∈ L. By (ii), L is downgradable. To
conclude that (Q,L) is a learning space it now suffices to prove that L satisfies
Condition (iii) in Theorem 8. Let K, K ∪ {q} and K ∪ {r} be states in L with
q 6= r. There are then some words v and w in W such that ṽ = K ∪ {q} and
w̃ = K ∪ {r}. Because ṽ \ w̃ = {q}, Condition (iii) implies w q ∈ W . Now
w̃ q = K ∪ {q, r}, and so K ∪ {q, r} ∈ L. Finally, it is easily checked that W
consists of all learning words of L.

Learning words and strings form a useful tool for the handling of large learn-
ing spaces. For instance, they are implicit in the new representation in Figure 6
of the learning space L from Example 22: a learning string consists of the let-
ters (representing items) on a path from the vertex representing ∅ to the vertex
representing Q. We call such a representation (with letters displayed only to
show addition of a single item) a learning diagram.

Figure 7 on page 22 shows a similar learning diagram for our ten-item ex-
ample from Example 4.

Theorem 24 characterizes learning spaces through their complete collections
of learning strings. In the same vein as the base which, containing only a rel-
atively small number of states of the knowledge structure, gives us access to
the whole collection, we might want to summarize in a similar way the collec-
tion of learning strings in a subcollection. The following definition comes from
Eppstein (2013a).

Definition 27. Let S be a collection of strings on a finite domain Q. Form the
collection LS containing all possible unions of the sets determined by prefixes
of strings in S. Then (Q,LS) is the learning space encoded by S.

That (Q,LS) indeed forms a learning space is easy to verify (for instance,
apply Theorem 7(ii)). Now, conversely, given a learning space (Q,L), we may se-
lect any nonempty subset S of its collection of learning strings; then, in general,
LS ⊆ L holds, but there is no reason to have equality here (see Theorem 13.5.7
in Eppstein, 2013a, for a criterion).

The case in which we have the equality LS = L is interesting for algorithmic
work on the learning space L. Let us denote as S1, S2, . . . , Sk the strings forming
S. Then any state in L is univocally encoded by a list of natural numbers n1,
n2, . . . , nk: each of the numbers specifies the length of the prefix we need to
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∅

Q

a b

b da

c d a c

d c a

Figure 6: The learning diagram representing the learning space in Example 22
(see also Figure 5).

extract from the corresponding string in S to get the state at hand as the union
of the prefixes. Eppstein (2013a) shows how to exploit the new state encoding
for various tasks. The present context generates the following problem: given
a learning space, how do we compute the smallest number of learning strings
needed to encode it? The ensuing invariant was dubbed convex dimension by
Edelman and Jamison (1985) (see also Korte et al., 1991). Eppstein (2013b)
gives an algorithm to compute it.

Example 28. The learning space of Example 22 (see also Figure 5) is encoded
by the following three of its learning strings:

a b d c,

b a c d,

b d c a.

It is as well encoded by the two strings

a b c d,

b d c a,

but never by just one string.
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∅

Q

c i g

i gh gcc i h

h c i c
c

g
g

h ih

g h i c b a

b a jacc

b

a
b

f
j

a
j

b
c

jf fa fb b a

d a
d

b

f

d j

da b f

e

Figure 7: The learning diagram of the ten-item learning space L of Example 4
(see also Figure 6).
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8 The Projection Theorem

How large is the structure of a real-life learning space? For instance, what is
the ratio of the number of knowledge states to the number of possible subsets
of the domain? In the ten-item example of Table 1 and Figure 2 we have 34
knowledge states, which gives the ratio 34

210 ≈ .03. However, this example may
be misleading. In real-life learning spaces, the ratio may become considerably
smaller as soon as there are a couple of dozen items. As another illustration,
we again take the 37 items example in Beginning Algebra. There are 4 615
knowledge states in the corresponding (induced) learning space. With just 37
items, the ratio of the number of states to the number of subsets is 4 615

237 ≈
.03× 10−6. We mention in passing that there are 217 different knowledge states
containing exactly 25 items. Presumably all these knowledge states would be
assigned the same psychometric score in classical test theory, while KST treats
them as different.

As mentioned in Section 1, the full domain of Beginning Algebra in the ALEKS
system contains about 650 items. The complexity of the resulting learning space
is daunting. It calls for ways of parsing such huge learning spaces into meaningful
components. One of the goals could be a placement test for which only part
of the full collection of items is needed. A more important reason arises when
we need an assessment on the full structure. In such a case, the number of
knowledge states is so large that a straightforward approach becomes infeasible.

A practical solution has been worked out which consists in suitably parti-
tioning the domain and then carrying on simultaneous, parallel, mutually in-
formative assessments of the resulting substructures, ultimately followed by the
computation of the final state. We outline this technique in Section 10. Here,
we define two useful concepts, that of a ‘projection’ and that of ‘children’ of a
learning space, given a subset of the domain. We show—without proof—that
such a projection remains a learning space, while in general children satisfy only
some of the requirements in Definition 3.

We begin with an illustration based on a small learning space.

Example 29. Let (Q,K) be the learning space on the domain {a, b, c, d} whose
covering diagram is provided in Figure 8. Consider the subset
Q′ = {c, d} of the domain Q and form all the ‘traces’ K ∩ Q′, for K any state
in K. The resulting collection, the ‘projection’ of K on Q′,

{∅, {d}, {c, d} }, (16)

forms again a learning space. The general result appears in Theorem 33(i)
below. We summarize the construction in Figure 9.

With the same space we now illustrate another construction. This time, we
sort out the states in K according to their intersections with Q′ = {c, d}. The
resulting equivalence classes are displayed row by row in Table 4. Thus the
states of K in a same row all have the same trace on Q′ = {c, d} (shown in
the second column). It happens that they always form a ‘union-stable’, well-
graded knowledge structure (see Theorem 33(ii) below). However, in view of
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∅

{a}{b}

{a, b} {a, d}

{a, b, d} {a, c, d}

Q

Figure 8: The covering diagram of the learning space in Example 29.

the absence of ∅, the two last structures do not constitute a learning space. In
the third column, we show the ‘children’; they are obtained by subtracting from
the states (of K shown in that row) their common intersection.

Table 4: The states of the learning space (Q,K) in Example 29 are sorted
according to their intersection with {c, d}. The third column provides the cor-
responding children.

Classes of states Intersections with {c, d} Children

{{a, c, d}, Q} {c, d} {∅, {b}}

{{a, d}, {a, b, d}} {d} {∅, {b}}

{∅, {a}, {b}, {a, b}} ∅ {∅, {a}, {b}, {a, b}}

In the second row of Table 4, all the states (of the original learning space)
have in common the items d (by construction) and moreover a. Removing the
two common items gives the two sets ∅ and {b} which altogether form a learning
space on the new domain {b}. The last assertion is not true in general.

Example 30. Let (Q,K) be the learning space on the domain {a, b, c, d} whose
covering diagram is provided in Figure 10. For Q′ = {a}, one of the two children
equals {{c}, {d}, {c, d}}; it does not contain the empty set.

We now define the concept of a projection, and then that of children.
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∅

{a}{b}

{a, b} {a, d}

{a, b, d} {a, c, d}

Q

∅

{d}

{c, d}

Figure 9: An illustration of the two constructions in Example 29 (with Q′ =
{c, d}): the three equivalence classes are in the rounded, dashed rectangles; the
traces are displayed on the right.

Definition 31. Suppose that (Q,K) is a knowledge structure with |Q| ≥ 2, and
let Q′ be any proper nonempty subset of Q. For K in K, the subset K ∩ Q′ of
Q′ is the trace of K on Q′. The collection of all traces

K|Q′ = {K ∩Q′ K ∈ K} (17)

is the projection of K on Q′.

Figure 11 shows the trace of the ten-item learning space on {c, d, g, j}. Note
that the sets in K|Q′ may be or not be states of K.

Definition 32. Suppose again that (Q,K) is a knowledge structure with |Q| ≥
2, and let Q′ be any proper nonempty subset of Q. Define the relation ∼Q′ on
K by

K ∼Q′ L ⇐⇒ K ∩Q′ = L ∩Q′ (18)

⇐⇒ K △ L ⊆ Q \Q′. (19)
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∅

{b}

{b, c} {b, d}

{a, b, c} {b, c, d} {a, b, d}

Q

Figure 10: The covering diagram of the learning space in Example 30.

(The equivalence between the right hand sides of (18) and (19) is easily verified.)
Then ∼Q′ is an equivalence relation on K. When the context specifies the subset
Q′, we may simply write ∼ for ∼Q′ . We denote by [K] the equivalence class of
∼ containing K, and by K∼ = { [K] K ∈ K} the partition of K induced by ∼
(or by Q′). For any state K in K, we define the collection

K[K] = {L \ ∩[K] L ∈ [K]}. (20)

The collection K[K] is a Q′-child of K, or simply a child of K when the set Q′

is made clear by the context. A child of K may take the form of the singleton
{∅}; it is then the trivial child. We refer to K as the parent structure.

Because ∅ ∈ K we have K[∅] = [∅]. We may have K[K] = K[L] even when
K 6∼ L. (Examples are easily built: see Table 4.)

Theorem 33. Let (Q,K) be a learning space, with |Q| ≥ 2. The following two
properties hold for any proper nonempty subset Q′ of Q.

(i) The projection K|Q′ of K on Q′ is a learning space.

(ii) The children of K are well-graded and ∪-stable collections. The latter
means that the union of any nonempty subcollection of the collection also
belongs to the collection16. Example 29 shows that the children are not
necessarily learning spaces.

We can impose some restricting conditions on the set Q′ that guarantee any
child to be a learning space, provided that the empty state is added to the
collection if necessary (see Falmagne and Doignon, 2011, Definition 2.4.11 and
Theorem 2.4.12).

16Notice a slight difference between “union-stable” and “union-closed”; only the second
condition entails that the empty set belongs to the collection.
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} {
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{a, b, c, d, f, g, h, i, j}

Q

{c, d, g, j}

c, g, j

{c, g}

{g}
{c}

∅

Figure 11: Projection of the ten-item example on {c, d, g, j}: the dashed lines
delineate the equivalence classes, the little black rectangles show the traces.
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The concept of a projection plays an essential role in designing assessment
algorithms for realistic learning spaces. In applications, the size of the collection
of states may be so prohibitively large that the obvious strategy of gradually
narrowing down, by some method or other, the class of states consistent with
the assessment results is not practical. The solution discussed in Subsection 10.1
is to first design a suitable partition of the domain into N manageable classes.
Second, one builds the N projections on these classes. The assessment procedure
then operates in parallel on the N projections. A combination of the results of
the N simultaneous assessments delivers a final knowledge state.

9 Probabilistic Knowledge Structures

The concept of a learning space is deterministic. As such, it does not provide
realistic predictions of subjects’ responses to the problems of a test. Probabili-
ties must enter in at least two ways in a realistic model. For one, the knowledge
states will certainly occur with different frequencies in the population of refer-
ence. So, it makes sense to postulate the existence of a probability distribution
on the collection of states. For another, a subject’s knowledge state does not
necessarily specify the observed responses. A subject having mastered an item
may be careless in responding, and make an error. Also, in some situations, a
subject may be able to guess the correct response to a question not yet mas-
tered17. In general, it makes sense to introduce conditional probabilities of
responses, given the states.

Definition 34. A probabilistic (knowledge structure) (Q,K, p) consists of a
finite knowledge structure (Q,K) with a probability distribution p on the col-
lection K of states. Thus p(K) is a real number with 0 ≤ p(K) ≤ 1, for any
state K, and moreover

∑
K∈K p(K) = 1. A parametrized (probabilistic knowl-

edge structure) (Q,K, p, β, η) is a probabilistic knowledge structure (Q,K, p)
equipped with two functions β : Q → [0, 1] : q 7→ βq and η : Q → [0, 1] : q 7→ ηq.
The number βq represents the careless error probability to item q, and the
number ηq is the lucky guess probability for item q.

Definition 35. A parametrized probabilistic knowledge structure (Q,K, p, β, η)
is straight if βq = ηq = 0 for all items q.

We now describe two types of construction of probability distributions on a
set of states. In the first type, the set of states results from a projection.

Definition 36. Let (Q,K, p) be a probabilistic knowledge structure, and let
∅ 6= Q′ ⊂ Q. On the projection K|Q′ , we define the projected distribution p′ by
setting, for K ′ a state in K|Q′ ,

p′(K ′) =
∑

{p(K) K ∈ K and K ∩Q′ = K ′} .

17Such lucky guesses have probability zero or are very unlikely in assessment systems re-
quiring open responses to the items, instead of multiple-choice. ALEKS is one of those systems.
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Then (Q′,KQ′ , p′) is the probabilistic projection onQ′ of the probabilistic knowl-
edge structure (Q,K, p).

In the second case, we start with a probabilistic knowledge structure and
extend it on a larger set of states.

Definition 37. Let (Q,K) be a knowledge structure, and let ∅ 6= Q′ ⊂ Q.
Assume p′ is a probability distribution on the projection K|Q′ . We define the
extended distribution p+ to K of p by setting, for K a state in K,

p+(K) =
p′(K ∩Q′)∑

|{L ∈ K L ∩Q′ = K ∩Q′}|
.

Then (Q,K, p+) is the uniform extension to (Q,K) of the probabilistic knowledge
structure (Q′,K′, p′).

10 The Stochastic Assessment Algorithm

The general idea of the assessment algorithm is to gradually update, after each
response of the subject, the distribution of probabilities on the collection of
states. On each step of the assessment, the system selects an item, and presents
a randomly chosen instance of that item to the student. The student’s response
is evaluated and classified as “correct” or “false”. The result serves to update
the probability distribution on the set of states. The new distribution is the
starting point of the next step. Ultimately, only one or a few states will remain
with a high probability. The system then chooses the final state.

The assessment algorithm we just sketched is applicable in the ‘straightfor-
ward situation’, that is, when the learning space (or the knowledge structure for
that matter) is moderately large, with a domain not exceeding 50 items. Such
learning spaces can serve in the design of some placement tests, for example. In
Subsection 10.2, we deal with the more usual case of domains having hundreds
of items. On such large domains, the application of the algorithm requires con-
siderably more sophistication because the number of states becomes so large
that operating on the probability distribution on the set of states is unmanage-
able. The solution outlined in Subsection 10.2 is to build a suitable partition of
the domain and to perform parallel (simultaneous, mutually informative) assess-
ments on the projections on all the subdomains. The final state is constructed
by combining the outcomes obtained in each of the parallel assessments.

10.1 Sketch of the algorithm in the straightforward situ-

ation

We suppose that, at the outset of the algorithm execution, there exists some
probability distribution on the collection of states18. Such a probability dis-
tribution may be inferred from some information on the population that the

18This is one of the reasons why the algorithm cannot be readily applied in the case of large
domains: we cannot manage a probability distribution on a set containing billions of states.
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Figure 12: Initial probabilities of all the states at the beginning of the assessment.
The probabilities are marked by the shading of the circles representing the states.
Dark grey means very unlikely, and bright grey very likely.
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testee belongs to. Failing such information, we may simply assume that the
distribution is uniform. The assessment is adaptive. On each of its main steps,
the algorithm applies a Bayesian type updating operator of the current proba-
bility distribution, producing thus for each knowledge state an estimate of the
probability that the student be in this state.

We keep illustrating our discussion by our example of the 10 items in Be-
ginning Algebra and give in Figure 12 a picture of the learning space at the
beginning of the assessment. Notice that the probability values for the states
are suggested by the strength of gray (the lighter the disk is, the higher the
probability value is).

Figure 13 summarizes the sequence of events on each step. We call such steps
trials. At the beginning of each trial, the algorithm picks the ‘most informative
item’19 to give the student; for doing so, it relies on the current, estimated
probabilities of the states. Next, it randomly chooses an instance of the item.
For example, if the item selected is

a : Quotients of expressions involving exponents

the instance could be

Simplify the expression
a4b5

5a6b
as much as possible.

The algorithm then proposes the instance to the student. It records the re-
sponse and checks the correctness. To complete the trial, the algorithm uses
the information just collected in order to update the probability distribution on
the collection of states. Of course, we still need to specify how the item selection
and the probability updating are performed (see the Questioning Rule and the
Updating Rule below, page 34).

The basic idea of the assessment algorithm is to ensure that, in the course
of the assessment, the probability distribution becomes gradually concentrated
on a knowledge state, or on a few knowledge states which are close together20.
If several states end up with the same high probability, the system chooses
randomly between them. In practical situations, the assessment terminates in
about 25–35 trials with the algorithm we will describe. We first provide an
illustration and then introduce the required notation.

Figure 12 pictured a (possible) probability distribution on the set of states
at the beginning of the assessment. The brightest shades indicate the high
probability states, the darkest ones represent the lowest probability states. We
infer from the picture that the student may have master about 4–7 items. On
page 33, Figure 14 shows the graphs of three later situations. Suppose the
student gives during the first trial a correct response to item a. The graph on the
left shows the updated probability values: note the increase of the probability
values for states containing a, and the decrease of the values for the states not
containing a. The middle graph sketches the estimated distribution at the end

19For the technical meaning of this term, see the Questioning Rule on page 34.
20From the standpoint of their symmetric difference.
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State probabilities on trial n

Selected instance

Response correctness

State probabilities on trial n+ 1

Select item instance

Questioning Rule

Check student’s response

Update state probabilities

Updating Rule

Figure 13: Top to bottom, a schematic representation of the assessment from
trial n to trial n+ 1: on the left the data acted upon, on the right the general
instructions executed according to specific rules.

of trial 2, after the student gave next a false response to item f . The last graph
represents the typical situation at the end of the assessment: only one state
remains with a high probability, which is here {a, c, g, h, i, j}. The algorithm
would choose that state as representing the competence of the student in that
part of Beginning Algebra.

We now give a precise mathematical meaning to the concepts outlined above,
starting with a list of notations based on a knowledge structure (Q,K).

32



c i g

i
gh gcc

i h

h

c

i

c c

g
g

h
i

h

g h i c b a

b

a

j

a

cc

b

ab f

j

a j

b

c

jf
f

a
fb b

a

d
a

d

b
f

d

j

da b f

e

c i g

i
gh gcc

i h

h

c

i

c c

g
g

h
i

h

g h i c b a

b

a

j

a

cc

b

ab f

j

a j

b

c

jf
f

a
fb b

a

d
a

d

b
f

d

j

da b f

e

c i g

i
gh gcc

i h

h

c

i

c c

g
g

h
i

h

g h i c b a

b

a

j

a

cc

b

ab f

j

a j

b

c

jf
f

a
fb b

a

d
a

d

b
f

d

j

da b f

e

very unlikely very likely

Figure 14: Left to right, three successive situations along the assessment: (i) af-
ter a correct response to a; (ii) next, after a false answer to f ; (iii) later, at the
end of the assessment.
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Mathematical notation.
n the step number, or trial number, with n = 1, 2, . . . ;
Kq the subcollection of K formed by the states containing q;
Λ+ the set of all positive probability distributions on K;
Ln a positive random probability distribution on K:

we have Ln = Ln ∈ Λ+ if Ln is the probability distribution on K at the
beginning of trial n (so Ln > 0);

Ln(K) a random variable (r.v.) evaluating the probability of state K on trial
n;

Qn a r.v. representing the question asked on trial n:
we have Qn = q if q in Q is the question asked on trial n;

Rn a r.v. coding the response on trial n:

Rn =

{
1 if the response is correct,

0 otherwise;

Wn the random history of the process from trial 1 to trial n;

ιA the indicator function of a set A: ιA(q) =

{
1 if q ∈ A,

0 if q /∈ A;

ζq,r a collection of parameters defined for q ∈ Q, r ∈ {0, 1} and satisfying
1 < ζq,r (see Updating Rule [U] below).

The formal rules governing the assessment algorithm are as follows (where
n is the trial number).

Using the ‘Questioning Rule’, the algorithm picks a most informative item,
that is, an item which, on the basis of the current probability distribution on
the set of states, has a probability of being responded to correctly as close to .5
as possible. There may be more than one such item, in which case a uniform,
random selection is made. Formally, in terms of the actual probability distribu-
tion Ln:

[Q]Questioning Rule. For all q ∈ Q and all positive integers,

P(Qn = q Ln,Wn−1) =
ιS(Ln)(q)

|S(Ln)|
(21)

where S(Ln) is the subset ofQ containing all those items q minimizing |2Ln(Kq)−
1|. Under this questioning rule, which is called half-split, we must have Qn ∈
S(Ln) with a probability equal to one. The questions in the set S(Ln) are then
chosen with equal probability.

The ‘Response Rule’ formalized below states that the student’s response to
an instance of an item is correct with probability 1 if the item belongs to the
student’s knowledge state K0, and false with probability 1 otherwise. While this
rule plays no role in the assessment algorithm per se, it is essential in some sim-
ulation, and so is its elaborated version in the form of the ‘Modified Response
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Rule’ (see page 36 below). These rules are used, in particular, in the ‘Extra
problem method’ (see Subsection 0.18.1, page 43).

[R]Response Rule. There is some state K0 such that, for all positive integers
n,

P(Rn = ιK0
(q) Qn = q,Ln,Wn−1) = 1 . (22)

The state K0 is the latent state representing the set of all the items currently
mastered by the student. It is the state that the assessment algorithm aims to
uncover.

[U]Updating Rule. We have P(L1 = L) = 1 (with L the initial probability
distribution). Moreover there are real parameters ζq,r (where q ∈ Q, r ∈ {0, 1}
and 1 < ζq,r) such that for any positive integer n, if Ln = Ln, Qn = q, Rn = r
and

ζKq,r =

{
1 if ιK(q) 6= r,

ζq,r if ιK(q) = r,
(23)

then

Ln+1(K) =
ζKq,rLn(K)∑

K′∈K ζK′

q,rLn(K ′)
. (24)

This updating rule is called multiplicative with parameters ζq,r. The operator
mapping Ln to Ln+1 has two important, related properties. First, it is commu-
tative: the order of the successive items of the assessment has no effect on the
result, that is, on the final probability distribution on the set of states. Second,
the operator is essentially Bayesian (this was proved by Mathieu Koppen21).

It can be shown that, under the above Rules [Q], [R] and [U], the latent
state is recoverable in the sense that:

Ln(K0)
a.s.
−→ 1. (25)

We recall that “a.s.” stands for “almost surely”. For a proof, see Theorem
1.6.7 in Falmagne and Doignon (2011). Note that this theorem assumes that
the careless errors and the lucky guesses have probability zero (the straight case
as in Definition 35).

While Rules [U], [Q], and [R] are fundamental to the assessment, a straight-
forward implementation of these rules in an assessment engine is not feasible for
two reasons. One is that students often make careless errors. A solution is to
amend Rule [R] by introducing a ‘careless error parameter’. This would result,
for example, in the modified rule:

21Personnal communication; see Subsection 13.4.5 in Falmagne and Doignon (2011).
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[R’]Modified Response Rule. For all positive integers n,

P(Rn = ιK0
(q) Qn = q,Ln,Wn−1) =

{
1− βq if q ∈ K0

0 if q /∈ K0 ,
(26)

in which βq is the probability of making an error in responding to the item q
which lies in the latent state K0. The parameters βq can be estimated from the
data (see Subsection 12.1, page 43). In some cases, ‘lucky guess’ parameters may
also be used, for example to deal with cases of the multiple choice paradigm.
However, in real life situations, the occurrence of lucky guesses would render the
result of the assessment so unreliable as to render it practically useless. Multiple
choice paradigms are cheap but their results are questionable and they should
be avoided. The ALEKS assessment system, which is based on the three rules [U],
[Q], and [R’], rarely use multiple choice. When it does, the number of possible
responses is so large that the probability of a lucky guess is negligible.

The second reason is that, in many real life applications, the domain formal-
izing an actual curriculum is typically very large, containing several hundred
items. The learning space can still be constructed but its collection of states
is huge, counting many million states. It means that the assessment algorithm
cannot proceed in the straightforward manner outlined above: the probability
distribution on such a large collection of states cannot be managed. We now
expose a solution.

10.2 The parallel algorithm for large domains

In case the domain Q of the ‘parent learning space’ L is large, the algorithm
first partitions Q into N subdomains Q1, Q2, . . . , QN . Here, the subdomains
are approximately of equal sizes, and they are manageable because N is chosen
sufficiently large. They are representatives of the parent domain Q, in the
sense, for example, that each one of them could serve as a placement test.
By the Projection Theorem 33(i) (page 26), these N subdomains determine
N projections L1, L2, . . . , LN which are all learning spaces. The algorithm
then manages N simultaneous22 assessments on the N projected learning spaces(
Qi,Li

)
(where i = 1, 2, . . . , N). The key difficulty is to immediately transfer

information obtained from a response to some item q in the domain Qj of
the projected learning space Lj , to all the other N − 1 learning spaces with
appropriate updates of their state probabilities.

The main features of the algorithm are described in Falmagne et al. (2013,
see Section 8.8, pages 143–144). The basic ideas are as follows.

1) On each trial, scan the N learning spaces and choose the “most informa-
tive” item to be presented to the student. Suppose that this item is q,
belonging to the subdomain Qi of the projected learning space (Qi,Li).

2) Record the student’s response to item q. Update the state probabilities of
the learning space Li.

22or maybe better said: alternating.
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3) Update the state probabilities of all the other learning subspaces Lj , j 6= i.
This is achieved by temporarily adding item q to the other learning spaces
Lj and working with extended distributions (cf. Definition 37).

4) At the end of the assessment, combine the information gathered in all the
N learning subspaces into a final knowledge state in L. For details, see
Falmagne et al. (2013, Subsection 8.8.1, page 144).

11 About Building Knowledge Spaces or Learn-

ing Spaces

Building a knowledge space on a given domain is a highly demanding, data
driven enterprise. Building a learning space is an even much more intricate
process. Chapters 15 and 16 of Falmagne and Doignon (2011) describe a method
in details. We only sketch the main ideas here, proceeding in two steps. We
first describe some theoretical constructions which are instrumental for building
knowledge spaces. We then show how these tools can be amended in the case
of learning spaces.

The basic algorithm is the ‘QUERY’ routine, which is due to Koppen (1993)
and Müller (1989) (see also Dowling, 1994). The routine manages the following
type of queries, which are either put to expert teachers or have responses inferred
from assessment data.

[Q] Suppose that a student under examination has just provided wrong re-
sponses to all the items in some set A. Is it practically certain that this
student will also fail item q? Assume that the conditions are ideal in the
sense that errors and lucky guesses are excluded.

Such a query is summarized as the pair (A, q), with ∅ 6= A ⊂ Q and q ∈ Q.
The QUERY routine gradually builds the relation P from 2Q to Q consisting of
all the queries (A, q) which receive a positive response. For m = |Q|, there
are m

(
2m−1 − 1

)
useful queries (asking a query (A, q) with q ∈ A is useless:

the answer must be affirmative). So their number is superexponential in m.
Fortunately, in most cases, only a small fraction of them need to be asked:
as we explain below, the responses to some queries may be inferred from the
response to previously asked queries. The importance of the queries regarding
the problem at hand—building a knowledge space or a learning space—lies in
the following theorem (Koppen and Doignon, 1990).

Theorem 38. For a finite domain Q, there is a one-to-one correspondence
between the collection of knowledge spaces K on Q and the set of relations P
from 2Q \ {∅} to Q satisfying for all q in Q and A, B in 2Q \ {∅}:

(i) if q ∈ A, then APq;

(ii) if APb for all b in B and BPq, then APq.
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One such correspondence is defined by the two equivalences, where r ∈ Q, K,
B ⊆ Q,

K ∈ K ⇐⇒
(
∀(A, q) ∈ P : A ∩K = ∅ =⇒ q /∈ K

)
, (27)

(B, r) ∈ P ⇐⇒
(
∀K ∈ K : B ∩K = ∅ =⇒ r /∈ K

)
. (28)

In view of Formula (27), a positive answer to the query (A, q) may lead
to remove some subsets from the collection of potential states (namely, all the
subsets K satisfying both A ∩ K = ∅ and q ∈ K). Negating both sides of
Formula (27) gives us the equivalent formula

K /∈ K ⇐⇒
(
∃(A, q) ∈ P : A ∩K = ∅ and q ∈ K

)
, (29)

which clearly shows that any non-state K is ruled out by a positive answer to
some query. Thus Theorem 38 is instrumental for building a knowledge space—
which may or may not be a learning space. We outline below (starting on
page 39) how we can adapt the implementation of Theorem 38 so that learning
spaces are generated.

In the QUERY procedure, Block j consists of all the queries (A, q) with j = |A|.
The procedure starts with Block 1, followed by Block 2, etc. In principle an
expert teacher is able to provide the answer to any query in Block 1, because
such a query takes the following simple form.

[Q1] Suppose that a student under examination has just provided a false re-
sponse to question q. Is it practically certain that this student will also
fail item r? Assume that the conditions are ideal in the sense that errors
and lucky guesses are excluded.

Collecting the responses to such queries ({r}, q), or (r, q) for short, with r, q
in Q and r 6= q amounts to constructing a relation R on the set Q. But not
all such queries need to be asked. Assuming that the expert is consistent, we
can infer the responses of some queries from other queries. For instance if the
responses to the queries (r, t) and (t, q) are positive, then the response to (r, q)
should also be positive. In general, we only need to ask the expert a relatively
small set of queries of the type [Q1]. Their responses yield some relation R. The
transitive closure23 t(R) of the relation R is a quasi order on Q. By Birkhoff’s
Theorem 10 (page 10), the quasi order t(R) uniquely defines a quasi ordinal
knowledge space on Q, that is, a knowledge structure closed under union and
intersection. The design of the QUERY algorithm ensures that this quasi order
is in fact a partial order. Thus the quasi ordinal structure is an ordinal space
L1, namely, a learning space closed under intersection. The learning space L1

contains all the actual knowledge states of the learning space under construction.
However, it also typically contains a possibly very large number of false states,
which are due to the closure of intersection of L1.

While human experts are capable of providing useful responses to queries
of the type [Q1], their responses to queries of higher blocks are less reliable.

23That is, the smallest transitive relation on Q that includes R.
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Fortunately, despite the presence of false states, the learning space L1 is suffi-
ciently informative to be used in the schools and colleges24. The data collected
by assessments using L1 can then be used to simulate human expert responses
to queries of higher block numbers, such as Block 2 or Block 3.

Here is how, taking Block 2 as our example. Assuming that we have a very
large collection of assessment data25, we can estimate the conditional probabili-
ties that failing both items r and t entails failing also item q. Using a convenient
abuse of notation, we write for these conditional probabilities26:

P(q = 0 r = t = 0). (30)

Choosing a suitably large threshold value θ, with 0 < θ < 1, we can construct
the relation P for Block 2 by the rule:

{r, t}Pq exactly when P(q = 0 r = t = 0) > θ. (31)

Using such estimates and Formula (29) help implementing Block 2 of the QUERY
routine. However, the resulting knowledge space is not necessarily a learning
space. Consequently, not all positive responses {r, t}Pq should be implemented
and result in the elimination of states. This remark also applies in the general
case, to the queries of any block.

The QUERY routine has been adapted for the construction of learning spaces.
As suggested by our example of Block 2, the general idea is to verify that
the removal of a state by the application of Theorem 38 would not result in
a violation of the learning space axioms. The key result is Theorem 16.1.6 in
Falmagne and Doignon (2011), which is restated as Theorem 43 here. It relies
on the concept of a ‘hanging state’.

Definition 39. A nonempty stateK in a knowledge structure (Q,K) is hanging
if its inner fringe KI = {q ∈ Q K \ {q} ∈ K} (cf. Definition 20) is empty. The
state K is almost hanging if it contains more than one item, but its inner fringe
consists of a single item.

Example 40. The knowledge space

L = {∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, Q},

depicted in Figure 40 has no hanging states, and has two almost hanging states,
which are {a, c} and {a, d}. According to Theorem 41 below, L must be a
learning space.

The following result is straightforward.

Theorem 41. A finite knowledge space is a learning space if and only if it has
no hanging state.

24The likely reason is that any false state L may be close to some true state K (in the sense
of the symmetric difference distance |K △ L| = |(L \K) ∪ (K \ L)|).

25Which is the typical case in the ALEKS system for example.
26Technically, q, r, and t denote items and not random variables
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Q

Figure 15: The covering diagram of the knowledge space in Example 40.

Theorem 41 indicates that, in the application of the QUERY routine, we must
avoid the creation of hanging states (which could result from the removal of
states by a positive response to a query). We need one more tool to analyze the
effect of such a positive response.

Definition 42. Let (Q,K) be a knowledge space and let (A, q) be any query
such that ∅ 6= A ⊂ Q and q ∈ Q \A. For any subfamily F of K, we define

DF (A, q) = {K ∈ F A ∩K = ∅ and q ∈ K}. (32)

Thus, DK(A, q) is the subfamily of all those states of K that would be re-
moved by a positive response APq to the query (A, q) in the framework of the
QUERY routine.

Theorem 43. For any knowledge space K and any query (A, q), the family of
sets K\DK(A, q) is a knowledge space. If K is a learning space, then K\DK(A, q)
is a learning space if and only if there is no almost hanging state L in K such
that A ∩ L = LI and q ∈ L.

The adapted QUERY routine for building a learning space is based on Theo-
rem 43. As we described above (page 38), we obtain a learning space (actually
an ordinal space) L1 at the end of Block 1. The next query from Block 2 is
of the form ({r, t}, q). A positive response {r, t}Pq induced from the estimated
conditional probabilities of Statement (31) would lead to the removal from L1

of any state K such that

{r, t} ∩K = ∅ and q ∈ K, (33)

provided L1 \ {K} does not contain any hanging state (cf. Formula (29)). But
there is one more subtlety. The fact that L1 \ {K} contains some hanging
state does not necessary mean that the query ({r, t}, q) must be discarded for
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ever. Indeed, it may be that, at a later stage of the execution of the algorithm,
after the removal of some other states, implementing {r, t}Pq no longer cre-
ates hanging states. The adapted QUERY routine takes care of such details (see
Falmagne and Doignon, 2011, Chapter 15 and 16).

So far, only Block 2 of the adapted QUERY routine has been implemented
to built the learning space L2 in realistic situations involving several hundred
items, such as Beginning Algebra as the subject is taught in the US. Remarkably,
in these cases, it was observed that 99% of the false states in L1 are removed to
form L2. It is highly plausible that even better, smaller learning spaces would
result from implementing Block 3 to L2, and maybe even higher blocks later
on. We have been told by the ALEKS team27 that this costly enterprise is still
at the project stage.

Doignon (2014) recently proposed another modification of the QUERY routine
to build a learning space. He uses a fundamental property of the collection of
all the knowledge structures on the domain Q, a property which follows from
results in Caspard and Monjardet (2004). Here, a knowledge structure K on
the domain Q is included in a knowledge structure L also on Q when any state
in K is also a state in L (that is, K ⊆ L).

Theorem 44. For a given finite knowledge space (Q,K), there are two cases.
Either there is no learning space on Q included in K, or among all the learning
spaces on Q included in K, there is one which includes all the other ones.

When the second case in Theorem 44 occurs, we denote by K△ the largest
learning space included in the knowledge space K. Theorem 46 below provides
a description of K△ in terms of ‘gradations’ (Theorems 44 and 46 first appeared
in Doignon, 2014).

Definition 45. Let (Q,K) be a finite knowledge structure. A learning path
in K is a maximal chain of states. A gradation C is a learning path which is
accessible (Definition 5), that is: for any nonempty state K in C there is some
item q in K for which K \ {q} ∈ K.

Notice that a learning path necessarily contains both states ∅ and Q. A
gradation always consists of 1 + |Q| states of respective sizes 0, 1, . . . , |Q|,
and it forms itself a learning space on Q. There is an obvious correspondence
between gradations and learning strings (Definition 23).

Theorem 46. Let K be a knowledge space on the finite domain Q. If K includes
at least one learning space on Q, then the largest learning space K△ on Q
included in K is formed by all the states in all gradations in K.

As the classical QUERY routine, the adjusted QUERY routine proposed in
Doignon (2014) repeatedly asks queries and maintains a collection L of sub-
sets of Q which, although it is decreasing, always forms a learning space on
Q. When the query (A, q) prompts a positive answer from the expert (or the

27Personnal communication.
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database), the routine builds the collection K = L \ DL(A, q). By Theorem 43,
the collection K is again a knowledge space. Now there are two cases:

(i) K includes some learning space (in other words: there is at least one
gradation in K, cf. Theorem 46). Then, in view of Theorem 44, K includes
for sure the learning space K△. The routine then replaces L with the latter
learning space and asks a new query, if any is left unanswered.

(ii) K does not include any gradation. Then the routine exits execution, de-
livering the actual collection L.

Killing the routine in Case (ii) above makes sense, because there is no learn-
ing space that complies with the answers collected to queries. To the contrary,
when the query answers are coherent in the sense that they reflect some latent
learning space, Case (ii) does not occur. Even more, the routine uncovers the
latent learning space.

Theorem 47. If L is a latent learning space on the finite domain Q and the
query answers are truthful with respect to L, then the adjusted QUERY routine
will ultimately uncover L.

In any case, the adjusted QUERY routine always produces a learning space
(even in case it reached Case (ii) above and therefore exited execution). We
will not go into the details of the implementation of the adjusted QUERY routine,
nor report any comparison of its performances with those of the adapted QUERY

routine.

12 Some Applications—The ALEKS System

In psychometrics, the concepts of “validity” and “reliability” are distinct28 and
dealt with separately, which is justified because a psychometric test is a mea-
surement instrument which is not automatically predictive of a criterion. In the
applications of Learning Space Theory (LST) such as ALEKS, however, the items
potentially29 used in any assessment are, by construction, a fully comprehen-
sive coverage of a curriculum, typically based on the consultation of numerous
standard textbooks. This implies that if a LST-type assessment is reliable, it is
presumably also valid, and vice versa (cf. Section 17.1 in Falmagne and Doignon,
2011).

In our introduction, we have presented LST as a more predictive, or valid,
alternative to psychometrics. We describe here four analysis of data which
all vindicate that position. The material is taken from Cosyn et al. (2013).
However, the statistical analysis is so complex and detailed that we can only
provide a summary here.

28See Anastasi and Urbina (1997) for explanations.
29Potentially, in the sense that any item of the domain could be part of the test.
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12.1 The extra problem method

The first inquiry investigates whether the knowledge state uncovered at the end
of an assessment is predictive of the responses to questions that were not asked.
For example, there are 416 items in the elementary school mathematics domain
used in the ALEKS system, of which at most 35 are used in any assessment. Can
we reliably predict the student’s responses to the 381 = 416 − 35 remaining
questions?

To find out, an extra problem is asked in any assessment, the response to
which is not used in uncovering the state. The authors of Cosyn et al. (2013)
have evaluated the correlation between the response to the extra problem—
coded as 1/0 for correct/false—and a couple of predictive indices obtained from
or during the assessment.

One predictive index is the dichotomic variable coding the observation that
the extra problem is either in or out of the final state. Accordingly, the data
takes the form of the 2 by 2 matrix in Table 5.

Table 5: Basic data matrix for the computation of the correlation between the
cases “in or out of the final state” and the student’s response coded as 1/0 for
correct/false. So, theoretically, z stands for the number of lucky guesses, and y
for the number of careless errors.

Response

1(correct) 0 (false)

State
in x y

out z w

Because no correlation coefficient is available that would be fully adequate
for the situation, two potentially useful ones were computed by Cosyn and his
colleagues for these data: the tetrachoric and the phi coefficient. The results
are given in Table 6 for the median values of the coefficients and the grouped
data. These data pertain to 125,786 assessments using 324 problems out of
the 370 problems mentioned above30. The tetrachoric values are in the left
column of the table. The median of the distribution is around .68. The grouped
data, obtained from gathering the 324 individual 2× 2 matrices into one, yields
a higher correlation of about .80. These are high values, but the tetrachoric
coefficient is regarded as biased upward (however, see Greer et al., 2003). The
right column of the table contains similar values for the phi coefficient. These
values are much lower, yielding a median of .43 (contrasting with the .68 value
obtained for the tetrachoric) and a grouped data value of .58 (instead of .80).

30Forty-six problems were discarded because the relevant data were not sufficient to provide
reliable estimates of the coefficients.
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Table 6: Values of the coefficients correlating the 1/0 variables coding the in/out
of the final state and the correct/false response in the two cases: median value
of the correlation distribution and grouped data.

tetrachoric phi

median .68 .43

grouped data .80 .58

12.2 Correcting for careless errors

The relatively low correlation values obtained for the phi coefficient in the above
analysis may be due in part to the occurrence of careless errors. However, the
basic data matrix of Table 6 may be revised to include such careless errors.
Instead of the dichotomic in/out (of the final state) variable, Cosyn et al. (2013)
define the new variable

Sa =

{
1− ǫa if the final state contains the extra question a,

0 otherwise,
(34)

in which ǫa stands for the probability of committing a careless error to item a.
So, if the extra question a is contained in the uncovered state, Sa is the probabil-
ity of not committing a careless error to item a. The careless errors probabilities
ǫa were estimated from those cases in which, by chance, the same item a appears
twice in an assessment, once as the extra problem and the other as one of the
other items, and moreover, the response in at least one of the two instances of
a is correct. The relative frequency of cases in which a false response is given
to the other instance of a provides an estimate of ǫa.

The variable Sa is neither exactly continuous nor exactly discrete31. Never-
theless, for the purpose of comparison with similar analyses performed in psy-
chometric situations, the authors have used the point biserial coefficient rpbis to
compute the correlation between the variables Sa and the 1/0 variable coding
the correct/incorrect responses to the extra problem. The value reported for
rpbis was .67, noticeably higher than the .58 obtained for the phi coefficient for
the same grouped data.

The authors compare this .67 value for the point biserial coefficient with
those disclosed for the same coefficient in the Educational Testing Services (ETS)
(2008) report32 for the Algebra I California Standards Test (CST), which cov-
ers approximately the same curriculum as the ALEKS assessment for elementary
algebra and is given to more than 100000 students each year. This test consists

31For example, the distribution of Sa vanishes in a positive neighborhood of 0, but is positive
at the point 0 itself.

32Produced for the California Department of Education (Test and Assessment Division).
See http://www.cde.ca.gov/ta/tg/sr/documents/csttechrpt07.pdf.
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of 65 multiple choice questions (items) and is built and scored in the frame-
work of Item Response Theory (IRT), for which the point biserial coefficient
is a standard measure. In particular, for each of the 65 items, a point biserial
item-test correlation was computed, which measured the relationship between
the dichotomous variable giving the 1/0 item score (correct/incorrect) and the
continuous variable giving the total test score (see p. 397 of the ETS report
referenced above). For the 2007 administration of the Algebra I CST, the mean
point biserial coefficient for the 65 items was .36, and the median was .38 (see
Table 7.2, p. 397 of the ETS report). The minimum coefficient obtained for an
item was .10 and the maximum was .53 (Table 7.A.4, pp. 408–9, of the ETS
report). The averages for preceding years on the test were similar, namely,
the mean point biserial coefficients were .38 in 2005 and .36 in 2006 (see Table
10.B.3, p. 553, of the same report)33.

12.3 Learning readiness

A student using the ALEKS system is given regular assessments. At the end of
each assessment34, the system is giving the student the choice of the next item
to learn, such items being located in the outer fringe of the student’s knowledge
state35. This makes sense because the items in the outer fringe are exactly
those that the student is ready to learn. So, if the validity of the assessment is
high, the probability of successfully learning an item chosen in the outer fringe
should also be high. Cosyn et al. (2013) have estimated the probability that
a student successfully learns an item chosen in the outer fringe of his or her
state. For elementary school mathematics, the median of the distribution of the
estimated (conditional) success probabilities was .93. This estimated was based
on 1,940,473 learning occasions.

12.4 ALEKS based placement at the University of Illinois

Until 2006, the students entering the University of Illinois had to take a math-
ematics placement test based on the ACT36. The results were not satisfactory
because many students lack an adequate preparation for the course they were
advised to take and ended up withdrawing. Beginning in 2007, the ACT was
replaced by ALEKS. Ahlgren and Harper (2013) reports a comparison of the two
situations, which we briefly sum up here (see also Ahlgren and Harper, 2011).

The consequence of a withdrawal from a course may have dire consequences.
For example, we read in the introductory section of Ahlgren and Harper (2013):

“At the University of Illinois, the standard introductory calculus
course (Calc: Calculus I) is a five credit course, the withdrawal from

33These low correlation values were obtained even though some items with low item test
correlations were removed from the test in a preliminary analysis.

34Except the final one, at the end of the course.
35See Section 6 for the concept of outer fringe.
36Originally, an acronym for American College Testing.
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Table 7: Percentages of decrease in withdrawals from three courses between Fall
2006 (before ALEKS) and Fall 2007, Fall 2008.

Percentage of Decrease in Withdrawals

Course BusCalc Calc CalcExp

2006–2007 ց57% ց49% ց67%

2006–2008 ց19% ց81% ց42%

which beyond the add-deadline may reduce students to a credit total
below full-time status, resulting in the loss of tuition benefits, health
benefits, scholarships, and athletic eligibility.”

The placement program of the Department of Mathematics at the University
of Illinois deal with four courses: Preparation for Calculus (Pre-Calc), Calculus
1 (Calc), Calculus 1 for student with experience (CalcExp), and Business
Calculus (BusCalc). Because the Pre-Calc course was only offered for the
first time in 2007, it is not included in the comparison statistics below.

The new placement exam is an ALEKS assessment focused on the module37

‘Prep for Calculus’, with some items removed that are not part of the rele-
vant course at the University of Illinois. The students take the non-proctored
assessment either at home or on campus. Students failing to reach the required
score for placement in one of the four courses have the options of taking the
placement test again or using the ALEKS learning module (or some other method)
to improve their results. The students can keep retaking assessments until the
course add-deadline.

Table 7 on page 46 gives the percentages of the decrease in the numbers of
withdrawals observed in 2007 and 2008 for the BusCalc, Calc and CalcExp

courses, in comparison with the numbers of withdrawals from the same courses
in 2006.

The decrease in the percentages of withdrawals is remarkable. The author
also note a shift in the enrollment—not reported here—from the least advanced
course, BusCalc, to the more advanced one, which is CalcExp. Presumably,
this may be due to the combination of two factors: the accuracy of the assess-
ment in the ALEKS system, which may improve the placement, and the fact the
students were given the possibility of using the system to bridge some gaps in
their expertise.

37A particular learning space used in the ALEKS system.
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13 Bibliographical Notes

The first paper on knowledge spaces was Doignon and Falmagne (1985), which
contains some of the combinatorial basis of the theory, and in particular one
of two key properties, namely, the closure under union: a knowledge space is
a knowledge structure closed under union. Doignon and Falmagne (1988) was
a technical follow up. The stochastic part of the theory was presented in the
two papers by Falmagne and Doignon (1988a,b). The second paper also intro-
duces a second key property, wellgradedness. A comprehensive, non-technical
description of these basic ideas is contained in Falmagne et al. (1990). (See
also Doignon and Falmagne, 1987; Falmagne, 1989; Doignon, 1994, for other
introductory papers.)

Even though, taken together, the closure under union and wellgradedness
form a legitimate basis of the theory, it is not obvious that these axioms are
pedagogically sound. Around 2002, Falmagne proposed a reaxiomatization in
the form of the conditions labelled here as [L1] and [L2] (see Subsection 3 on
page 5), which he called a learning space. These axioms were unpublished at
the time, but they were communicated to Eric Cosyn and Hasan Uzun, who
then proved that a knowledge structure is a learning space if and only if it is
a well-graded knowledge space (see Cosyn and Uzun, 2009, and our Theorem 7
on page 8). A similar result is contained in Korte et al. (1991). In fact, learning
spaces are exactly the same structures as antimatroids or convex geometries.
The origin of the term antimatroid (in the setting of intersection-closed families
of subsets) goes back to Jamison (1980) and Jamison (1982); see also Edelman
(1986) for a lattice-theoretic approach, and Edelman and Jamison (1985).

In time, other scientists became interested in knowledge space theory, no-
tably Cornelia Dowling38, Jürgen Heller and Reinhard Suck in Germany, Diet-
rich Albert and Cord Hockemeyer in Austria, Mathieu Koppen in The Nether-
lands, and Luca Stefanutti in Italy. The literature on the subject grew and now
contains several hundred titles. The data base at
http://liinwww.ira.uka.de/bibliography/Ai/knowledge.spaces.html

contains an extensive list of reference on knowledge spaces. It is maintained by
Cord Hockemeyer at the University of Graz (see also Hockemeyer, 2001).

The monograph by Doignon and Falmagne (1999) gives a comprehensive de-
scription of knowledge space theory at that time. Beginning in 1994, an internet-
based educational software based on learning space theory was developed at the
University of California, Irvine (UCI), by a team of software engineers including
(among many others) Eric Cosyn, Damien Lauly, David Lemoine and Nicolas
Thiéry, under the supervision of Falmagne. This was supported by a large
NSF grant to UCI. The end product of this software development was called
ALEKS, which is also the name of a company created in 1996 by Falmagne and
his graduate students39. Around 1999, it was thought that the educational
software had matured enough for a fruitful application in the schools and uni-

38Formerly Cornelia Müller; see this name also for references.
39In particular Cosyn, Lauly and Thiéry. ALEKS Corporation was sold to McGraw-Hill

Education in 2013.
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versities. This led to further developments in the form of statistical analysis of
the assessment data and new mathematical results. Falmagne et al. (2006) is
a not-too-technical introduction to the topic at that time. The monograph by
Falmagne and Doignon (2011, a much expanded reedition of Doignon and Fal-
magne, 1999) is a comprehensive and (almost) up-to-date technical presentation
of the theory.

Several assessment systems are founded on Knowledge Space Theory and
Learning Space Theory, the most prominent ones being ALEKS and RATH. (The
RATH system was developed by a team of researchers at the University of Graz,
in Austria; see Hockemeyer, 1997 and Hockemeyer et al., 1998).
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