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Abstract: Perception of a complex visual scene requires that important regions be prioritized and
attentionally selected for processing. What is the basis for this selection? Although much research
has focused on image salience as an important factor guiding attention, relatively little work has
focused on semantic salience. To address this imbalance, we have recently developed a new method
for measuring, representing, and evaluating the role of meaning in scenes. In this method, the spatial
distribution of semantic features in a scene is represented as a meaning map. Meaning maps are
generated from crowd-sourced responses given by naïve subjects who rate the meaningfulness of
a large number of scene patches drawn from each scene. Meaning maps are coded in the same
format as traditional image saliency maps, and therefore both types of maps can be directly evaluated
against each other and against maps of the spatial distribution of attention derived from viewers’ eye
fixations. In this review we describe our work focusing on comparing the influences of meaning and
image salience on attentional guidance in real-world scenes across a variety of viewing tasks that
we have investigated, including memorization, aesthetic judgment, scene description, and saliency
search and judgment. Overall, we have found that both meaning and salience predict the spatial
distribution of attention in a scene, but that when the correlation between meaning and salience is
statistically controlled, only meaning uniquely accounts for variance in attention.

Keywords: attention; scene perception; eye movements

1. Introduction

The world contains an enormous amount of visual information, but human vision and visual
cognition are severely limited in their processing capacity: Only a small fraction of the latent information
can be analyzed at any given moment. Efficient visual cognition therefore requires selecting the
information that is most relevant at the present moment for understanding and acting on the world.
The primary way in which this selection takes place in natural vision is with overt attention via eye
movements [1–9], as shown in Figure 1. Close or direct fixation of the scene region containing relevant
information is typically necessary to perceive its visual details, to unambiguously determine its identity
and meaning, and to encode it into short- and long-term memory. That is, what we see and understand
about the world is determined by where we look [10].

Given the importance of eye movements for perception and cognition, a critical issue concerns
understanding the representations and processes that guide the eyes through a visual scene in real time
to support perception, cognition, and behavior [11]. Models based on image salience have provided an
influential approach to eye movement guidance in scene perception. For static images, these models
propose that attention is controlled by contrasts in primitive image features such as luminance, color,
and edge orientation [12–14]. A key concept is the saliency map, which is generated by salience over
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the primitive features. Attention is then assumed to be captured or “pulled” to the most visually salient
scene regions represented by the saliency map [15–21]. Because the primitive features are semantically
uninterpreted, scene regions are prioritized for attentional selection based on image properties alone.
The appeal of this type of image salience model is that visual salience is both neurobiologically
plausible in the sense that the visual system is known to compute the assumed primitive features,
and computationally tractable in the sense that working models have been implemented that generate
image salience from these features [4].Vision 2019, 3, x FOR PEER REVIEW 2 of 10 
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models. This difference in usage can lead to confusion. For our purposes here, we specifically focus 
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We note that “salience” has different interpretations in different literatures, and so we want to
be clear about which interpretation we are using. In vision science and attention research, the term
is typically reserved for models in the Koch and Ullman tradition based on the idea that the human
visual system computes difference maps from basic image features that are then combined and used
to guide attention [19]. On the other hand, in computer vision and image processing, models that
predict attention regardless of the underlying processes are also sometimes referred to as saliency
models. This difference in usage can lead to confusion. For our purposes here, we specifically focus
on image salience in the Koch and Ullman tradition, and to eliminate ambiguity, we use the terms
“image salience” and “salience” to refer to that concept.

In contrast to models based on image salience, cognitive guidance models emphasize the important
role of scene semantics in directing attention in scenes. In this view, attention is “pushed” by the
cognitive system to scene regions that are semantically informative and cognitively relevant [10].
Cognitive guidance is consistent with evidence suggesting that viewers attend to semantically
informative regions of a scene [5,6,22–25], as well as scene regions that are task-relevant [6,26–34].
For example, according to the cognitive relevance model [35,36], the attentional priority assigned to
a scene region is based on its inherent meaning (e.g., “cup”) as well as its meaning with respect to
the scene (e.g., “a cup in an office”) and the goals of the viewer (e.g., “I am looking for something
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I can put water into”). In the cognitive relevance model, the scene image is of course important:
It is the input that enables these higher-level semantic processes and interpretations. Additionally,
the scene image is the input for forming a map of potential attention targets. However, for this model,
the critical hypothesis is that the image-based parse generates a “flat” (that is, unranked) landscape of
potential targets rather than a landscape ranked by image salience. Attentional priority is then based
on the detected and predicted informativeness (i.e., meaning) of the scene regions and objects in that
landscape [3,4].

Until recently, it has been difficult to compare directly the influence of image salience and meaning
on attentional guidance in scenes, because to do so requires representing both of them in a format that
allows for comparable quantitative predictions of attentional distribution over the scene. Saliency
map models naturally provide this type of prediction [17,18,20,21,30,37]. Unfortunately, it is far more
difficult to create a computational model of meaning than it is to create a computational model of
image salience, a likely reason that saliency models have been so popular [4,10]. Given this difficulty,
studies of meaning-based models of attention in scenes have typically focused on manipulations of
one or at most a small number of specific scene regions or objects [22,38–41]. However, these types
of manipulations do not allow a direct comparison of image salience and semantic informativeness
across the entire scene.

The issue we have recently pursued, then, is this: How can we generate and represent the spatial
distribution of semantic informativeness over a scene in a format that supports direct comparison with
a saliency map? To address this issue, we introduced a new approach based on meaning maps [42].
Meaning maps were inspired by two classic scene viewing studies [23,24]. The central idea of a
meaning map is that it represents the spatial distribution of semantic informativeness over a scene
in the same format as a saliency map represents the spatial distribution of image salience. To create
meaning maps, we use crowd-sourced responses given by large numbers of naïve subjects who rate
the meaningfulness of scene patches. Specifically, photographs of real environments are divided
into dense arrays of objectively defined circular overlapping patches at two spatial scales (Figure 2).
The two scales and numbers of patches are chosen based on simulations showing that we can recover
ground truth visual properties of scenes from them [42]. Large numbers of workers on Mechanical
Turk each rate a randomly selected subset of individually presented patches taken from the set of
scenes to be rated. We then construct meaning maps for each scene by averaging these ratings by
pixel over patches and raters and smoothing the results (Figure 3). Like image salience, meaning is
spatially distributed non-uniformly across scenes, with some scene regions relatively rich in semantic
informativeness and other regions relatively sparse. Meaning maps represent this spatial distribution
pixel by pixel, and so offer a foundation for directly comparing the relative roles of meaning and image
salience on attentional guidance.
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regions that are more meaningful (red) and salient (blue); (e) regions in the top 10% of meaning values;
(f) regions in the top 10% of saliency values.

In sum, meaning maps provide a conceptual analog of saliency maps by representing the spatial
distribution of semantic features associated with informativeness across a scene. Meaning maps
generate predictions concerning attentional guidance that can be tested using the same methods that
have been used to test predictions from saliency maps. This allows contrasting predictions from
semantic informativeness and image salience to be directly compared [42].

2. Review of Results

Meaning maps and saliency maps serve as predictions of how attention will be guided through
scenes. The key empirical question is how well these predictions accord with observed distributions of
attention produced by people viewing scenes.

In a first study directed toward this question, we asked subjects to view a set of scenes for 12 s
each while their eye movements were recorded [42]. Subjects viewed the scenes to prepare for memory
and aesthetic judgment questions that were presented after viewing. We operationalized attention
maps as fixation density maps that reflected the spatial distribution of eye fixations across the scene.
Importantly, the attention maps represented attention in the same format and on the same scale as the
meaning and saliency maps. We then contrasted the degree to which the spatial distribution of meaning
and salience predicted viewers’ attention over the scenes. The results showed that both meaning
and salience predicted attention, but that when the association between meaning and salience was
statistically controlled with semi-partial correlations, only meaning uniquely accounted for attentional
variance. Furthermore, the influence of meaning was observed both at the very beginning of scene
viewing and throughout the trial. Figure 4 summarizes the data from this study. This result was
observed in both scene memorization and aesthetic judgment viewing tasks. Given the strong observed
correlation between meaning and salience, and the finding that only meaning accounted for variance
in attention when that correlation was controlled, we concluded that the existing data are consistent
with a theory in which meaning is the main factor guiding attention through scenes.
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In our initial study, we focused on the spatial distribution of attention by measuring the locations
of fixations [42]. However, fixations also differ by duration, and fixation duration is known to reflect
ongoing visual and cognitive activity [43–49]. Therefore, in a reanalysis of the data from Henderson
and Hayes (2017), we examined the relative influences of semantic features and image salience on the
distribution of attention taking into account attentional dwell time at each location [42,50]. This was
accomplished by creating attention maps that weighted each fixation by its duration. Again, the question
was whether these duration-weighted attention maps would be best accounted for by meaning maps
or saliency maps. Using the same analysis methods with these duration-weighted attention maps,
we replicated all of the basic data patterns that we observed in the original study. Specifically, we found
that both meaning and salience were associated with attention, but that when the correlation between
meaning and salience was statistically controlled, only meaning accounted for variance in attention.
Once again, the influence of meaning was observed both at the beginning of scene viewing and
throughout the trial. Therefore, whether the measure of attention is based on location only or includes
dwell time, the answer with respect to meaning and image salience is the same [50].

In our initial experiments demonstrating the advantage of meaning maps over saliency maps,
subjects viewed scenes in order to prepare for memory and aesthetic judgment questions that were
presented after viewing [42,50]. In those tasks, the responses were off-line with respect to scene
perception, so viewers may not have guided attention as quickly or under as much control as they
might in a task requiring real-time responses during viewing. Therefore, in the next study we
investigated how well meaning and image salience account for attention when the subject is actively
engaged with and responding to the scene continuously in real time, and the guidance of attention is
directly relevant to the real-time task. For this purpose, we used two scene description tasks [51].

We drew on evidence that language production is incremental in the sense that speakers interweave
planning and speaking instead of planning the entire production and then executing the plan [52].
That is, speakers typically plan and produce small units of speech (words and phrases) that are tied
to each scene region that they fixate. Scene description therefore allows us to examine the relative
influences of semantic information and image salience under conditions in which on-line changes
in attention to specific scene regions are functional and necessary. We used this basic paradigm
in two experiments. In one experiment, subjects described what someone might do in each scene,
and in a second experiment, they simply described each scene. In both experiments, subjects were
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asked to begin their description when the scene appeared and to continue speaking for 30 s of scene
presentation. Their eyes were tracked throughout each trial. The main result was that, once again,
both meaning and salience were associated with the spatial distribution of attention, but when the
correlation between meaning and salience was statistically controlled, only meaning accounted for
variance in attention. This basic result was seen in both experiments. Therefore, once again we found
no evidence for a unique influence of image salience on attention that could not be explained by the
relationship between image salience and meaning, whereas the unique influence of meaning could not
be attributed to salience.

So far, across all four tasks we have described (memorization, aesthetic judgment, scene description,
and action description), meaning was highly relevant. Perhaps for tasks in which image salience is
necessary and meaning is irrelevant, salience would better predict attention. To test this hypothesis,
in a final set of experiments we examined the role of meaning and salience in two experiments using
tasks for which meaning was completely irrelevant and saliency was critical: a brightness rating task
in which participants rated each scene for its overall brightness, and a brightness search task in which
participants counted the number of bright patches in each scene [53]. If meaning was used to guide
attention in the previous tasks because those tasks emphasized the semantic content of the scenes,
then the relationship between meaning and attention should no longer hold in the tasks that focus
on the image itself. On the other hand, if the use of meaning to guide attention is a fundamental
property of the operation of the attention system when faced with real-world scenes, then we should
continue to see a relationship between meaning and attention even if meaning is irrelevant. Using the
same methods as the previous studies, the striking finding was that in both the brightness rating and
brightness search tasks, the results were very similar to the prior experiments: When the correlation
between meaning and salience was controlled, only meaning uniquely accounted for significant
variance in attention. These results showed that the relationship between meaning and attention is not
restricted to viewing tasks that require the viewer to analyze meaning. The results support theories in
which scene semantics play a central role in attentional guidance in scenes.

3. Discussion

We have reviewed the meaning map approach and shown how we have used it to investigate the
relative roles of semantic informativeness and image salience on attentional guidance. Our results
strongly suggest a fundamental and mandatory role for meaning in attentional guidance in real-world
scenes. These results are consistent with a growing understanding that both overt and covert visual
attention are often under the influence of the meaning of the visual stimulus, even when that meaning
seems irrelevant to the task. Examples of this type of semantic effect are influences of object meaning
on eye movements in the visual world paradigm [54], and influences of semantic object relationships
on covert attention [55]. Furthermore, we found that the observed relationship between meaning and
attention was about as strong as it could be given the variability in attention maps across subjects [42].
In the remainder of this section we consider and discuss some additional related issues.

First, although it has sometimes been proposed that image salience and semantic content are
likely to be correlated in scenes, it has been difficult to test this hypothesis directly. The meaning map
approach provides such a method. Further, as we have shown across several studies, that correlation is
robust. An important implication of this finding is that previous results demonstrating a relationship
between saliency maps and attention cannot be taken as evidence for a functional role of salience in
guiding attention. Indeed, as we have reviewed above, essentially the entire relationship between image
salience and attention can be attributed to the association between image salience and semantic content.

Second, it is important to be clear that meaning maps are not a theory of scene semantics.
They are simply a method for tapping into and representing human judgments concerning the relative
informativeness of scene regions continuously over space. Meaning maps provide an operational
definition of the spatial distribution of meaning that can be quantified, but they do not offer direct
insight into the nature of scene semantics or how meaning is represented in the mind and brain.
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That said, it may be that the meaning map approach can be used as a tool for beginning to get a
handle on the nature of scene semantics. For example, the type of scene meaning we have investigated
so far has been based on ratings of scene patches that were presented to raters independently of
the scenes from which the patches were taken. These experiments therefore focus on the role of
what we call scene-intrinsic context-free meaning on attention [51]. We might collect ratings using
other types of questions that could provide insight into other types of semantic representations.
For example, we could compare context-free to contextualized meaning in which the degree of meaning
associated with a scene region is based on its relationship to the scene as a whole rather than on its own.
Similarly, we might consider goal-related meaning, in which the meaning of a scene region is based on
its relationship to the viewer’s goals rather than intrinsic to the scene itself. Using judiciously chosen
ratings, we might be able to unravel how different types of meaning are related to each other and to
performance over different perceptual and cognitive tasks. The meaning map approach provides a
method for pursuing these questions. Relatedly, the meaning maps we have investigated so far based
on context-free ratings may not be the type of meaning most associated with attention, and we may
therefore be underestimating the relationship between semantic features and attention.

One advantage of saliency maps over meaning maps is that the former are image computable:
They can be derived automatically and without human intervention from computational models.
In comparison, meaning maps are not image computable and require human raters. For this reason,
one might suggest that saliency models are to be preferred as an explanation of human attention.
From an engineering perspective, this view has merit. However, from a vision and cognitive science
perspective, it does not. In our view, the interesting psychological claim of the image salience
hypothesis is that human attention in real-world scenes is driven by contrasts in basic image features.
This claim has been supported by a large number of experiments showing a correlation between
saliency maps and human fixations. The alternative hypothesis we are pursuing is that image salience
effects are actually disguised meaning effects, because image features and semantic features in scenes
are correlated [42]. Indeed, this is what we find, with very little if any unique variance accounted for
by salience once the variance accounted for by semantic features is controlled. This comparison is
not one of a computational model versus human ratings, but one of two competing psychological
theories. That is, we are concerned with psychological principles here, not modeling. There is no logical
requirement that testing this (or any) psychological hypothesis requires image computable semantic
features. Furthermore, until we have a computational model of the entire semantic system (which is
clearly a long way off), there is no other way to go about comparing salience to semantics. Saliency
models have been influential because they have been the only game in town [4,10]. Meaning maps
provide an alternative game, but their creation does require human judgment. From our perspective,
this approach is similar to the approach that uses human labeling to parse and label objects in scenes as
in the labelMe database [56] to produce object ground truth. Of course, it would be very interesting to
use the ground truth represented by meaning maps to try to train a model to find meaningful regions
(and indeed we are pursuing this idea), but that is not necessary for testing the theories at stake.

Relatedly, it has been argued that Koch and Ullman-inspired saliency models like GBVS are no
longer state of the art, but instead have been replaced by a newer class of models based on deep
neural networks (DNNs) that have recently been found to predict human attention quite well [57].
Given this, one might ask why we should take standard saliency models as the baseline for comparison
to meaning. In our view, although these DNN models are impressive from the perspective of pushing
the boundaries of deep learning and big data, it is not clear at this point how much they have to say
about active biological vision. For example, DNN models are trained on fixations over one set of
scenes and then predict fixations on another set of scenes. It is clear that humans do not learn where
to fixate based on supervised learning from the fixations of others or by ingesting large amounts of
external fixation data. It is also unclear whether the mechanisms used by DNNs to predict attention
operate on the same principles that are used by the human brain. For these reasons, although we watch
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developments in this field with great interest, we are not yet sure how their successes and failures
should be interpreted from the perspective of human attentional processes.
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