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RESEARCH ARTICLE Open Access

Context dependent substitution biases vary
within the human genome
P Andrew Nevarez1,2, Christopher M DeBoever1,3, Benjamin J Freeland1, Marissa A Quitt1,4, Eliot C Bush1*

Abstract

Background: Models of sequence evolution typically assume that different nucleotide positions evolve
independently. This assumption is widely appreciated to be an over-simplification. The best known violations
involve biases due to adjacent nucleotides. There have also been suggestions that biases exist at larger scales,
however this possibility has not been systematically explored.

Results: To address this we have developed a method which identifies over- and under-represented substitution
patterns and assesses their overall impact on the evolution of genome composition. Our method is designed to
account for biases at smaller pattern sizes, removing their effects. We used this method to investigate context bias
in the human lineage after the divergence from chimpanzee. We examined bias effects in substitution patterns
between 2 and 5 bp long and found significant effects at all sizes. This included some individual three and four
base pair patterns with relatively large biases. We also found that bias effects vary across the genome, differing
between transposons and non-transposons, between different classes of transposons, and also near and far from
genes.

Conclusions: We found that nucleotides beyond the immediately adjacent one are responsible for substantial
context effects, and that these biases vary across the genome.

Background
Early models of nucleotide substitution made strong
simplifying assumptions, for example assuming that dif-
ferent nucleotides substitute for each other at the same
rate [1,2]. Over time it has become clear that many of
these assumptions were too strong [3,4]. One assump-
tion that has often been made is that the probability of
a substitution at a particular nucleotide position is inde-
pendent of context, that is the identity of its neighbors.
However it is now known that context can substantially
bias the substitution process.
The most dramatic example of such substitution bias

in vertebrates is the CG ! TG bias. Typically when a
cytosine undergoes deamination it results in a uracil, a
situation that is recognized by uracil-DNA glycosylase
and repaired by the cell [5]. However, if the cytosine is
methylated the result of deamination is thymine. Such
cases result in mismatches and lead to an unusually
high rate of C ! T and G ! A transitions [6]. Because

in vertebrates most methylated C residues occur in a
CG context, this process causes high rates of CG ! TG
and CG ! CA transitions, which in turn explains the
low frequency of CpG dinucleotides in vertebrate gen-
omes [7-9].
The CG ! TG bias can be shown by comparative

sequence studies using empirical methods [10-12]. Such
studies have also revealed several other such biases.
These include elevated rates of CG ! AG and CG !
GG transversions as well as TA ! CA transitions, and a
tendency toward low substitution rates in purine/pyrimi-
dine tracts [11,12]. Studies in plant chloroplasts found
that the proportion of transversions increases with
increasing A+T content in flanking sites [13-15]. This
effect has also been observed in mitochondrial genomes,
and more weakly in nuclear genomes [16], as well as in
single nucleotide polymorphisms [17]. It has also been
found to extend beyond the adjacent base [14].
In recent years a number of studies have made use of

probabilistic models to systematically identify context
effects and assess their value in improving model t
[4,18-22]. The attraction of these approaches is that
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they directly model sequence evolution, and provide a
framework to access the importance of various context
effects. Such studies have identified a large number of
bias effects [4,21].
Most studies of substitution bias, both empirical and

model-based, have focused on the effects of immediately
adjacent bases. There are strong suggestions that more
distant biases exist [12,14,23], however to our knowledge
no studies have systematically looked for these. Our aim
in this study is to do such a systematic examination.
The probabilistic models developed in recent years have
many advantages, but extending such methods to larger
amounts of context represents a substantial technical
challenge. This is because of the effects of overlapping
windows and the large number of parameters that
would need to be estimated.
Here we introduce a simpler empirical method to

examine context beyond immediately adjacent bases.
Our approach is based on the relative abundance
method for studying word frequency bias [24-27]. We
have adapted this method to substitution patterns rather
than words, and applied it to detect context dependent
substitution biases in the human lineage after the diver-
gence from chimpanzee. We examined biases in substi-
tution patterns up to 5 bp long and found substantial
effects. Most interestingly, we found that bias effects dif-
fer in different regions of the genome.

Methods
A relative abundance method to characterize substitution
biases
Let P be an ancestor-to-descendant substitution pattern
(an example is the length 3 pattern ACT ! ATT ). In
general, we define a pattern P of length L as an ancestral
sequence of bases paired with a descendant sequence:
P = b1b2...bL ! b′1b

′
2...b

′
L, where b1, bL Î [A, T, G, C]

and all other bi Î [A, T, G, C, N]. We refer to a pattern
containing N, which represents any nucleotide, as a
gapped pattern (e.g. ANT ! ANT ).
In a dataset of ancestor-descendant alignments, we

can define the proportion of a pattern P to be the frac-
tion of ancestral words that convert to the pattern’s des-
cendant sequence:

pr P
b b bL b b bL

b b bL
( )

.
.
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Using this definition, we can calculate the relative
abundance r(P ) recursively:
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where we define ψ (P ) as follows. Let SP be the set of
all gapped and ungapped subpatterns s of P. Then

 ( ) ( )P s
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ψ(P) represents the expected proportion of P based on
the proportions of all its smaller constituent subpat-
terns. The relative abundance r is the ratio between the
observed proportion of a particular pattern, and this
expected proportion. If r(ACT ! ATT) were greater
than 1 this would suggest a context effect at the 3 bp
scale making ACT ! ATT occur more often than
expected. A value less than 1 would suggest an effect
making that substitution occur less often than expected.
A natural way to implement eq. 2 is through a

dynamic programming approach which avoids redun-
dant calculations. We have developed an algorithm
which improves on this by reducing the number of
terms to look up. For simplicity of notation, define Bi =
bi ! b′i, so that each Bi represents an ancestor-descen-
dant nucleotide pair. Then P = B1B2...BL. If we let GP be
the set of all full-length gapped subpatterns s of P, we

define a new function  ( ) ( )P s
s GP

=
∈∏ .We can then

calculate relative abundance as:
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Equations 2 and 4 are equivalent for all: substitution
patterns (see proof in Additional file 1). We have imple-
mented Eq. 4 in the C programming language. The
source code for this is available on our website http://
proconsul.bio.hmc.edu/lp/relabSub.tar.gz. Using the
above implementation on current hardware, it takes
about 3 minutes and 2 GB of RAM to obtain relative
abundance values for all patterns 2-5 bp.

Estimating the overall impact of context
One would like to know to what degree context biases
influence nucleotide substitution at different scales. We
not only want to know how under- or over-represented
a pattern is (which is captured by eq. 4), but also how
important it is to the evolution of genome composition.
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This depends also on the frequency of the pattern. Thus
we define the following measure of the impact of bias
from pattern P on genome composition:

Context bias = −( ( ) )* ( ) P f P1 (5)

Here f(P) is the frequency of occurrence of the pattern
P in the data, which is the observed count of the pattern
divided by the sum of the counts of all possible gapped
and ungapped patterns. For each pattern we calculate
r - 1, and weight this according to f(P). Because the
denominator of r is the expected proportion of P based
on the proportions of all its smaller constituent subpat-
terns, r - 1 is equivalent to (observed pr(P) - expected
pr(P))/expected pr(P).
From this we can construct a cumulative measure of

bias:

Total context bias
a len L

= −
∈

∑ | ( ) |* ( )
[ .]

 P f P
P pat

1
11

(6)

where we take the absolute value of r - 1 for each pat-
tern, weight according to f(P), and sum across patterns
of the same size.
Eq. 6 represents a measure of how much observed

proportions at a particular scale deviate from what
would be expected if there were no context effects at
that scale.

Assessing the significance of individual patterns
An important aspect of our relative abundance method
is that we can identify individual patterns with impor-
tant contributions to total context bias. To assess the
statistical significance of each pattern’s context bias con-
tribution, we used a bootstrapping approach. Our data-
sets each consist of a set of alignment blocks. We
sampled with replacement from these until our re-
sampled data set had the same number of alignment
columns as the original data. From this we calculated
both r (eq. 4) and context bias (eq. 5) for each pattern.
We repeated this for 1000 such samples. For each pat-
tern the range of the middle 950 r and context bias
values is the 95% confidence interval.
We also corrected for multiple testing by calculating

the false discovery rate for our top patterns. To do this
we compared the context bias values for our real data
with those for a no bias control to calculate a p-value.
We then corrected for multiple testing using the
method of Benjamini and Hochberg [28].

Comparing total context bias in different data sets
One factor that may influence total context bias calcula-
tions is sample size. In particular, small data sets can
result in artificially high values of context bias

(Additional file 2). To control for this we did the follow-
ing when comparing two alignment data sets. For each
data set, we randomly sampled alignment blocks with
replacement until the sample contained 50 million align-
ment columns. Then we calculated context bias for this
sample. We repeated this sampling procedure 1000
times.
Doing this for both data sets in the comparison gives

two samples of 1000 total context bias values. We then
compare the means of each sample with a bootstrap
t-test, allowing for unequal variances [29].

Alignment datasets to assess substitutions in the human
lineage
We obtained alignment datasets in transposon and non-
transposon regions, and also in regions near and far
from genes. We identified transposon regions using
RepeatMasker to align SINE, LINE, LTR, and DNA
transposons in RepBase to the contigs in NCBI build
36.1 of the human genome [30,31]. From these we
removed regions annotated as coding sequence using
the UCSC table browser and the knownGenes annota-
tion track [32]. We used the same methods to identify
non-transposon noncoding regions. We also used the
table browser to identify noncoding regions near and far
from genes. Near gene regions were those within 5 kb
of a transcription start site for a protein coding gene,
while far from gene regions were those at least 50 kb
away from a protein coding gene.
We used Galaxy [33] to obtain human-chimpanzee-

orangutan alignments [34] over the transposon and
non-transposon regions, and regions near and far from
genes. The assemblies used were human NCBI build
36.1, chimpanzee March 2006 assembly, and the oran-
gutan March 2007 assembly. From these alignments we
removed blocks with fewer than 10 contiguous nongap
alignment columns, as well as blocks with more gaps
than aligned bases. We then inferred human-chimp
ancestral sequences by maximum likelihood using
HYPHY [35] and a general time-reversible model of
substitution. This model did not allow varying rates
across sites.
In the case of our main transposon and non-transpo-

son data sets (sets 1 and 4 in Table 1) we sampled the
size of our alignments down to approximately 15% of
the genome. This was done for practical reasons having
to do with RAM usage in ancestor reconstruction and
our algorithm. This sampling was done by randomly
choosing 50 kb blocks across the genome, and extract-
ing the coordinates of alignments located within these
windows. The other datasets (near and far) did not need
to be sampled in this way because they were already
small enough.
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Finally, to investigate substitution processes in differ-
ent types of transposable elements, we extracted subsets
of our main transposon data set containing either LINE
or SINE transposons. The sizes of all alignment datasets
are given in Table 1.
Two of the genomes we are using are drafts (chim-

panzee and orangutan). To ensure that sequencing
errors would not affect our results, we performed simu-
lations to test the effect of sequencing errors of the
magnitude found in these drafts [36]. We randomly
introduced errors into our human-chimp-orangutan
alignments. The error frequencies we used reflected the
human genome’s finished status (0.0001 errors/nucleo-
tide), a previously reported error rate for the chimpan-
zee draft (0.0007 errors/nucleotide) [36], and a similar
estimate for orangutan (0.001 errors/nucleotide). We
then applied our method to these alignments, and found
that errors of this magnitude do not significantly affect
our context bias calculations.
It is desirable to use our method with alignments with

low divergence. Such alignments make it easier to infer
the ancestral sequence, and reduce the possibility that
multiple positions in a window have changed (AAA !
AGG is an example of a window where two base posi-
tions have changed.) When multiple positions in a win-
dow change it is not possible for us to know what order
changes occurred in, and so we cannot know what the
exact context was for any individual substitution. This
means such windows aren’t informative about context
biases of the single base substitution process. For this
reason, looking at closely related species is preferable,
because in such a data set, multiple substitution win-
dows are a small proportion of all windows. Here we
have applied our method to alignments between human
and the inferred sequence of the human-chimpanzee
ancestor. These have a divergence of about 1%.
Because our alignments are between closely related

species, ancestor reconstruction is reasonably accurate
here, even though we are not using a context-dependent
model to do it. The one exception to this is the substi-
tution process at CpG sites. Substitution at such sites
is extraordinarily fast. This is by far the strongest bias
process at work in these sequences. In this situation,

non-context dependent methods of reconstruction can
yield some mis-inference of the ancestor even in closely
related species such as we are using [37]. We account
for this issue in our results below by repeating our ana-
lyses with CpG sites removed.
In all our alignment data sets we counted ancestor-

descendant patterns and ancestral words for window
sizes 1-5 and applied eq. 4.

No-bias control data sets
To help interpret our results we created no-bias control
data sets by taking the inferred human-chimpanzee
ancestral sequences from our real data and mutating
them according to the observed single-base divergence
patterns seen in that real data. For example, in our
transposon sequence data, an ancestral C base stays a C
99.1% of the time, and it converts to A, G, and T 0.13%,
0.13%, and 0.60% of the time, respectively. Using these
and the corresponding probabilities for other ancestral
bases, we mutated the ancestor sequences to create a
new descendant sequence. Alignments between this new
descendant sequence and the ancestral sequences repre-
sent a control data set which has the same ancestral
counts and single nucleotide divergence patterns as the
real data, but lacks context effects.

Results
Context bias effects in transposon insertions in the
human lineage
We begin by examining the effects of nucleotide substi-
tution bias acting on transposon insertions in the
human lineage after the divergence of chimpanzee. An
initial question is how well our results compare with
previous results on biases due to adjacent bases. To
look at this we considered overrepresented 2 bp patterns
identified by our method. Table 2 shows the 15 patterns
with the largest relative abundance (r). Many of these
have been previously described [4,11,12,19,21,22,38]. We
find that by far the most important bias is the CG !
TG (or CG ! CA) pattern, which is highly over-repre-
sented (r = 7.58) [4,11,12,19,21,22,38]. The pattern with
the second-highest value of r, CG ! CT (CG ! AG)
has also been previously found [12], as has the third,
CG ! GG (CG ! CC) [12,19,21]. These patterns likely
reflect elevated rates of substitution due to cytosine
methylation in CpG dinucleotides [11]. The 5th [19],
6th [21], 7th [19], 12th [19] and 13th [11,22] patterns
have also been reported previously.
The relative abundance metric gives an indication of

the degree to which substitution rates vary from expec-
tation and provides a good point of comparison with
previous work. While it is informative to know how
over- or under-represented a given substitution pattern
is, we also want to assess its importance for determining

Table 1 Data sets and sizes in alignment columns

1. transposon 360,248,252

2. transposon near gene 53,105,001

3. transposon far-from-gene 347,985,192

4. non-transposon 340,461,195

5. non-transposon near gene 75,324,278

6. non-transpson far-from-gene 373,326,202

7. LINE transposons 147,409,103

8. SINE transposons 106,260,754

Nevarez et al. BMC Bioinformatics 2010, 11:462
http://www.biomedcentral.com/1471-2105/11/462

Page 4 of 11



overall genome composition. For this we must also con-
sider how common the pattern is. This is especially true
in assessing the importance of larger patterns which
occur relatively rarely. To address this we developed a
context bias metric (eq. 5) which is the quantity r - 1
times the frequency of the pattern.
We calculated context bias for all gapped and

ungapped patterns from 2-5 bp. Table 3 has the top 50
patterns sorted by context bias, and Additional File 3
has a larger group of patterns which corresponds to the
0.001 FDR group. The top pattern is once again CG !
TG (context bias = 2.926e-3). Its context bias value is a
factor of 10 larger then the next pattern, which is AT !
GT. The other top entries from Table 2 are also present
in Table 3, but in slightly different order because of the
weighting by frequency. Note that under-represented
patterns are indicated by a negative context bias value.
An interesting point is that several longer patterns

show up in our results. The 3 bp pattern with the lar-
gest context bias is entry 6, TNG ! CNG (context bias
= 7.681e-5, r = 1.53). This is within a factor of 40 of
the absolute value of context bias for CG ! TG, and
within a factor of 3 of that for AT ! GT , the largest
non-CG 2 bp pattern. There are also 4 bp patterns, and
the largest of these, GNNG ! GNNA is approximately
a factor of 300 smaller than CG ! TG and a factor of
25 smaller than AT ! GT. In Additional File 3, there
are even some 5 bp patterns. The largest of these is
TNNNT ! TNNNC (context bias = -3.49e-6, r = 0.90).
The longer patterns that our context bias metric identi-
fies are largely gapped patterns. This is because such
patterns occur more frequently, and our context bias
measure is designed to take frequency into account.
However there are a few ungapped 3 bp patterns which

appear in the top group, for example, TGG ! CGG and
TTG ! CTG, entries 30 and 34 in Table 3. In Addi-
tional File 3 there is even an ungapped 4 bp pattern,
CGCC ! TGCC (context bias = -2.80e-06, r = 0.81)
which is entry 133.
One of the novel aspects of our method is it offers a

way to measure the aggregate effects of bias at a parti-
cular size scale. We do this by summing the absolute
value of our context bias measure across all patterns at
a particular size (eq. 6). Figure 1 and Table 4 present
our results for human lineage data at 2-5 bp as well as
no-bias controls. Bias effects in the real data are sub-
stantially higher than in the no-bias controls. It can also
be seen that the overall impact of context bias drops off
substantially from 2-3 bp. The 2 bp total context bias
value is about a factor of 5 larger than the value for 3.
However, from 3 to 5 bp the value stays relatively
steady.
A concern with our method is that context bias values

could be affected by sample size. To address this, we re-
sampled the full human transposon data at a range of
sample sizes, and calculated context bias for each sam-
ple. We then repeated this for the corresponding no
bias control data (Additional File 2). At very small sam-
ple sizes, we find that median context bias values in
both real and no bias data are elevated due to stochastic
effects. However, at the sample sizes used in this analy-
sis, stochastic effects are negligible.

Context bias in transposon vs. non-transposon sequences
One question we can ask with this method is whether
bias effects vary across the genome. We start by com-
paring transposon vs. non-transposon sequences. At the
2 bp scale differences in substitution bias have been
observed between these two sequence types. These are
due to the differences in methylation level between
transposons and non-transposons [39]. Our method
allows us to look for similar effects at larger scales.
To do this we generated a set of non-transposon

sequences, covering approximately 15% of the human gen-
ome, and used human-chimpanzee-orangutan alignments
to infer the human-chimpanzee ancestral sequence. We
then applied eq. 6 to both transposon and non-transposon
sets of alignments. As illustrated in Figure 2A and Table 4,
we find higher total context bias in transposon sequence
than in non-transposon sequence. This difference extends
over the whole size range from 2-5 bp, and is statistically
significant (bootstrap-t test, p < 0.001).
The CG ! TG effect is likely to contribute a signifi-

cant part of the transposon vs. non-transposon differ-
ence at 2 bp. In fact, it could potentially contribute to
effects at larger pattern sizes, if the magnitude of the
CG ! TG effect were correlated with some attribute
like the G+C content of nearby bases [40]. To control

Table 2 Top single-substitution patterns of length 2 by
relative abundance

Pattern Rel. abund. 95% Conf. Int.

1. CG!TG (CG!CA) 7.5809 7.5581 - 7.6049

2. CG!CT (CG!AG) 2.2765 2.2495 - 2.3054

3. CG!GG (CG!CC) 1.9887 1.9605 - 2.0182

4. AT!GT (AT!AC) 1.5444 1.5401 - 1.5492

5. TG!CG (CA!CG) 1.3861 1.3816 - 1.3906

6. AT!TT (AT!AA) 1.3335 1.3244 - 1.3433

7. TA!TT (TA!AA) 1.2402 1.2297 - 1.2504

8. TG!GG (CA!CC) 1.2087 1.1999 - 1.2166

9. GT!TT (AC!AA) 1.2006 1.1920 - 1.2093

10. GT!AT (AC!AT) 1.1903 1.1868 - 1.1943

11. TC!TG (GA!CA) 1.1358 1.1279 - 1.1433

12. TT!TG (AA!CA) 1.1141 1.1073 - 1.1212

13. TA!TG (TA!CA) 1.0990 1.0942 - 1.1039

14. CT!GT (AG!AC) 1.0969 1.0904 - 1.1033

15. GT!CT (AC!AG) 1.0895 1.0816 - 1.0978
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Table 3 Top 50 single-substitution patterns 2-5 bp sorted by context bias

Pattern Context bias 95% Conf. Int. Rel. abund. 95% Conf. Int.

1. CG!TG (CG!CA) 2.926e-03 2.907e-03 - 2.945e-03 7.5809 7.5581 - 7.6049

2. AT!GT (AT!AC) 2.148e-04 2.125e-04 - 2.173e-04 1.5444 1.5401 - 1.5492

3. TG!CG (CA!CG) 1.372e-04 1.351e-04 - 1.392e-04 1.3861 1.3816 - 1.3906

4. TG!TA (CA!TA) -1.025e-04 -1.021e-04 - -1.029e-04 0.6367 0.6341 - 0.6391

5. CT!TT (AG!AA) -9.985e-05 -9.947e-05 - -1.002e-04 0.6136 0.6110 - 0.6161

6. TNG!CNG (CNA!CNG) 7.681e-05 7.571e-05 - 7.790e-05 1.5309 1.5252 - 1.5365

7. TT!TC (AA!GA) -7.532e-05 -7.497e-05 - -7.568e-05 0.6385 0.6355 - 0.6413

8. GT!AT (AC!AT) 6.859e-05 6.691e-05 - 7.038e-05 1.1903 1.1868 - 1.1943

9. TC!TT (GA!AA) -6.753e-05 -6.697e-05 - -6.808e-05 0.7425 0.7399 - 0.7454

10. GG!GA (CC!TC) -6.618e-05 -6.573e-05 - -6.664e-05 0.7081 0.7049 - 0.7114

11. TT!CT (AA!AG) -5.828e-05 -5.770e-05 - -5.884e-05 0.7672 0.7641 - 0.7703

12. TC!CC (GA!GG) -4.745e-05 -4.718e-05 - -4.771e-05 0.6333 0.6296 - 0.6370

13. CG!CT (CG!AG) 3.809e-05 3.676e-05 - 3.950e-05 2.2765 2.2495 - 2.3054

14. CT!CC (AG!GG) -3.210e-05 -3.144e-05 - -3.275e-05 0.8438 0.8402 - 0.8479

15. GNG!ANG (CNC!CNT) 2.937e-05 2.857e-05 - 3.014e-05 1.1720 1.1682 - 1.1759

16. CG!GG (CG!CC) 2.462e-05 2.358e-05 - 2.564e-05 1.9887 1.9605 - 2.0182

17. AT!TT (AT!AA) 2.382e-05 2.294e-05 - 2.468e-05 1.3335 1.3244 - 1.3433

18. TA!TG (TA!CA) 2.340e-05 2.218e-05 - 2.455e-05 1.0990 1.0942 - 1.1039

19. TNA!TNG (TNA!CNA) -2.243e-05 -2.214e-05 - -2.270e-05 0.7903 0.7866 - 0.7938

20. GG!AG (CC!CT) 2.236e-05 2.105e-05 - 2.373e-05 1.0655 1.0620 - 1.0692

21. GNG!GNA (CNC!TNC) 1.910e-05 1.839e-05 - 1.976e-05 1.1173 1.1134 - 1.1217

22. TNG!TNA (CNA!TNA) -1.873e-05 -1.833e-05 - -1.913e-05 0.8679 0.8648 - 0.8713

23. TNT!CNT (ANA!ANG) -1.844e-05 -1.802e-05 - -1.887e-05 0.8750 0.8715 - 0.8783

24. CNT!CNC (ANG!GNG) 1.733e-05 1.670e-05 - 1.801e-05 1.1524 1.1478 - 1.1575

25. TG!TC (CA!GA) -1.692e-05 -1.660e-05 - -1.721e-05 0.7668 0.7612 - 0.7723

26. GNT!ANT (ANC!ANT) -1.673e-05 -1.630e-05 - -1.714e-05 0.8848 0.8814 - 0.8884

27. GT!TT (AC!AA) 1.630e-05 1.552e-05 - 1.709e-05 1.2006 1.1920 - 1.2093

28. TG!GG (CA!CC) 1.610e-05 1.530e-05 - 1.682e-05 1.2087 1.1999 - 1.2166

29. CT!AT (AG!AT) -1.535e-05 -1.500e-05 - -1.568e-05 0.7949 0.7894 - 0.8006

30. TGG!CGG (CCA!CCG) -1.482e-05 -1.468e-05 - -1.496e-05 0.7151 0.7116 - 0.7185

31. TA!TT (TA!AA) 1.343e-05 1.273e-05 - 1.411e-05 1.2402 1.2297 - 1.2504

32. TC!TA (GA!TA) -1.182e-05 -1.149e-05 - -1.214e-05 0.8167 0.8109 - 0.8236

33. GNT!TNT (ANC!ANA) 1.175e-05 1.135e-05 - 1.223e-05 1.2551 1.2474 - 1.2636

34. TTG!CTG (CAA!CAG) 1.173e-05 1.136e-05 - 1.208e-05 1.2408 1.2347 - 1.2469

35. TT!AT (AA!AT) -1.172e-05 -1.147e-05 - -1.200e-05 0.7803 0.7727 - 0.7868

36. TC!TG (GA!CA) 1.163e-05 1.093e-05 - 1.239e-05 1.1358 1.1279 - 1.1433

37. TNC!TNT (GNA!ANA) -1.152e-05 -1.099e-05 - -1.204e-05 0.9305 0.9273 - 0.9337

38. GT!GC (AC!GC) 1.090e-05 9.893e-06 - 1.202e-05 1.0588 1.0539 - 1.0639

39. TT!TG (AA!CA) 1.033e-05 9.639e-06 - 1.105e-05 1.1141 1.1073 - 1.1212

40. GGC!GGT (GCC!ACC) 9.916e-06 9.571e-06 - 1.026e-05 1.2075 1.2018 - 1.2140

41. GC!GG (GC!CC) -9.655e-06 -9.383e-06 - -9.932e-06 0.7853 0.7772 - 0.7938

42. CT!GT (AG!AC) 9.557e-06 8.870e-06 - 1.027e-05 1.0969 1.0904 - 1.1033

43. TT!TA (AA!TA) -9.479e-06 -9.164e-06 - -9.822e-06 0.8338 0.8268 - 0.8413

44. TC!GC (GA!GC) -9.314e-06 -9.093e-06 - -9.545e-06 0.7587 0.7509 - 0.7677

45. GNG!CNG (CNC!CNG) 9.304e-06 8.933e-06 - 9.707e-06 1.2409 1.2320 - 1.2497

46. GNNG!GNNA (CNNC!TNNC) 9.232e-06 8.864e-06 - 9.596e-06 1.1145 1.1104 - 1.1185

47. GG!TG (CC!CA) -8.903e-06 -8.530e-06 - -9.274e-06 0.8544 0.8467 - 0.8619

48. TNNG!TNNA (CNNA!TNNA) -8.708e-06 -8.482e-06 - -8.924e-06 0.8822 0.8787 - 0.8856

49. TG!TT (CA!AA) -8.545e-06 -8.105e-06 - -9.015e-06 0.9046 0.8987 - 0.9102

50. GG!CG (CC!CG) -7.914e-06 -7.543e-06 - -8.279e-06 0.8664 0.8596 - 0.8745
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for this we calculated context bias for our alignment
data, removing patterns where the ancestor contains a
CpG dinucleotide. This eliminates the possibility that
context effects at the 3-5 bp scale might be acting via
the rate of cytosine deamination at CpG sites. After
removing all patterns with an ancestral CpG (Additional

File 4A) we find that transposon sequences still have a
significantly larger degree of context bias than non-
transposon sequences.
Another concern is that transposon vs. non-transpo-

son difference in our total context bias measure might
be due to differences in pattern composition, rather
than differences in bias. Comparison with our no-bias
controls partially alleviates this concern. To be even
more confident, we repeated our analysis, calculating an
unweighted version of eq. 6 over all single base substitu-
tion patterns P. In the unweighted version we replace
the f(P) term with with 1/N, where N is the total num-
ber of patterns. Using this measure we get similar
results. Bias is larger in transposons than non-transpo-
son regions for all pattern sizes. (Additional File 5).
In order to better understand the source of this con-

text bias difference, we compared individual patterns
from transposon and non-repetitive alignments. The dif-
ference between transposon and non-repetitive datasets
is due to a relatively small fraction of patterns which
have different values in the two (Additional File 6).

Context bias varies near and far from genes
A second way in which genomic location may affect
substitution bias is based on proximity to genes. Evi-
dence from the rate of change of word frequencies in
DNA suggests such effects exist [41].
To examine this we obtained alignment data from

regions near and far from genes. The near-gene data sets
consist of alignments from within 5 kb upstream of tran-
scription start sites of protein coding genes. The far-from-
gene data consist of alignments located more than 50 kb
away from protein coding genes. We did this for both our
transposon and non-transposon sequence. We find that
the amount of substitution bias varies significantly based
on proximity to genes. Moreover, the nature of this effect
is different in transposons and non-repetitive sequence.
In transposon sequences, total context bias is signifi-

cantly greater near genes than far from them at all pat-
tern sizes (Figure 2B). In non-repetitive sequences,
context bias at the 2 bp level is greater far from genes
than near them, the opposite of what is observed in
transposons (bootstrap-t test, p < 0.001). At 3-5 bp, near
and far are roughly comparable (Figure 2C). When we
remove all CpG patterns as above, these results remain
the same (Additional File 4B and 4C).
An examination of the source of these total context

bias differences shows that they are due to a compara-
tively small number of patterns (Additional File 6).

Comparison of LINE and SINE transposons
Another question is whether substitution bias varies
between transposon types. Such variation could explain
our near-gene far-from-gene observations in transposon
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Figure 1 Total context bias in transposon sequences along the
human lineage after the divergence from chimpanzee. Real
data is shown in black, while values for a corresponding no bias
control are in orange. Context bias is greatest at the 2 bp scale,
with CG ! TG having the largest contribution. Total bias then
drops, but remains level in 3-5 bp patterns rather than continuing
to decrease.

Table 4 Total context bias in transposons and non-
repeats, and subsets near or far from genes

2 bp 3 bp 4 bp 5 bp

Real data

Transposon 1.2622e-2 2.5405e-3 1.8575e-3 1.7409e-3

Transposon, near 1.2981e-2 2.7622e-3 2.2495e-3 2.4520e-3

Transposon, far 1.1799e-2 2.4298e-3 1.6990e-3 1.3874e-3

Non-repeat 9.0816e-3 2.1532e-3 1.3989e-3 1.0385e-3

Non-repeat, near 7.5286e-3 2.1473e-3 1.4786e-3 1.2069e-3

Non-repeat, far 9.3789e-3 2.2102e-3 1.4290e-3 1.0287e-3

LINEs 9.7298e-3 2.1798e-3 1.4683e-3 1.1465e-3

SINEs 1.8042e-2 3.6693e-3 3.6117e-3 4.3391e-3

No-bias controls

Transposon 4.3907e-5 7.4125e-5 1.1806e-4 1.9323e-4

Transposon, near 7.4565e-5 1.7935e-4 3.1243e-4 5.0755e-4

Transposon, far 3.7193e-5 7.4758e-5 1.2081e-4 2.0596e-4

Non-repeat 3.1367e-5 7.1670e-5 1.1779e-4 1.9054e-4

Non-repeat, near 8.3869e-5 1.3339e-4 2.6857e-4 4.1832e-4

Non-repeat, far 4.1651e-5 7.3881e-5 1.2627e-4 1.8502e-4

LINEs 5.6367e-5 1.0365e-4 1.8279e-4 2.8490e-4

SINEs 7.2458e-5 1.4746e-4 2.4695e-4 3.9894e-4
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sequence, because the distribution of transposons is
known to vary based on proximity to genes. To look at
this we extracted LINE and SINE derived sequences
from our full transposon dataset, and compared context
bias between these two transposon classes.
SINE elements genome-wide have substantially higher

context bias than LINEs at all pattern sizes (Figure 2D),
a difference which remains when CpG patterns are
removed (Additional File 4D). As has been previously
reported, the distribution of Alu SINEs is correlated
with gene density, which is not the case for LINEs [42].
The localization of these common SINEs near genes,
along with their elevated context bias compared to
LINEs, may help explain the difference in bias at differ-
ent distances from genes.

Discussion
Here we have presented a method to examine context-
dependent nucleotide substitution biases. Our method is

based on the relative abundance method for word fre-
quencies and allows us to disentangle context effects at
different size scales. With it we can systematically exam-
ine context biases from beyond the adjacent base, some-
thing which had not been possible previously. We
applied our method to the human lineage after the
divergence from chimpanzee, measuring context effects
in substitution patterns from 2 to 5 bp, and finding sig-
nificant effects at all sizes.
Our results for 2 bp patterns are broadly consistent

with previous studies of context-dependent substitution
[4,11,12,19,21,22,38]. For example, Arndt and Hwa [19]
used a probabilistic model to look at context effects due
to the immediately adjacent base. They studied substitu-
tion patterns in AluSx SINE insertions in the human
lineage, which represents a significantly smaller dataset
than ours. Despite differences in dataset and methodol-
ogy, all three of the patterns they identify as over-repre-
sented are among our top patterns. These are CG !
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Figure 2 Comparison of context bias in different types of sequence. Bars represent 95% confidence intervals. At pattern sizes from 2-5 bp,
context bias is greater in transposon sequence than in non-repetitive sequence (A). Among transposons, context bias is greater near genes than
far from them (B). Conversely, context bias is never significantly greater near genes in non-repetitive sequence, with markedly higher context
bias far from genes for 2 bp patterns (C). Context bias also differs between the most common classes of transposons, LINEs and SINEs (D).
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TG, CG ! GG, and TT ! TG, and are our first, third
and twelfth entries respectively (Table 2).
We identified a number of 3 and 4 bp patterns with

large bias effects which may have a significant impact
on genome composition. The largest number of these
are gapped patterns such as TNG ! CNG. Gapped pat-
terns occur at higher frequency than ungapped, and for
this reason are more likely to impact genome composi-
tion. However there are also some ungapped 3 bp pat-
terns which appear in Table 3. Interestingly all three
ungapped patterns have substitutions on the end. This
means that they would not have been found by previous
methods which looked at the effect of both adjacent
bases on substitutions at a central site (e.g. [21]).
The fact that some gapped 3 bp patterns appear at the

top of Table 3 suggests that such patterns may be worth
incorporating into probabilistic substitution models
which consider context. In some circumstances (i.e.
when the dataset is large) adding parameters for these
processes may significantly improve models.
In addition to identifying over- and under-represented

substitution patterns, our method also allows us to esti-
mate the aggregate effects of context bias at a particular
size scale. We found that these drop substantially from 2
to 3 bp, but then level off from 3-5 bp where they remain
significantly larger than the no bias controls. The drop
off from 2 to 3 is not unexpected. In part it reflects the
strong influence of the CpG effect. However the CpG
effect does not account for all of the difference between 2
and 3 bp, as can be seen when we remove the CpG
effects (Additional File 4). This shows that nearest neigh-
bor bias effects in general are very strong compared to
more distant effects. What is a little unexpected is the
fact that total context bias at 5 bp is similar to that at 3.
When we imagine the kind of molecular processes which
could produce these biases, it seems reasonable that
influence would drop off with distance. But at least
between 3 and 5 bp this appears not to be the case.
The most interesting aspect of our results is the find-

ing that different types of sequence are subject to differ-
ent context dependent biases. In particular, sequences
derived from transposon insertions are subject to differ-
ent and greater biases than non-repetitive sequences.
This likely reveals something about the underlying geno-
mic processes affecting substitution in these regions.
One way to explain regional variation in context

dependent substitution processes is via selective
mechanisms. Purifying selection disfavors some muta-
tions from becoming fixed, which can produce substitu-
tion biases. Biases created in this way might vary across
the genome since the density of functional sequences
varies across the genome. However, our data aren’t
entirely consistent with the selective explanation. Ances-
tral transposon insertions are a fairly neutral category of

sequence. If selection were the main explanation for
bias, we wouldn’t expect transposon derived sequences
to have more bias than non-repetitive sequences. But
that is what our data show (Figure 2A).
Mutational explanations offer an alternative. At the 2

bp scale, there is a mutational explanation which is very
consistent with our data and previous work. This expla-
nation is that that differences in context bias result from
variation in the methylation of CpG dinucleotides. Con-
sider our results at 2 bp. First, we observed that context
bias is greater in transposons than non-repetitive
sequences (Figure 2A). A large part of the difference is
due to the fact that CpGs are more likely to be methy-
lated in transposons [39,43]. Indeed, when we remove
alignment columns with ancestral CpGs, the difference
in total context bias between transposon and non-repe-
titive sequence at 2 bp is reduced substantially. Second,
for non-transposon sequences the bias at 2 bp is signifi-
cantly less near genes than far from them (Figure 2E).
This can be explained by the fact that CpG islands are
more common near genes [44]. In such regions, most
Cs are unmethylated, and are thus much less likely to
undergo a transition to T. This will tend to reduce our
context bias measure.
In transposon sequences the near gene vs. far-from-

gene result is reversed; total context bias is greater near
genes. This result may be due to non-uniform distribu-
tion of transposable elements across the genome. Alu
elements, the most common SINEs, are associated with
gene density [42], while LINEs are not. We have also
found that context bias in SINEs is higher than in
LINEs (Figure 2D). These considerations suggest that
the near gene vs. far-from-gene differences in context
bias may be explained by the transposon distribution at
different distances from genes.
We also observed substantial context effects at scales

larger than 2 bp. These share some important similari-
ties with the results at 2 bp. Most important is the
transposon vs. non-transposon difference. Total context
bias in transposon sequence is greater at 3-5 bp (Figure
2A). Also, just as at 2 bp, the effect of gene proximity is
different in the two types of sequence. Transposon
sequences have greater total context bias near genes
than far from them, which may be due to differences
transposon distribution near and far from genes. Non-
repetitive sequences lack this trend.
The bias effects we observe at 3-5 bp may represent

novel genomic processes. One possibility is the existence
of defense mechanisms against genomic parasites, which
as a byproduct of their activity produce substitution
biases. Such mechanisms would need to operate differ-
ently on transposon vs. non-transposon sequence, and
also on different transposon classes. The existence of
such mechanisms could explain some of the similarities
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we see to the CpG methylation dependent bias; one of
the important functions of CpG methylation is defense
against transposons [43,45].
Our method has allowed us to systematically examine

substitution biases beyond the adjacent base, and shown
that such biases do exist. However it has several limita-
tions. First, it is sensitive to stochastic variation. As we
move to larger pattern sizes, and individual patterns
become rarer, stochastic variation in our estimates of
context bias increases. We found that this problem
became important at 6 bp and particularly at 7 bp. For
this reason in this study we focused on pattern sizes 2-5
bp, where stochastic effects are not a serious problem
(Additional File 2). Our approach also has the limita-
tions associated with an empirical rather than model
based approach. Bias processes which are extremely fast,
such as the CpG process, are not handled well by such
approaches. In addition, the need to reconstruct the
ancestral sequence accurately limits us to using align-
ments from closely related species.
There are several avenues to pursue in the future. One

is to develop a model based approach to this problem,
which would alleviate some of the limitations mentioned
above. The present study provides a foundation for that
by giving an indication of the kinds of processes which
are likely to be important. Another future direction is to
look for better ways to compare bias in different
sequence regions. Here we have used total context bias.
It might be possible to do this in a more fine-grained
way, by developing distance measures which take into
account differences in context bias (or r) values for
individual patterns. Such comparisons could be carried
out between a much wider range of sequence types,
including introns, untranslated regions, and coding
sequence. Such methods would also make it possible to
compare substitution bias in different lineages, such as
in the chimpanzee vs. the human lineage.

Conclusions
We developed a method to systematically characterize
context dependent nucleotide substitution bias, and
applied it to 2-5 bp patterns. We find significant effects
at all sizes, with the largest effects at 2 bp. Our most
interesting result is that context effects vary across the
human genome. In particular there are significant differ-
ences between transposon-derived and non-transposon
sequence. Transposon sequences have more bias at all
scales from 2-5 bp. In addition, bias effects differ
between transposon classes as well as near and far from
genes. The variation at the 2 bp scale can likely be
explained by variation in CpG methylation. But at larger
scales it may be due to novel processes, possibly pro-
cesses related to genomic defense against transposons.

Additional material

Additional file 1: Proof of relative abundance algorithm by
mathematical induction. PDF file displaying Proof of relative abundance
algorithm by mathematical induction.

Additional file 2: Effect of sample size on total context bias
calculation. To determine the effect of stochastic variation in pattern
frequencies on our context bias estimates, we calculated total context
bias at a variety of sample sizes. We repeatedly sampled with
replacement from from our full transposon data set. We took a total of
5380 samples at 120 sample sizes. Here we have plotted the median
total context bias at each sample size against sample size. For
comparison we’ve also included the no-bias controls. At low sample sizes
stochastic effects elevate context bias. This effect diminishes rapidly with
increasing amounts of data.

Additional file 3: Table of top context bias values for 2-5 bp single
substitution patterns. We calculated context bias values for all single
substitution 2-5 bp patterns for our transposon dataset, and for 10
corresponding no bias control data sets. We used the no-bias controls to
determine a p-value for each pattern in the real data. (The no-bias
controls tell us how likely are we to get a score this high or higher if
there were in reality no bias.) We then used the method of Benjamini
and Hochberg, 1995 to identify the set of patterns with a false discovery
rate of 0.001. Those patterns are given in this table.

Additional file 4: Comparison of context bias after removing CpG-
containing patterns. One possible explanation for observed differences
in context bias is that the methylation process that produces biases at 2
bp is also influenced by context at larger scales. To address this, we
calculated context bias for each data set in Figure 2 while excluding
substitution patterns including an ancestral CpG. We find that the effects
at 3-5 bp remain, which suggests that bias at these scales is not working
via the rate of cytosine deamination at CpG sites.

Additional file 5: Unweighted total context bias in tranposons and
non-repetitive sequence. Differences in total context bias between
transposons and non-transposons might be due to variation in pattern
frequencies rather than difference in the substitution process. To address
this, we calculated an unweighted version of eq. 5 across all single-
substitution patterns at each pattern size. To do this we simply replaced
the term f(P) in eq. 5 with the term 1/N, where N is the total number of
patterns. With this new measure, as with total context bias, we find that
transposons have more bias than non-transposon sequence at all sizes.

Additional file 6: Distribution of context bias differences between
human lineage data sets. We found that total context bias differs
between different types of sequence, for example between transposons
and non-repetitive sequences. One question we would like to answer is
what is the origin of this difference. It turns out it is not due to patterns
which are unique in one data set or the other. Another question is
whether the differences is due to differences in a few shared patterns, or
many. Here we compare context bias values for patterns which are
shared. For example, in (A) we are looking at 2 bp patterns. We calculate
the value of transposon minus non-repetitive for each of these. We then
sort large to small, and plot them according to their rank. The y value of
this plot is the cumulative value of context bias difference. The horizontal
line represents the total context bias value for all patterns. As can be
seen, most of the final total context bias value is due to a few patterns
which differ greatly in transposons and non-repetitive sequence. A-D
represent transposon vs. non-repetitive for 2-5 bp, E-H represent near-far
for transposon sequences, and I-L represent far-near for non-repetitive
sequences.
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