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Abstract 

Research in occupant behaviour is now using a more 

elaborate framework of building occupant interaction. 

Researchers often face challenges in collecting data, 

particularly for the data to meet the minimum number of 

required data points and the data interoperability 

requirements. Researchers address the first issue with the 

synthetic population and the latter with data ontologies. 

While synthetic population is commonly used to address 

the first issue, data ontology development is used to 

address the latter. The two solutions are complementary 

to each other. One of the known ontologies in building 

occupant behaviour research is the Drivers-Needs-

Actions-Systems (DNAS) ontology, which has been used 

by building modelers to describe energy-related occupant 

behaviour. This paper describes the ontology-based 

synthetic population generation that can be used in the 

agent-based modeling (ABM) applications. This paper 

considers multiple data sources, including ASHRAE 

Thermal Comfort DB II and IEA Annex 66 data sets. A 

case study of an office building is used to present the 

workflow of DNAS framework expansion, synthetic 

population generation, and agent-based modeling. 

 

Key Innovations 

• The expansion of occupant data ontology, 

namely DNAS framework that includes a more 

elaborate occupant characteristics and its use in 

population synthesis. 

• Population synthesis framework using Bayesian 

Networks approach.  

• An application of synthetic occupant population 

generation in building simulation research using 

a case study of an office building 

 

Practical Implications 

The expansion of occupant data ontology, namely DNAS 

framework, supports occupant data collection effort in the 

building life cycle. Another use case of the effort is to 

inform occupant population synthesis, which is largely 

motivated several reasons. The main motivation is to pave 

the increasing the increasing need of a more elaborate data 

on real occupants while maintaining anonymity. 

Population synthesis is considered as the right approach 

in other disciplines, such as in transportation and urban 

planning, yet, still rare in the building simulation research. 

In the building energy simulation and occupant research, 

population intends to support modeling work, especially 

those that use agent-based modeling (ABM) approach, 

where each agent represents a real individual occupant. 

 

Introduction 

Building simulation research has been advancing from 

using standard occupancy schedules to utilizing the power 

of agent-based modeling (ABM) approach to represent 

more realistic occupancy and occupant behaviours in 

buildings (Berger and Mahdavi (2020). ABM comes as a 

preferred technique to represent building occupants for its 

ability to capture interactions between building 

environment and occupants, and among building 

occupants through locus of control. The validity of 

occupant behavior (OB) models, including ABM-based 

OB models is usually done through sets of field 

experiments and analysis on occupancy and behavioral 

patterns. The better granularity of the occupant data, by 

including socio- and demographic characteristics as well 

as typical indoor activities, the better the models in 

providing behavioral insights to practitioners (Gaetani et 

al., 2016). 

The lack of available data becomes one of the big 

challenges in developing such models. Previously 

developed OB models were to answer specific research 

questions, such as window-opening behavior in specific 

buildings with unique locations, purposes, and designs 

(Barr et al., 2011; Widén & Wäckelgård, 2010). The issue 

of generalizability has motivated researchers to develop 

larger, multi-building databases that could provide a more 

robust basis for OB modeling (International Energy 

Agency, 2017; Licina et al., 2018). Higher-level OB data 

often includes demographic, economic, and social 

attributes (Andrews, 2017; Kontokosta & Jain, 2015). The 

most ambitious effort to date is the development of 

ASHRAE Thermal Comfort Database 1 and 2 (short 

name: comfort database) (Licina et al., 2018). The 

database serves a rather smaller scope and focuses only 

on a selection of thermal comfort aspects of OB. Needed 

are larger databases that include the rich dimensionality 

of OB by documenting the factors that lead to behaviours, 

the observed behaviours themselves, and the contextual 

considerations of location, timing, and design that situate 

the behaviour. OB researchers often rely on available 

ontology to guide the construction of such a database. 

(Salimi et al., 2019) review and map existing OB data 

ontologies to identify use cases and gaps in the 

applications. The discussion on sensible practice of fit-

for-purpose modeling and desired specifications of a 

universal OB data set is emerging in the building 

simulation research (Gaetani et al., 2016).  This paper 

contributes with the development of data ontology 

specification to meet the fit-for-purpose modeling 

framework. We consider the well-established Drivers, 

Needs, Actions, and Systems (DNAS) ontology to serve 



 

 

the goal (Hong, D’Oca, Taylor-Lange, et al., 2015; Hong, 

D’Oca, Turner, et al., 2015).  

The paper also describes a workflow of using the ontology 

to generate a synthetic occupant population. Population 

synthesis has not been very popular in building research 

(Andrews, 2017). Population synthesis has grown in 

popularity in other disciplines, particularly in 

transportation (Williamson et al., 1998), public health 

(Beckman et al., 1996; E. Ramadan & P. Sisiopiku, 2020; 

Xie & Waller, 2010), and urban planning (Malleson et al., 

2010). In occupant behavior research, synthetic 

population is useful to inform the development of 

occupant models. For example, researchers often find 

hard times to develop a complete model of under-

represented populations, such as seniors in senior housing 

and children in a household. Population synthesis aims to 

fill the gap by considering other relevant data sets, such 

as the regional census database and National Household 

Travel Survey (NHTS). In generating a synthetic 

occupant population, the synthetic version should match 

in statistical measures with those in a target population 

without attempting to replicate each individual in the 

target population. Synthetic population is also useful to 

maintain privacy and anonymity of the real individuals 

being surveyed. Also, it is rather less expensive than to 

collect new raw data. Another use case is for the modeling 

purposes, a synthetic population may serve as the initial 

population in the simulation modeling workflow, such as 

ABM-based models.  

In Section 2 of this paper, we introduce the expansion of 

the DNAS framework which includes four new major 

components: (1) socio-economic, (2) geographical 

location, (3) subjective-values, and (4) activities. We also 

discuss a population synthesis framework using Bayesian 

Networks in the section. In Section 3, we present a 

generation of synthetic population and its application on 

office building occupants. Section 4 discusses the results 

and Section 5 offers conclusions and recommendations 

for future research. 

 

Methods 

This section presents the framework in which use cases, 

data ontology, data sets, and Bayesian Networks (BN) are 

the main components in generating a statistically-fit 

synthetic occupant population. 

The expansion of DNAS framework 

Occupant behavior research incorporates an interactive 

component between the occupants and building systems, 

equipment, and mechanisms (Hong, D’Oca, Turner, et al., 

2015). The epistemological model of occupant behavior 

uses the concept of comfort, which is driven by socio-

demography, location, subjective values, activities, and 

social influence. Comforts are specific combinations of 

the attributes of mechanisms and measures taken as 

consideration by an occupant. The distinction between 

ontological and epistemological concerns is clear on how 

occupant’s perception of the environment depends on 

their characteristics, adopted values, experience, and 

particular activities (Grandjean et al., 2012). 

Therefore, we use an ontological approach in selecting the 

datasets to maintain a well-received building occupant 

data structure. Without the guiding data structure, 

population synthesis can take a large computing power 

and result a synthetic population not matched with the 

original samples. This study follows the existing Drivers, 

Needs, Actions, and Systems (DNAS) framework to 

provide a better representation of building occupants 

(Hong, D’Oca, Taylor-Lange, et al., 2015; Hong, D’Oca, 

Turner, et al., 2015).  

The expanded DNAS framework categorizes the 

occupant characteristics into four groups, including socio-

demographic, location, subjective values, and activities 

(Chandra-Putra et al., 2021).  The framework also 

develops further the comfort adaptive action component 

by dividing them into two sub-categories based on 

individual control or collective decisions (see Figure 1. 

The sociodemographic component includes census-

related information, such as “Age", “Sex", “Education", 

“Income", “Employment", and “Marital Status". 

Behavior-related data also includes attributes of 

subjective values that drive one to perform certain 

building energy-related actions. They are “Past 

Experience", “Cost Conscious", “Environment 

Awareness", “Technology Oriented", and “Social 

Influence". With the many behavioral data sets available 

for population synthesis, a geographical location 

identifier is also important, which includes information 

such as “Country", “Climate Zone", “Policy", and “Utility 

Cost”. 

 

Figure 1: Conceptual interaction of components of the 

building occupant (Chandra-Putra et al., 2021). 

The framework is useful to inform the data structures of 

both metadata and dataset collection procedures. The 

researcher writes the metadata in either XML or JSON 

formats and the datasets in CSV, DAT, or other formats, 

depending on the data manipulation methods. We utilize 

the same schema format as the original DNAS framwork, 

which is in obXML (short name for occupant behavior 

XML) (Hong, D’Oca, Taylor-Lange, et al., 2015). Figure 

2 shows a number of child elements are added under the 

Occupant element to detail the occupant characteristics. 

They are SocioEconomic, GeographicLocation, and 

SubjectiveValues. Each child element also has its own 

children as described in Figure 1. The ease of closely 



 

 

following the data structure depends on data availability 

and interoperability between data sets, and it is very 

common for population synthesis to also perform data 

imputation. 

 

Figure 2: Occupant’s attributes of social, economic, and 

demographic characteristics (Chandra-Putra et al., 2021) 

Datasets overview 

We consider two types of datasets to inform the 

generation of synthetic occupant population. The first is 

socio-demographic data that is attributed to the occupants. 

The second is behavior data that is specified by type of 

buildings. In Figure 3, the socio-demographic data 

considers two sources, including the National Household 

Travel Survey (NHTS) (Administration, 2017) and Public 

Use Microdata Survey (PUMS) (U.S. Census, 2015). The 

occupant behavior dataset, also shown on Figure 3, draws 

on a dataset on occupant behavior that was part of the 

deliverables of an international project, Annex 66. Annex 

66 was established under the International Energy 

Agency’s Energy in Buildings and Communities Program 

(short name: IEA Annex 66) with aims to provide 

resources for occupant behavior research (International 

Energy Agency, 2017). The dataset comprises of 4,324 

observations. The larger and more recent comfort 

database has been introduced in (Licina et al., 2018) and 

it includes approximately 81,846 occupant-specific data 

points spread across 160 buildings worldwide between 

1995 and 2016. This study is interested in subsets of the 

dataset associated with specific building types. 

These datasets are stored separately and need to be 

merged, fitted, and imputed as necessary. While this study 

considers data fusion using a simple left-join of 1-3 

common variables, data imputation is implemented using 

Predictive Mean Matching (PMM) (Little, 1988; Rubin, 

1986). PMM has been around for a long time, but only 

recently has it been widely used in population synthesis. 

It was originally used to impute missing data of a single 

variable, in which the missing data is more monotonic. 

Compared with standard methods based on linear 

regression and the normal distribution, PMM calculates 

the imputed values based on a set of values from the 

observed dataset, so they are realistic. Therefore, it allows 

to impute discrete values, which is useful for the survey 

datasets used in the study. Figure 3 shows the framework 

model of data imputation, fusing, and synthesis. 

 

Figure 3: Population synthesis framework. 

The selection of relevant variables from the data sets is 

guided by the DNAS data ontology. Table 1 describes the 

variables of interest of the case study of office occupants.  

Table 1: Variable names and descriptions 

Variable Description 

Sex Gender of an occupant 

Age Age of an occupant 

Education Educational attainment 

MET Metabolic activity 

CLO CLO 

Air temperature Air temperature in °C 

Relative Humidity Relative humidity 

PMV Predicted Mean Vote (PMV) 

Preferred temperature Preferred temperature {cooler, no 

change, warmer} 

Fan Fan use 

Window Window operation 

Heater Heater use 

Workspace Workspace {enclosed space, open 

space, cubicle} 

Work hours Working hours 

Satisfaction 

(temperature, IAQ, 

natural lighting, 

daylighting, artificial 

lighting, acoustics) 

Indoor environment quality 

{unsatisfied, neutral, satisfied} 



 

 

Control (lighting, 

windows, blinds, 

thermostat) 

Have control on fixture {yes, no, I 

don't know} 

Group control 

(windows, blinds, 

lighting, thermostat) 

Group control on fixture {only me, no 

control, with others} 

Bayesian Networks 

The Bayesian network (BN) offers a graphical 

representation of probability distributions for a set of 

variables of interest 𝑋 = 𝑋1, … , 𝑋2 X (Koller & Friedman, 

2013; Spirtes et al., 2012). In principle, a BN structure 

consists of two parts: 1) a network structure G in the form 

of a directed acyclic graph (DAG), in which vertices are 

random variables X and edges characterize the one-to-one 

mapping between the vertices, and 2) a set of local 

probability distributions Θ = {𝑃(𝑋1|∏1) … , 𝑃(𝑋𝑛|∏𝑛} 

for each vertex 𝑋𝑖, conditional on its parents ∏𝑖. The 

structure G follows the conditional independence 

assumption, by which each variable Xi is independent of 

its nondescendents given its parents in the graph G. In BN, 

the DAG topology asserts only the conditional 

dependence of children given parents: 

 𝑃(𝑋) = ∏ 𝑃(𝑋𝑖|∏𝑖)
𝑛
{𝑖=1}  (1) 

Figure 4 shows three variables including age, thermal 

perception, and income as the vertices and the directed 

edges linking vertex Age to vertex ThermalPerception 

and vertex Age to vertex Income. Therefore, the 

conditional probability distributions of this condition are 

P(ThermalPerception|Age) and P(Income|Age). 

 

Figure 4: Example of a directed acyclic graph (DAG). 

One of the main challenges in using BN is in defining the 

network structure. A researcher often defines the structure 

based on the researcher’s domain-expert knowledge. This 

study has a particular interest to build the network 

structure directly from data, which is often called 

structural learning. Structure learning is a flexible feature 

of the package that identifies the relations and hierarchies 

of the variables. We use an R package, bnlearn that 

offers several algorithms to perform structure learning, 

including i.e., Tabu Search and Hill Climbing (Scutari, 

2010). We consider eleven algorithms in order to find the 

most robust estimated model structure that is useful in the 

synthetic population generation. Common structure 

learning algorithms can be grouped into three categories, 

constraint-based, score-based, and hybrid. While 

constraint-based algorithms ensure conditional 

independence constraints using statistical tests, score-

based algorithms rely on optimization techniques with 

each candidate DAG is assigned a score as the objective 

function. Hybrid algorithms integrate the two methods by 

reducing space of candidate DAGs using a constraint-

based strategy and implement a score-based strategy to 

find the optimal DAG in the constrained space. It was 

known that constraint-based algorithms are considerably 

more accurate than score-based algorithms for small 

sample sizes and they both are as accurate as hybrid ones.  

We select Tabu Search because it outperforms other 

algorithms, showing that it produces the most 

representative BN structure. Tabu Search, essentially, 

utilizes an iterative searching procedure to obtain a best 

solution from complex correlation patterns (Glover et al., 

1993). The algorithm selects a close solution to optimality 

in order to minimize the score. Another advantage of 

using bnlearn as the choice of tool for conducting 

structural learning procedure is its ability to restrict the 

variables’ dependencies by using its features of 

“whitelist" or “blacklist". BN scores the candidate of the 

graphical structure that fits to the targeted data and is 

useful to produce synthetic population by using several 

methods, such as maximum likelihood:  

 𝑙(𝐺ℎ|𝐷) = [𝐺
𝑚𝑎𝑥 𝑙(𝐺, Θ|𝐷)] =  𝑙(𝐺, 𝜃̂|𝐷)𝐺

𝑚𝑎𝑥
𝜃

𝑠𝑢𝑝
 (2) 

where 𝑙(𝐺, 𝜃|𝐷) = 𝑙𝑜𝑔𝑃(𝐷, Θ|𝐷) is the loglikelihood of 

a provided pair (𝐺, Θ) given observation D. (Sun & Erath, 

2015) described that the log-likelihood is not 

representative due to over fitting, hence, it always builds 

a fully connected DAG. Bayesian Information Criterion 

(BIC) (Rissanen, 1978; Schwarz, 1978) and Akaike 

Information Criterion (AIC) (Akaike, 1974) are the two 

most-popular score functions that solve this issue of 

overfitting: 

 𝐵𝐼𝐶(𝐺ℎ|𝐷) = log 𝑃(𝐷|𝐺ℎ , Θ̂) −
𝑑

2
log 𝑚 (3) 

 𝐴𝐼𝐶(𝐺ℎ|𝐷) = log 𝑃(𝐷|𝐺ℎ , Θ̂) − 𝑑 (4) 

Where Θ̂ refers to the maximum likelihood estimates ^ of 

parameter given hypothetical structure 𝐺ℎ, d is the 

number of free parameters (degrees of freedom) in Θ, and 

m is the size of observation D. Both BIC and AIC contains 

two parts, the optimal likelihood and penalty that balances 

model fit and model complexity. While BIC has a penalty 

term of 
𝑑

2
log 𝑚 and AIC only has d, the structure of BIC 

is more preferable for a large sample size. 

 

Results 

The application of the synthetic population framework 

and procedures show consistent network structures and 

statistically-fit synthetic occupant populations. We 

present illustrative results for the calibration scenarios in 

an office building in this section.  

We consider a joint sub- dataset from the Annex66 dataset 

and comfort database using three joint variables, i.e., 

"Age", "Sex", and "PMV". We sample 27% of total 1,858 

observations (=500 observations) in learning BN models. 

The experiment illustrates the dynamic in real office 

buildings, where the locus of control varies among 

occupants when operating building features. Occupants 

may not have direct control over overhead lights. 

Negotiation on controls between an individual tenant and 

a tenant representative, and between a tenant 



 

 

representative and a building manager are expected to 

occur.  

We run Tabu Search for ten iterations to construct the 

network structure on the joint data sets and impute using 

PMM approach. The resulting BN model structure shows 

dependencies among variables. A variable "Blind use", as 

for example, has two edges coming in from nodes "Sex" 

and "Fan". Figure 5 shows the final model structure for 

office occupants.  

After learning the model structure, G, population 

synthesis generates sample values of X from P(X), 

factorized joint probability distribution define by the BN. 

The samples are independent and its probabilities can be 

computed using Equation 1. We fuse the two data sets (i.e. 

the comfort database and NHTS data set) based on two 

common variables of "Age" and "Sex". The fusing 

proceeds using Left-Join and with a condition of the two 

variables to meet. We find that the more variables to 

include, the stricter the join process is, and the more 

representative the joint data is. It requires a larger dataset, 

a joint dataset with NaN / NA columns would result, 

otherwise. 

To quantify the accuracy/fitness of the resulting synthetic 

population, we compare the percentage difference in the 

distributions between variables in the observed and 

synthetic populations. Figure 6 shows relatively small 

differences in percentages, which range between -5% and 

5% (see Figure 6). To further test the goodness of fit, we 

map the synthesis results in two-dimensional 

distributions. As an illustration, Figure 7 shows the joint 

distributions of variables "Age" and "Met" in the BN. The 

left and middle figures show the joint distributions in the 

observed and synthetic data, respectively. The right 

figure, which is a probability-probability-plot (pp-plot) of 

the cumulative distribution function (cdf) of the two 

variables, shows the fit of joint distribution of both target 

and BN. It shows that BN satisfies the joint distribution 

between the “Age” variable and “Met” variable. The pairs 

are approximately dependent to each other, and the 

dependency structures between the variables are 

preserved as seen on the network structure in Figure 5. 

 

Figure 5: Model structure, G, for each dataset used in 

an office building. 

 

Figure 6: Comparison of observed and synthetic 

occupants in an office building. See Table 2 for a detailed 

description of the variables. 

 

Figure 7: Joint distribution of Age and Met for office 

occupants. 

 

Discussion 

The expansion of DNAS framework is useful in 

generating synthetic occupant population. This paper does 

not attempt to develop a more exhaustive ontology that is 

potentially applicable to limited applications. We propose 

the expansion of the framework to include a more detailed 

occupant characteristics such as socio-demographic, 

climate, and subjective values that have been covered in 

previous research on building occupant interactions. Two 

subjective values that are relevant to OB research are, as 

for example, preference on comfort and willingness to pay 

for utility.  

Then, we use the proposed expanded ontology to inform 

data collection and variables selection to generate the 

synthetic occupant population in this paper. Our focus is 

to develop a BN model that could capture joint 



 

 

distributions for variables in the structure that are defined 

by the proposed expansion of the DNAS framework. 

From the experiments, we learned that the size of a target 

population is an important determinant to the quality of a 

synthetic population. For example, given the target 

population is relatively small, the network structure may 

result in independencies among the nodes. Therefore, the 

synthetic population may have unmatched distributions to 

the target populations result. We handle this issue by 

reducing the number of variables in the model. Another 

important factor is the choice of the estimation algorithm. 

We score eleven algorithms, among which Tabu Search 

outperforms the best. We run Tabu Search in ten iterations 

to achieve optimal network structure. We also ensure the 

interoperability of these datasets by preserving the 

distributions and performing Predictive Mean Matching 

(PMM) for multivariate imputation.  

 

Conclusions 

The proposed expansion of DNAS framework, an 

ontology to represent occupant behaviors, and the 

generation of synthetic occupant population using 

Bayesian Network (BN), are intended to serve the fit-for-

purpose occupant modeling effort.  

We build the confidence in both the proposed framework 

and population synthesis procedure by calibrating against 

the real data on building occupants, linking the previously 

collected behaviour data and socio-demographic data. We 

acknowledge the challenging aspect of the overall 

procedure is present at the data fusion phase. Researchers 

often collect their data that is recent, small, follow a 

specific ontology and mix-types between cross-sectional 

and longitudinal data depending on the purpose of the 

study. Therefore, the framework helps in integrating the 

data sets and ensuring their interoperability.  

While population synthesis using the BN approach is not 

new, this paper enriches existing literature on its practical 

applications on the building occupant behaviour research, 

particularly about generating synthetic occupants that are 

more representative by attributing socio-demographic 

characteristics. Our efforts are, however, not without 

challenges. While our approach is tested using BN, our 

future research regarding the topic of developing 

integrated population synthesis methods will consider 

other existing approaches as for comparison, including, 

i.e., Iterative Proportional Updating (IPU); utilize 

powerful machine learning algorithms, i.e., Generative 

Adversarial Networks (GANs), and a synthetic population 

with a greater mix of data types. Transportation research 

has advanced these methods up to developing a dynamic 

synthetic population. Dynamic discussed in (Namazi-Rad 

et al. (2014)) involves the ageing of individuals in the 

population that is drawn upon age-dependent life-event 

probabilities (e.g., birth, death, marriage, and divorce). 

Similarly, population synthesis of building occupants may 

include updates on the occupants’ comfort preferences 

and choice of adaptive actions to ensure the evolution of 

their behaviours and determining characteristics. Finally, 

we are looking forward to applying under different 

building types, such as multi-family residences and senior 

housing. The use case of building occupant population 

synthesis under these two buildings is even greater since 

children in a multi-family household and senior 

population in senior housing are often overlooked in the 

occupant behaviour research.  
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