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ABSTRACT

Tumor cells migrate through changing microenvironments of diseased and healthy tissue, making their migration particularly challenging to
describe. To better understand this process, computational models have been developed for both the ameboid and mesenchymal modes of
cell migration. Here, we review various approaches that have been used to account for the physical environment’s effect on cell migration in
computational models, with a focus on their application to understanding cancer metastasis and the related phenomenon of durotaxis. We
then discuss how mesenchymal migration models typically simulate complex cell–extracellular matrix (ECM) interactions, while ameboid
migration models use a cell-focused approach that largely ignores ECM when not acting as a physical barrier. This approach greatly simpli-
fies or ignores the mechanosensing ability of ameboid migrating cells and should be reevaluated in future models. We conclude by describing
future model elements that have not been included to date but would enhance model accuracy.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0023748

I. INTRODUCTION

Cell migration is an integral part of many biological functions
and pathological conditions, from immune response and wound heal-
ing to organ development and cancer metastasis. A cell’s ability to
move through space and reach its destination is critically important
for it to fulfill its intended function. Depending on the cell type and
the circumstances it finds itself in, cells can adopt different modes of
migration,1,2 but all modes of migration can be described with the
same basic steps: membrane extension, attachment formation, con-
traction, and rear release.3 Mechanisms that control each step and the
degree to which each step affects migration varies with cell migration
mode. Although a continuum of possibilities exists between the
extremes of migration modes, two main subsets of migration, ameboid
and mesenchymal migration, are among the most described, especially
in the context of—but not exclusive to—cancer metastasis.

Ameboid migration occurs both in single-celled organisms, such
as the ameba Dictyostelium discoideum, and within specific cell types
in multicellular organisms, such as neutrophils.4 Cells undergoing
ameboid migration exhibit rounded protrusions, i.e., blebs, and show
little spreading on their substrate. This mode of migration progresses

through a three-step blebbing cycle: nucleation, growth, and contrac-
tion [Fig. 1(a)]. The formation and expansion of these blebs are driven
by weaknesses in the actin cortex and cytoplasmic pressure differences
that cause the cellular membrane to expand outward.5 During the
nucleation and growth phases, it is not clear to what extent the actin
cortex ruptures, but there is a clear separation between the two.6 As
blebs transition from growth to contraction, myosin causes the bleb to
retract back into the main body of the cell, which can result in an over-
all movement of the cell toward the direction of the bleb expansion.7 It
should be noted that ameboid cells can exhibit other types of protru-
sions that are closer to the mesenchymal end of the migration spec-
trum, i.e., pseudopods.8 Pseudopods initiate as blebs; however, their
expansion from the cell body is coupled with continuous active expan-
sion of F-actin in the underlying cellular membrane. Both types of
protrusions can form on the same ameboid cell, and blebs and pseudo-
pods have been shown to operate cooperatively during chemotaxis.9

Regardless of the main protrusion type, ameboid cells exhibit clearly
defined polarization with a leading and trailing side.10 They can also
travel at relatively fast speeds compared to other modes of migration
(�10lm/min)11 depending on their surroundings. Additionally, these
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cells do not form strong focal adhesions with the surrounding extracel-
lular matrix (ECM)4 and tend to be more processive in their migra-
tion, especially in the dense matrix.12

Conversely, a wide variety of migrating cells contract against focal
adhesions in protrusions from the main cell body to move in a second
method often termed mesenchymal migration [Fig. 1(b)]. Protrusions
used in this mode are typically classified as filopodial or lamellipodial,
with the former being thin spindle-like protrusions and the latter being
sheet-like protrusions.3 Additionally, cells in the mesenchymal mode
form strong focal adhesions to the ECM13–15 and, as a result, appear to
spread over their substrate; this mode is typically slower than ameboid
migration4 and is classically observed on two-dimensional substrates.
In addition to morphological differences, there are mechanistic differ-
ences between the two modes of migration; cytoplasmic pressure gra-
dients drive ameboid migration12 often in confined settings, whereas
mesenchymal migration is driven by actin polymerization and the
active maturation and turnover of focal adhesions coupled with actin-
myosin contraction16 across a more spread cell. This different mecha-
nism is not entirely distinct from the pressure-driven flowing actin
networks of ameboid migration; mesenchymal migrating cells exhibit
a retrograde actin flow away from the leading edge and toward the
main cell body.17,18 However, computational models typically treat

different migration modes as entirely distinct for the sake of simplicity
and are used to answer specific questions. Contact guidance between
these modes is also markedly different and results in proliferative dif-
ferences that could underlie migration19 and hybrid cell formation.20

A summary of major differences in migration outcomes21–30 is shown
in Table I.

Although these two extreme modes represent a majority of cellu-
lar movements observed in vivo and in vitro (and models describing
mesenchymal migration are significantly more common than ameboid
migration), several other modes, both intermediate and distinct, have
also been described but were omitted here for clarity.31 The use of
these modes often depends on the environment’s dimensionality
(which can regulate adhesion assembly32), on the cell type, and on the
receptor-ligand pairs as with selectins used in leukocyte migration.33

These modes often exhibit distinct features, making them easily identi-
fiable, such as the crescent moon shape and gliding motion of kerato-
cytes,34 but exist in a continuum between mesenchymal and ameboid
modes.

II. MIGRATION AND CANCER METASTASIS

Cancer is the second leading cause of death in the United States,
and the vast majority of its mortality is associated with secondary

FIG. 1. Processes of ameboid and mesenchymal migration in cancer. (a) Ameboid migration typically occurs as a three-step blebbing cycle with nucleation, growth, and con-
traction steps. (b) Mesenchymal migration typically involves a different process wherein cells extend their leading edge and adhere, contract, and release their trailing edge.

TABLE I. Major performance differences between migration modes for cancer cells.

Ameboid Mesenchymal Reference

Migration speed 2–25 lm/min 0.1–1 lm/min 21–23
Persistence Low High 24, 25
Morphology Rounded Elongated 23, 26
ECM attachment Weak, short term, and lower integrin expression Integrin clusters forming focal adhesions 23, 27
Migration in ECM Squeezing or blebbing through ECM pores Adhesion-mediated tractions and ECM degradation 23, 28, 29
CSK organization Actin cortex Actin meshwork, contractile stress fibers, and microtubules 23, 29, 30
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tumor formation.35 In order for cancer cells to metastasize and form
secondary disease, they must migrate out of the primary tumor, intra-
vasate into the bloodstream, and then extravasate into other tissues
throughout the body.36 Cells within tumors are also very heteroge-
neous, making it difficult to separate indolent cancers from deadly
ones, as only a subset of cells is able to disseminate from the main
tumor and the others remain stationary and benign. Alongside migra-
tion mode, directionality is incredibly important for metastasis, yet
remains poorly understood in certain contexts. For example, cancer
cell chemotaxis (i.e., migration along a chemical concentration gradi-
ent) has been studied in-depth in ameboid cells but comparatively little
for mesenchymal cells.4,37 More recently, effort has been made to
understand the effect of cells’ mechanosensing on migration. For
example, the progression of metastatic breast cancer has been related
to the levels of mechanosensing proteins in stiff ECM.38 Cells migrate
at different speeds depending on substrate stiffness and oftentimes
exhibit durotaxis, the ability to sense and migrate up a stiffness gradi-
ent.39–41 However, this seems counterintuitive for understanding can-
cer metastasis, as often times, the tumor microenvironment becomes
much stiffer than the surrounding healthy stroma due to matrix secre-
tion and cross-linking by cancer-associated fibroblasts.42,43 In these
cases, the metastatic cells must exhibit adurotactic behavior in order to
leave the primary tumor, which further complicates our current
understanding of cancer cell migration and metastasis. Adding yet
another level of complexity is the observation that tumor cells migrate
in both the ameboid andmesenchymal modes and, depending on their
environment, can switch between the two.1,2,44 They can also migrate
individually or collectively,45 and their migration is highly dependent
on the physical properties of their niche, such as stiffness, porosity,
dimensionality, and toporgaphy,46 which can change as a result of
clinical care.47 Despite these many influences, tumor migration

models, thus far, largely focus on intracellular mechanisms governing
mesenchymal and ameboid modes, and thus, we will describe the
effects of additional modes and matrix properties in the context of
model limitations later.

III. COMPUTATIONAL MODELING OF MIGRATION

Cancer cell interactions are often very complex; reductionist
approaches using model systems, e.g., microfluidic bioreactors,48

explore many isolated variables, and more complex models may even
include the vasculature to study extravasation.48,49 However, despite
the simplicity of these model systems, fidelity with in vivo disease pro-
gression may be limited or at least require context and necessitate sig-
nificant engineering to generate robust datasets. Computational
models, however, may offer an alternative—where applicable—to cre-
ate and test reasonably complex niches in silico to understand migra-
tion mechanisms prior to experimental studies, thus better informing
the design of more effective and efficient experimental studies.

A key consideration for any computational model is the com-
plexity of its physics; over- or under-determined systems can limit
applicability and predictive value. With respect to cell migration,
many models consider the following key concepts: force balance, mass
conservation, biochemical activity, active forces, and passive forces50

(Fig. 2). Force balances are used in all models to determine the net
force magnitude and direction, which governs a cell’s movement.
Mass conservation is especially prevalent in models with a focus on
protrusion dynamics or morphology changes in migrating cells to
determine cells’ changing shapes with a constant mass. Biochemical
activity connects intra, inter, and extracellular signaling to cellular and
extracellular mechanics. Active forces include forces generated by
cytoskeletal dynamics such as actin and microtubule polymerization
and depolymerization and actomyosin contractility. On the other

FIG. 2. Conserved components of computational models of cancer migration. Four concepts are typically present to some degree in computational models of migration: force
balance, mass conservation, active forces, and passive forces. Each is illustrated here and where active forces are those generated by motor proteins and polymerization and
depolymerization of cytoskeletal filaments and passive forces are those from the viscoelastic parts of the cytoskeleton and ECM as well as from molecular friction.
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hand, passive forces include reaction forces arising within cells,
between neighboring cells, and between cells and the surrounding
environment elastic strain, viscous drag, and molecular friction.50 The
integration of these components in the model, the degree to which
they affect each other, and, more broadly, overall migration depends
on a number of intracellular and extracellular parameters in the mod-
el’s framework. A brief overview of some of the modeling approaches
discussed below,51–68 and associated equations, is shown in Table II.
Note that this is meant to introduce readers to the various ways that
physical laws governing cell migration can be described mathemati-
cally and is meant to direct readers to specific examples where these
methods are applied. As computational costs continue to go down, the
equations and models can become more detailed and combine multi-
ple approaches into hybrid models. For the remainder of this review,
we will broadly discuss how the above described key concepts are
modeled and affect cell migration mode citing specific examples.

IV. MESENCHYMAL MIGRATION MODELS:
APPLICATIONS AND DIRECTIONS

Computational models describing mesenchymal cell migration
primarily focus on intracellular active forces driving protrusion and
retraction of lamellipodia and filopodia, balancing these forces against
elastic, viscous, and friction forces within and outside the cell, and
mass balance that defines the cell shape as the cell migrates under the
action of these forces.50,69–71 At the nanoscale, these models can focus
on the dynamics of actin polymerization and depolymerization, force
generation by individual myosin motors, binding and unbinding of
adhesion receptors to the extracellular matrix, clustering of adhesion

receptors and maturation of adhesion sites, and binding of polymer-
ized actin filaments to these receptors to form adhesion com-
plexes.27,72,73 At this scale, models incorporate force generation and
sensing aspects such as conformational changes in adhesion complex
proteins, recruitment of additional actin-myosin fibers, and branching
of actin fibers. At the mesoscale, models focus on cell spreading, filo-
podial and lamellipodial protrusion and contraction, coupling between
the nucleus and the cytoskeleton, viscoelastic strains within the cyto-
skeleton and the nucleus under the influence of active and passive
migration forces, and resulting cell shape changes.30,61,70,74,75 Models
at this scale are particularly useful for predicting cell shape dynamics
and interactions between two neighboring cells or a single cell and its
environment. At the microscale, the focus of modeling is on overall
cell migration dynamics under the influence of a driving force bal-
anced by the drag forces from the environment.56–58,76,77 At this scale,
the goal of the models is to predict cell migration velocity and path
persistence as a function of the mechanistic interactions between the
cell, its neighbors, and the surrounding extracellular matrix.
Computational models may focus on a specific length scale or com-
bine multiple length scales to predict migration dynamics. Models can
also vary in their representation of the extracellular environment. For
example, to describe cell migration on a 2D substrate, the ECM can be
described as a continuous elastic material or discretized into a collec-
tion of binding sites connected to springs.61,63,78–80 In 3D, the ECM
can be described as a viscous continuum, discretely as a collection of
randomly or uniformly distributed binding sites, or as fibers distrib-
uted randomly or along the grid in 3D space.56,62,76,81,82 Depending on
the choice of the ECM model, various aspects of cell–ECM

TABLE II. List of frequently physical frameworks used to model cancer cell migration and their applications.

Common modeling approaches Applications and examples

Chemo-mechanical models based on force-dependent reaction
kinetics.

Used to model sub-cellular processes such as cell-substrate bond
formation, filament polymerization and gliding and
mechanosensing-based changes to predict resulting cell adhesion,
traction, and migration (e.g., various spring/dashpot models,51–53

active matter models,54 and molecular clutch models55).

F lð Þ � c F; nð Þv ¼ 0… Force balance between active forces driven
by chemical potential, l, and dissipative forces, cv.
c F;nð Þ¼Ks0expð� F

nF0
Þ… stiffness, K , and number, n, and kinetics

of molecular bonds, s0 dictate drag coefficient, c.

Agent-based models focusing on force balance between individual
cells and their environment.

Used to model cell populations interacting with each other and the
environment. Coarse grained to implicitly include effects of vari-
ous sub-cellular processes (e.g., force-based models,56–58 energy-
based models,59,60 and lattice-based/cellular Potts models61–63).

~Factive þ~Fpassive þ~Fdissipative ¼ 0…
or an energy minimization approach
E ¼

P
kiðAi � A0Þ2 þ

P
rijlij þ

P dU
d~r i
:~r i

Thermodynamic models based on equilibrium and non-
equilibrium work-free energy change relationships

Used to model both cellular and sub-cellular processes and assess
the energetic states that the system can occupy (e.g., free-energy-
based models64,65).DF ¼

P
Dli � kBTln X

X0
…Free energy change of the system

W ¼
Ð
Factivedx… work done by the system

Equilibrium… minimize (DFÞ
Non-equilibrium … DF �W

Continuum phase-field models Used to describe cell and surrounding free space as an evolving
phase-field, with the moving boundary representing the cell mem-
brane. Well suited to describe collective migration66,67 and migra-
tion of cell monolayers.68

dUi
dt þ~vi � ~rUi þ dF

dUi
¼ 0… Describes the dynamics of the cell

shape in response to free energy changes. The free energy func-
tional, F, is chosen so that minima correspond to phases (i.e.,
intracellular and extracellular environment) of the system.
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interactions can be integrated such as ECM degradation, ECM remod-
eling, contact guidance along aligned fibers, and squeezing of cell
through ECM pores. A common thread between all these models of
mesenchymal cell migration is that the migration is driven by forces
generated within long protrusions that grow along the surface in
search of sufficient binding sites in 2D and along the length of fibers in
3D.

The primary goal of these computational models has been to pre-
dict how fast and persistently cells will migrate along or within a given
substrate depending on their specific mechanical and chemical proper-
ties. Models have also been successful in predicting experimentally
observed behavior of the biphasic dependence of migration speed on
ECM density, adhesivity, and stiffness.41 Models can also recreate
qualitative trends in migration persistence, which have been observed
experimentally and clinically. More recently, modeling of experimen-
tally observed emergent phenomena such as chemotaxis, durotaxis,
haptotaxis, and contact guidance, which direct cells along specific
directions, is gaining attention. How mechanobiology affects migra-
tion, i.e., how do changes in niche parameters direct processive migra-
tion and ultimately intravasation, is of extreme importance in
understanding processes such as wound healing and cancer metastasis.
Most adherent cells migrate toward a stiffer region of a substrate when
presented with a gradient,83 i.e., “durotax;” yet, tumors are inherently
stiff relative to adjacent, soft stroma in vivo84,85 created by cancer-
associated fibroblasts. This creates a cancer cell “migration paradox”
where tumor cells must migrate down ECM stiffness gradients that
otherwise support migration in the opposing direction (Fig. 3). Here,
we will focus on a few mesenchymal cell migration models that explain
cancer cell durotaxis and their applicability toward answering the

cancer cell migration paradox. That being said, it is important to note
that we are restricting our discussion and this concept to the dissemi-
nating cells from the tumor. Many other cells must migrate toward the
tumor, i.e., durotax, including inflammatory cells, among others.

To start, many models describe migrating cells as polarized with
a higher probability of protrusion at the leading edge and retraction
fibers at the trailing edge. Focal adhesions form preferentially along
the leading edge and dissociate more frequently along the trailing
edge, resulting in net motion in the direction of the leading edge.3

Some computational models replicate durotaxis on a surface using
polarized cell filopodia, which are more likely to grow along elastic
fibers aligned along an increasing stiffness gradient.81 This approach
to simulating migration succeeds in predicting the general movement
of durotactic cells and in creating a more realistic representation of
ECM fiber networks rather than conventional models that treat the
substrate as a continuum. Yet, such a rigid integration of durotaxis is
not without disadvantages, e.g., durotactic behavior has to be built into
the model, rather than durotactic behavior arising from it.
Furthermore, while the elastic fibers can be deformed, the cell cannot
remodel or degrade them. Thus, from such polarity-based models and
those that take similar approaches, e.g., adhesions that bind more
strongly on the stiffer region than softer regions forcing polarized
shapes a priori,86 it may be difficult to infer mechanisms of durotaxis
or even adurotaxis as observed in cancer in vivo. These models are,
however, convenient to study the effect of inter-cellular heterogeneity
in these parameters on overall population dynamics when predicting
collective cell behavior. Indeed, within a tumor, not all cells metasta-
size, and thus, cancer migration models should highlight both cellular
and temporal heterogeneity87 when describing gradients.

One of the early models that explained the origin of durotactic
behavior rather than making it an intrinsic property of migrating cells
was by Schwarz et al., which used a simple 2 spring attachment-
detachment model between the actin myosin force generating ele-
ments, cell membrane attached adhesion protein, and the substrate.51

The model showed that as the substrate stiffness increases, the rate at
which the force is generated within the actin–myosin filament
increases, leading to larger overall traction forces within the lifetime of
a cell–substrate adhesion bond. The increase in traction forces on
stiffer substrates drives cell migration up the stiffness gradient explain-
ing durotaxis. This phenomenon has since been integrated as an a pri-
orimechanism of cell migration in a number of other models. A more
recent addition to models explaining durotaxis is based on a rigidity
sensing-based change in the biochemical activity of motor protein reg-
ulating units within the cell.72 Increased feedback from a stiffer sub-
strate drives increased myosin activity and higher speeds for cells in
stiffer regions, driving an accumulation of cells up a stiffness gradient.
A third alternate model focuses on the mechanical response of the
ECM fibers rather than that of the cell itself. The model is based on
fiber mechanics that suggests that the deformation/extension of a fiber
decreases as a cell gets closer to the point where the fiber is crosslinked
to a stiffer environment. This generates a stronger passive force on the
cell, pulling the cell toward the stiffer regions and driving durotaxis.81

There are many other models that explain durotaxis through varia-
tions or combinations of the above described themes that we are not
discussing here. A more recent model by Heck et al.88 suggests yet
another possible explanation for durotactic behavior. This model
accounts for ECM as an obstacle that the cell must negotiate or

FIG. 3. The migration paradox. Most cells migrate toward stiffer regions of tissues
in a process called durotaxis.59 However, tumor cells must migrate from stiff tumors
through the progressively softer matrix to disseminate from a tumor core and intra-
vasate into the blood stream. This metastatic migratory process is counter to con-
ventional thought on stiffness gradient migration, and it is not clear which migration
mode, if any based on available data, permits such migration. Note that for simplicity,
additional cell types, e.g., cancer associated fibroblasts, have been omitted but play a
key role in niche remodeling nonetheless.
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degrade; this type of confined migration is often observed in dense tis-
sue where degradation by the cancer cell proceeds filopodial exten-
sion89 and requires significant deformation (which can be measured in
high throughput with fluidics90). The model predicts that migration is
most affected by ECM stiffness, cell adhesion strength, and protrusion
properties, e.g., number, lifetime, and length. The model shows the
standard correlation between matrix stiffness and migration speed,
consistent with past models and experimental observation using deg-
radation and filopodial extension.91 They also show that adhesion
turnover makes migration more processive. By incorporating force-
dependent adhesion turnover rates and increased forces in stiffer ECM
regions, they show an additional mechanism for durotactic behavior
driven by increased persistence. A connection between processive
migration and adhesion strength is also supported experimentally as
seen when a weakly adherent phenotype results in a reduced disease-
free interval.92 The implication that protrusion activity and matrix
deformation in three-dimensions, not the development of robust focal
adhesions as in two dimensions, as the origin of their processivity,
may be consistent with some results in three dimensions.28

The models discussed so far cover most known aspects of mesen-
chymal cell migration and also can be used to describe a number of
emergent phenomena. With regard to durotactic behavior, they all
suggest using one argument or another that cells should durotax, and
for the most part, adherent cells do so. However, the cancer cell migra-
tion paradox of metastatic cells migrating against a stiffness gradient
to metastasize still remains unanswered. It may be necessary to
develop mechanistic models that explain anti-, a-, and durotactic
migration that focus not on the ECM but rather on the cytoskeletal
elements that drive mesenchymal migration; here, we summarize two
such models. To interrogate such cytoskeletal elements, the most com-
mon mesenchymal model used has been the molecular motor-
clutch,93 which employs multiple molecular motors to pull actin fila-
ments toward the cell body on a compliant, continuous substrate; con-
versely, the molecular clutch binds to actin stochastically and links it
to the extracellular environment via a force-dependent Bell model
connection.94 These models typically predict a stiffness-dependent
relationship for migration where on compliant substrates, the motors
undergo load-fail cycles, whereas on stiff substrates, the complex slips.
This model predicts biphasic behaviors in force and migration that
can reinforce adhesion,95 with an optimal stiffness region that cells will
most likely migrate to. The model, thus, does not always predict duro-
taxis or antidurotaxis, but rather migration in the direction of the pre-
ferred stiffness for a given cell type. Optimal stiffness for a cell type is
dependent on the actomyosin contractile force that the cells can gener-
ate and the number of clutches between the cell and the substrate.
Overall, the clutch model may provide a possible reason for the aduro-
tactic migration of metastatic cancer cells away from a stiff tumor
ECM, but validation of experimentally observation of adurotaxis by
highly metastatic cancer cells needs to be further explored. Another
model in which the mechanical environment can be considered in
migration is an equilibrium thermodynamics model. This model pro-
vides an alternative way to characterize the two-way feedback loop
between cell contractility and matrix realignment. This model calcu-
lates the total change in free energy of the system, consisting of the
energies of the cell, matrix, and adhesions to determine whether or not
migration will occur as the system tries to move into a lower energy
state.65 Similar to the clutch model, this thermodynamic migration

model predicts a biphasic migration response to matrix stiffness and
depends on the contractile force that a cell can generate and the
strength of its adhesions. It is possible to envision that in the presence
of gradients, cells could adurotactically migrate to an optimum away
from the tumor, thus achieving goals similar to the clutch model.

Overall, due to important fluctuations in force,96 heterogeneous
adhesion within a tumor,92 and stiffness gradients (vs changing but
static substrates in these models) on the stroma,85 there is a need for
new models where these or similar parameters are incorporated
together, e.g., maximum force generated by a stress fiber, catch bond
dynamics, etc. Changes to the force-bond lifetime relationship could
then result in anti-, a-, and durotactic behavior depending on how
each parameter varies with the others.

V. AMEBOID MIGRATION MODELS

Ameboid migration is dominated by propulsive membrane bleb-
bing, i.e., the key concept of force balances, rather than spreading and
forming strong focal adhesions to their substrate, i.e., the key concept
of active contractile forces.4 It also relies less on modification or degra-
dation of the adjacent ECM and more so on becoming highly deform-
able and pushing through matrix pores. Despite the differences
between mesenchymal and ameboid migration, cancer cells display
unique plasticity in their ability to switch between modes,24,97 making
our understanding of ameboid migration even more critical. Unlike
mesenchymal migration, ameboid migration models reviewed here
tend to focus on intracellular parameters, e.g., the development of
pressure gradients to form blebs or propel the cell forward,12 rather
than on the cells’ physical environment. Despite this, ameboid cells
may indirectly mechano-sense, which may be necessary for tumor
metastasis.

A common characteristic of ameboid models is that they high-
light a specific aspect of migration based on the nature of their model.
For example, cell membrane deformability—modeled as a system of
springs—has been used to determine a cancer cell’s migration speed
through confined spaces,70 such as pores in a matrix. This model sug-
gests that, but does not assess, stiffness gradients are able to drive a
cells’ direction of travel, but polarization in this model is simply
defined to guide the cells through the obstacles and is not a result of it.
The ECM playing only a passive role in influencing cell behavior is
also observed in an earlier model from the study by Lim et al.7 In this
model, the cell has a permeable actin cortex inside an impermeable
outer membrane, with adhesion points connecting the two. Cell move-
ment occurs when membrane-cortex adhesions rupture, the outer
membrane expands, and the actin cortex is pulled toward the rupture
by a cytoplasmic pressure gradient; again, the matrix is only an obsta-
cle and polarization is built in to the model rather than a result of it.
From such models, neither mechanosensing nor migration from gra-
dients has been considered.

Ameboid-like migration has been frequently observed in 1-98 and
three dimensions99,100 when the environment requires less adhesive,
confined migration distinct from mesenchymal modes. Despite not
engaging traditional machinery, cancer cells in this mode and confine-
ment do recognize substrate stiffness unlike the models mentioned
previously, and it is observed that stiffer, confined spaces support
more ameboid migration.26 Thus, models that highlight this behavior
often consider possible ways that gradient sensing could occur in ame-
boid migration, either de novo or as a switch between models. For
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example, probabilistic models highlight that migration mode switching
occurs in heterogenous matrix conditions and that both migration
modes and plasticity are advantageous in heterogenous tumors
because cells can sense their niche and switch modes as needed.
Modulating the degree of cytoskeletal polymerization can also induce
transitions as observed by Niculescu et al.71 Simulated cells displayed
ameboid blebbing or a spread lamellipodium and gliding behavior
simply by changing maximum actin polymerization. Each mode fed
back on itself, and so switching events were rare as in in vitro observa-
tions but were not dependent on local conditions, i.e., cell could not
sense environmental changes.

All models discussed in this section portray a common trend and
limitation of computational models used for ameboid migration: focus
remains on processes within the cell rather than interactions between
the cell and its environment. Even for the few models that incorporate
interactions between migrating cells and their physical environment,
they still simplified as they restrict the cell from taking some shape or
prevent the membrane from expanding into the physical obstacle.
Although an emerging part of the literature,100 mechanosensing in this
mode should be validated so that we better understand the environ-
mental conditions and gradients that could result in migrating cells
switching between modes1,2 and if ameboid migration could support
adurotaxis as the mechanisms still remain to be elucidated (Fig. 3).
While these models are able to analyze how cells change the shape and
what sized spaces they can fit through, thus providing information
about the process of migration, they are limited in that they only
account for one portion of complicated processes like tumor metasta-
sis and adurotaxis. Thus, critical questions remain: Under what cir-
cumstances do ameboid migrating cells stop durotaxing and move out
of the stiffer tumor region? Do ameboid migrating cells respond differ-
ently to stiffness gradients than mesenchymal migrating cells? What
takes precedence if ameboid migrating cells are presented with com-
peting durotactic and chemotactic signals?

VI. LIMITATIONS AND CONCLUSIONS

The models discussed in this review show varying degrees of
importance given to cells’ mechanosensing capabilities and the effects
of the ECM on migration. This is especially important to understand
in cancer, where cells’ ability to sense and migrate against a stiffness
gradient may contribute to their ability to metastasize.38,42,43 Due to
the complex nature of cell migration and mechanosensing, computa-
tional models offer one of our best ways to understand and learn about
migrating cell behavior. However, none of the models discussed con-
sider all the variables involved in migration and to do so would likely
be overcomplicated, computationally taxing, and, therefore, infeasible.
Even the models that give extensive thought to the cells’ physical envi-
ronment do not consider cells’ ability to switch between migration
modes as other models do.26 Beyond this, few models explore the
cooperative or inhibitory migration behaviors arising from interac-
tions between multiple cell types such as metastatic cancer cells,
cancer-associated fibroblasts, and senescent tumor cells, which can all
occupy neighboring spaces within the tumor microenvironment.
Multicellular interactions can be extremely complex and can assist or
hinder durotactic behavior through short- and long-range mechanical
and chemical coupling.101–104 No single modeling framework captures
the complete breadth of these observations as far as we are aware. The
current work on computational cell migration models has

undoubtedly helped increase our knowledge of processes like cancer
metastasis and migration in general to address the cancer cell migra-
tion paradox, but there are still many unanswered questions on how
cell migration is guided by gradient sensing mechanisms illustrated in
the paradox (Fig. 3).

Future models and experiments should examine the effects of
stiffness gradients on ameboid migrating cells, despite their compara-
tively weak focal adhesions, and how the effects of the physical envi-
ronment change as cells transition between the ameboid and
mesenchymal migration modes. Additionally, the development of
computational models and mechanistic explanations of migration are
required in order to attain a balance between model accuracy, poten-
tial insight, and computational complexity. Mesenchymal migration
models have shown significant inclusion of mechanosensing and the
ECM’s effects on migration, but they still omit other key parameters
that could influence migration, such as fluid convection and flow,105

leaving room for growth in future models.
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